PRT5024DAF4A [NXP]

i.MX RT1064 Crossover Processors for Industrial Products;
PRT5024DAF4A
型号: PRT5024DAF4A
厂家: NXP    NXP
描述:

i.MX RT1064 Crossover Processors for Industrial Products

文件: 总113页 (文件大小:1912K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMXRT1064IEC  
Rev. 2, 08/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMXRT1064CVL5A  
MIMXRT1064CVJ5A  
MIMXRT1064CVL5B  
MIMXRT1064CVJ5B  
i.MX RT1064 Crossover  
Processors for Industrial  
Products  
Package Information  
Plastic Package  
196-pin MAPBGA, 10 x 10 mm, 0.65 mm pitch  
196-pin MAPBGA, 12 x 12 mm, 0.8 mm pitch  
Ordering Information  
See Table 1 on page 7  
1 i.MX RT1064 Introduction  
The i.MX RT1064 is a new processor family featuring  
NXP’s advanced implementation of the Arm  
1. i.MX RT1064 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6  
2. Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3. Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1. Special signal considerations . . . . . . . . . . . . . . . 17  
3.2. Recommended connections for unused analog  
®
Cortex -M7 core, which operates at speeds up to 528  
MHz to provide high CPU performance and best  
real-time response.  
The i.MX RT1064 processor has 4 MB on chip Flash and  
1 MB on-chip RAM. 512 KB SRAM can be flexibly  
configured as TCM or general-purpose on-chip RAM,  
while the other 512 KB SRAM is general-purpose  
on-chip RAM. The i.MX RT1064 integrates advanced  
power management module with DCDC and LDO that  
reduces complexity of external power supply and  
simplifies power sequencing. The i.MX RT1064 also  
provides various memory interfaces, including SDRAM,  
RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad  
SPI, and a wide range of other interfaces for connecting  
peripherals, such as WLAN, Bluetooth™, GPS,  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1. Chip-Level conditions . . . . . . . . . . . . . . . . . . . . . 20  
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 27  
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4.5. External memory interface . . . . . . . . . . . . . . . . . 44  
4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 54  
4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 67  
4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5. Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.1. Boot mode configuration pins . . . . . . . . . . . . . . . 83  
6.2. Boot device interface allocation . . . . . . . . . . . . . . 83  
7. Package information and contact assignments . . . . . . . 88  
7.1. 10 x 10 mm package information . . . . . . . . . . . . 88  
7.2. 12 x 12 mm package information . . . . . . . . . . . 100  
8. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
displays, and camera sensors. The i.MX RT1064 has rich  
audio and video features, including LCD display, basic  
2D graphics, camera interface, SPDIF, and I2S audio  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
i.MX RT1064 Introduction  
interface. The i.MX RT1064 has analog interfaces, such as ADC, ACMP, and TSC.  
The i.MX RT1064 is specifically useful for applications such as:  
Industrial Human Machine Interfaces (HMI)  
Motor Control  
Home Appliance  
1.1  
Features  
The i.MX RT1064 processors are based on Arm Cortex-M7 Core Platform, which has the following  
features:  
Supports single Arm Cortex-M7 Core with:  
— 32 KB L1 Instruction Cache  
— 32 KB L1 Data Cache  
— Full featured Floating Point Unit (FPU) with support of the VFPv5 architecture  
— Support the Armv7-M Thumb instruction set  
Integrated MPU, up to 16 individual protection regions  
Tightly coupled GPIOs, operating at the same frequency as Arm core  
Up to 512 KB I-TCM and D-TCM in total  
Frequency of 600/528 MHz  
Cortex M7 CoreSight™ components integration for debug  
Frequency of the core, as per Table 10, "Operating ranges," on page 22.  
The SoC-level memory system consists of the following additional components:  
— Boot ROM (128 KB)  
— On-chip Flash (4 MB)  
— On-chip RAM (1 MB)  
– 512 KB OCRAM shared between ITCM/DTCM and OCRAM  
– Dedicate 512 KB OCRAM  
External memory interfaces:  
— 8/16-bit SDRAM, up to SDRAM-133/SDRAM-166  
— 8/16-bit SLC NAND FLASH, with ECC handled in software  
— SD/eMMC  
— SPI NOR/NAND FLASH  
— Parallel NOR FLASH with XIP support  
— Two single/dual channel Quad SPI FLASH with XIP support  
Timers and PWMs:  
— Two General Programmable Timers (GPT)  
– 4-channel generic 32-bit resolution timer  
– Each support standard capture and compare operation  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
2
NXP Semiconductors  
i.MX RT1064 Introduction  
— Four Periodical Interrupt Timers (PIT)  
– Generic 32-bit resolution timer  
– Periodical interrupt generation  
— Four Quad Timers (QTimer)  
– 4-channel generic 16-bit resolution timer for each  
– Each support standard capture and compare operation  
– Quadrature decoder integrated  
— Four FlexPWMs  
– Up to 8 individual PWM channels per each  
– 16-bit resolution PWM suitable for Motor Control applications  
— Four Quadrature Encoder/Decoders  
Each i.MX RT1064 processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Display Interface:  
— Parallel RGB LCD interface  
– Support 8/16/24 bit interface  
– Support up to WXGA resolution  
– Support Index color with 256 entry x 24 bit color LUT  
– Smart LCD display with 8/16-bit MPU/8080 interface  
Audio:  
— S/PDIF input and output  
— Three synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and  
codec/DSP interfaces  
— MQS interface for medium quality audio via GPIO pads  
Generic 2D graphics engine:  
— BitBlit  
— Flexible image composition options—alpha, chroma key  
— Porter-duff blending  
— Image rotation (90, 180, 270)  
— Image size  
— Color space conversion  
— Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400)  
— Standard 2D-DMA operation  
Camera sensors:  
— Support 24-bit, 16-bit, and 8-bit CSI input  
Connectivity:  
— Two USB 2.0 HS OTG controllers with integrated PHY interfaces  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
3
i.MX RT1064 Introduction  
— Two Ultra Secure Digital Host Controller (uSDHC) interfaces  
– MMC 4.5 compliance with HS200 support up to 200 MB/sec  
– SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec  
– Support for SDXC (extended capacity)  
— Two 10/100M Ethernet controller with support for IEEE1588  
— Eight universal asynchronous receiver/transmitter (UARTs) modules  
— Four I2C modules  
— Four SPI modules  
— Two FlexCAN modules  
— FlexCAN (with Flexible Data-Rate supported)  
— Three FlexIO modules  
GPIO and Pin Multiplexing:  
— General-purpose input/output (GPIO) modules with interrupt capability  
— Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
The i.MX RT1064 processors integrate advanced power management unit and controllers:  
Full PMIC integration, including on-chip DCDC and LDO  
Temperature sensor with programmable trim points  
GPC hardware power management controller  
The i.MX RT1064 processors support the following system debug:  
Arm CoreSight debug and trace architecture  
Trace Port Interface Unit (TPIU) to support off-chip real-time trace  
Cross Triggering Interface (CTI)  
Support for 5-pin (JTAG) and SWD debug interfaces  
The i.MX RT1064 processors support the following analog interfaces:  
Two Analog-Digital-Converters (ADC), 16-channel for each, 20-channel in total, 1MSPS  
Two Digital-Analog-Converters (DAC)  
Four Analog Comparators (ACMP)  
Security functions are enabled and accelerated by the following hardware:  
High Assurance Boot (HAB)  
Data Co-Processor (DCP):  
— AES-128, ECB, and CBC mode  
— SHA-1 and SHA-256  
— CRC-32  
Bus Encryption Engine (BEE)  
— AES-128, ECB, and CTR mode  
— On-the-fly QSPI Flash decryption  
True random number generation (TRNG)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
4
NXP Semiconductors  
i.MX RT1064 Introduction  
Secure Non-Volatile Storage (SNVS)  
— Secure real-time clock (RTC)  
— Zero Master Key (ZMK)  
Secure JTAG Controller (SJC)  
NOTE  
The actual feature set depends on the part numbers as described in Table 1.  
