PPC5777CCK3MME3R [NXP]

MPC5777C Microcontroller;
PPC5777CCK3MME3R
型号: PPC5777CCK3MME3R
厂家: NXP    NXP
描述:

MPC5777C Microcontroller

PC 微控制器
文件: 总90页 (文件大小:1087K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC5777C  
Rev. 14, 01/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MPC5777C  
MPC5777C Microcontroller  
Data Sheet  
Features  
For functional characteristics and the programming  
model, see the MPC5777C Reference Manual.  
This document provides electrical specifications, pin  
assignments, and package diagram information for the  
MPC5777C series of microcontroller units (MCUs).  
NXP reserves the right to change the proudction detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1 Introduction...............................................................................3  
3.11.1  
3.11.2  
3.11.3  
3.11.4  
Power management electrical characteristics40  
Power management integration.....................43  
Device voltage monitoring..............................44  
Power sequencing requirements....................46  
1.1 Features summary..........................................................3  
1.2 Block diagram..................................................................4  
2 Pinouts......................................................................................5  
2.1 416-ball MAPBGA pin assignments................................5  
2.2 516-ball MAPBGA pin assignments................................6  
3 Electrical characteristics............................................................7  
3.1 Absolute maximum ratings..............................................7  
3.2 Electromagnetic interference (EMI) characteristics.........9  
3.3 Electrostatic discharge (ESD) characteristics.................9  
3.4 Operating conditions.......................................................9  
3.5 DC electrical specifications.............................................12  
3.6 I/O pad specifications......................................................13  
3.12 Flash memory specifications...........................................47  
3.12.1  
Flash memory program and erase  
specifications..................................................48  
Flash memory Array Integrity and Margin  
Read specifications........................................48  
Flash memory module life specifications.......49  
Data retention vs program/erase cycles.........50  
Flash memory AC timing specifications.........50  
Flash memory read wait-state and address-  
pipeline control settings..................................51  
3.12.2  
3.12.3  
3.12.4  
3.12.5  
3.12.6  
3.6.1  
3.6.2  
3.6.3  
Input pad specifications..................................13  
Output pad specifications...............................15  
I/O pad current specifications.........................19  
3.13 AC timing.........................................................................52  
3.13.1  
3.13.2  
3.13.3  
3.13.4  
3.13.5  
3.13.6  
3.13.7  
3.13.8  
3.13.9  
Generic timing diagrams................................52  
Reset and configuration pin timing.................53  
IEEE 1149.1 interface timing..........................54  
Nexus timing..................................................57  
External Bus Interface (EBI) timing................59  
External interrupt timing (IRQ/NMI pin)..........63  
eTPU timing...................................................64  
eMIOS timing.................................................65  
DSPI timing with CMOS and LVDS pads.......66  
3.7 Oscillator and PLL electrical specifications.....................19  
3.7.1  
3.7.2  
PLL electrical specifications...........................20  
Oscillator electrical specifications..................21  
3.8 Analog-to-Digital Converter (ADC) electrical  
specifications...................................................................23  
3.8.1  
Enhanced Queued Analog-to-Digital  
Converter (eQADC)........................................23  
Sigma-Delta ADC (SDADC)...........................25  
3.8.2  
3.9 Temperature Sensor.......................................................34  
3.10 LVDS Fast Asynchronous Serial Transmission (LFAST)  
pad electrical characteristics...........................................34  
3.13.10 FEC timing.....................................................78  
4 Package information.................................................................83  
4.1 Thermal characteristics...................................................83  
3.10.1  
3.10.2  
LFAST interface timing diagrams...................34  
LFAST and MSC/DSPI LVDS interface  
4.1.1  
General notes for thermal characteristics......84  
5 Ordering information.................................................................87  
6 Document revision history.........................................................88  
electrical characteristics.................................36  
LFAST PLL electrical characteristics.............39  
3.10.3  
3.11 Power management: PMC, POR/LVD, power  
sequencing......................................................................40  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
2
NXP Semiconductors  
Introduction  
1 Introduction  
1.1 Features summary  
On-chip modules available within the family include the following features:  
• Three dual issue, 32-bit CPU core complexes (e200z7), two of which run in lockstep  
• Power Architecture embedded specification compliance  
• Instruction set enhancement allowing variable length encoding (VLE), optional  
encoding of mixed 16-bit and 32-bit instructions, for code size footprint  
reduction  
• On the two computational cores: Signal processing extension (SPE1.1)  
instruction support for digital signal processing (DSP)  
• Single-precision floating point operations  
• On the two computational cores: 16 KB I-Cache and 16 KB D-Cache  
• Hardware cache coherency between cores  
• 16 hardware semaphores  
• 3-channel CRC module  
• 8 MB on-chip flash memory  
• Supports read during program and erase operations, and multiple blocks  
allowing EEPROM emulation  
• 512 KB on-chip general-purpose SRAM including 64 KB standby RAM  
• Two multichannel direct memory access controllers (eDMA)  
• 64 channels per eDMA  
• Dual core Interrupt Controller (INTC)  
• Dual phase-locked loops (PLLs) with stable clock domain for peripherals and  
frequency modulation (FM) domain for computational shell  
• Crossbar Switch architecture for concurrent access to peripherals, flash memory, or  
RAM from multiple bus masters with End-To-End ECC  
• External Bus Interface (EBI) for calibration and application use  
• System Integration Unit (SIU)  
• Error Injection Module (EIM) and Error Reporting Module (ERM)  
• Four protected port output (PPO) pins  
• Boot Assist Module (BAM) supports serial bootload via CAN or SCI  
• Three second-generation Enhanced Time Processor Units (eTPUs)  
• 32 channels per eTPU  
• Total of 36 KB code RAM  
• Total of 9 KB parameter RAM  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
3
Introduction  
• Enhanced Modular Input/Output System (eMIOS) supporting 32 unified channels  
with each channel capable of single action, double action, pulse width modulation  
(PWM) and modulus counter operation  
• Two Enhanced Queued Analog-to-Digital Converter (eQADC) modules with:  
• Two separate analog converters per eQADC module  
• Support for a total of 70 analog input pins, expandable to 182 inputs with off-  
chip multiplexers  
• Interface to twelve hardware Decimation Filters  
• Enhanced "Tap" command to route any conversion to two separate Decimation  
Filters  
• Four independent 16-bit Sigma-Delta ADCs (SDADCs)  
• 10-channel Reaction Module  
• Ethernet (FEC)  
• Two PSI5 modules  
• Two SENT Receiver (SRX) modules supporting 12 channels  
• Zipwire: SIPI and LFAST modules  
• Five Deserial Serial Peripheral Interface (DSPI) modules  
• Five Enhanced Serial Communication Interface (eSCI) modules  
• Four Controller Area Network (FlexCAN) modules  
• Two M_CAN modules that support FD  
• Fault Collection and Control Unit (FCCU)  
• Clock Monitor Units (CMUs)  
• Tamper Detection Module (TDM)  
• Cryptographic Services Engine (CSE)  
• Complies with Secure Hardware Extension (SHE) Functional Specification  
Version 1.1 security functions  
• Includes software selectable enhancement to key usage flag for MAC  
verification and increase in number of memory slots for security keys  
• PASS module to support security features  
• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some  
support for 2010 standard  
• Device and board test support per Joint Test Action Group (JTAG) IEEE 1149.1 and  
1149.7  
• On-chip voltage regulator controller (VRC) that derives the core logic supply voltage  
from the high-voltage supply  
• On-chip voltage regulator for flash memory  
• Self Test capability  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
4
NXP Semiconductors  
Pinouts  
1.2 Block diagram  
The following figure shows a top-level block diagram of the MPC5777C. The purpose of  
the block diagram is to show the general interconnection of functional modules through  
the crossbar switch.  
FLEXCAN_A-B  
COMPUTATIONAL SHELL  
MCAN_0-1  
e200z7 checker  
core complex  
DEBUG  
DSPI_A-C  
eSCI_A-C  
JTAG  
MMU  
SWT  
STM  
INTC  
SWT  
STM  
INTC  
e200z7  
e200z7  
(dual issue)  
(dual issue)  
Nexus 3+ DTS  
FPU  
FPU  
ETPU_C  
w/RAM  
VLE  
VLE  
eMIOS_0  
64ch eDMA  
64ch eDMA  
Ethernet  
16K I-Cache  
16K D-Cache  
16K I-Cache  
16K D-Cache  
eQADC_A  
& Temp Sensors  
DECFILTER_A-L  
SDADC_1/3  
SRX_0  
MMU  
MMU  
Crossbar Switch with ECC  
MPU  
Safety  
Monitor  
PSI5_0  
REACM2  
Zipwire/  
SIPI/LFAST  
Bridge B  
Bridge A  
SRAM  
Flash Control  
EBI  
Control  
Security  
Dual PLL/  
OSC/IRC  
Tamper  
Detection  
CRC  
CSE  
Flash w/ EEPROM  
SRAM  
PCM/ERM  
Figure 1. MPC5777C block diagram  
2 Pinouts  
2.1 416-ball MAPBGA pin assignments  
Figure 2 shows the 416-ball MAPBGA pin assignments.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
5
Pinouts  
Figure 2. MPC5777C 416-ball MAPBGA (full diagram)  
2.2 516-ball MAPBGA pin assignments  
Figure 3 shows the 516-ball MAPBGA pin assignments.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
6
NXP Semiconductors  
Electrical characteristics  
Figure 3. MPC5777C 516-ball MAPBGA (full diagram)  
3 Electrical characteristics  
The following information includes details about power considerations, DC/AC electrical  
characteristics, and AC timing specifications.  
3.1 Absolute maximum ratings  
Absolute maximum specifications are stress ratings only. Functional operation at these  
maxima is not guaranteed.  
CAUTION  
Stress beyond listed maxima may affect device reliability or  
cause permanent damage to the device.  
See Operating conditions for functional operation specifications.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
7
Electrical characteristics  
Symbol  
Table 1. Absolute maximum ratings  
Value  
Parameter  
Conditions1  
Unit  
Min  
Max  
1000k  
1.5  
Cycle  
VDD  
Lifetime power cycles  
1.2 V core supply voltage2, 3, 4  
V
V
V
V
–0.3  
–0.3  
–0.3  
–0.3  
VDDEHx  
VDDEx  
VDDPMC  
I/O supply voltage (medium I/O pads)5  
I/O supply voltage (fast I/O pads)5  
6.0  
6.0  
Power Management Controller supply  
voltage5  
6.0  
VDDFLA  
VSTBY  
Decoupling pin for flash regulator6  
RAM standby supply voltage5  
SDADC ground voltage  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
4.5  
6.0  
0.3  
0.3  
6.0  
6.0  
0.3  
0.3  
6.0  
6.0  
6.0  
V
V
V
V
V
V
V
V
V
V
V
VSSA_SD  
VSSA_EQ  
VDDA_EQA/B  
VDDA_SD  
VRL_SD  
Reference to VSS  
eQADC ground voltage  
Reference to VSS  
eQADC supply voltage  
Reference to VSSA_EQ  
Reference to VSSA_SD  
Reference to VSS  
SDADC supply voltage  
SDADC ground reference  
eQADC ground reference  
eQADC alternate reference  
SDADC alternate reference  
VRL_EQ  
Reference to VSS  
VRH_EQ  
Reference to VRL_EQ  
Reference to VRL_SD  
VRH_SD  
VREFBYPC  
eQADC reference decoupling capacitor REFBYPCA25, REFBYPCA75,  
pins  
REFBYPCB25, REFBYPC75  
VDDA_MISC  
VDDPWR  
TRNG and IRC supply voltage  
SMPS driver supply pin  
SMPS driver supply pin  
VSSA_EQ differential voltage  
VSSA_SD differential voltage  
VRL_EQ differential voltage  
VRL_SD differential voltage  
I/O input voltage range7  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
6.0  
6.0  
0.3  
0.3  
0.3  
0.3  
0.3  
6.0  
0.3  
V
V
VSSPWR  
Reference to VSS  
V
VSS – VSSA_EQ  
VSS – VSSA_SD  
VSS – VRL_EQ  
VSS – VRL_SD  
VIN  
V
V
V
V
V
Relative to VDDEx/VDDEHx  
Relative to VSS  
V
–0.3  
–5  
V
IINJD  
IINJA  
Maximum DC injection current for digital Per pin, applies to all digital pins  
pad  
5
mA  
Maximum DC injection current for  
analog pad  
Per pin, applies to all analog pins  
–5  
5
mA  
mA  
°C  
8, 9  
IMAXSEG  
Maximum current per I/O power  
segment  
–120 120  
TSTG  
STORAGE  
TSDR  
Storage temperature range and non-  
operating times  
–55  
175  
20  
Maximum storage time, assembled part No supply; storage temperature in  
programmed in ECU  
Maximum solder temperature10  
years  
°C  
range –40 °C to 60 °C  
260  
Pb-free package  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
8
NXP Semiconductors  
Electrical characteristics  
Table 1. Absolute maximum ratings (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions1  
Min  
Max  
MSL  
Moisture sensitivity level11  
3
1. Voltages are referred to VSS if not specified otherwise  
2. Allowed 1.45 V – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C; remaining time as defined in note 3 and  
note 4  
3. Allowed 1.375 V – 1.45 V for 10 hours cumulative time at maximum TJ = 150 °C; remaining time as defined in note 4  
4. 1.32 V – 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at  
maximum TJ = 150 °C  
5. Allowed 5.5 V – 6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, TJ  
= 150 °C; remaining time at or below 5.5 V  
6. Allowed 3.6 V – 4.5 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, TJ  
= 150 °C; remaining time at or below 3.6 V  
7. The maximum input voltage on an I/O pin tracks with the associated I/P supply maximum. For the injection current  
condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin  
to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal  
calculations.  
8. The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDDEx/VDDEHx power segment  
is defined as one or more GPIO pins located between two VDDEx/VDDEHx supply pins.  
9. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.  
10. Solder profile per IPC/JEDEC J-STD-020D  
11. Moisture sensitivity per JEDEC test method A112  
3.2 Electromagnetic interference (EMI) characteristics  
Test reports with EMC measurements to IC-level IEC standards are available on request.  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions, go to nxp.com and perform a keyword search for  
"radiated emissions."  
3.3 Electrostatic discharge (ESD) characteristics  
Table 2. ESD Ratings1, 2  
Symbol  
VHBM  
Parameter  
Conditions  
All pins  
Value  
2000  
750  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Charged Device Model (CDM)  
VCDM  
Corner pins  
Non-corner pins  
V
500  
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification  
requirements.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
9
Electrical characteristics  
3.4 Operating conditions  
The following table describes the operating conditions for the device, and for which all  
specifications in the data sheet are valid, except where explicitly noted.  
If the device operating conditions are exceeded, the functionality of the device is not  
guaranteed.  
Table 3. Device operating conditions  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Frequency  
fSYS  
fPLATF  
fETPU  
fEBI  
Device operating frequency1  
Platform operating frequency  
eTPU operating frequency  
EBI operating frequency  
264/3002 MHz  
132/1503 MHz  
200/2404 MHz  
66  
MHz  
fPER  
Peripheral block operating  
frequency  
132/1503 MHz  
fFM_PER  
Frequency-modulated peripheral —  
block operating frequency  
132/1503 MHz  
tCYC  
Platform clock period  
eTPU clock period  
1/fPLATF  
1/fETPU  
1/fPER  
ns  
ns  
ns  
tCYC_ETPU  
tCYC_PER  
Peripheral clock period  
Temperature  
TJ  
Junction operating temperature Packaged devices  
range  
–40.0  
–40.0  
150.0  
°C  
°C  
TA (TL to TH)  
Ambient operating temperature Packaged devices  
range  
125.05  
Voltage  
VDD  
External core supply voltage6, 7 LVD/HVD enabled  
1.2  
1.2  
3.5  
4.5  
3.0  
4.5  
3.0  
4.5  
1.32  
1.38  
5.5  
V
LVD/HVD disabled8, 9, 10, 11  
VDDA_MISC  
VDDEx  
TRNG and IRC supply voltage  
V
V
I/O supply voltage (fast I/O pads) 5 V range  
3.3 V range  
5.5  
3.6  
5.5  
11  
VDDEHx  
I/O supply voltage (medium I/O 5 V range  
V
V
pads)  
3.3 V range  
3.6  
5.5  
VDDEH1  
eTPU_A, eSCI_A, eSCI_B, and 5 V range  
configuration I/O supply voltage  
(medium I/O pads)  
12  
VDDPMC  
Power Management Controller  
(PMC) supply voltage  
Full functionality  
3.15  
5.5  
V
VDDPWR  
VDDFLA  
VSTBY  
SMPS driver supply voltage  
Flash core voltage  
Reference to VSSPWR  
3.0  
3.15  
0.9513  
5.5  
3.6  
5.5  
V
V
V
RAM standby supply voltage  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
10  
NXP Semiconductors  
Electrical characteristics  
Table 3. Device operating conditions (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
VSTBY_BO  
Standby RAM brownout flag trip  
point voltage  
0.914  
V
V
VRL_SD  
SDADC ground reference  
voltage  
VSSA_SD  
VDDA_SD  
VDDA_EQA/B  
VRH_SD  
SDADC supply voltage15  
eQADC supply voltage  
SDADC reference  
4.5  
4.75  
4.5  
5.5  
5.25  
5.5  
V
V
VDDA_SD  
V
VDDA_SD – VRH_SD SDADC reference differential  
voltage  
25  
mV  
VSSA_SD – VRL_SD VRL_SD differential voltage  
–25  
4.75  
25  
5.25  
25  
mV  
V
VRH_EQ  
eQADC reference  
VDDA_EQA/B  
VRH_EQ  
eQADC reference differential  
voltage  
mV  
VSSA_EQ – VRL_EQ VRL_EQ differential voltage  
–25  
–25  
–25  
25  
25  
mV  
mV  
VSSA_EQ – VSS  
VSSA_SD – VSS  
VRAMP  
VSSA_EQ differential voltage  
VSSA_SD differential voltage  
Slew rate on power supply pins  
25  
mV  
100  
V/ms  
Current  
IIC  
DC injection current (per pin)16, Digital pins and analog pins  
–3.0  
–80  
3.0  
80  
mA  
mA  
17, 18  
IMAXSEG  
Maximum current per power  
segment19, 20  
1. Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking  
chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP  
blocks on the device.  
2. If frequency modulation (FM) is enabled for the operating frequency of 264MHz, the maximum frequency still cannot  
exceed this value (frequency modulation must spread below nominal frequency). If frequency modulation is enabled for the  
operating frequency of 300MHz, this maximum frequency can be exceeded (frequency modulation can be center spread  
from 300MHz).  
3. 132 MHz applies to the MPC5777C part number with 264 MHz operating frequency. 150 MHz applies to the version with  
300 MHz operating frequency.  
4. 200 MHz applies to the MPC5777C part number with 264 MHz max operating frequency. 240 MHz applies to the version  
with 300 MHz operating frequency.  
5. The maximum specification for operating junction temperature TJ must be respected. Thermal characteristics provides  
details.  
6. Core voltage as measured on device pin to guarantee published silicon performance  
7. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct  
silicon operation is guaranteed. See power management and reset management for description.  
8. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.  
9. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor  
externally supply voltage may result in erroneous operation of the device.  
10. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the  
reset sequence, and the LVD/HVD are active until that point.  
11. This spec does not apply to VDDEH1  
.
12. When internal flash memory regulator is used:  
• Flash memory read operation is supported for a minimum VDDPMC value of 3.15 V.  
• Flash memory read, program, and erase operations are supported for a minimum VDDPMC value of 3.5 V.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
11  
Electrical characteristics  
When flash memory power is supplied externally (VDDPMC shorted to VDDFLA): The VDDPMC range must be within the limits  
specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH  
limits.  
13. If the standby RAM regulator is not used, the VSTBY supply input pin must be tied to ground.  
14. VSTBY_BO is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for  
RAM data retention is guaranteed always to be less than the VSTBY_BO maximum value.  
15. For supply voltages between 3.0 V and 4.0 V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will  
recover to a fully functional state when the voltage rises above 4.0 V.  
16. Full device lifetime without performance degradation  
17. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the  
absolute maximum ratings table for maximum input current for reliability requirements.  
18. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is  
above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network  
calculation, assume a typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.  
19. The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDDEx/VDDEHx power segment  
is defined as one or more GPIO pins located between two VDDEx/VDDEHx supply pins.  
20. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.  
3.5 DC electrical specifications  
NOTE  
IDDA_MISC is the sum of current consumption of IRC, ITRNG  
and ISTBY in the 5 V domain. IRC current is provided in the  
IRC specifications.  
,
NOTE  
I/O, XOSC, EQADC, SDADC, and Temperature Sensor current  
specifications are in those components' dedicated sections.  
Table 4. DC electrical specifications  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ Max  
0.65 1.35  
IDD  
Operating current on the VDD core logic  
supply1  
LVD/HVD enabled, VDD = 1.2 V  
to 1.32 V  
A
LVD/HVD disabled, VDD = 1.2 V  
to 1.38 V  
0.65  
1.4  
85  
IDD_PE  
IDDPMC  
Operating current on the VDD supply for flash  
memory program/erase  
Operating current on the VDDPMC supply2  
mA  
mA  
Flash memory read  
Flash memory program/erase  
PMC only  
40  
70  
35  
10  
40  
5
Operating current on the VDDPMC supply  
(internal core regulator bypassed)  
Flash memory read  
Flash memory program/erase  
PMC only  
mA  
mA  
IREGCTL  
Core regulator DC current output on VREGCTL  
pin  
25  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
12  
NXP Semiconductors  
Electrical characteristics  
Table 4. DC electrical specifications (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
ISTBY  
Standby RAM supply current  
1.08 V, TJ = 150°C  
1140 μA  
1.25 V to 5.5 V, TJ = 150°C  
1.25 V to 5.5 V, TJ = 85°C  
1.25 V to 5.5 V, TJ = 40°C  
1170  
360  
120  
50  
IDD_PWR  
IBG_REF  
ITRNG  
Operating current on the VDDPWR supply  
Bandgap reference current consumption3  
True Random Number Generator current  
mA  
μA  
600  
2.1  
mA  
1. IDD measured on an application-specific pattern with all cores enabled at full frequency, TJ = 40°C to 150°C. Flash memory  
program/erase current on the VDD supply not included.  
2. This value is considering the use of the internal core regulator with the simulation of an external transistor with the  
minimum value of hFE of 60.  
3. This bandgap reference is for EQADC calibration and Temperature Sensors.  
3.6 I/O pad specifications  
The following table describes the different pad types on the chip.  
Table 5. I/O pad specification descriptions  
Pad type  
Description  
General-purpose I/O  
pads  
General-purpose I/O and EBI data bus pads with four selectable output slew rate settings; also  
called SR pads  
EBI pads  
Provide necessary speed for fast external memory interfaces on the EBI CLKOUT, address, and  
control signals; also called FC pads  
LVDS pads  
Low Voltage Differential Signal interface pads  
Input-only pads  
Low-input-leakage pads that are associated with the ADC channels  
NOTE  
Each I/O pin on the device supports specific drive  
configurations. See the signal description table in the device  
reference manual for the available drive configurations for each  
I/O pin.  
NOTE  
Throughout the I/O pad specifications, the symbol VDDEx  
represents all VDDEx and VDDEHx segments.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
13  
Electrical characteristics  
3.6.1 Input pad specifications  
Table 6 provides input DC electrical characteristics as described in Figure 4.  
V IN  
V DD  
V IH  
V HYS  
V IL  
V INTERNAL  
(SIU register)  
Figure 4. I/O input DC electrical characteristics definition  
Table 6. I/O input DC electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VIHCMOS_H Input high level CMOS (with  
hysteresis)  
3.0 V < VDDEx < 3.6 V and  
4.5 V < VDDEx < 5.5 V  
0.65 * VDDEx  
VDDEx + 0.3  
V
VIHCMOS Input high level CMOS (without 3.0 V < VDDEx < 3.6 V and  
0.55 * VDDEx  
–0.3  
VDDEx + 0.3  
0.35 * VDDEx  
0.4 * VDDEx  
V
V
V
V
hysteresis)  
4.5 V < VDDEx < 5.5 V  
VILCMOS_H Input low level CMOS (with  
hysteresis)  
3.0 V < VDDEx < 3.6 V and  
4.5 V < VDDEx < 5.5 V  
VILCMOS  
Input low level CMOS (without  
hysteresis)  
3.0 V < VDDEx < 3.6 V and  
4.5 V < VDDEx < 5.5 V  
–0.3  
VHYSCMOS Input hysteresis CMOS  
3.0 V < VDDEx < 3.6 V and  
0.1 * VDDEx  
4.5 V < VDDEx < 5.5 V  
Input Characteristics1  
VSS < VIN < VDDEx/VDDEHx  
VSS < VIN < VDDEx/VDDEHx  
ILKG  
Digital input leakage  
2.5  
2.5  
μA  
μA  
ILKG_FAST Digital input leakage for EBI  
address/control signal pads  
ILKGA  
Analog pin input leakage (5 V  
range)  
VSSA_SD < VIN < VDDA_SD  
VSSA_EQ < VIN < VDDA_EQA/B  
,
220  
7
nA  
pF  
CIN  
Digital input capacitance  
GPIO and EBI input pins  
1. For LFAST, microsecond bus, and LVDS input characteristics, see dedicated communication module sections.  
Table 7 provides current specifications for weak pullup and pulldown.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
14  
NXP Semiconductors  
Electrical characteristics  
Table 7. I/O pullup/pulldown DC electrical characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
IWPU  
Weak pullup current  
VIN = 0.35 * VDDEx  
4.5 V < VDDEx < 5.5 V  
VIN = 0.35 * VDDEx  
3.0 V < VDDEx < 3.6 V  
VIN = 0.65 * VDDEx  
4.5 V < VDDEx < 5.5 V  
VIN = 0.65 * VDDEx  
3.0 V < VDDEx < 3.6 V  
40  
120  
μA  
25  
40  
25  
80  
120  
80  
IWPD  
Weak pulldown current  
μA  
The specifications in Table 8 apply to the pins ANA0_SDA0 to ANA7, ANA16_SDB0 to  
ANA23_SDC3, and ANB0_SDD0 to ANB7_SDD7.  
Table 8. I/O pullup/pulldown resistance electrical characteristics  
Value  
Symbol Parameter  
Conditions  
Unit  
Min  
130  
65  
Typ  
200  
100  
5
Max  
280  
140  
7.5  
5
RPUPD Analog input bias / diagnostic pullup/  
pulldown resistance  
200 kΩ  
100 kΩ  
5 kΩ  
kΩ  
1.4  
ΔPUPD RPUPD pullup/pulldown resistance mismatch —  
%
3.6.2 Output pad specifications  
Figure 5 shows output DC electrical characteristics.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
15  
Electrical characteristics  
core side input  
VDD/2  
tPD  
(low to high)  
tPD  
(high to low)  
VDDEx  
VSSEx  
Voh  
Vol  
PAD  
Rise  
Time  
Fall  
Time  
Figure 5. I/O output DC electrical characteristics definition  
The following tables specify output DC electrical characteristics.  
Table 9. GPIO and EBI data pad output buffer electrical characteristics (SR  
pads)1  
Value3  
Symbol Parameter  
Conditions2  
Unit  
Min  
25  
Typ  
Max  
IOH  
GPIO pad output high  
current  
VOH = 0.8 * VDDEx  
PCR[SRC] = 11b or 01b  
PCR[SRC] = 10b or 00b  
PCR[SRC] = 11b or 01b  
PCR[SRC] = 10b or 00b  
PCR[SRC] = 11b or 01b  
PCR[SRC] = 10b or 00b  
PCR[SRC] = 11b or 01b  
PCR[SRC] = 10b or 00b  
mA  
15  
4.5 V < VDDEx < 5.5 V  
VOH = 0.8 * VDDEx  
13  
8
3.0 V < VDDEx < 3.6 V  
VOL = 0.2 * VDDEx  
IOL  
GPIO pad output low  
current  
48  
mA  
22  
4.5 V < VDDEx < 5.5 V  
VOL = 0.2 * VDDEx  
17  
10.5  
3.0 V < VDDEx < 3.6 V  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
16  
NXP Semiconductors  
Electrical characteristics  
Table 9. GPIO and EBI data pad output buffer electrical characteristics (SR pads)1  
(continued)  
Value3  
Typ  
Symbol Parameter  
Conditions2  
Unit  
Min  
Max  
1.2  
2.5  
8
tR_F  
GPIO pad output  
PCR[SRC] = 11b  
CL = 25 pF  
CL = 50 pF  
CL = 200 pF  
CL = 25 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
CL = 50 pF  
CL = 200 pF  
ns  
transition time (rise/fall)  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 11b  
1.7  
3.25  
12  
5
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 10b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 10b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 01b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 01b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 00b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 00b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 11b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 11b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 10b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 10b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 01b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 01b  
3.0 V < VDDEx < 3.6 V  
PCR[SRC] = 00b  
4.5 V < VDDEx < 5.5 V  
PCR[SRC] = 00b  
3.0 V < VDDEx < 3.6 V  
18  
7
25  
13  
24  
25  
30  
24  
50  
40  
51  
6
tPD  
GPIO pad output  
ns  
propagation delay time  
13  
8.25  
19.5  
9
22  
12.5  
35  
27  
40  
45  
65  
40  
65  
75  
100  
25  
|tSKEW_W| Difference between rise  
and fall time  
%
1. All GPIO pad output specifications are valid for 3.0 V < VDDEx < 5.5 V, except where explicitly stated.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
17  
Electrical characteristics  
2. PCR[SRC] values refer to the setting of that register field in the SIU.  
3. All values to be confirmed during device validation.  
The following table shows the EBI CLKOUT, address, and control signal pad electrical  
characteristics. These pads can also be used for GPIO.  
Table 10. GPIO and EBI CLKOUT, address, and control signal pad output  
buffer electrical characteristics (FC pads)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
EBI Mode Output Specifications: valid for 3.0 V < VDDEx < 3.6 V  
Typ  
Max  
CDRV  
External bus load  
capacitance  
PCR[DSC] = 01b  
PCR[DSC] = 10b  
PCR[DSC] = 11b  
10  
20  
30  
66  
pF  
fMAX_EBI  
External bus maximum CDRV = 10/20/30 pF  
operating frequency  
MHz  
mA  
GPIO and EBI Mode Output Specifications  
IOH_EBI  
GPIO and external bus VOH = 0.8 * VDDEx  
pad output high current  
PCR[DSC] = 11b  
PCR[DSC] = 10b  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
PCR[DSC] = 11b  
PCR[DSC] = 10b  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
PCR[DSC] = 11b  
PCR[DSC] = 10b  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
PCR[DSC] = 11b  
PCR[DSC] = 10b  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
CL = 30 pF  
30  
22  
13  
2
4.5 V < VDDEx < 5.5 V  
VOH = 0.8 * VDDEx  
16  
12  
7
3.0 V < VDDEx < 3.6 V  
1
IOL_EBI  
GPIO and external bus VOL = 0.2 * VDDEx  
pad output low current  
54  
25  
16  
2
mA  
4.5 V < VDDEx < 5.5 V  
VOL = 0.2 * VDDEx  
17  
14  
8
3.0 V < VDDEx < 3.6 V  
1
tR_F_EBI  
GPIO and external bus PCR[DSC] = 11b  
pad output transition  
time (rise/fall)  
1.5  
2.4  
1.5  
1.85  
45  
4.2  
5.5  
4.2  
4.4  
59  
ns  
ns  
CL = 50 pF  
PCR[DSC] = 10b  
CL = 20 pF  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
CL = 10 pF  
CL = 50 pF  
tPD_EBI  
GPIO and external bus PCR[DSC] = 11b  
pad output propagation  
delay time  
CL = 30 pF  
CL = 50 pF  
PCR[DSC] = 10b  
CL = 20 pF  
PCR[DSC] = 01b  
PCR[DSC] = 00b  
CL = 10 pF  
CL = 50 pF  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
18  
NXP Semiconductors  
Electrical characteristics  
1. PCR[DSC] values refer to the setting of that register field in the SIU.  
3.6.3 I/O pad current specifications  
The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is  
associated with a VDDEx supply segment.  