Functions such as display and camera interfaces, connectivity interfaces,  
and security features are not offered on all derivatives.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
5
i.MX RT1064 Introduction  
1.2  
Ordering information  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
6
NXP Semiconductors  
i.MX RT1064 Introduction  
Table 1 provides examples of orderable part numbers covered by this Data Sheet.  
Table 1. Ordering information  
Junction  
Temperature Tj  
(C)  
Part Number  
Features  
Package  
MIMXRT1064CVL5A Features supports:  
MIMXRT1064CVL5B • 528 MHz, industrial  
grade for general  
purpose, with  
• XBAR/AOI  
• Ethernet x2  
• UART x8  
10 x 10 mm, 0.65 mm  
pitch, 196-pin MAPBGA  
-40 to +105  
• I2C x4  
MPU/FPU  
• FlexSPI x1  
• 4 MB Flash  
• CAN x2  
• eDMA  
• FlexCAN (with Flexible  
Data-Rate supported)  
• FlexIO x3  
• 127 GPIOs (124 tightly  
coupled)  
• Boot ROM (128 KB)  
• On-chip RAM (1 MB)  
• SEMC  
• GPT x2  
• 4-channel PIT  
• Qtimer x4  
• HAB/DCP/BEE/CSU  
• TRNG  
• PWM x4  
• ENC x4  
• SNVS (with RTC  
supported)  
• WDOG x4  
• SJC  
• LCD/CSI/PXP  
• SPDIF x1  
• ADC x2  
• ACMP x4  
• SAI x3  
• TSC  
• MQS x1  
• DCDC  
• USB OTG x2  
• eMMC 4.5/SD 3.0 x2  
• KPP x1  
• Temperature sensor  
GPC hardware power  
management controller  
• SPI x4  
MIMXRT1064CVJ5A Features supports:  
MIMXRT1064CVJ5B • 528 MHz, industrial  
grade for general  
purpose, with  
• XBAR/AOI  
• Ethernet x2  
• UART x8  
12 x 12 mm, 0.8 mm pitch,  
196-pin MAPBGA  
-40 to +105  
• I2C x4  
MPU/FPU  
• FlexSPI x1  
• 4 MB Flash  
• CAN x2  
• eDMA  
• FlexCAN (with Flexible  
Data-Rate supported)  
• FlexIO x3  
• 127 GPIOs (124 tightly  
coupled)  
• Boot ROM (128 KB)  
• On-chip RAM (1 MB)  
• SEMC  
• GPT x2  
• 4-channel PIT  
• Qtimer x4  
• HAB/DCP/BEE/CSU  
• TRNG  
• PWM x4  
• ENC x4  
• SNVS (with RTC  
supported)  
• WDOG x4  
• SJC  
• LCD/CSI/PXP  
• SPDIF x1  
• ADC x2  
• ACMP x4  
• SAI x3  
• TSC  
• MQS x1  
• DCDC  
• USB OTG x2  
• eMMC 4.5/SD 3.0 x2  
• KPP x1  
• Temperature sensor  
GPC hardware power  
management controller  
• SPI x4  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
7
i.MX RT1064 Introduction  
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be  
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The  
primary characteristic which describes which data sheet applies to a specific part is the temperature grade  
(junction) field.  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or  
contact an NXP representative for details.  
M
IMX X X  
@
##  
%
+
VV  
$
A
Qualification Level  
M
Silicon Rev  
A
A
B
Prototype Samples  
Mass Production  
Special  
P
M
S
A0  
A1  
Core Frequency  
400 MHz  
$
4
5
6
Part # series  
XX  
i.MX RT  
RT  
500 MHz  
@
1
Family  
600 MHz  
First Generation RT family  
Reserved  
2-8  
Package Type  
VV  
196MAPBGA, 12 x 12 mm, 0.8 mm pitch  
196MAPBGA, 10 x 10 mm, 0.65 mm pitch  
144LQFP, 20 x 20 mm, 0.5 mm pitch  
100LQFP, 14 x 14 mm, 0.5 mm pitch  
80LQFP, 12 x 12 mm, 0.5 mm pitch  
VJ  
VL  
AG  
AF  
AE  
Sub-Family  
RT101x  
##  
01  
02  
05  
06  
RT102x  
Tie  
%
1
RT105x  
Standard Feature  
Full Feature  
RT106x  
2
Temperature (Tj)  
+
4MB Flash SIP  
Enhanced Feature  
4
Consumer: 0 to + 95 °C  
Industrial: -40 to +105 °C  
D
C
5
Far Field AFE (e.g. for Alexa Voice Service)  
Facial Recognition  
A
F
L
Local Voice Control  
Figure 1. Part number nomenclature—i.MX RT1064  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
8
NXP Semiconductors  
Architectural Overview  
2 Architectural Overview  
The following subsections provide an architectural overview of the i.MX RT1064 processor system.  
2.1  
Block diagram  
Figure 2 shows the functional modules in the i.MX RT1064 processor system.  