Table 11 provides I/O consumption figures.  
To ensure device reliability, the average current of the I/O on a single segment should  
remain below the IMAXSEG value given in Table 1.  
To ensure device functionality, the average current of the I/O on a single segment should  
remain below the IMAXSEG value given in Table 3.  
NOTE  
The MPC5777C I/O Signal Description and Input Multiplexing  
Tables are contained in a Microsoft Excel® file attached to the  
Reference Manual. In the spreadsheet, select the I/O Signal  
Table tab.  
The EBI power segments have been designed to operate within the maximum per-  
segment current specification when the pins on the segment are used for EBI function. If  
the pins are used instead for GPIO function, the user must ensure the sum of the current  
used on each pin in the segment does not exceed the spec.  
Table 11. I/O consumption  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
IAVG_GPIO  
Average I/O current for GPIO pads CL = 25 pF, 2 MHz  
0.42  
mA  
(per pad)  
VDDEx = 5.0 V 10%  
CL = 50 pF, 1 MHz  
0.35  
9
VDDEx = 5.0 V 10%  
IAVG_EBI  
Average I/O current for external  
bus output pins (per pad)  
CDRV = 10 pF, fEBI = 66 MHz  
mA  
VDDEx = 3.3 V 10%  
CDRV = 20 pF, fEBI = 66 MHz  
VDDEx = 3.3 V 10%  
18  
30  
CDRV = 30 pF, fEBI = 66 MHz  
VDDEx = 3.3 V 10%  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
19  
Electrical characteristics  
3.7 Oscillator and PLL electrical specifications  
The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and  
the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks  
from the main oscillator driver.  
PLL0_PHI  
IRC  
PLL0_PHI1  
PLL0  
XOSC  
PLL1_PHI  
PLL1  
Figure 6. PLL integration  
3.7.1 PLL electrical specifications  
Table 12. PLL0 electrical characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
8
Max  
44  
fPLL0IN  
ΔPLL0IN  
fPLL0VCO  
fPLL0PHI  
PLL0 input clock1, 2  
MHz  
%
PLL0 input clock duty cycle2  
PLL0 VCO frequency  
PLL0 output frequency  
40  
60  
600  
4.762  
1250  
MHz  
200/24 MHz  
03  
tPLL0LOCK  
PLL0 lock time  
110  
200  
μs  
ps  
|ΔPLL0PHISPJ  
|
PLL0_PHI single period jitter  
fPLL0IN = 20 MHz (resonator)  
fPLL0PHI = 200 MHz, 6-sigma  
|ΔPLL0PHI1SPJ  
|
PLL0_PHI1 single period jitter fPLL0PHI1 = 40 MHz, 6-sigma  
fPLL0IN = 20 MHz (resonator)  
3004  
ps  
ΔPLL0LTJ  
PLL0 output long term jitter4  
10 periods accumulated jitter (80 MHz  
equivalent frequency), 6-sigma pk-pk  
250  
300  
500  
7.5  
ps  
ps  
fPLL0IN = 20 MHz (resonator),  
VCO frequency = 800 MHz  
16 periods accumulated jitter (50 MHz  
equivalent frequency), 6-sigma pk-pk  
long term jitter (< 1 MHz equivalent  
frequency), 6-sigma pk-pk)  
ps  
IPLL0  
PLL0 consumption  
FINE LOCK state  
mA  
1. Ensure that the fPLL0IN frequency divided by PLLDIG_PLL0DV[PREDIV] is in the range 8 MHz to 20 MHz.  
2. PLL0IN clock retrieved directly from either internal IRC or external XOSC clock. Input characteristics are granted when  
using internal IRC or external oscillator is used in functional mode.  
3. 200 MHz applies to the MPC5777C part number with 264 MHz operating frequency. 240 MHz applies to the version with  
300 MHz operating frequency  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
20  
NXP Semiconductors  
Electrical characteristics  
4. Noise on the VDD supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the VDD  
supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.  
Table 13. PLL1 electrical characteristics  
Value  
Symbol  
Parameter  
PLL1 input clock1  
PLL1 input clock duty cycle1  
PLL1 VCO frequency  
PLL1 output clock PHI  
PLL1 lock time  
Conditions  
Unit  
Min  
38  
Typ  
Max  
78  
fPLL1IN  
ΔPLL1IN  
fPLL1VCO  
fPLL1PHI  
tPLL1LOCK  
|ΔPLL1PHISPJ  
MHz  
%
35  
65  
600  
4.762  
1250  
264/3002  
100  
MHz  
MHz  
μs  
|
PLL1_PHI single period peak-to- fPLL1PHI = 200 MHz, 6-  
peak jitter  
5003  
ps  
sigma  
fPLL1MOD  
PLL1 modulation frequency  
0.25  
0.5  
250  
2
kHz  
%
|δPLL1MOD  
|
PLL1 modulation depth (when  
enabled)  
Center spread  
Down spread  
FINE LOCK state  
4
%
IPLL1  
PLL1 consumption  
6
mA  
1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when  
using internal PLL0 or external oscillator in functional mode.  
2. 264 MHz applies to the MPC5777C part number with 264 MHz max operating frequency. 300 MHz applies to the version  
with 300 MHz operating frequency  
3. Noise on the VDD supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the VDD  
supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.  
3.7.2 Oscillator electrical specifications  
NOTE  
All oscillator specifications in Table 14 are valid for VDDEH6  
3.0 V to 5.5 V.  
=
Table 14. External oscillator (XOSC) electrical specifications  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
fXTAL  
tcst  
Crystal frequency range  
8
40  
MHz  
ms  
ms  
V
Crystal start-up time1, 2  
Crystal recovery time3  
TJ = 150 °C  
5
0.5  
trec  
VIHEXT  
VILEXT  
EXTAL input high voltage (external reference) VREF = 0.28 * VDDEH6  
EXTAL input low voltage (external reference) VREF = 0.28 * VDDEH6  
VREF + 0.6  
VREF – 0.6  
3.0  
V
CS_EXTAL Total on-chip stray capacitance on EXTAL pin4 416-ball MAPBGA  
2.3  
pF  
516-ball MAPBGA  
2.1  
2.8  
CS_XTAL  
Total on-chip stray capacitance on XTAL pin4 416-ball MAPBGA  
516-ball MAPBGA  
2.3  
3.0  
pF  
2.2  
2.9  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
21  
Electrical characteristics  
Table 14. External oscillator (XOSC) electrical specifications  
(continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
3
Max  
10  
gm  
Oscillator transconductance5  
Low  
mA/V  
Medium  
High  
10  
12  
0.5  
27  
35  
VEXTAL  
Oscillation amplitude on the EXTAL pin after  
startup6  
1.6  
V
VHYS  
IXTAL  
Comparator hysteresis  
XTAL current6, 7  
0.1  
1.0  
14  
V
mA  
1. This value is determined by the crystal manufacturer and board design.  
2. Proper PC board layout procedures must be followed to achieve specifications.  
3. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load  
capacitor value.  
4. See crystal manufacturer's specification for recommended load capacitor (CL) values.The external oscillator requires  
external load capacitors when operating in a "low" transconductance range. Account for on-chip stray capacitance  
(CS_EXTAL/CS_XTAL) and PCB capacitance when selecting a load capacitor value. When operating in a "medium" or "high"  
transconductance range, the integrated load capacitor value is selected via software to match the crystal manufacturer's  
specification, while accounting for on-chip and PCB capacitance.  
5. Select a "low," "medium," or "high" setting using the UTEST Miscellaneous DCF client's XOSC_LF_EN and  
XOSC_EN_HIGH fields. "Low" is the setting commonly used for crystals at 8 MHz, "medium" is commonly used for  
crystals greater than 8 MHz to 20 MHz, and "high" is commonly used for crystals greater than 20 MHz to 40 MHz.  
However, the user must characterize carefully to determine the best gm setting for the intended application because crystal  
load capacitance, board layout, and other factors affect the gm value that is needed. The user may need an additional  
Rshunt to optimize gm depending on the system environment. Use of overtone crystals is not recommended.  
6. Amplitude on the EXTAL pin after startup is determined by the ALC block (that is, the Automatic Level Control Circuit). The  
function of the ALC is to provide high drive current during oscillator startup, while reducing current after oscillation to  
reduce power, distortion, and RFI, and to avoid over-driving the crystal. The operating point of the ALC is dependent on  
the crystal value and loading conditions.  
7. IXTAL is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum  
current during startup of the oscillator. The current after oscillation is typically in the 2–3 mA range and is dependent on the  
load and series resistance of the crystal. Test circuit is shown in Figure 7.  
Table 15. Selectable load capacitance  
load_cap_sel[4:0] from DCF record  
Load capacitance1, 2 (pF)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
1.8  
2.8  
3.7  
4.6  
5.6  
6.5  
7.4  
8.4  
9.3  
10.2  
11.2  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
22  
NXP Semiconductors  
Electrical characteristics  
Table 15. Selectable load capacitance (continued)  
load_cap_sel[4:0] from DCF record  
01011  
Load capacitance1, 2 (pF)  
12.1  
01100  
01101  
01110  
01111  
13.0  
13.9  
14.9  
15.8  
1. Values are determined from simulation across process corners and voltage and temperature variation. Capacitance values  
vary 12% across process, 0.25% across voltage, and no variation across temperature.  
2. Values in this table do not include the die and package capacitances given by CS_XTAL/CS_EXTAL in Table 14.  
VDDEH6  
Bias  
Current  
ALC  
I
XTAL  
XTAL  
-
EXTAL  
VSSOSC  
Comparator  
+
A
OFF  
V
VSS  
Conditions  
Z = R + jωL  
VEXTAL = 0 V  
VXTAL = 0 V  
ALC INACTIVE  
Tester  
PCB  
GND  
Figure 7. Test circuit  
Table 16. Internal RC (IRC) oscillator electrical specifications  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ Max  
fTarget  
IRC target frequency  
IRC frequency variation  
16  
8
MHz  
%
δfvar_T  
T < 150 °C  
–8  
3.8 Analog-to-Digital Converter (ADC) electrical specifications  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
23  
Electrical characteristics  
3.8.1 Enhanced Queued Analog-to-Digital Converter (eQADC)  
Table 17. eQADC conversion specifications (operating)  
Value  
Symbol  
Parameter  
Unit  
Min  
2
Max  
fADCLK  
CC  
ADC Clock (ADCLK) Frequency  
Conversion Cycles  
Stop Mode Recovery Time2  
Resolution3  
33  
MHz  
ADCLK cycles  
μs  
2 + 13  
10  
1.25  
–4  
–6  
–3  
–3  
0
128 + 151  
TSR  
4
mV  
LSB5  
INL  
INL: 16.5 MHz eQADC clock4  
INL: 33 MHz eQADC clock4  
DNL: 16.5 MHz eQADC clock4  
DNL: 33 MHz eQADC clock4  
Offset Error without Calibration  
Offset Error with Calibration  
Full Scale Gain Error without Calibration  
Full Scale Gain Error with Calibration  
Disruptive Input Injection Current6, 7, 8, 9  
Incremental Error due to injection current10, 11  
TUE value12, 13 (with calibration)  
Variable gain amplifier accuracy (gain = 1)14  
INL, 16.5 MHz ADC  
6
LSB  
DNL  
3
LSB  
3
LSB  
OFFNC  
OFFWC  
GAINNC  
GAINWC  
IINJ  
140  
8
LSB  
–8  
–150  
–8  
–3  
LSB  
0
LSB  
8
LSB  
3
mA  
EINJ  
+4  
8
Counts  
Counts  
Counts16  
TUE  
GAINVGA1  
-
-
–4  
–8  
–315  
–315  
-
4
INL, 33 MHz ADC  
8
DNL, 16.5 MHz ADC  
315  
315  
-
DNL, 33 MHz ADC  
Variable gain amplifier accuracy (gain = 2)14  
GAINVGA2  
GAINVGA4  
Counts  
Counts  
INL, 16.5 MHz ADC  
–5  
–8  
–3  
–3  
-
5
INL, 33 MHz ADC  
8
DNL, 16.5 MHz ADC  
3
DNL, 33 MHz ADC  
Variable gain amplifier accuracy (gain = 4)14  
3
-
INL, 16.5 MHz ADC  
–7  
–8  
–4  
–4  
7
INL, 33 MHz ADC  
8
DNL, 16.5 MHz ADC  
4
DNL, 33 MHz ADC  
4
IADC  
IADR  
Current consumption per ADC (two ADCs per EQADC)  
Reference voltage current consumption per EQADC  
10  
200  
mA  
μA  
1. 128 sampling cycles (LST=128), differential conversion, pregain of x4  
2. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time  
that the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.  
3. At VRH_EQ – VRL_EQ = 5.12 V, one count = 1.25 mV without using pregain. Based on 12-bit conversion result; does not  
account for AC and DC errors  
4. INL and DNL are tested from VRL + 50 LSB to VRH – 50 LSB.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
24  
NXP Semiconductors  
Electrical characteristics  
5. At VRH_EQ – VRL_EQ = 5.12 V, one LSB = 1.25 mV.  
6. Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs greater  
than VRH and $000 for values less than VRL. Other channels are not affected by non-disruptive conditions.  
7. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit  
do not affect device reliability or cause permanent damage.  
8. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = –0.3 V, then use the larger of the calculated  
values.  
9. Condition applies to two adjacent pins at injection limits.  
10. Performance expected with production silicon.  
11. All channels have same 10 kΩ < Rs < 100 kΩ Channel under test has Rs = 10 kΩ, IINJ=IINJMAX,IINJMIN  
.
12. The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.  
13. TUE, Gain, and Offset specifications do not apply to differential conversions.  
14. Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or  
×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed as indicated.  
15. Guaranteed 10-bit monotonicity.  
16. At VRH_EQ – VRL_EQ = 5.12 V, one LSB = 1.25 mV.  
3.8.2 Sigma-Delta ADC (SDADC)  
The SDADC is a 16-bit Sigma-Delta analog-to-digital converter with a 333 Ksps  
maximum output conversion rate.  
NOTE  
The voltage range is 4.5 V to 5.5 V for SDADC specifications,  
except where noted otherwise.  
Table 18. SDADC electrical specifications  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VIN  
ADC input signal  
0
VDDA_SD  
V
V
1
VIN_PK2PK  
Input range peak to  
peak  
Single ended  
VINM = VRL_SD  
Single ended  
VINM = 0.5*VRH_SD  
GAIN = 1  
VRH_SD/GAIN  
2
VIN_PK2PK = VINP  
VINM  
0.5*VRH_SD  
VRH_SD/GAIN  
VRH_SD/GAIN  
, 3  
Single ended  
VINM = 0.5*VRH_SD  
GAIN = 2,4,8,16  
Differential  
0 < VIN < VDDEx  
fADCD_M  
fADCD_S  
SD clock frequency4  
Conversion rate  
4
14.4  
16  
MHz  
Ksps  
24  
333  
256  
Oversampling ratio  
Internal modulator  
RESOLUTION SD register resolution5 2's complement notation  
16  
bit  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
25  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Symbol  
Parameter  
ADC gain  
Conditions  
Unit  
Min  
Typ  
Max  
GAIN  
Defined through  
1
16  
SDADC_MCR[PGAN]. Only integer  
powers of 2 are valid gain values.  
|δGAIN  
|
Absolute value of the Before calibration (applies to gain  
1.5  
5
%
ADC gain error6, 7  
setting = 1)  
After calibration  
mV  
ΔVRH_SD < 5%, ΔVDDA_SD < 10%  
ΔTJ < 50 °C  
After calibration  
7.5  
10  
ΔVRH_SD < 5%, ΔVDDA_SD < 10%  
ΔTJ < 100 °C  
After calibration  
ΔVRH_SD < 5%, ΔVDDA_SD < 10%  
ΔTJ < 150 °C  
VOFFSET  
Conversion offset6, 7  
Before calibration (applies to all gain  
settings: 1, 2, 4, 8, 16)  
10*(1+1/  
gain)  
20  
5
mV  
After calibration  
ΔVDDA_SD < 10%  
ΔTJ < 50 °C  
After calibration  
ΔVDDA_SD < 10%  
ΔTJ < 100 °C  
7.5  
10  
After calibration  
ΔVDDA_SD < 10%  
ΔTJ < 150 °C  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
26  
NXP Semiconductors  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
SNRDIFF150 Signal to noise ratio in 4.5 V < VDDA_SD < 5.5 V8, 9  
80  
dB  
differential mode, 150  
VRH_SD = VDDA_SD  
Ksps output rate  
GAIN = 1  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
77  
74  
71  
68  
71  
70  
68  
65  
62  
GAIN = 2  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 4  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 8  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 16  
SNRDIFF333 Signal to noise ratio in 4.5 V < VDDA_SD < 5.5 V8, 9  
dB  
differential mode, 333  
VRH_SD = VDDA_SD  
Ksps output rate  
GAIN = 1  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 2  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 4  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 8  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 16  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
27  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
SNRSE150  
Signal to noise ratio in 4.5 V < VDDA_SD < 5.5 V8, 9  
72  
dB  
single ended mode,  
VRH_SD = VDDA_SD  
150 Ksps output rate  
GAIN = 1  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 2  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 4  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 8  
4.5 V < VDDA_SD < 5.5 V8, 9  
VRH_SD = VDDA_SD  
GAIN = 16  
69  
66  
62  
54  
SINADDIFF150 Signal to noise and  
distortion ratio in  
Gain = 1  
72  
dBFS  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
differential mode, 150  
Ksps output rate  
72  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
69  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
68.8  
64.8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
28  
NXP Semiconductors  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
SINADDIFF333 Signal to noise and  
distortion ratio in  
Gain = 1  
66  
dBFS  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
differential mode, 333  
Ksps output rate  
66  
63  
62  
59  
66  
66  
63  
62  
54  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 1  
SINADSE150 Signal to noise and  
distortion ratio in  
dBFS  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
single-ended mode,  
150 Ksps output rate  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
29  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
THDDIFF150 Total harmonic  
Gain = 1  
65  
dBFS  
distortion in differential  
mode, 150 Ksps  
output rate  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
68  
74  
80  
80  
65  
68  
74  
80  
80  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 1  
THDDIFF333 Total harmonic  
dBFS  
distortion in differential  
mode, 333 Ksps  
output rate  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
30  
NXP Semiconductors  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
THDSE150  
Total harmonic  
Gain = 1  
68  
dBFS  
distortion in single-  
ended mode, 150  
Ksps output rate  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 2  
68  
66  
68  
68  
60  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 4  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 8  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
Gain = 16  
4.5 V < VDDA_SD < 5.5 V  
VRH_SD = VDDA_SD  
SFDR  
ZDIFF  
Spurious free dynamic Any GAIN  
range  
dB  
kΩ  
Differential input  
impedance10, 11  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 16  
1000  
600  
300  
200  
200  
1400  
1000  
700  
500  
500  
110  
–12  
1250  
800  
400  
250  
250  
1800  
1300  
950  
650  
650  
144  
1500  
1000  
500  
300  
300  
ZCM  
Common Mode input GAIN = 1  
2200  
1600  
1150  
800  
kΩ  
impedance11, 12  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 16  
800  
RBIAS  
Bare bias resistance  
180  
kΩ  
%
ΔVINTCM  
Common Mode input  
reference voltage13  
+12  
VBIAS  
δVBIAS  
CMRR  
Bias voltage  
–2.5  
20  
VRH_SD/2  
+2.5  
V
%
Bias voltage accuracy  
Common mode  
rejection ratio  
dB  
RCaaf  
Anti-aliasing filter  
External series resistance  
Filter capacitances  
220  
0.01  
–1  
20  
kΩ  
pF  
fPASSBAND  
Pass band9  
Pass band ripple14  
0.333 * fADCD_S kHz  
δRIPPLE  
0.333 * fADCD_S  
1
%
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
31  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
40  
45  
50  
55  
60  
Typ  
Max  
Frolloff  
Stop band attenuation [0.5 * fADCD_S, 1.0 * fADCD_S  
]
]
]
]
dB  
[1.0 * fADCD_S, 1.5 * fADCD_S  
[1.5 * fADCD_S, 2.0 * fADCD_S  
[2.0 * fADCD_S, 2.5 * fADCD_S  
[2.5 * fADCD_S, fADCD_M/2]  
δGROUP  
Group delay  
Within pass band: Tclk is fADCD_M / 2  
OSR = 24  
235.5  
275  
Tclk  
OSR = 28  
OSR = 32  
314.5  
354  
OSR = 36  
OSR = 40  
393.5  
433  
OSR = 44  
OSR = 48  
472.5  
551.5  
630.5  
709.5  
696  
OSR = 56  
OSR = 64  
OSR = 72  
OSR = 75  
OSR = 80  
788.5  
867.5  
946.5  
1104.5  
1262.5  
1420.5  
1578.5  
1736.5  
1894.5  
2210.5  
2526.5  
+0.5/ fADCD_S  
OSR = 88  
OSR = 96  
OSR = 112  
OSR = 128  
OSR = 144  
OSR = 160  
OSR = 176  
OSR = 192  
OSR = 224  
OSR = 256  
Distortion within pass band  
–0.5/  
fADCD_S  
μs  
fHIGH  
High pass filter 3 dB  
frequency  
Enabled  
10e–5*  
fADCD_S  
tSTARTUP  
tLATENCY  
Startup time from  
power down state  
100  
Latency between input HPF = ON  
data and converted  
δGROUP +  
fADCD_S  
data when input mux  
HPF = OFF  
δGROUP  
does not change15  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
32  
NXP Semiconductors  
Electrical characteristics  
Table 18. SDADC electrical specifications (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
tSETTLING  
Settling time after mux Analog inputs are muxed  
2*δGROUP  
+
change  
3*fADCD_S  
HPF = ON  
HPF = OFF  
2*δGROUP +  
2*fADCD_S  
tODRECOVERY Overdrive recovery  
time  
After input comes within range from  
saturation  
2*δGROUP  
+
fADCD_S  
HPF = ON  
HPF = OFF  
GAIN = 1, 2, 4, 8  
GAIN = 16  
2*δGROUP  
75*GAIN  
600  
CS_D  
SDADC sampling  
capacitance after  
sampling switch16  
fF  
fF  
IBIAS  
Bias consumption  
At least one SDADC enabled  
Per SDADC enabled  
3.5  
mA  
mA  
IADV_D  
SDADC supply  
consumption  
4.325  
IADR_D  
SDADC reference  
Per SDADC enabled  
20  
μA  
current consumption  
1. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the  
signal will only be “clipped.”  
2. VINP is the input voltage applied to the positive terminal of the SDADC  
3. VINM is the input voltage applied to the negative terminal of the SDADC  
4. Sampling is generated internally fSAMPLING = fADCD_M/2  
5. For Gain = 16, SDADC resolution is 15 bit.  
6. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*VRH_SD for differential  
mode and single ended mode with negative input = 0.5*VRH_SD. Offset Calibration should be done with respect to 0 for  
single ended mode with negative input = 0. Both Offset and Gain Calibration is guaranteed for +/–5% variation of VRH_SD  
+/–10% variation of VDDA_SD, +/–50 C temperature variation.  
,
7. Offset and gain error due to temperature drift can occur in either direction (+/–) for each of the SDADCs on the device.  
8. SDADC is functional in the range 3.6 V < VDDA_SD < 4.0 V: SNR parameter degrades by 3 dB. SDADC is functional in the  
range 3.0 V < VRH_SD < 4.0 V: SNR parameter degrades by 9 dB.  
9. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the  
frequency range of fADCD_M – fADCD_S to fADCD_M + fADCD_S, where fADCD_M is the input sampling frequency and fADCD_S is  
the output sample frequency. A proper external input filter should be used to remove any interfering signals in this  
frequency range.  
10. Input impedance in differential mode ZIN = ZDIFF  
11. Input impedance given at fADCD_M = 16 MHz. Impedance is inversely proportional to SDADC clock frequency. ZDIFF  
(fADCD_M) = (16 MHz / fADCD_M) * ZDIFF, ZCM (fADCD_M) = (16 MHz / fADCD_M) * ZCM  
12. Input impedance in single-ended mode ZIN = (2 * ZDIFF * ZCM) / (ZDIFF + ZCM  
.
)
13. VINTCM is the Common Mode input reference voltage for the SDADC. It has a nominal value of (VRH_SD - VRL_SD) / 2.  
14. The 1% passband ripple specification is equivalent to 20 * log10 (0.99) = 0.087 dB.  
15. Propagation of the information from the pin to the register CDR[CDATA] and the flags SFR[DFEF] and SFR[DFFF] is  
given by the different modules that must be crossed: delta/sigma filters, high pass filter, FIFO module, and clock domain  
synchronizers. The time elapsed between data availability at the pin and internal SDADC module registers is given by the  
following formula, where fADCD_S is the frequency of the sampling clock, fADCD_M is the frequency of the modulator, and  
fFM_PER_CLK is the frequency of the peripheral bridge clock feeds to the SDADC module:  
REGISTER LATENCY = tLATENCY + 0.5/fADCD_S + 2 (~+1)/fADCD_M + 2(~+1)fFM_PER_CLK  
The (~+1) symbol refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to  
resynchronization of the signal during clock domain crossing.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
33  
Electrical characteristics  
Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received  
from the SDADC module.  
16. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before  
sampling switch.  
3.9 Temperature Sensor  
The following table describes the Temperature Sensor electrical characteristics.  
Table 19. Temperature Sensor electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
–40  
Typ  
Max  
150  
Temperature monitoring range  
Sensitivity  
°C  
mV/°C  
°C  
TSENS  
TACC  
5.18  
Accuracy  
–40°C < TJ < 150°C  
–5  
5
ITEMP_SENS VDDA_EQA power supply current, per Temp  
Sensor  
700  
μA  
3.10 LVDS Fast Asynchronous Serial Transmission (LFAST) pad  
electrical characteristics  
The LFAST pad electrical characteristics apply to the SIPI interface on the chip. The  
same LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces,  
with different characteristics given in the following tables.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
34  
NXP Semiconductors  
Electrical characteristics  
3.10.1 LFAST interface timing diagrams  
Signal excursions above this level NOT allowed  
Max. common mode input at RX  
1743 mV  
1600 mV  
|Vo D|  
Max Differential Voltage =  
285 mV p-p (LFAST)  
400 mV p-p (MSC/DSPI)  
Minimum Data Bit Time  
Opening =  
0.55 * T (LFAST)  
0.50 * T (MSC/DSPI)  
VOS = 1.2 V +/- 10%  
TX common mode  
“No-Go” Area  
|Vo D|  
Min Differential Voltage =  
100 mV p-p (LFAST)  
150 mV p-p (MSC/DSPI)  
VICOM  
|PER  
EYE  
|PER  
EYE  
Data Bit Period  
T = 1 /FDATA  
Min. common mode input at RX  
150 mV  
0 V  
Signal excursions below this level NOT allowed  
Figure 8. LFAST and MSC/DSPI LVDS timing definition  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
35  
Electrical characteristics  
H
L
lfast_pwr_down  
tPD2NM_TX  
Differential  
Data Lines  
TX  
pad_p/pad_n  
Data Valid  
Figure 9. Power-down exit time  
VIH  
VIL  
Differential  
Data Lines  
TX  
90%  
10%  
pad_p/pad_n  
tTR  
tTR  
Figure 10. Rise/fall time  
3.10.2 LFAST and MSC/DSPI LVDS interface electrical characteristics  
The following table contains the electrical characteristics for the LFAST interface.  
Table 20. LVDS pad startup and receiver electrical characteristics1  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
STARTUP2,3  
tSTRT_BIAS  
Bias current reference startup time4  
0.5  
4
μs  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
36  
NXP Semiconductors  
Electrical characteristics  
Table 20. LVDS pad startup and receiver electrical characteristics1 (continued)  
Value  
Typ  
0.4  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
tPD2NM_TX  
Transmitter startup time (power down to —  
Normal mode)5  
2.75  
μs  
tSM2NM_TX  
tPD2NM_RX  
tPD2SM_RX  
ILVDS_BIAS  
Transmitter startup time (Sleep mode to Not applicable to the MSC/DSPI  
0.2  
20  
20  
0.5  
40  
μs  
ns  
Normal mode)6  
LVDS pad  
Receiver startup time (power down to  
Normal mode)7  
Receiver startup time (power down to  
Sleep mode)8  
Not applicable to the MSC/DSPI  
LVDS pad  
50  
ns  
LVDS bias current consumption  
Tx or Rx enabled  
0.95  
mA  
TRANSMISSION LINE CHARACTERISTICS (PCB Track)  
Transmission line characteristic  
impedance  
Transmission line differential impedance —  
RECEIVER  
Z0  
47.5  
95  
50  
52.5  
105  
Ω
Ω
ZDIFF  
100  
VICOM  
|ΔVI|  
VHYS  
RIN  
Common mode voltage  
Differential input voltage  
Input hysteresis  
0.159  
100  
25  
1.610  
V
mV  
mV  
Ω
Terminating resistance  
Differential input capacitance11  
VDDEH = 3.0 V to 5.5 V  
80  
125  
3.5  
150  
6.0  
0.5  
CIN  
pF  
mA  
ILVDS_RX  
Receiver DC current consumption  
Enabled  
1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST and the MSC/DSPI  
LVDS pad except where noted in the conditions.  
2. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the  
LVDS control registers (LCR) of the LFAST and High-Speed Debug modules.  
3. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter  
electrical characteristic tables.  
4. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being  
enabled.  
5. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock  
periods.  
6. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block  
remains enabled in sleep mode.  
7. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods.  
8. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block  
remains enabled in sleep mode.  
9. Absolute min = 0.15 V – (285 mV/2) = 0 V  
10. Absolute max = 1.6 V + (285 mV/2) = 1.743 V  
11. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. For bare  
die devices, subtract the package value given in Figure 11.  
Table 21. LFAST transmitter electrical characteristics1  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
fDATA  
Data rate  
240  
Mbps  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
37  
Electrical characteristics  
Table 21. LFAST transmitter electrical characteristics1 (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
1.08  
110  
0.26  
Max  
1.32  
285  
1.5  
VOS  
Common mode voltage  
V
|VOD  
tTR  
|
Differential output voltage swing (terminated)2,3  
Rise/fall time (10% – 90% of swing)2,3  
External lumped differential load capacitance2  
200  
mV  
ns  
CL  
VDDE = 4.5 V  
VDDE = 3.0 V  
Enabled  
12.0  
8.5  
pF  
ILVDS_TX Transmitter DC current consumption  
3.2  
mA  
1. The LFAST pad electrical characteristics are based on worst-case internal capacitance values shown in Figure 11.  
2. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in  
Figure 11.  
3. Valid for maximum external load CL.  
Table 22. MSC/DSPI LVDS transmitter electrical characteristics1  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
80  
fDATA  
VOS  
Data rate  
Mbps  
V
Common mode voltage  
1.08  
150  
0.8  
1.32  
400  
4.0  
50  
|VOD  
tTR  
|
Differential output voltage swing (terminated)2,3  
Rise/Fall time (10%–90% of swing)2,3  
External lumped differential load capacitance2  
200  
mV  
ns  
CL  
VDDE = 4.5 V  
VDDE = 3.0 V  
Enabled  
pF  
39  
ILVDS_TX Transmitter DC current consumption  
4.0  
mA  
1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst-case internal  
capacitance values given in Figure 11.  
2. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in  
Figure 11.  
3. Valid for maximum external load CL.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
38  
NXP Semiconductors  
Electrical characteristics  
bond pad  
GPIO Driver  
CL  
1pF  
2.5pF  
100Ω  
terminator  
LVDS Driver  
bond pad  
GPIO Driver  
CL  
1pF  
2.5pF  
Die  
Package  
PCB  
Figure 11. LVDS pad external load diagram  
3.10.3 LFAST PLL electrical characteristics  
The following table contains the electrical characteristics for the LFAST PLL.  