System Control  
CPU Platform  
Connectivity  
Secure JTAG  
Arm Cortex-M7  
PLL / OSC  
eMMC 4.5 / SD 3.0 x2  
UART x8  
8 x 8 Keypad  
I2C x4  
32 KB D-cache  
32 KB I-cache  
RTC and Reset  
NVIC  
FPU MPU  
Enhanced DMA  
IOMUX  
512 KB TCM/OCRAM  
FlexIO  
HS_GPIO  
GP Timer x6  
SPI x4  
FlexIO x2  
GPIO  
Quadrature ENC x4  
QuadTimer x4  
Multimedia  
8 / 16 / 24-bit Parallel CSI  
24-bit Parallel LCD  
FlexPWM x4  
XBAR/AOI  
I2S / SAI x3  
S/PDIF Tx / Rx  
PXP  
Watch Dog x4  
2D Graphics Acceleration  
Resize, CSC, Overlay, Rotation  
Internal Memory  
512 KB SRAM  
FlexCAN x2 + FlexCAN ( with  
Flexible Data-Rate supported)  
External Memory  
4 MB Flash  
USB 2.0 OTG with PHY x2  
Dual-channel QuadSPI  
Octal/Hyper Flash/RAM x1  
128 KB ROM  
10 / 100 ENET x2  
with IEEE 1588  
Power Management  
DCDC  
External Memory Controller  
8-bit / 16-bit SDRAM  
Parallel NOR FLASH  
NAND FLASH  
ADC  
ADC x2 (16-Channel)  
20-Channel in total  
LDO  
PSRAM  
Temp Monitor  
ACMP x4  
HAB  
Security  
Ciphers and RNG  
Secure RTC  
eFuse  
.
Figure 2. i.MX RT1064 system block diagram  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
9
Modules List  
3 Modules List  
The i.MX RT1064 processors contain a variety of digital and analog modules. Table 2 describes these  
modules in alphabetical order.  
Table 2. i.MX RT1064 modules list  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
ACMP1  
ACMP2  
ACMP3  
ACMP4  
Analog Comparator  
Analog  
The comparator (CMP) provides a circuit for comparing  
two analog input voltages. The comparator circuit is  
designed to operate across the full range of the supply  
voltage (rail-to-rail operation).  
ADC1  
ADC2  
Analog to Digital  
Converter  
Analog  
The ADC is a 12-bit general purpose analog to digital  
converter.  
AOI  
Arm  
And-Or-Inverter  
Cross Trigger  
The AOI provides a universal boolean function  
generator using a four team sum of products expression  
with each product term containing true or complement  
values of the four selected inputs (A, B, C, D).  
Arm Platform  
Arm  
The Arm Core Platform includes one Cortex-M7 core. It  
includes associated sub-blocks, such as Nested  
Vectored Interrupt Controller (NVIC), Floating-Point  
Unit (FPU), Memory Protection Unit (MPU), and  
CoreSight debug modules.  
BEE  
Bus Encryption Engine  
Security  
On-The-Fly FlexSPI Flash Decryption  
CCM  
GPC  
SRC  
Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset  
General Power  
Controller, System Reset  
Controller  
Power Control  
distribution in the system, and also for the system  
power management.  
CSI  
Parallel CSI  
Multimedia  
Peripherals  
The CSI IP provides parallel CSI standard camera  
interface port. The CSI parallel data ports are up to 24  
bits. It is designed to support 24-bit RGB888/YUV444,  
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,  
and 8-bit/10-bit/16-bit Bayer data input.  
CSU  
DAP  
Central Security Unit  
Debug Access Port  
Security  
The Central Security Unit (CSU) is responsible for  
setting comprehensive security policy within the i.MX  
RT1064 platform.  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-M7  
Core Platform.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
10  
NXP Semiconductors  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
DCDC  
DCDC Converter  
Analog  
The DCDC module is used for generating power supply  
for core logic. Main features are:  
• Adjustable high efficiency regulator  
• Supports 3.3 V input voltage  
• Supports nominal run and low power standby modes  
• Supports at 0.9 ~ 1.3 V output in run mode  
• Supports at 0.9 ~ 1.0 V output in standby mode  
• Over current and over voltage detection  
eDMA  
enhanced Direct Memory  
Access  
System Control  
Peripherals  
There is an enhanced DMA (eDMA) engine and two  
DMA_MUX.  
• The eDMA is a 32 channel DMA engine, which is  
capable of performing complex data transfers with  
minimal intervention from a host processor.  
• The DMA_MUX is capable of multiplexing up to 128  
DMA request sources to the 32 DMA channels of  
eDMA.  
ENC  
Quadrature  
Encoder/Decoder  
Timer Peripherals The enhanced quadrature encoder/decoder module  
provides interfacing capability to position/speed  
sensors. There are five input signals: PHASEA,  
PHASEB, INDEX, TRIGGER, and HOME. This module  
is used to decode shaft position, revolution count, and  
speed.  
ENET1  
ENET2  
Ethernet Controller  
Connectivity  
Peripherals  
The Ethernet Media Access Controller (MAC) is  
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3  
networks. An external transceiver interface and  
transceiver function are required to complete the  
interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the  
ENET chapter of the reference manual for details.  
EWM  
External Watchdog  
Monitor  
Timer Peripherals The EWM modules is designed to monitor external  
circuits, as well as the software flow. This provides a  
back-up mechanism to the internal WDOG that can  
reset the system. The EWM differs from the internal  
WDOG in that it does not reset the system. The EWM,  
if allowed to time-out, provides an independent trigger  
pin that when asserted resets or places an external  
circuit into a safe mode.  
FLEXCAN1  
FLEXCAN2  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN protocol was primarily, but not only, designed  
to be used as a vehicle serial data bus, meeting the  
specific requirements of this field: real-time processing,  
reliable operation in the Electromagnetic interference  
(EMI) environment of a vehicle, cost-effectiveness and  
required bandwidth. The FlexCAN module is a full  
implementation of the CAN protocol specification,  
Version 2.0 B, which supports both standard and  
extended message frames.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
11  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
FLEXCAN (FD)  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN with Flexible Data-Rate protocol and the CAN  
2.0 version B protocol supports both standard and  
extended message frames, both of them have long  
payloads up to 64 bytes transferred at faster rates up to  
8 Mbps.  
FlexIO1  
FlexIO2  
FlexIO3  
Flexible Input/output  
Pulse Width Modulation  
RAM  
Connectivity and The FlexIO is capable of supporting a wide range of  
Communications protocols including, but not limited to: UART, I2C, SPI,  
I2S, camera interface, display interface, PWM  
waveform generation, etc. The module can remain  
functional when the chip is in a low power mode  
provided the clock it is using remain active.  