Table 23. LFAST PLL electrical characteristics1  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
10  
–1  
45  
Nominal  
Max  
26  
fRF_REF PLL reference clock frequency  
ERRREF PLL reference clock frequency error  
DCREF PLL reference clock duty cycle  
MHz  
%
1
55  
%
PN  
Integrated phase noise (single side band) fRF_REF = 20 MHz  
–58  
–64  
dBc  
fRF_REF = 10 MHz  
4802  
fVCO  
PLL VCO frequency  
PLL phase lock3  
MHz  
μs  
tLOCK  
40  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
39  
Electrical characteristics  
Table 23. LFAST PLL electrical characteristics1 (continued)  
Value  
Nominal  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
300  
500  
400  
ΔPERREF Input reference clock jitter (peak to peak) Single period, fRF_REF = 10 MHz  
ps  
Long term, fRF_REF = 10 MHz  
–500  
ΔPEREYE Output Eye Jitter (peak to peak)4  
ps  
1. The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces.  
2. The 480 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 13 MHz or 26 MHz reference, the  
VCO frequency is 468 MHz.  
3. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral  
bridge clock that is connected to the PLL on the device.  
4. Measured at the transmitter output across a 100 Ohm termination resistor on a device evaluation board. See Figure 11.  
3.11 Power management: PMC, POR/LVD, power sequencing  
3.11.1 Power management electrical characteristics  
The power management module monitors the different power supplies. It also generates  
the internal supplies that are required for correct device functionality. The power  
management is supplied by the VDDPMC supply.  
3.11.1.1 LDO mode recommended power transistors  
Only specific orderable part numbers of MPC5777C support LDO regulation mode. See  
Ordering information for MPC5777C parts that support this regulation mode.  
The following NPN transistors are recommended for use with the on-chip LDO voltage  
regulator controller: ON Semiconductor™ NJD2873. The collector of the external  
transistor is preferably connected to the same voltage supply source as the output stage of  
the regulator.  
The following table describes the characteristics of the power transistors.  
Table 24. Recommended operating characteristics  
Symbol  
hFE  
Parameter  
Value  
60-550  
1.60  
2.0  
Unit  
W
DC current gain (Beta)  
PD  
Absolute minimum power dissipation  
Maximum DC collector current  
Collector to emitter saturation voltage  
Base to emitter voltage  
ICMaxDC  
VCESAT  
VBE  
A
300  
mV  
V
0.95  
2.5  
Vc  
Minimum voltage at transistor collector  
V
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
40  
NXP Semiconductors  
Electrical characteristics  
The following table shows the recommended components to be used in LDO regulation  
mode.  
Table 25. Recommended operating characteristics  
Part name Part type  
Q1 NPN BJT hFE = 400  
Capacitor 4.7 µF - 20 V  
Nominal  
Description  
NJD2873: ON Semiconductor LDO voltage regulator controller (VRC)  
Ceramic capacitor, total ESR < 70 mΩ  
CI  
CE  
CV  
CD  
Capacitor 0.047–0.049 µF - 7 V Ceramic—one capacitor for each VDD pin  
Capacitor 22 µF - 20 V  
Capacitor 22 µF - 20 V  
Ceramic VDDPMC (optional 0.1 µF)  
Ceramic supply decoupling capacitor, ESR < 50 mΩ (as close as possible  
to NPN collector)  
CB  
R
Capacitor 0.1 µF - 7 V  
Ceramic VDDPWR  
Resistor  
Application specific  
Optional; reduces thermal loading on the NPN with high VDDPMC levels  
The following diagram shows the LDO configuration connection.  
VDDPMC  
REGSEL  
CD  
R
CV  
VSSPMC (clean ground)  
VDDPWR  
Q1  
REGCTL  
VSSPWR  
CB  
VDD  
VSS  
CI  
CE  
Figure 12. VRC 1.2 V LDO configuration  
3.11.1.2 SMPS mode recommended external components and  
characteristics  
The following table shows the recommended components to be used in SMPS regulation  
mode.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
41  
Electrical characteristics  
Part name Part type  
Table 26. Recommended operating characteristics  
Nominal  
3 A - 20 V  
Description  
Q1  
p-MOS  
SQ2301ES / FDC642P or equivalent: low threshold p-MOS, Vth < 2.0 V, Rdson  
@ 4.5 V < 100 mΩ, Cg < 5 nF  
D1  
L
Schottky  
Inductor  
2 A - 20 V  
SS8P3L or equivalent: Vishay™ low Vf Schottky diode  
Buck shielded coil low ESR  
3-4 μH - 1.5 A  
CI  
Capacitor 22 μF - 20 V  
Capacitor 0.1 μF - 7 V  
Capacitor 22 μF - 20 V  
Capacitor 22 μF - 20 V  
Ceramic capacitor, total ESR < 70 mΩ  
CE  
CV  
CD  
Ceramic—one capacitor for each VDD pin  
Ceramic VDDPMC (optional 0.1 μF capacitor in parallel)  
Ceramic supply decoupling capacitor, ESR < 50 mΩ (as close as possible to  
the p-MOS source)  
R
Resistor  
2.0-4.7 kΩ  
Pullup for power p-MOS gate  
CB  
Capacitor 22 μF - 20 V  
Ceramic, connect 100 nF capacitor in parallel (as close as possible to package  
to reduce current loop from VDDPWR to VSSPWR  
)
The following diagram shows the SMPS configuration connection.  
VDDPMC  
REGSEL  
CD  
CV  
VSSPMC (clean ground)  
VDDPWR  
R
REGCTL  
VSSPWR  
Q1  
CE  
CB  
D1  
L
VDD  
VSS  
CI  
Figure 13. SMPS configuration  
NOTE  
The REGSEL pin is tied to VDDPMC to select SMPS. If  
REGSEL is 0, the chip boots with the linear regulator.  
See Power sequencing requirements for details about VDDPMC  
and VDDPWR  
.
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
42  
NXP Semiconductors  
Electrical characteristics  
The SMPS regulator characteristics appear in the following table.  
Table 27. SMPS electrical characteristics  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
825  
0.01  
Typ  
1000  
0.025  
70  
Max  
1220  
0.05  
SMPSCLOCK  
SMPSSLOPE  
SMPSEFF  
SMPS oscillator frequency  
SMPS soft-start ramp slope  
SMPS typical efficiency  
Trimmed  
kHz  
V/μs  
%
3.11.2 Power management integration  
To ensure correct functionality of the device, use the following recommended integration  
scheme for LDO mode.  
C HV_PMC  
C HV_FLA  
VDDPWR  
VDD  
1
C SMPSPWR  
n x C LV  
VSSPWR  
VSS  
MPC5777C  
REF BY  
VDDE(H)x  
VSS  
PC  
C REFEQ  
2
n x C HV_IO  
VSS  
1
2
One capacitance near each VDD pin  
One capacitance near each VDDE(H)x pin  
Figure 14. Recommended supply pin circuits  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
43  
Electrical characteristics  
The following table describes the supply stability capacitances required on the device for  
proper operation.  
Table 28. Device power supply integration  
Value1  
Symbol  
Parameter  
Conditions  
Unit  
Min Typ Max  
CLV  
Minimum VDD external bulk capacitance2, 3  
LDO mode  
4.7  
22  
22  
22  
22  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
SMPS mode  
CSMPSPWR  
CHV_PMC  
Minimum SMPS driver supply capacitance  
Minimum VDDPMC external bulk capacitance4, 5  
LDO mode  
SMPS mode  
4.76  
CHV_IO  
Minimum VDDEx/VDDEHx external capacitance2  
Minimum VDD_FLA external capacitance7  
CHV_FLA  
1.0 2.0  
CHV_ADC_EQA/B Minimum VDDA_EQA/B external capacitance8  
CREFEQ  
Minimum REFBYPCA/B external capacitance9  
CHV_ADC_SD Minimum VDDA_SD external capacitance10  
0.01  
0.01  
1.0 2.2  
1. See Figure 14 for capacitor integration.  
2. Recommended X7R or X5R ceramic low ESR capacitors, 15% variation over process, voltage, temperature, and aging.  
3. Each VDD pin requires both a 47 nF and a 0.01 μF capacitor for high-frequency bypass and EMC requirements.  
4. Recommended X7R or X5R ceramic low ESR capacitors, 15% variation over process, voltage, temperature, and aging.  
5. Each VDDPMC pin requires both a 47 nF and a 0.01 μF capacitor for high-frequency bypass and EMC requirements.  
6. The actual capacitance should be selected based on the I/O usage in order to keep the supply voltage within its operating  
range.  
7. The recommended flash regulator composition capacitor is 2.0 μF typical X7R or X5R, with -50% and +35% as min and  
max. This puts the min cap at 0.75 μF.  
8. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between VDDA_EQA/B and  
VSSA_EQ  
.
9. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between REFBYPCA/B and VSS  
10. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between VDDA_SD and  
.
VSSA_SD  
.
3.11.3 Device voltage monitoring  
The LVD/HVDs for the device and their levels are given in the following table. Voltage  
monitoring threshold definition is provided in the following figure.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
44  
NXP Semiconductors  
Electrical characteristics  
V DD_xxx  
V HVD(rise)  
V HVD(fall)  
V LVD(rise)  
V LVD(fall)  
t VDASSERT  
t VDRELEASE  
HVD TRIGGER  
(INTERNAL)  
t VDRELEASE  
t VDASSERT  
LVD TRIGGER  
(INTERNAL)  
Figure 15. Voltage monitor threshold definition  
Table 29. Voltage monitor electrical characteristics1, 2  
Configuration  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Trim Mask Pow.  
Min  
Typ Max  
bits Opt.  
Up  
No Enab. 960 1010 1060 mV  
940 990 1040  
POR098_c3  
LV internal supply power Rising voltage (powerup)  
N/A  
on reset  
Falling voltage (power  
down)  
LVD_core_hot LV internal4 supply low  
voltage monitoring  
Rising voltage (untrimmed)  
Falling voltage (untrimmed)  
Rising voltage (trimmed)  
Falling voltage (trimmed)  
Rising voltage  
4bit  
No Enab. 1100 1140 1183 mV  
1080 1120 1163  
1142 1165 1183  
1122 1145 1163  
LVD_core_cold LV external5 supply low  
voltage monitoring  
4bit  
4bit  
Yes Disab. 1165 1180 1198 mV  
1136 1160 1178  
Falling voltage  
HVD_core  
LV internal cold supply  
high voltage monitoring  
Rising voltage  
Yes Disab. 1338 1365 1385 mV  
1318 1345 1365  
Falling voltage  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
45  
Electrical characteristics  
Table 29. Voltage monitor electrical characteristics1, 2 (continued)  
Configuration  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Trim Mask Pow.  
bits Opt. Up  
Min  
Typ Max  
POR_HV  
HV VDDPMC supply power Rising voltage (powerup)  
N/A  
No Enab. 2444 2600 2756 mV  
2424 2580 2736  
on reset threshold  
Falling voltage (power  
down)  
LVD_HV  
HV internal VDDPMC supply Rising voltage (untrimmed)  
4bit  
No Enab. 2935 3023 3112 mV  
2922 3010 3099  
low voltage monitoring  
Falling voltage (untrimmed)  
Rising voltage (trimmed)  
Falling voltage (trimmed)  
2946 3010 3066  
2934 2998 3044  
HVD_HV  
HV internal VDDPMC supply Rising voltage  
4bit  
4bit  
Yes Disab. 5696 5860 5968 mV  
5666 5830 5938  
high voltage monitoring  
Falling voltage  
LVD_FLASH FLASH supply low voltage Rising voltage (untrimmed)  
No Enab. 2935 3023 3112 mV  
2922 3010 3099  
monitoring6  
Falling voltage (untrimmed)  
Rising voltage (trimmed)  
Falling voltage (trimmed)  
2956 3010 3053  
2944 2998 3041  
HVD_FLASH FLASH supply high  
voltage monitoring6  
Rising voltage  
4bit  
4bit  
Yes Disab. 3456 3530 3584 mV  
3426 3500 3554  
Falling voltage  
LVD_IO  
Main I/O VDDEH1 supply  
low voltage monitoring  
Rising voltage (untrimmed)  
Falling voltage (untrimmed)  
Rising voltage (trimmed)  
Falling voltage (trimmed)  
No Enab. 3250 3350 3488 mV  
3220 3320 3458  
3347 3420 3468  
3317 3390 3438  
tVDASSERT  
Voltage detector threshold —  
crossing assertion  
0.1  
2.0  
μs  
μs  
tVDRELEASE  
Voltage detector threshold —  
crossing de-assertion  
5
20  
1. LVD is released after tVDRELEASE temporization when upper threshold is crossed; LVD is asserted tVDASSERT after detection  
when lower threshold is crossed.  
2. HVD is released after tVDRELEASE temporization when lower threshold is crossed; HVD is asserted tVDASSERT after  
detection when upper threshold is crossed.  
3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD  
thresholds are provided after trimming.  
4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.  
5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.  
6. VDDFLA range is guaranteed when internal flash memory regulator is used.  
3.11.4 Power sequencing requirements  
Requirements for power sequencing include the following.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
46  
NXP Semiconductors  
Electrical characteristics  
NOTE  
In these descriptions, star route layout means a track split as  
close as possible to the power supply source. Each of the split  
tracks is routed individually to the intended end connection.  
1. For both LDO mode and SMPS mode, VDDPMC and VDDPWR must be connected  
together (shorted) to ensure aligned voltage ramping up/down. In addition:  
• For SMPS mode, a star route layout of the power track is required to minimize  
mutual noise. If SMPS mode is not used, the star route layout is not required.  
VDDPWR is the supply pin for the SMPS circuitry.  
• For 3.3 V operation, VDDFLA must also be star routed and shorted to VDDPWR  
and VDDPMC. This triple connection is required because 3.3 V does not guarantee  
correct functionality of the internal VDDFLA regulator. Consequently, VDDFLA is  
supplied externally.  
2. VDDA_MISC: IRC operation is required to provide the clock for chip startup.  
• The VDDPMC, VDD, and VDDEH1 (reset pin pad segment) supplies are monitored.  
They hold IRC until all of them reach operational voltage. In other words,  
VDDA_MISC must reach its specified minimum operating voltage before or at the  
same time that all of these monitored voltages reach their respective specified  
minimum voltages.  
• An alternative is to connect the same supply voltage to both VDDEH1 and  
VDDA_MISC. This alternative approach requires a star route layout to minimize  
mutual noise.  
3. Multiple VDDEx supplies can be powered up in any order.  
During any time when VDD is powered up but VDDEx is not yet powered up: pad  
outputs are unpowered.  
During any time when VDDEx is powered up before all other supplies: all pad output  
buffers are tristated.  
4. Ramp up VDDA_EQ before VDD. Otherwise, a reset might occur.  
5. When the device is powering down while using the internal SMPS regulator,  
VDDPMC and VDDPWR supplies must ramp down through the voltage range from 2.5  
V to 1.5 V in less than 1 second. Slower ramp-down times might result in reduced  
lifetime reliability of the device.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
47  
Electrical characteristics  
3.12 Flash memory specifications  
3.12.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this  
section are defined for a single embedded flash memory within  
an SoC, and represent average currents for given supplies and  
operations.  
Table 30 shows the estimated Program/Erase times.  
Table 30. Flash memory program and erase specifications  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C ≤150°C ≤150°C cycles cycles  
tdwpgm  
Doubleword (64 bits) program time 43  
100 150 55 500  
μs  
tppgm  
Page (256 bits) program time  
73  
200  
800  
300  
108  
396  
500  
μs  
μs  
tqppgm  
Quad-page (1024 bits) program  
time  
268  
1,200  
2,000  
t16kers  
16 KB Block erase time  
16 KB Block program time  
32 KB Block erase time  
32 KB Block program time  
64 KB Block erase time  
64 KB Block program time  
256 KB Block erase time  
256 KB Block program time  
168  
34  
290  
45  
320  
50  
250  
40  
1,000  
1,000  
1,200  
1,200  
1,600  
1,600  
4,000  
4,000  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
t16kpgm  
t32kers  
t32kpgm  
t64kers  
217  
69  
360  
100  
490  
180  
1,520  
720  
390  
110  
590  
210  
2,030  
880  
310  
90  
315  
138  
884  
552  
420  
170  
1,080  
650  
t64kpgm  
t256kers  
t256kpgm  
1. Program times are actual hardware programming times and do not include software overhead. Block program times  
assume quad-page programming.  