FlexPWM1  
FlexPWM2  
FlexPWM3  
FlexPWM4  
Timer Peripherals The pulse-width modulator (PWM) contains four PWM  
sub-modules, each of which is set up to control a single  
half-bridge power stage. Fault channel support is  
provided. The PWM module can generate various  
switching patterns, including highly sophisticated  
waveforms.  
FlexRAM  
Memories  
The i.MX RT1064 has 1 MB of on-chip RAM which  
could be flexible allocated to I-TCM, D-TCM, and  
on-chip RAM (OCRAM) in a 32 KB granularity. The  
FlexRAM is the manager of the on-chip RAM array.  
Major functions of this blocks are: interfacing to I-TCM  
and D-TCM of Arm core and OCRAM controller;  
dynamic RAM arrays allocation for I-TCM, D-TCM, and  
OCRAM.  
FlexSPI  
Quad Serial Peripheral  
Interface  
Connectivity and FlexSPI acts as an interface to one or two external  
Communications serial flash devices, each with up to four bidirectional  
data lines.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports up to 32 bits of I/O.  
GPT1  
GPT2  
General Purpose Timer  
Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
12  
NXP Semiconductors  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The KPP is a 16-bit peripheral that can be used as a  
keypad matrix interface or as general purpose  
input/output (I/O). It supports 8 x 8 external key pad  
matrix. Main features are:  
KPP  
Keypad Port  
Human Machine  
Interfaces  
• Multiple-key detection  
• Long key-press detection  
• Standby key-press detection  
• Supports a 2-point and 3-point contact key matrix  
LCDIF  
LCD interface  
Multimedia  
Peripherals  
The LCDIF is a general purpose display controller used  
to drive a wide range of display devices varying in size  
and capabilities. The LCDIF is designed to support  
dumb (synchronous 24-bit Parallel RGB interface) and  
smart (asynchronous parallel MPU interface) LCD  
devices.  
LPI2C1  
LPI2C2  
LPI2C3  
LPI2C4  
Low Power  
Inter-integrated Circuit  
Connectivity and The LPI2C is a low power Inter-Integrated Circuit (I2C)  
Communications module that supports an efficient interface to an I2C bus  
as a master.  
The I2C provides a method of communication between  
a number of external devices. More detailed  
information, see Section 4.9.2, LPI2C module timing  
parameters.  
LPSPI1  
LPSPI2  
LPSPI3  
LPSPI4  
Low Power Serial  
Peripheral Interface  
Connectivity and The LPSPI is a low power Serial Peripheral Interface  
Communications (SPI) module that support an efficient interface to an  
SPI bus as a master and/or a slave.  
• It can continue operating while the chip is in stop  
modes, if an appropriate clock is available  
• Designed for low CPU overhead, with DMA off  
loading of FIFO register access  
LPUART1  
LPUART2  
LPUART3  
LPUART4  
LPUART5  
LPUART6  
LPUART7  
LPUART8  
UART Interface  
Connectivity  
Peripherals  
Each of the UART modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
MQS  
Medium Quality Sound  
Multimedia  
Peripherals  
MQS is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
PXP  
Pixel Processing Pipeline  
Multimedia  
Peripherals  
A high-performance pixel processor capable of 1  
pixel/clock performance for combined operations, such  
as color-space conversion, alpha blending, and  
rotation. The PXP is enhanced  
with features specifically for gray scale applications. In  
addition, the PXP supports traditional pixel/frame  
processing paths for still-image and video processing  
applications.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
13  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
QuadTimer1  
QuadTimer2  
QuadTimer3  
QuadTimer4  
QuadTimer  
Timer Peripherals The quad-timer provides four time channels with a  
variety of controls affecting both individual and  
multi-channel features.Specific features include  
up/down count, cascading of counters, programmable  
module, count once/repeated, counter preload,  
compare registers with preload, shared use of input  
signals, prescaler controls, independent  
capture/compare, fault input control, programmable  
input filters, and multi-channel synchronization.  
ROMCP  
RTC OSC  
RTWDOG  
ROM Controller with  
Patch  
Memories and  
The ROMCP acts as an interface between the Arm  
Memory Controllers advanced high-performance bus and the ROM. The  
on-chip ROM is only used by the Cortex-M7 core during  
boot up. Size of the ROM is 96 KB.  
Real Time Clock  
Oscillator  
Clock Sources and The RTC OSC provides the clock source for the  
Control  
Real-Time Clock module. The RTC OSC module, in  
conjunction with an external crystal, generates a 32.768  
kHz reference clock for the RTC.  
Watch Dog  
Timer Peripherals The RTWDG module is a high reliability independent  
timer that is available for system to use. It provides a  
safety feature to ensure software is executing as  
planned and the CPU is not stuck in an infinite loop or  
executing unintended code. If the WDOG module is not  
serviced (refreshed) within a certain period, it resets the  
MCU. Windowed refresh mode is supported as well.  
SAI1  
SAI2  
SAI3  
Synchronous Audio  
Interface  
Multimedia  
Peripherals  
The SAI module provides a synchronous audio  
interface (SAI) that supports full duplex serial interfaces  
with frame synchronization, such as I2S, AC97, TDM,  
and codec/DSP interfaces.  
SA-TRNG  
SEMC  
StandaloneTrueRandom  
Number Generator  
Security  
The SA-TRNG is hardware accelerator that generates  
a 512-bit entropy as needed by an entropy consuming  
module or by other post processing functions.  
Smart External Memory  
Controller  
Memory and  
The SEMC is a multi-standard memory controller  
Memory Controller optimized for both high-performance and low pin-count.  
It can support multiple external memories in the same  
application with shared address and data pins. The  
interface supported includes SDRAM, NOR Flash,  
SRAM, and NAND Flash, as well as 8080 display  
interface.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
14  
NXP Semiconductors  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
SJC  
System JTAG Controller  
System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX  
RT1064 processors use JTAG port for production,  
testing, and system debugging. In addition, the SJC  
provides BSR (Boundary Scan Register) standard  
support, which complies with IEEE 1149.1 and IEEE  
1149.6 standards.  
The JTAG port is accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX RT1064 SJC incorporates  
three security modes for protecting against  
unauthorized accesses. Modes are selected through  
eFUSE configuration.  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine, and Master Key  
Control.  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. Has Transmitter  
and Receiver functionality.  
Temp Monitor  
Temperature Monitor  
Analog  
The temperature sensor implements a temperature  
sensor/conversion function based on a  
temperature-dependent voltage to time conversion.  
TSC  
Touch Screen  
Human Machine  
Interfaces  
With touch controller to support 4-wire and 5-wire  
resistive touch panel.  
USBO2  
Universal Serial Bus 2.0  
Connectivity  
Peripherals  
USBO2 (USB OTG1 and USB OTG2) contains:  
• Two high-speed OTG 2.0 modules with integrated  
HS USB PHYs  
• Support eight Transmit (TX) and eight Receive (Rx)  
endpoints, including endpoint 0  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
15  
Modules List  
Table 2. i.MX RT1064 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
uSDHC1  
uSDHC2  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card / Secure Digital Host  
Controller  
Connectivity  
Peripherals  
i.MX RT1064 specific SoC characteristics:  
All four MMC/SD/SDIO controller IPs are identical and  
are based on the uSDHC IP. They are:  
• Fully compliant with MMC command/response sets  
and Physical Layer as defined in the Multimedia  
Card System Specification, v4.5/4.2/4.3/4.4/4.41/  
including high-capacity (size > 2 GB) cards HC  
MMC.  
• Fully compliant with SD command/response sets  
and Physical Layer as defined in the SD Memory  
Card Specifications, v3.0 including high-capacity  
SDXC cards up to 2 TB.  
• Fully compliant with SDIO command/response sets  
and interrupt/read-wait mode as defined in the SDIO  
Card Specification, Part E1, v3.0  
Two ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s  
max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for  
MMC cards up to 52 MHz in both SDR and DDR  
modes (104 MB/s max)  
• 4-bit or 8-bit transfer mode specifications for eMMC  
chips up to 200 MHz in HS200 mode (200 MB/s max)  
WDOG1  
WDOG2  
Watch Dog  
Cross BAR  
Timer Peripherals The watchdog (WDOG) Timer supports two comparison  
points during each counting period. Each of the  
comparison points is configurable to evoke an interrupt  
to the Arm core, and a second point evokes an external  
event on the WDOG line.  
XBAR  
Cross Trigger  
Each crossbar switch is an array of muxes with shared  
inputs. Each mux output provides one output of the  
crossbar. The number of inputs and the number of  
muxes/outputs are user configurable and registers are  
provided to select which of the shared inputs are routed  
to each output.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
16  
NXP Semiconductors  
Modules List  
3.1  
Special signal considerations  
Table 3 lists special signal considerations for the i.MX RT1064 processors. The signal names are listed in  
alphabetical order.  
The package contact assignments can be found in Section 7, Package information and contact  
assignments.” Signal descriptions are provided in the i.MX RT1064 Reference Manual  
(IMXRT1064RM).  
Table 3. Special signal considerations  
Signal Name  
Remarks  
CCM_CLK1_P/  
CCM_CLK1_N  
One general purpose differential high speed clock Input/output (LVDS I/O) is provided.  
It can be used:  
To feed external reference clock to the PLLs and further to the modules inside SoC.  
To output internal SoC clock to be used outside the SoC as either reference clock or as a  
functional clock for peripherals.  
See the i.MX RT1064 Reference Manual (IMXRT1064RM) for details on the respective clock trees.  
Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding  
CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.  
Termination should be provided in case of high frequency signals.  
After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of  
the CLK1_N/P pairs may remain unconnected.  
DCDC_PSWITCH  
PAD is in DCDC_IN domain and connected the ground to bypass DCDC.  
To enable DCDC function, assert to DCDC_IN with at least 1ms delay for DCDC_IN rising edge.  
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz  
crystal, (100 kESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.  
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal  
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to  
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but  
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO  
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup  
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin must  
remain unconnected or driven with a complimentary signal. The logic level of this forcing clock  
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical  
conditions.  
In case when high accuracy real time clock are not required system may use internal low frequency  
ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO  
unconnected.  
XTALI/XTALO  
A 24.0 MHz crystal should be connected between XTALI and XTALO.  
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series  
resistance) of typical 80 is recommended. NXP SDK software requires 24 MHz on  
XTALI/XTALO.  
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF  
capacitor. The logic level of this forcing clock cannot exceed NVCC_PLL level.  
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter  
requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
GPANAIO  
This signal is reserved for NXP manufacturing use only. This output must remain unconnected.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
17  
Modules List  
Table 3. Special signal considerations (continued)  
Remarks  
Signal Name  
JTAG_nnnn  
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated  
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
should be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX RT1064 reference manual. Both names refer  
to the same signal. JTAG_MOD must be externally connected to GND for normal operation.  
Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD  
set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD  
set to low configures the JTAG interface for common SW debug adding all the system TAPs to the  
chain.  
NC  
These signals are No Connect (NC) and should be disconnected by the user.  
POR_B  
This cold reset negative logic input resets all modules and logic in the IC.  
May be used in addition to internally generated power on reset signal (logical AND, both internal  
and external signals are considered active low).  
ONOFF  
ONOFF can be configured in debounce, off to on time, and max time-out configurations. The  
debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to  
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the  
debounce time, the power off interrupt is generated. Off to on time supports the time it takes to  
request power on after a configured button press time has been reached. While in the OFF state,  
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.  
Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration  
supports the time it takes to request power down after ONOFF button has been pressed for the  
defined time.  
TEST_MODE  
WAKEUP  
TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.  
A GPIO powered by SNVS domain power supply which can be configured as wakeup source in  
SNVS mode.  
Table 4. JTAG Controller interface summary  
JTAG  
I/O Type  
On-chip Termination  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
100 kpull-down  
47 kpull-up  
47 kpull-up  
Keeper  
Input  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
47 kpull-up  
100 kpull-down  
Input  
3.2  
Recommended connections for unused analog interfaces  
Table 5 shows the recommended connections for unused analog interfaces.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
18  
NXP Semiconductors  
Modules List  
Table 5. Recommended connections for unused analog interfaces  
Pad Name  
Recommendations  
if Unused  
Module  
CCM  
USB  
CCM_CLK1_N, CCM_CLK1_P  
Not connected  
Not connected  
USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS,  
USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS  
ADC  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
must be powered  
even if the ADC is  
not used.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
19  
Electrical Characteristics  
4 Electrical Characteristics  
This section provides the device and module-level electrical characteristics for the i.MX RT1064  
processors.  
4.1  
Chip-Level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference  
to the individual tables and sections.  
Table 6. i.MX RT1064 chip-Level conditions  
For these characteristics  
Topic appears  
Absolute maximum ratings  
Thermal resistance  
on page 20  
on page 21  
on page 22  
on page 23  
on page 24  
on page 26  
on page 26  
Operating ranges  
External clock sources  
Maximum supply currents  
Low power mode supply currents  
USB PHY current consumption  
4.1.1  
Absolute maximum ratings  
CAUTION  
Stress beyond those listed under Table 7 may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
Table 7 shows the absolute maximum operating ratings.  