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3. Conditions: ≤ 150 cycles, nominal voltage.  
4. Plant Programing times provide guidance for timeout limits used in the factory.  
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.  
Typical End of Life program and erase values may be used for throughput calculations.  
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
48  
NXP Semiconductors  
Electrical characteristics  
3.12.2 Flash memory Array Integrity and Margin Read specifications  
Table 31. Flash memory Array Integrity and Margin Read specifications  
Symbol  
Characteristic  
Min  
Typical  
Max1  
Units  
2
tai16kseq  
Array Integrity time for sequential sequence on 16 KB block.  
512 x  
Tperiod x  
Nread  
tai32kseq  
Array Integrity time for sequential sequence on 32 KB block.  
Array Integrity time for sequential sequence on 64 KB block.  
Array Integrity time for sequential sequence on 256 KB block.  
1024 x  
Tperiod x  
Nread  
tai64kseq  
2048 x  
Tperiod x  
Nread  
8192 x  
Tperiod x  
Nread  
tai256kseq  
tmr16kseq  
tmr32kseq  
tmr64kseq  
tmr256kseq  
Margin Read time for sequential sequence on 16 KB block.  
Margin Read time for sequential sequence on 32 KB block.  
Margin Read time for sequential sequence on 64 KB block.  
Margin Read time for sequential sequence on 256 KB block.  
73.81  
128.43  
237.65  
893.01  
110.7  
192.6  
μs  
μs  
μs  
μs  
356.5  
1,339.5  
1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The  
equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and  
Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires  
6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the  
address pipeline set to 2, Nread would equal 4 (or 6 - 2).)  
2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the  
equation, the results of the equation are also unit accurate.  
3.12.3 Flash memory module life specifications  
Table 32. Flash memory module life specifications  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
P/E  
Array P/E  
cycles  
Number of program/erase cycles per block  
for 16 KB, 32 KB and 64 KB blocks.1  
250,000  
cycles  
Number of program/erase cycles per block  
for 256 KB blocks.2  
1,000  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 - 1,000 P/E 50  
cycles.  
Years  
Years  
Years  
Blocks with 100,000 P/E  
cycles.  
20  
Blocks with 250,000 P/E  
cycles.  
10  
1. Program and erase supported across standard temperature specs.  
2. Program and erase supported across standard temperature specs.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
49  
Electrical characteristics  
3.12.4 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the  
following figure. The spec window represents qualified limits. The extrapolated dotted  
line demonstrates technology capability, however is beyond the qualification limits.  
3.12.5 Flash memory AC timing specifications  
Table 33. Flash memory AC timing specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit is set  
to a 1.  
9.4  
11.5  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit is set  
to a 1.  
16  
20.8  
μs  
ns  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tres  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low.  
100  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
50  
NXP Semiconductors  
Electrical characteristics  
Table 33. Flash memory AC timing specifications (continued)  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tdone  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
ns  
tdones  
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
16  
20.8  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16  
45  
μs  
plus seven  
system  
clock  
plus seven  
system  
clock  
periods.  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin Read  
or Array Integrity until the UT0-AID bit is cleared. This time also  
applies to the resuming from a suspend or breakpoint by  
clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UT0-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also applies  
to the UT0-AISUS to UT0-AID setting in the event of a Array  
Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop  
Time from 1 to 0 transition of UT0-AIE initiating a Margin Read  
abort until the UT0-AID bit is set. This time also applies to the  
UT0-AISUS to UT0-AID setting in the event of a Margin Read  
suspend request.  
10.36  
20.42  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
3.12.6 Flash memory read wait-state and address-pipeline control  
settings  
The following table describes the recommended settings of the Flash Memory  
Controller's PFCR1[RWSC] and PFCR1[APC] fields at various flash memory operating  
frequencies, based on specified intrinsic flash memory access times of the C55FMC array  
at 150°C.  
Table 34. Flash memory read wait-state and address-pipeline control  
combinations  
Flash memory read latency on  
mini-cache miss (# of fPLATF  
clock periods)  
Flash memory read latency on  
mini-cache hit (# of fPLATF clock  
periods)  
Flash memory frequency  
RWSC  
APC  
0 MHz < fPLATF ≤ 33 MHz  
33 MHz < fPLATF ≤ 100 MHz  
0
2
0
1
3
5
1
1
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
51  
Electrical characteristics  
Table 34. Flash memory read wait-state and address-pipeline control combinations  
(continued)  
Flash memory read latency on  
mini-cache miss (# of fPLATF  
clock periods)  
Flash memory read latency on  
mini-cache hit (# of fPLATF clock  
periods)  
Flash memory frequency  
RWSC  
APC  
100 MHz < fPLATF ≤ 150 MHz  
3
1
6
1
3.13 AC timing  
3.13.1 Generic timing diagrams  
The generic timing diagrams in Figure 16 and Figure 17 apply to all I/O pins with pad  
types SR and FC. See the associated MPC5777C Microsoft Excel® file in the Reference  
Manual for the pad type for each pin.  
D_CLKOUT  
VDDE /  
2
A
B
I/O Outputs  
VDDEn / 2  
VDDEHn / 2  
B – Minimum Output Hold Time  
A – Maximum Output Delay Time  
Figure 16. Generic output delay/hold timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
52  
NXP Semiconductors  
Electrical characteristics  
D_CLKOUT  
VDDE /  
2
B
A
I/O Inputs  
VDDEn / 2  
VDDEHn / 2  
B – Minimum Input Hold Time  
A – Maximum Input Delay Time  
Figure 17. Generic input setup/hold timing  
3.13.2 Reset and configuration pin timing  
Table 35. Reset and configuration pin timing1  
Spec Characteristic  
Symbol  
tRPW  
Min  
10  
2
Max  
Unit  
2
1
2
3
4
RESET Pulse Width  
tcyc  
2
RESET Glitch Detect Pulse Width  
tGPW  
tcyc  
2
PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid  
PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid  
tRCSU  
tRCH  
10  
0
tcyc  
2
tcyc  
1. Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.08 V to 1.32 V, TA = TL to TH.  
2. For further information on tcyc, see Table 3.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
53  
Electrical characteristics  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
WKPCFG  
4
Figure 18. Reset and configuration pin timing  
3.13.3 IEEE 1149.1 interface timing  
Table 36. JTAG pin AC electrical characteristics1  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
100  
40  
5
Max  
1
2
tJCYC  
tJDC  
TCK cycle time  
ns  
%
TCK clock pulse width  
60  
3
tTCKRISE  
tTMSS, tTDIS  
tTMSH, tTDIH  
tTDOV  
TCK rise and fall times (40%–70%)  
TMS, TDI data setup time  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
5
TMS, TDI data hold time  
5
162  
6
TCK low to TDO data valid  
0
7
tTDOI  
TCK low to TDO data invalid  
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
TCK low to TDO high impedance  
JCOMP assertion time  
100  
40  
15  
15  
15  
9
10  
11  
12  
13  
14  
15  
JCOMP setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
6003  
600  
600  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
1. These specifications apply to JTAG boundary scan only. See Table 37 for functional specifications.  
2. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
3. Applies to all pins, limited by pad slew rate. Refer to I/O delay and transition specification and add 20 ns for JTAG delay.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
54  
NXP Semiconductors  
Electrical characteristics  
TCK  
2
3
3
2
1
Figure 19. JTAG test clock input timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 20. JTAG test access port timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
55  
Electrical characteristics  
TCK  
10  
JCOMP  
9
Figure 21. JTAG JCOMP timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
56  
NXP Semiconductors  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 22. JTAG boundary scan timing  
3.13.4 Nexus timing  
Table 37. Nexus debug port timing1  
Spec Characteristic  
Symbol  
tMCYC  
Min  
2
Max  
8
Unit  
tCYC  
1
2
3
4
5
6
7
8
MCKO Cycle Time  
MCKO Duty Cycle  
tMDC  
40  
60  
0.2  
0.2  
0.2  
%
MCKO Low to MDO Data Valid2  
MCKO Low to MSEO Data Valid2  
MCKO Low to EVTO Data Valid2  
EVTI Pulse Width  
tMDOV  
–0.1  
–0.1  
–0.1  
4.0  
1
tMCYC  
tMCYC  
tMCYC  
tTCYC  
tMCYC  
tCYC  
tMSEOV  
tEVTOV  
tEVTIPW  
tEVTOPW  
tTCYC  
EVTO Pulse Width  
TCK Cycle Time  
23  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
57  
Electrical characteristics  
Table 37. Nexus debug port timing1 (continued)  
Spec Characteristic  
Symbol  
Min  
Max  
Unit  
8
Absolute minimum TCK cycle time4 (TDO sampled on  
posedge of TCK)  
tTCYC  
405  
ns  
Absolute minimum TCK cycle time4 (TDO sampled on  
negedge of TCK)  
205  
9
TCK Duty Cycle  
tTDC  
tNTDIS, tNTMSS  
TNTDIH, tNTMSH  
tNTDOV  
40  
8
60  
18  
%
ns  
ns  
ns  
ns  
10  
11  
12  
13  
14  
TDI, TMS Data Setup Time6  
TDI, TMS Data Hold Time6  
TCK Low to TDO Data Valid6  
RDY Valid to MCKO7  
5
0
1
TDO hold time after TCLK low6  
tNTDOH  
1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing  
specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30  
pF with DSC = 0b10.  
2. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
3. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the absolute  
minimum TCK period specification.  
4. This value is TDO propagation time plus 2 ns setup time to sampling edge.  
5. This may require a maximum clock speed that is less than the maximum functional capability of the design depending on  
the actual system frequency being used.  
6. Applies to TMS pin timing for the bit frame when using the 1149.7 advanced protocol.  
7. The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.  
1
2
MCKO  
3
4
5
MDO  
Output Data Valid  
7
MSEO  
EVTO  
6
EVTI  
Figure 23. Nexus timings  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
58  
NXP Semiconductors  
Electrical characteristics  
8
9
TCK  
10  
11  
TMS, TDI  
14  
12  
TDO  
Figure 24. Nexus TCK, TDI, TMS, TDO Timing  
3.13.5 External Bus Interface (EBI) timing  
Table 38. Bus operation timing1  
66 MHz (Ext. bus freq.)2, 3  
Spec  
Characteristic  
D_CLKOUT Period  
Symbol  
Unit Notes  
ns Signals are measured at 50%  
Min  
Max  
1
tC  
15.2  
VDDE  
.
2
3
4
D_CLKOUT Duty Cycle  
D_CLKOUT Rise Time  
D_CLKOUT Fall Time  
tCDC  
tCRT  
tCFT  
45%  
55%  
tC  
ns  
ns  
4
4
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
59  
Electrical characteristics  
Table 38. Bus operation timing1 (continued)  
66 MHz (Ext. bus freq.)2, 3  
Spec  
Characteristic  
Symbol  
Unit Notes  
Min  
Max  
5
D_CLKOUT Posedge to Output  
Signal Invalid or High Z (Hold  
Time)  
tCOH  
1.0/1.5  
ns Hold time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0: 1.0 ns  
EBTS = 1: 1.5 ns  
D_ADD[9:30]  
D_BDIP  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
D_RD_WR  
D_TA  
D_TS  
D_WE[0:3]/D_BE[0:3]  
6
D_CLKOUT Posedge to Output  
Signal Valid (Output Delay)  
tCOV  
8.5/9.0  
ns Output valid time selectable via  
SIU_ECCR[EBTS] bit:  
D_ADD[9:30]  
D_BDIP  
EBTS = 0: 8.5 ns  
EBTS = 1: 9.0 ns  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
11.5  
8.5/9.0  
Output valid time selectable via  
SIU_ECCR[EBTS] bit:  
D_RD_WR  
D_TA  
EBTS = 0: 8.5 ns  
EBTS = 1: 9.0 ns  
D_TS  
D_WE[0:3]/D_BE[0:3]  
7
8
9
Input Signal Valid to D_CLKOUT  
Posedge (Setup Time)  
tCIS  
7.5  
1.0  
6.5  
ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
D_TS  
D_CLKOUT Posedge to Input  
Signal Invalid (Hold Time)  
tCIH  
ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
D_TS  
D_ALE Pulse Width  
tAPW  
ns The timing is for Asynchronous  
external memory system.  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
60  
NXP Semiconductors  
Electrical characteristics  
Table 38. Bus operation timing1 (continued)  
66 MHz (Ext. bus freq.)2, 3  
Spec  
Characteristic  
Symbol  
Unit Notes  
Min  
Max  
10  
D_ALE Negated to Address  
Invalid  
tAAI  
2.0/1.0 5  
ns The timing is for Asynchronous  
external memory system.  
ALE is measured at 50% of VDDE.  
1. EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with SIU_PCR[DSC] =  
11b for ADDR/CTRL and SIU_PCR[SRC] = 11b for DATA/ALE.  
2. Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation  
(FM).  
3. Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus  
frequency. The maximum external bus frequency is 66 MHz.  
4. Refer to D_CLKOUT pad timing in Table 10.  
5. ALE hold time spec is temperature dependant. 1.0 ns spec applies for temperature range -40 to 0°C. 2.0ns spec applies to  
temperatures > 0°C. This spec has no dependency on the SIU_ECCR[EBTS] bit.  
VOH_F  
VDDE / 2  
VOL_F  
D_CLKOUT  
2
3
2
4
1
Figure 25. D_CLKOUT timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
61  
Electrical characteristics  
VDDE /  
2
D_CLKOUT  
6
5
5
Output  
Bus  
VDDE /  
2
6
5
5
Output  
Signal  
VDDE /  
2
6
Output  
Signal  
VDDE /  
2
Figure 26. Synchronous output timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
62  
NXP Semiconductors  
Electrical characteristics  
D_CLKOUT  
VDDE /  
2
7
8
Input  
Bus  
VDDE /  
2
7
8
Input  
Signal  
VDDE /  
2
Figure 27. Synchronous input timing  
ipg_clk  
D_CLKOUT  
D_ALE  
D_TS  
D_ADD/D_DAT  
DATA  
ADDR  
9
10  
Figure 28. ALE signal timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
63  
Electrical characteristics  
3.13.6 External interrupt timing (IRQ/NMI pin)  
Table 39. External Interrupt timing1  
Spec Characteristic  
Symbol  
tIPWL  
Min  
3
Max  
Unit  
2
1
2
3
IRQ/NMI Pulse Width Low  
tcyc  
2
IRQ/NMI Pulse Width High  
IRQ/NMI Edge to Edge Time3  
tIPWH  
3
tcyc  
2
tICYC  
6
tcyc  
1. IRQ/NMI timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, TA = TL to TH.  
2. For further information on tcyc, see Table 3.  
3. Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.  
IRQ  
1
2
3
Figure 29. External interrupt timing  
3.13.7 eTPU timing  
Table 40. eTPU timing1  
Spec Characteristic  
Symbol  
tICPW  
Min  
4
13  
Max  
Unit  
2
2
1
2
eTPU Input Channel Pulse Width  
eTPU Output Channel Pulse Width  
tCYC_ETPU  
tCYC_ETPU  
tOCPW  
1. eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00.  
2. For further information on tCYC_ETPU, see Table 3.  
3. This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the  
rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
64  
NXP Semiconductors  
Electrical characteristics  
eTPU Input  
and TCRCLK  
1
2
eTPU  
Output  
Figure 30. eTPU timing  
3.13.8 eMIOS timing  
Table 41. eMIOS timing1  
Spec  
Characteristic  
Symbol  
Min  
4
13  
Max  
Unit  
2
2
1
2
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
tMIPW  
tCYC_PER  
tCYC_PER  
tMOPW  
1. eMIOS timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00.  