Table 7. Absolute maximum ratings  
Parameter Description  
Core supplies input voltage  
Symbol  
Min  
Max  
Unit  
VDD_SOC_IN  
VDD_HIGH_IN  
DCDC_IN  
-0.3  
-0.3  
-0.3  
-0.3  
1.6  
3.7  
3.6  
3.6  
V
V
V
V
VDD_HIGH_IN supply voltage  
Power for DCDC  
Supply input voltage to Secure Non-Volatile Storage  
and Real Time Clock  
VDD_SNVS_IN  
USB VBUS supply  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
5.5  
3.6  
V
V
Supply for 12-bit ADC  
VDDA_ADC  
-0.3  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
20  
NXP Semiconductors  
Electrical Characteristics  
Table 7. Absolute maximum ratings (continued)  
IO supply for GPIO in SDIO1 bank (3.3 V mode)  
NVCC_SD0  
NVCC_SD1  
NVCC_EMC  
Vesd  
-0.3  
3.6  
1.95  
3.6  
V
V
V
V
V
V
IO supply for GPIO in SDIO1 bank (1.8 V mode)  
IO supply for GPIO in SDIO2 bank (3.3 V mode)  
IO supply for GPIO in SDIO2 bank (1.8 V mode)  
IO supply for GPIO in EMC bank (3.3 V mode)  
IO supply for GPIO in EMC bank (1.8 V mode)  
ESD damage Immunity:  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.95  
3.6  
1.95  
Human Body Model (HBM)  
Charge Device Model (CDM)  
1000  
500  
V
Input/Output Voltage range  
Storage Temperature range  
Vin/Vout  
-0.5  
-40  
OVDD + 0.31  
150  
V
TSTORAGE  
o C  
1
OVDD is the I/O supply voltage.  
4.1.2  
Thermal resistance  
4.1.2.1  
10 x 10 mm thermal resistance  
Table 9 shows the 10 x 10 mm package thermal resistance data.  
Table 8. 10 x 10 mm thermal resistance data  
Rating  
Board type1  
JESD51-9, 2S2P  
Symbol  
Value  
Unit  
Junction to Ambient  
RJA  
39.5  
oC/W  
Thermal Resistance2  
Junction-to-Top of Package Thermal  
Characterization Parameter2  
JESD51-9, 2S2P  
JT  
2.65  
oC/W  
1
Thermal test board meets JEDEC specification for this package (JESD51-9).  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
4.1.2.2  
12 x 12 mm thermal resistance  
Table 9 shows the 12 x 12 mm package thermal resistance data.  
Table 9. 12 x 12 mm thermal resistance data  
Rating  
Board type1  
JESD51-9, 2S2P  
Symbol  
Value  
Unit  
Junction to Ambient  
RJA  
39.0  
oC/W  
Thermal Resistance2  
Junction-to-Top of Package Thermal  
Characterization Parameter2  
JESD51-9, 2S2P  
JT  
2.75  
oC/W  
1
Thermal test board meets JEDEC specification for this package (JESD51-9).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
21  
Electrical Characteristics  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
4.1.3  
Operating ranges  
Table 10 provides the operating ranges of the i.MX RT1064 processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1064 Reference Manual  
(IMXRT1064RM).  
Table 10. Operating ranges  
Parameter  
Description  
Operating  
Conditions  
Symbol  
Min  
Typ Max1 Unit  
Comment  
Run Mode  
VDD_SOC_IN  
M7 core at 528  
MHz  
1.15  
1.26  
1.26  
1.26  
1.26  
V
M7 core at 132  
MHz  
1.15  
0.925  
1.15  
M7 core at 24  
MHz  
IDLE Mode  
VDD_SOC_IN  
VDD_SOC_IN  
M7 core  
operation at 528  
MHz or below  
V
V
SUSPEND (DSM)  
Mode  
0.925  
1.26  
Refer to Table 13 Low power mode  
current and power consumption  
SNVS Mode  
VDD_SOC_IN  
DCDC_IN  
0
1.26  
3.6  
V
V
V
Power for DCDC  
3.0  
3.0  
VDD_HIGH  
VDD_HIGH_IN2  
3.6  
Must match the range of voltages  
that the rechargeable backup  
battery supports.  
internal Regulator  
Backup battery  
supply range  
VDD_SNVS_IN3  
2.40  
3.6  
V
Can be combined with  
VDD_HIGH_IN, if the system does  
not require keeping real time and  
other data on OFF state.  
USB supply  
voltages  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
NVCC_GPIO  
4.40  
4.40  
3.0  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
GPIO supplies  
3.3  
1.8  
3.3  
1.8  
3.3  
1.8  
3.3  
3.6  
All digital I/O supplies  
(NVCC_xxxx) must be powered  
(unless otherwise specified in this  
data sheet) under normal  
conditions whether the associated  
I/O pins are in use or not.  
NVCC_SD0  
1.65  
3.0  
1.95  
3.6  
NVCC_SD1  
NVCC_EMC  
1.65  
3.0  
1.95  
3.6  
1.65  
3.0  
1.95  
1.95  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
22  
NXP Semiconductors  
Electrical Characteristics  
Table 10. Operating ranges (continued)  
3.0 3.3 3.6  
A/D converter  
VDDA_ADC_3P3  
V
VDDA_ADC_3P3 must be  
powered even if the ADC is not  
used.  
VDDA_ADC_3P3 cannot be  
powered when the other SoC  
supplies (except VDD_SNVS_IN)  
are off.  
Temperature Operating Ranges  
Junction  
temperature  
Tj  
Standard  
Commercial  
-40  
105  
oC See the application note, i.MX  
RT1064 Product Lifetime Usage  
Estimates for information on  
product lifetime (power-on years)  
for this processor.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.  
2
3
Applying the maximum voltage results in shorten lifetime. 3.6 V usage limited to < 1% of the use profile. Reset of profile limited  
to below 3.49 V.  
In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX RT1064 Hardware  
Development Guide (IMXRT1064HDG).  
4.1.4  
External clock sources  
Each i.MX RT1064 processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 11 shows the interface frequency requirements.  
Table 11. External input clock frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX RT1064 Crossover Processors (IMXRT1064HDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
23  
Electrical Characteristics  
The typical values shown in Table 11 are required for use with NXP SDK to ensure precise time keeping  
and USB operation. For RTC_XTALI operation, two clock sources are available.  