2. For further information on tCYC_PER, see Table 3.  
3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the  
rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
eMIOS Input  
1
2
eMIOS  
Output  
Figure 31. eMIOS timing  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
65  
Electrical characteristics  
3.13.9 DSPI timing with CMOS and LVDS pads  
NOTE  
The DSPI in TSB mode with LVDS pads can be used to  
implement the Micro Second Channel (MSC) bus protocol.  
DSPI channel frequency support is shown in Table 42. Timing specifications are shown  
in Table 43, Table 44, Table 45, Table 46, and Table 47.  
Table 42. DSPI channel frequency support  
DSPI use mode  
CMOS (Master mode) Full duplex – Classic timing (Table 43)  
Full duplex – Modified timing (Table 44)  
Max usable frequency (MHz)1, 2  
17  
30  
30  
30  
30  
40  
Output only mode (SCK/SOUT/PCS) (Table 43 and Table 44)  
Output only mode TSB mode (SCK/SOUT/PCS) (Table 47)  
Full duplex – Modified timing (Table 45)  
LVDS (Master mode)  
Output only mode TSB mode (SCK/SOUT/PCS) (Table 46)  
1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.  
2. Maximum usable frequency does not take into account external device propagation delay.  
3.13.9.1 DSPI master mode full duplex timing with CMOS and LVDS pads  
3.13.9.1.1 DSPI CMOS Master Mode — Classic Timing  
Table 43. DSPI CMOS master classic timing (full duplex and output only) –  
MTFE = 0, CPHA = 0 or 11  
Condition2  
Pad drive4  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
50 pF  
Min  
33.0  
Max  
1
tSCK  
SCK cycle time  
PCR[SRC]=11b  
PCR[SRC]=10b  
ns  
80.0  
PCR[SRC]=01b  
200.0  
2
tCSC  
PCS to SCK delay  
PCR[SRC]=11b  
(N5 × tSYS, 6) – 16  
(N5 × tSYS, 6) – 16  
(N5 × tSYS, 6) – 18  
(N5 × tSYS, 6) – 45  
ns  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
66  
NXP Semiconductors  
Electrical characteristics  
Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA  
= 0 or 11 (continued)  
Condition2  
Pad drive4  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
0 pF  
Min  
Max  
3
tASC  
After SCK delay  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
ns  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
PCR[SRC]=11b  
4
tSDC  
SCK duty cycle8  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
PCR[SRC]=10b  
0 pF  
PCR[SRC]=01b  
0 pF  
PCS strobe timing  
5
6
tPCSC  
tPASC  
PCSx to PCSS  
time9  
PCR[SRC]=10b  
25 pF  
13.0  
13.0  
ns  
ns  
PCSS to PCSx  
time9  
PCR[SRC]=10b  
25 pF  
SIN setup time  
7
8
tSUI  
SIN setup time to  
SCK10  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
29.0  
31.0  
62.0  
ns  
ns  
ns  
ns  
SIN hold time  
tHI  
SIN hold time from  
SCK10  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
0 pF  
0 pF  
0 pF  
–1.0  
–1.0  
–1.0  
SOUT data valid time (after SCK edge)  
9
tSUO  
SOUT data valid  
time from SCK11  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
18.0  
SOUT data hold time (after SCK edge)  
10  
tHO  
SOUT data hold  
time after SCK11  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
–9.0  
–10.0  
–21.0  
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified  
otherwise.  
3. All timing values for output signals in this table are measured to 50% of the output voltage.  
4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all  
signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.  
5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
67  
Electrical characteristics  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
6. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10  
ns).  
7. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
8. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
9. PCSx and PCSS using same pad configuration.  
10. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds.  
11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
t CSC  
t ASC  
PCSx  
t SCK  
t SDC  
SCK Output  
(CPOL = 0)  
t SDC  
SCK Output  
(CPOL = 1)  
t SUI  
t HI  
Last Data  
SIN  
First Data  
First Data  
Data  
t SUO  
t HO  
Data  
Last Data  
SOUT  
Figure 32. DSPI CMOS master mode – classic timing, CPHA = 0  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
68  
NXP Semiconductors  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
t SUI  
t HI  
Data  
Last Data  
First Data  
SIN  
t SUO  
t HO  
Data  
SOUT  
First Data  
Last Data  
Figure 33. DSPI CMOS master mode – classic timing, CPHA = 1  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 34. DSPI PCS strobe (PCSS) timing (master mode)  
3.13.9.1.2 DSPI CMOS Master Mode – Modified Timing  
Table 44. DSPI CMOS master modified timing (full duplex and output only) –  
MTFE = 1, CPHA = 0 or 11  
Condition2  
Pad drive4  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
50 pF  
Min  
33.0  
Max  
1
tSCK  
SCK cycle time  
PCR[SRC]=11b  
PCR[SRC]=10b  
ns  
80.0  
PCR[SRC]=01b  
200.0  
2
tCSC  
PCS to SCK delay  
PCR[SRC]=11b  
(N5 × tSYS, 6) – 16  
(N5 × tSYS, 6) – 16  
(N5 × tSYS, 6) – 18  
(N5 × tSYS, 6) – 45  
ns  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
69  
Electrical characteristics  
Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1,  
CPHA = 0 or 11 (continued)  
Condition2  
Pad drive4  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
0 pF  
Min  
Max  
3
tASC  
After SCK delay  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
(M7 × tSYS, 6) – 35  
ns  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
PCR[SRC]=11b  
4
tSDC  
SCK duty cycle8  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
PCR[SRC]=10b  
0 pF  
PCR[SRC]=01b  
0 pF  
PCS strobe timing  
5
6
tPCSC  
tPASC  
PCSx to PCSS  
time9  
PCR[SRC]=10b  
25 pF  
13.0  
13.0  
ns  
ns  
PCSS to PCSx  
time9  
PCR[SRC]=10b  
25 pF  
SIN setup time  
, 6  
7
8
9
tSUI  
SIN setup time to  
SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
29 – (P11 × tSYS  
31 – (P11 × tSYS  
62 – (P11 × tSYS  
29.0  
)
ns  
ns  
, 6  
, 6  
)
)
CPHA = 010  
SIN setup time to  
SCK  
31.0  
CPHA = 110  
62.0  
SIN hold time  
12  
, 6  
, 6  
, 6  
tHI  
SIN hold time from  
SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
0 pF  
0 pF  
0 pF  
0 pF  
0 pF  
0 pF  
–1 + (P11 × tSYS  
–1 + (P11 × tSYS  
–1 + (P11 × tSYS  
–1.0  
)
)
)
ns  
ns  
CPHA = 010  
SIN hold time from  
SCK  
–1.0  
CPHA = 110  
–1.0  
SOUT data valid time (after SCK edge)  
6
tSUO  
SOUT data valid  
time from SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
7.0 + tSYS  
ns  
ns  
6
8.0 + tSYS  
CPHA = 013  
6
18.0 + tSYS  
7.0  
SOUT data valid  
time from SCK  
8.0  
CPHA = 113  
18.0  
SOUT data hold time (after SCK edge)  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
70  
NXP Semiconductors  
Electrical characteristics  
Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1,  
CPHA = 0 or 11 (continued)  
Condition2  
Pad drive4  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
25 pF  
Min  
–9.0 + tSYS  
–10.0 + tSYS  
–21.0 + tSYS  
–9.0  
Max  
6
10  
tHO  
SOUT data hold  
time after SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
ns  
6
6
50 pF  
CPHA = 013  
50 pF  
SOUT data hold  
time after SCK  
25 pF  
ns  
50 pF  
–10.0  
CPHA = 113  
50 pF  
–21.0  
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified  
otherwise.  
3. All timing values for output signals in this table are measured to 50% of the output voltage.  
4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all  
signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.  
5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
6. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10  
ns).  
7. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
8. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
9. PCSx and PCSS using same pad configuration.  
10. Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds.  
11. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set  
to 1.  
12. The 0 pF load condition given in the DSPI AC timing applies to theoretical worst-case hold timing. This guarantees worst-  
case operation, and additional margin can be achieved in the applications by applying a realistic load.  
13. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
71  
Electrical characteristics  
t CSC  
t ASC  
PCSx  
t SCK  
t SDC  
SCK Output  
(CPOL = 0)  
t SDC  
SCK Output  
(CPOL = 1)  
t SUI  
t HI  
Last Data  
SIN  
First Data  
First Data  
Data  
t SUO  
t HO  
Data  
Last Data  
SOUT  
Figure 35. DSPI CMOS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
t HI  
t SUI  
t HI  
Data  
Last Data  
First Data  
SIN  
t SUO  
t HO  
Data  
SOUT  
First Data  
Last Data  
Figure 36. DSPI CMOS master mode – modified timing, CPHA = 1  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
72  
NXP Semiconductors  
Electrical characteristics  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 37. DSPI PCS strobe (PCSS) timing (master mode)  
3.13.9.1.3 DSPI LVDS Master Mode – Modified Timing  
Table 45. DSPI LVDS master timing – full duplex – modified transfer format  
(MTFE = 1), CPHA = 0 or 1  
Condition1  
Pad drive3  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
1
tSCK  
SCK cycle time  
LVDS  
15 pF to 25 pF  
differential  
33.3  
ns  
2
tCSC  
PCS to SCK delay  
(LVDS SCK)  
PCS: PCR[SRC]=11b  
PCS: PCR[SRC]=10b  
PCS: PCR[SRC]=01b  
PCS: PCR[SRC]=11b  
25 pF  
(N4 × tSYS, 5) – 10  
(N4 × tSYS, 5) – 10  
(N4 × tSYS, 5) – 32  
(M6 × tSYS, 5) – 8  
ns  
ns  
ns  
ns  
50 pF  
50 pF  
3
tASC  
After SCK delay  
(LVDS SCK)  
PCS: 0 pF  
SCK: 25 pF  
PCS: 0 pF  
SCK: 25 pF  
PCS: 0 pF  
SCK: 25 pF  
PCS: PCR[SRC]=10b  
PCS: PCR[SRC]=01b  
LVDS  
(M6 × tSYS, 5) – 8  
(M6 × tSYS, 5) – 8  
1/2tSCK – 2  
ns  
ns  
ns  
4
7
tSDC  
tSUI  
SCK duty cycle7  
15 pF to 25 pF  
differential  
1/2tSCK +2  
SIN setup time  
, 5  
SIN setup time to  
SCK  
LVDS  
LVDS  
15 pF to 25 pF  
differential  
23 – (P9 × tSYS  
)
ns  
ns  
CPHA = 08  
SIN setup time to  
SCK  
15 pF to 25 pF  
differential  
23  
CPHA = 18  
8
tHI  
SIN hold time  
, 5  
SIN hold time from  
SCK  
LVDS  
LVDS  
0 pF differential  
–1 + (P9 × tSYS  
)
ns  
ns  
CPHA = 08  
SIN hold time from  
SCK  
0 pF differential  
–1  
CPHA = 18  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
73  
Electrical characteristics  
Table 45. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1),  
CPHA = 0 or 1 (continued)  
Condition1  
Pad drive3  
SOUT data valid time (after SCK edge)  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
9
tSUO  
5
SOUT data valid  
time from SCK  
LVDS  
15 pF to 25 pF  
differential  
7.0 + tSYS  
ns  
CPHA = 010  
SOUT data valid  
time from SCK  
LVDS  
15 pF to 25 pF  
differential  
7.0  
ns  
CPHA = 110  
10  
tHO  
SOUT data hold time (after SCK edge)  
5
SOUT data hold  
time after SCK  
LVDS  
15 pF to 25 pF  
differential  
–7.5 + tSYS  
ns  
ns  
CPHA = 010  
SOUT data hold  
time after SCK  
LVDS  
15 pF to 25 pF  
differential  
–7.5  
CPHA = 110  
1. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified  
otherwise.  
2. All timing values for output signals in this table are measured to 50% of the output voltage.  
3. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all  
signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.  
4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS =  
10 ns).  
6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
8. Input timing assumes an input slew rate of 1 ns (10% – 90%) and LVDS differential voltage = 100 mV.  
9. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set  
to 1.  
10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
74  
NXP Semiconductors  
Electrical characteristics  
t CSC  
t ASC  
PCSx  
t SCK  
t SDC  
SCK Output  
(CPOL = 0)  
t SDC  
SCK Output  
(CPOL = 1)  
t SUI  
t HI  
Last Data  
SIN  
First Data  
First Data  
Data  
t SUO  
t HO  
Data  
Last Data  
SOUT  
Figure 38. DSPI LVDS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
t HI  
t SUI  
t HI  
Data  
Last Data  
First Data  
SIN  
t SUO  
t HO  
Data  
SOUT  
First Data  
Last Data  
Figure 39. DSPI LVDS master mode – modified timing, CPHA = 1  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
75  
Electrical characteristics  
3.13.9.1.4 DSPI Master Mode – Output Only  
Table 46. DSPI LVDS master timing — output only — timed serial bus mode  
TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock1, 2  
Condition3  
Pad drive5  
Value4  
#
Symbol  
Characteristic  
SCK cycle time  
Unit  
Load (CL)  
Min  
Max  
1
tSCK  
LVDS  
15 pF to 50 pF  
differential  
25  
ns  
2
3
4
tCSV  
tCSH  
tSDC  
PCS valid after SCK6  
(SCK with 50 pF  
differential load cap.)  
PCS hold after SCK6  
(SCK with 50 pF  
differential load cap.)  
PCR[SRC]=11b  
PCR[SRC]=10b  
25 pF  
50 pF  
8
ns  
ns  
12  
PCR[SRC]=11b  
PCR[SRC]=10b  
0 pF  
0 pF  
–4.0  
–4.0  
ns  
ns  
SCK duty cycle (SCK  
with 50 pF differential  
load cap.)  
LVDS  
15 pF to 50 pF  
differential  
1/2tSCK – 2  
1/2tSCK + 2  
ns  
SOUT data valid time (after SCK edge)  
5
6
tSUO  
SOUT data valid time  
from SCK7  
LVDS  
15 pF to 50 pF  
differential  
6
ns  
ns  
SOUT data hold time (after SCK edge)  
tHO  
SOUT data hold time  
after SCK7  
LVDS  
15 pF to 50 pF  
differential  
–7.0  
1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad  
driver strength as defined. Timing may degrade for weaker output drivers.  
2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified  
otherwise.  
4. All timing values for output signals in this table are measured to 50% of the output voltage.  
5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all  
signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.  
6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This  
timing value is due to pad delays and signal propagation delays.  
7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
Table 47. DSPI CMOS master timing – output only – timed serial bus mode  
TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock 1, 2  
Condition3  
Pad drive5  
Value4  
#
Symbol  
Characteristic  
SCK cycle time  
Unit  
Load (CL)  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
50 pF  
Min  
33.0  
80.0  
200.0  
7
Max  
1
tSCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PCR[SRC]=01b  
2
tCSV  
PCS valid after SCK6  
PCR[SRC]=11b  
PCR[SRC]=10b  
8
PCR[SRC]=01b  
18  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
45  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
76  
NXP Semiconductors  
Electrical characteristics  
Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB  
= 1, CPOL = 0 or 1, continuous SCK clock 1, 2 (continued)  
Condition3  
Pad drive5  
Value4  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
PCS: 0 pF  
SCK: 50 pF  
0 pF  
Min  
Max  
3
tCSH  
PCS hold after SCK6  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
–14  
ns  
–14  
–33  
–35  
ns  
ns  
ns  
PCS: PCR[SRC]=01b  
SCK: PCR[SRC]=10b  
PCR[SRC]=11b  
4
9
tSDC  
tSUO  
tHO  
SCK duty cycle7  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
ns  
ns  
PCR[SRC]=10b  
0 pF  
PCR[SRC]=01b  
0 pF  
SOUT data valid time (after SCK edge)  
SOUT data valid time  
from SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
ns  
ns  
ns  
CPHA = 18  
18.0  
SOUT data hold time (after SCK edge)  
10  
SOUT data hold time  
after SCK  
PCR[SRC]=11b  
PCR[SRC]=10b  
PCR[SRC]=01b  
25 pF  
50 pF  
50 pF  
–9.0  
–10.0  
–21.0  
ns  
ns  
ns  
CPHA = 18  
1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified  
otherwise.  