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:  
— Approximately 25 µA more Idd than crystal oscillator  
— Approximately ±50% tolerance  
— No external component required  
— Starts up quicker than 32 kHz crystal oscillator  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
— If no external crystal is present, then the ring oscillator is utilized  
The decision of choosing a clock source should be taken based on real-time clock use and precision  
time-out.  
4.1.5  
Maximum supply currents  
The data shown in Table 12 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to  
specifically show the worst case power consumption.  
See the i.MX RT1064 Power Consumption Measurement Application Note for more details on typical  
power consumption under various use case definitions.  
Table 12. Maximum supply currents  
Power Rail  
Conditions  
Max Current  
Unit  
DCDC_IN  
Max power for chip at 105 oC with core  
mark run on FlexRAM  
110  
mA  
VDD_HIGH_IN  
VDD_SNVS_IN  
Include internal loading in analog  
50  
250  
50  
mA  
A  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
25 mA for each active USB interface  
mA  
VDDA_ADC_3P3  
3.3 V power supply for 12-bit ADC, 600  
A typical, 750 A max, for each ADC.  
100 Ohm max loading for touch panel,  
cause 33 mA current.  
40  
mA  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
24  
NXP Semiconductors  
Electrical Characteristics  
Table 12. Maximum supply currents (continued)  
Conditions  
Power Rail  
Max Current  
Unit  
NVCC_GPIO  
NVCC_SD0  
NVCC_SD1  
NVCC_EMC  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
25  
Electrical Characteristics  
4.1.6  
Low power mode supply currents  
Table 13 shows the current core consumption (not including I/O) of i.MX RT1064 processors in selected  
low power modes.  
Table 13. Low power mode current and power consumption  
Mode  
Test Conditions  
Supply  
Typical1  
Units  
SYSTEM IDLE  
• LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V  
• CPU in WFI, CPU clock gated  
• 24 MHz XTAL is ON  
• System PLL is active, other PLLs are power down  
• Peripheral clock gated, but remain powered  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
4.04  
7.66  
mA  
0.032  
38.72  
1.11  
mW  
mA  
LOW POWER IDLE • LDO_2P5 and LDO_1P1 are set to Weak mode  
• WFI, half FlexRAM power down in power gate  
mode  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
0.309  
0.048  
4.84  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC used as  
clock source  
mW  
mA  
• Peripheral clock gated, but remain powered  
SUSPEND  
(DSM)  
• LDO_2P5 and LDO_1P1 are shut off  
• CPU in Power Gate mode  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC is off  
• All clocks are shut off, except 32 kHz RTC  
• Peripheral clock gated, but remain powered  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
0.19  
0.029  
0.020  
0.789  
0
mW  
mA  
SNVS (RTC)  
• All SOC digital logic, analog module are shut off  
• 32 kHz RTC is alive  
DCDC_IN (0 V)  
VDD_HIGH_IN (0 V)  
VDD_SNVS_IN (3.3 V)  
Total  
0
0.02  
0.066  
mW  
1
The typical values shown here are for information only and are not guaranteed. These values are average values measured  
on a typical process wafer at 25oC.  
4.1.7  
USB PHY current consumption  
Power down mode  
4.1.7.1  
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical  
condition. Table 14 shows the USB interface current consumption in power down mode.  
Table 14. USB PHY current consumption in power down mode  
VDD_USB_CAP (3.0 V)  
VDD_HIGH_CAP (2.5 V)  
NVCC_PLL (1.1 V)  
Current  
5.1 A  
1.7 A  
< 0.5 A  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
26  
NXP Semiconductors  
Electrical Characteristics  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level  
shifters.  
4.2  
System power and clocks  
This section provide the information about the system power and clocks.  
4.2.1  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
4.2.1.1  
Power-up sequence  
The below restrictions must be followed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
When internal DCDC is enabled, external delay circuit is required to delay the  
“DCDC_PSWITCH” signal 1 ms after DCDC_IN is stable.  
Need to ensure DCDC_IN ramps to 3.0 V within 0.2 x RC, RC is from external delay circuit used  
for DCDC_PSWITCH and must be longer than 1 ms.  
POR_B should be held low during the entire power up sequence.  
NOTE  
The POR_B input (if used) must be immediately asserted at power-up and  
remain asserted until after the last power rail reaches its working voltage. In  
the absence of an external reset feeding the POR_B input, the internal POR  
module takes control. See the i.MX RT1064 Reference Manual  
(IMXRT1064RM) for further details and to ensure that all necessary  
requirements are being met.  
NOTE  
Need to ensure that there is no back voltage (leakage) from any supply on  
the board towards the 3.3 V supply (for example, from the external  
components that use both the 1.8 V and 3.3 V supplies).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
27  
Electrical Characteristics  
NOTE  
USB_OTG1_VBUS, USB_OTG2_VBUS, and VDDA_ADC_3P3 are not  
part of the power supply sequence and may be powered at any time.  
4.2.1.2  
Power-down sequence  
The following restrictions must be followed:  
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)  
with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply  
is switched off.  
4.2.1.3  
Power supplies usage  
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 7, Package information  
and contact assignments.”  
4.2.2  
Integrated LDO voltage regulator parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The on-board LDOs are intended for internal use  
only and should not be used to power any external circuitry. See the i.MX RT1064 Reference Manual  
(IMXRT1064RM) for details on the power tree scheme.  
NOTE  
The *_CAP signals should not be powered externally. These signals are  
intended for internal LDO operation only.  
4.2.2.1  
Digital regulators (LDO_SNVS)  
There are one digital LDO regulator (“Digital”, because of the logic loads that they drive, not because of  
their construction). The advantages of the regulator is to reduce the input supply variation because of its  
input supply ripple rejection and its on-die trimming. This translates into more stable voltage for the  
on-chip logics.  
The regulator has two basic modes:  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the target voltage.  
For additional information, see the i.MX RT1064 Reference Manual (IMXRT1064RM).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
28  
NXP Semiconductors  
Electrical Characteristics  
4.2.2.2  
Regulators for analog modules  
LDO_1P1  
4.2.2.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0  
V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A  
programmable brown-out detector is included in the regulator that can be used by the system to determine  
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting  
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can  
also be enabled for systems requiring this feature.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1064 Crossover Processors (IMXRT1064HDG).  
For additional information, see the i.MX RT1064 Reference Manual (IMXRT1064RM).  
4.2.2.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is  
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB PHY, E-fuse  
module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by  
the system to determine when the load capability of the regulator is being exceeded, to take the necessary  
steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.  
Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased  
low-precision weak-regulator is included that can be enabled for applications needing to keep the output  
voltage alive during low-power modes where the main regulator driver and its associated global bandgap  
reference module are disabled. The output of the weak-regulator is not programmable and is a function of  
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output  
is 2.525 V and its output impedance is approximately 40 .  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1064 Crossover Processors (IMXRT1064HDG).  
For additional information, see the i.MX RT1064 Reference Manual (IMXRT1064RM).  
4.2.2.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB  
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector  
is included in the regulator that can be used by the system to determine when the load capability of the  
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows  
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one  
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit  
is also included to help the system meet in-rush current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1064 Crossover Processors (IMXRT1064HDG).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
29  
Electrical Characteristics  
For additional information, see the i.MX RT1064 Reference Manual (IMXRT1064RM).  
4.2.2.2.4  
DCDC  
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During  
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a  
minimum quiescent current to maintain high efficiency.  
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,  
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly  
detect the current loading.  
DCDC also includes the following protection functions:  
Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in  
the P-type power switch.  
Over voltage protection. DCDC shuts down when detecting the output voltage is too high.  
Low voltage detection. DCDC shuts down when detecting the input voltage is too low.  
For additional information, see the i.MX RT1064 Reference Manual (IMXRT1064RM).  
4.2.3  
PLL’s electrical characteristics  
This section provides PLL electrical characteristics.  
4.2.3.1 Audio/Video PLL’s electrical parameters  
Table 15. Audio/Video PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
< 11250 reference cycles  
4.2.3.2  
System PLL  
Table 16. System PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
528 MHz PLL output  
24 MHz  
< 11250 reference cycles  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
30  
NXP Semiconductors  
Electrical Characteristics  
4.2.3.3  
4.2.3.4  
4.2.3.5  
Ethernet PLL  
Table 17. Ethernet PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
1 GHz  
24 MHz  
< 11250 reference cycles  
USB PLL  
Table 18. USB PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
< 383 reference cycles  
Arm PLL  
Table 19. Arm PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
648 MHz ~ 1296 MHz  
24 MHz  
< 2250 reference cycles  
4.2.4  
On-chip oscillators  
OSC24M  
4.2.4.1  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.2.4.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
31  
Electrical Characteristics  
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when  
VDD_HIGH_IN is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K  
will automatically switch to a crude internal ring oscillator. The frequency range of this block is  
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.  
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the  
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type  
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when  
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For  
example, for Panasonic ML621:  
Average Discharge Voltage is 2.5 V  
Maximum Charge Current is 0.6 mA  
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.  
Table 20. OSC32K main characteristics  
Min  
Typ  
Max Comments  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K would work as well.  
Current consumption  
4 A  
The 4 A is the consumption of the oscillator alone (OSC32k). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A  
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in  
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the  
ring oscillator is not running.  
Bias resistor  
14 M  
This integrated bias resistor sets the amplifier into a high gain state. Any  
leakage through the ESD network, external board leakage, or even a  
scope probe that is significant relative to this value will debias the amp. The  
debiasing will result in low gain, and will impact the circuit's ability to start  
up and maintain oscillations.  
Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
50 k  
100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.3  
I/O parameters  
This section provide parameters on I/O interfaces.  
4.3.1  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
32  
NXP Semiconductors  
Electrical Characteristics  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
General Purpose I/O (GPIO)  
LVDS I/O DC Parameters  
NOTE  
The term ‘NVCC_XXXXin this section refers to the associated supply rail  
of an input or output.  
Figure 3. Circuit for parameters Voh and Vol for I/O cells  
4.3.1.1  
XTALI and RTC_XTALI (clock inputs) DC parameters  
Table 21 shows the DC parameters for the clock inputs.  
1
Table 21. XTALI and RTC_XTALI DC parameters  
Symbol Test Conditions Min  
Parameter  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
Vih  
Vil  
0.8 x NVCC_PLL  
NVCC_PLL  
V
V
V
V
0
0.8  
0
0.2  
1.1  
0.2  
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Vih  
Vil  
1
The DC parameters are for external clock input only.  
4.3.1.2  
Single voltage general purpose I/O (GPIO) DC parameters  
Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the  
operating ranges in Table 10, unless otherwise noted.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
33  
Electrical Characteristics  
Table 22. Single voltage GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Ioh= -0.1mA (ipp_dse=001,010) NVCC_XXXX-  
V
Ioh= -1mA  
(ipp_dse=011,100,101,110,111)  
0.15  
Low-level output voltage1  
High-level output current  
VOL  
IOH  
Iol= 0.1mA (ipp_dse=001,010)  
Iol= 1mA  
0.15  
V
(ipp_dse=011,100,101,110,111)  
VDDE = 3.3 V, VOH = VDDE - 0.45  
V, ipp_dse as follows:  
001  
010  
011  
110  
101  
110  
111  
1
1
2
2
2
4
4
Low-level output current  
IOL  
VDDE = 3.3 V, VOL = 0.45 V,  
ipp_dse as follows:  
001  
010  
011  
110  
101  
110  
111  
1
1
2
2
2
4
4
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7 x  
NVCC_XXXX  
NVCC_XXXX  
V
0
0.3 x  
V
NVCC_XXXX  
Input Hysteresis  
(NVCC_XXXX= 1.8V)  
VHYS_LowVDD  
VHYS_HighVDD  
VTH+  
NVCC_XXXX=1.8V  
250  
250  
mV  
mV  
mV  
mV  
Input Hysteresis  
(NVCC_XXXX=3.3V)  
NVCC_XXXX=3.3V  
Schmitt trigger VT+2,3  
0.5 x  
NVCC_XXXX  
Schmitt trigger VT-2,3  
VTH-  
0.5 x  
NVCC_XXXX  
Pull-up resistor (22_kPU)  
Pull-up resistor (22_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (100_kPU)  
Pull-up resistor (100_kPU)  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
RPU_100K  
RPU_100K  
Vin=0V  
Vin=NVCC_XXXX  
Vin=0V  
212  
1
A  
A  
A  
A  
A  
A  
100  
1
Vin=NVCC_XXXX  
Vin=0V  
48  
1
Vin=NVCC_XXXX  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
34  
NXP Semiconductors  
Electrical Characteristics  
Table 22. Single voltage GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-down resistor (100_k  
RPD_100K  
Vin=NVCC_XXXX  
48  
A  
PD)  
Pull-down resistor (100_k  
RPD_100K  
Vin=0V  
1
A  
PD)  
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = NVCC_XXXX  
-1  
1
A  
k  
R_Keeper  
VI =