4. All timing values for output signals in this table are measured to 50% of the output voltage.  
5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all  
signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.  
6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This  
timing value is due to pad delays and signal propagation delays.  
7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
77  
Electrical characteristics  
PCSx  
t
CSV  
t
t
t
SCK  
SDC  
CSH  
SCK Output  
(CPOL = 0)  
t
SUO  
t
HO  
First Data  
Last Data  
SOUT  
Data  
Figure 40. DSPI LVDS and CMOS master timing – output only – modified transfer format  
MTFE = 1, CHPA = 1  
3.13.10 FEC timing  
3.13.10.1 MII receive signal timing (RXD[3:0], RX_DV, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%.  
There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the RX_CLK frequency.  
Table 48. MII receive signal timing1  
Value  
Symbol  
Characteristic  
Unit  
Min  
5
Max  
M1  
M2  
M3  
M4  
RXD[3:0], RX_DV to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV hold  
RX_CLK pulse width high  
ns  
5
ns  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
RX_CLK pulse width low  
1. All timing specifications valid to the pad input levels defined in I/O pad current specifications.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
78  
NXP Semiconductors  
Electrical characteristics  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
M1  
M2  
Figure 41. MII receive signal timing diagram  
3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz  
+1%. There is no minimum frequency requirement. The system clock frequency must be  
at least equal to or greater than the TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either  
the rising or falling edge of TX_CLK, and the timing is the same in either case. This  
options allows the use of noncompliant MII PHYs.  
Refer to the MPC5777C Microcontroller Reference Manual's Fast Ethernet Controller  
(FEC) chapter for details of this option and how to enable it.  
Table 49. MII transmit signal timing1  
Value2  
Symbol  
Characteristic  
Unit  
Min  
4.5  
Max  
M5  
M6  
M7  
M8  
TX_CLK to TXD[3:0], TX_EN invalid  
TX_CLK to TXD[3:0], TX_EN valid  
TX_CLK pulse width high  
ns  
25  
ns  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
TX_CLK pulse width low  
1. All timing specifications valid to the pad input levels defined in I/O pad specifications.  
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance  
is accounted for, and does not need to be subtracted from the 25 pF value.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
79  
Electrical characteristics  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
M6  
Figure 42. MII transmit signal timing diagram  
3.13.10.3 MII async inputs signal timing (CRS)  
Table 50. MII async inputs signal timing  
Value  
Symbol  
Characteristic  
Unit  
Min  
Max  
M9  
CRS minimum pulse width  
1.5  
TX_CLK period  
CRS  
M9  
Figure 43. MII async inputs timing diagram  
3.13.10.4 MII and RMII serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
Table 51. MII serial management channel timing1  
Value2  
Symbol  
Characteristic  
Unit  
Min  
Max  
M10  
MDC falling edge to MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
M12  
M13  
M14  
M15  
MDC falling edge to MDIO output valid (max prop delay)  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
10  
25  
ns  
ns  
0
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
1. All timing specifications valid to the pad input levels defined in I/O pad specifications.  
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance  
is accounted for, and does not need to be subtracted from the 25 pF value  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
80  
NXP Semiconductors  
Electrical characteristics  
M14  
M15  
MDC (output)  
MDIO (output)  
M10  
M11  
MDIO (input)  
M12  
M13  
Figure 44. MII serial management channel timing diagram  
3.13.10.5 RMII receive signal timing (RXD[1:0], CRS_DV)  
The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%.  
There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK  
frequency.  
Table 52. RMII receive signal timing1  
Value  
Symbol  
Characteristic  
Unit  
Min  
4
Max  
R1  
R2  
R3  
R4  
RXD[1:0], CRS_DV to REF_CLK setup  
REF_CLK to RXD[1:0], CRS_DV hold  
REF_CLK pulse width high  
ns  
2
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
REF_CLK pulse width low  
1. All timing specifications valid to the pad input levels defined in I/O pad specifications.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
81  
Electrical characteristics  
R3  
REF_CLK (input)  
R4  
RXD[1:0] (inputs)  
CRS_DV  
R1  
R2  
Figure 45. RMII receive signal timing diagram  
3.13.10.6 RMII transmit signal timing (TXD[1:0], TX_EN)  
The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz +  
1%. There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK  
frequency.  
The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either  
the rising or falling edge of REF_CLK, and the timing is the same in either case. This  
options allows the use of non-compliant RMII PHYs.  
Table 53. RMII transmit signal timing1  
Value2  
Symbol  
Characteristic  
Unit  
Min  
2
Max  
R5  
R6  
R7  
R8  
REF_CLK to TXD[1:0], TX_EN invalid  
REF_CLK to TXD[1:0], TX_EN valid  
REF_CLK pulse width high  
ns  
16  
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
REF_CLK pulse width low  
1. All timing specifications valid to the pad input levels defined in I/O pad specifications.  
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance  
is accounted for, and does not need to be subtracted from the 25 pF value.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
82  
NXP Semiconductors  
Package information  
R7  
REF_CLK (input)  
R5  
R8  
TXD[1:0] (outputs)  
TX_EN  
R6  
Figure 46. RMII transmit signal timing diagram  
4 Package information  
To find the package drawing for each package, go to http://www.nxp.com and perform a  
keyword search for the drawing’s document number:  
If you want the drawing for this package  
416-ball MAPBGA  
Then use this document number  
98ASA00562D  
98ASA00623D  
516-ball MAPBGA  
4.1 Thermal characteristics  
Table 54. Thermal characteristics, 416-ball MAPBGA package  
Characteristic  
Symbol  
RΘJA  
Value  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Ambient 1, 2 Natural Convection (Single layer board)  
Junction to Ambient 1, 3 Natural Convection (Four layer board 2s2p)  
Junction to Ambient (@200 ft./min., Single layer board)  
Junction to Ambient (@200 ft./min., Four layer board 2s2p)  
Junction to Board 4  
28.8  
19.6  
21.3  
15.1  
9.5  
RΘJA  
RΘJMA  
RΘJMA  
RΘJB  
Junction to Case 5  
Junction to Package Top 6 Natural Convection  
RΘJC  
4.8  
ΨJT  
0.2  
1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
83  
Package information  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
Table 55. Thermal characteristics, 516-ball MAPBGA package  
Characteristic  
Symbol  
RΘJA  
Value  
28.5  
20.0  
21.3  
15.5  
8.8  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Ambient 1, 2 Natural Convection (Single layer board)  
Junction to Ambient 1, 3 Natural Convection (Four layer board 2s2p)  
Junction to Ambient (@200 ft./min., Single layer board)  
Junction to Ambient (@200 ft./min., Four layer board 2s2p)  
Junction to Board 4  
RΘJA  
RΘJMA  
RΘJMA  
RΘJB  
Junction to Case 5  
Junction to Package Top 6 Natural Convection  
RΘJC  
4.8  
ΨJT  
0.2  
1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
4.1.1 General notes for thermal characteristics  
An estimation of the chip junction temperature, TJ, can be obtained from the equation:  
where:  
TA = ambient temperature for the package (°C)  
RΘJA = junction-to-ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
The thermal resistance values used are based on the JEDEC JESD51 series of standards  
to provide consistent values for estimations and comparisons. The difference between the  
values determined for the single-layer (1s) board compared to a four-layer board that has  
two signal layers, a power and a ground plane (2s2p), demonstrate that the effective  
thermal resistance is not a constant. The thermal resistance depends on the:  
• Construction of the application board (number of planes)  
• Effective size of the board which cools the component  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
84  
NXP Semiconductors  
Package information  
• Quality of the thermal and electrical connections to the planes  
• Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball.  
Using fewer vias to connect the package to the planes reduces the thermal performance.  
Thinner planes also reduce the thermal performance. When the clearance between the  
vias leave the planes virtually disconnected, the thermal performance is also greatly  
reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range  
for the tightly packed printed circuit board. The value obtained on a board with the  
internal planes is usually within the normal range if the application board has:  
• One oz. (35 micron nominal thickness) internal planes  
• Components are well separated  
• Overall power dissipation on the board is less than 0.02 W/cm2  
The thermal performance of any component depends on the power dissipation of the  
surrounding components. In addition, the ambient temperature varies widely within the  
application. For many natural convection and especially closed box applications, the  
board temperature at the perimeter (edge) of the package is approximately the same as the  
local air temperature near the device. Specifying the local ambient conditions explicitly  
as the board temperature provides a more precise description of the local ambient  
conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following  
equation:  
where:  
TB = board temperature for the package perimeter (°C)  
RΘJB = junction-to-board thermal resistance (°C/W) per JESD51-8  
PD = power dissipation in the package (W)  
When the heat loss from the package case to the air does not factor into the calculation,  
the junction temperature is predictable if the application board is similar to the thermal  
test condition, with the component soldered to a board with internal planes.  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance  
plus a case-to-ambient thermal resistance:  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
85  
Package information  
where:  
RΘJA = junction-to-ambient thermal resistance (°C/W)  
RΘJC = junction-to-case thermal resistance (°C/W)  
RΘCA = case to ambient thermal resistance (°C/W)  
RΘJC is device related and is not affected by other factors. The thermal environment can  
be controlled to change the case-to-ambient thermal resistance, RΘCA. For example,  
change the air flow around the device, add a heat sink, change the mounting arrangement  
on the printed circuit board, or change the thermal dissipation on the printed circuit board  
surrounding the device. This description is most useful for packages with heat sinks  
where 90% of the heat flow is through the case to heat sink to ambient. For most  
packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-  
board thermal resistance and the junction-to-case thermal resistance. The junction-to-case  
thermal resistance describes when using a heat sink or where a substantial amount of heat  
is dissipated from the top of the package. The junction-to-board thermal resistance  
describes the thermal performance when most of the heat is conducted to the printed  
circuit board. This model can be used to generate simple estimations and for  
computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm  
models can be generated upon request.  
To determine the junction temperature of the device in the application on a prototype  
board, use the thermal characterization parameter (ΨJT) to determine the junction  
temperature by measuring the temperature at the top center of the package case using the  
following equation:  
where:  
TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
PD = power dissipation in the package (W)  
The thermal characterization parameter is measured in compliance with the JESD51-2  
specification using a 40-gauge type T thermocouple epoxied to the top center of the  
package case. Position the thermocouple so that the thermocouple junction rests on the  
package. Place a small amount of epoxy on the thermocouple junction and approximately  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
86  
NXP Semiconductors  
Ordering information  
1 mm of wire extending from the junction. Place the thermocouple wire flat against the  
package case to avoid measurement errors caused by the cooling effects of the  
thermocouple wire.  
When board temperature is perfectly defined below the device, it is possible to use the  
thermal characterization parameter (ΨJPB) to determine the junction temperature by  
measuring the temperature at the bottom center of the package case (exposed pad) using  
the following equation:  
where:  
TT = thermocouple temperature on bottom of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
PD = power dissipation in the package (W)  
5 Ordering information  
Figure 47 and Table 56 describe orderable part numbers for the MPC5777C.  
M PC 5777C  
X
K3 M ME 3/4 R  
Qualification status  
Core code  
Device number  
Optional features field  
Fab/Revision  
Temperature range  
Package identifier  
Operating frequency  
Tape and reel status  
Tape and reel status  
R = Tape and reel  
(blank) = Trays  
Package identifier  
ME = 416 MAPBGA Pb-Free  
MO = 516 MAPBGA Pb-Free  
Qualification status  
P = Pre-qualification  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Temperature range  
M = –40 °C to 125 °C  
Operating frequency  
3 = 2 x 264 MHz  
4 = 2 x 300 MHz  
Optional features field  
(blank) = ISO-compliant CAN FD not available, trimmed for SMPS or external regulator, and includes SHE-compliant security firmware version 2.07  
A = ISO-compliant CAN FD not available, trimmed for SMPS or external regulator, and includes SHE-compliant security firmware version 2.08  
R = ISO-compliant CAN FD not available, trimmed for LDO regulator, and includes SHE-compliant security firmware version 2.08  
C = ISO-compliant CAN FD available, trimmed for SMPS or external regulator, and includes SHE-compliant security firmware version 2.07  
D = ISO-compliant CAN FD available, trimmed for SMPS or external regulator, and includes SHE-compliant security firmware version 2.08  
L = ISO-compliant CAN FD available, trimmed for LDO regulator, and includes SHE-compliant security firmware version 2.08  
S = ISO-compliant CAN FD available, trimmed for SMPS or external regulator, and includes RSA-enhanced security firmware  
T = ISO-compliant CAN FD available, trimmed for LDO regulator, and includes RSA-enhanced security firmware  
Note: Not all options are available on all devices.  
Figure 47. MPC5777C Orderable part number description  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
87  
Document revision history  
Table 56. Example orderable part numbers  
Operating temperature3  
Part number1  
Package description  
Speed (MHz)2  
Min (TL)  
Max (TH)  
SPC5777CCK3MME3  
MPC5777C 416 package  
Lead-free (Pb-free)  
264  
–40 °C  
125 °C  
SPC5777CK3MME3  
SPC5777CCK3MMO3  
SPC5777CK3MMO3  
MPC5777C 416 package  
Lead-free (Pb-free)  
264  
264  
264  
–40 °C  
–40 °C  
–40 °C  
125 °C  
125 °C  
125 °C  
MPC5777C 516 package  
Lead-free (Pb-free)  
MPC5777C 516 package  
Lead-free (Pb-free)  
1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The  
unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.  
Not all configurations are available in the PPC parts.  
2. For the operating mode frequency of various blocks on the device, see Table 3.  
3. The lowest ambient operating temperature is referenced by TL; the highest ambient operating temperature is referenced by  
TH.  
6 Document revision history  
The following table summarizes revisions to this document since the previous release.  
Table 57. Revision history  
Revision  
Date  
Description of changes  
14  
01/2020 In Table 17, updated the footnote from "TUE does not apply to differential conversions" to "TUE,  
Gain, and Offset specifications do not apply to differential conversions".  
In Table 4 added Max value 120 μA for 40°C and 360 μA for 85°C for ISTBY  
.
13  
08/2018 In Table 3, added information for 300 MHZ frequency:  
• fSYS  
• fPLATF  
• fETPU  
• fPER  
• ffFM_PER  
In Table 12 added Max value 240 MHz for fPLL0PHI and Table 13 added Max value 300 MHz for  
fPLL1PHI  
.
In Table 34 updated the row from "100 MHz > fPLATF ≤ 133 MHz" to "100 MHz > fPLATF ≤ 150  
MHz" under "Flash memory frequency" column.  
In Figure 47 added 300 MHz frequency orderable part number.  
Table continues on the next page...  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
88  
NXP Semiconductors  
Document revision history  
Table 57. Revision history (continued)  
Revision  
Date  
Description of changes  
12  
08/2018 In Table 12 of PLL electrical specifications, changed text of footnote 1:  
• from: "fPLL0IN frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure  
PFD input signal is in the range 8 MHz to 20 MHz."  
• to: "Ensure that the fPLL0IN frequency divided by PLLDIG_PLL0DV[PREDIV] is in the range 8  
MHz to 20 MHz."  
In Table 17 of Enhanced Queued Analog-to-Digital Converter (eQADC), added footnote about Max  
value of Conversion Cycles (CC): "128 sampling cycles (LST=128), differential conversion, pregain  
of x4"  
In Table 38 of External Bus Interface (EBI) timing, changed text of footnote 1:  
• from: "EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, TA = TL to TH,  
and CL = 30 pF with SIU_PCR[DSC] = 10b for ADDR/CTRL and SIU_PCR[DSC] = 11b for  
CLKOUT/DATA."  
• to: "EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, TA = TL to TH, and  
CL = 30 pF with SIU_PCR[DSC] = 11b for ADDR/CTRL and SIU_PCR[SRC] = 11b for DATA/  
ALE."  
In I/O pad current specifications added the text "The EBI power segments have..........segment does  
not exceed the spec".  
MPC5777C Microcontroller Data Sheet Data Sheet, Rev. 14, 01/2020.  
NXP Semiconductors  
89  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2013–2020 NXP B.V.  
Document Number MPC5777C  
Revision 14, 01/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY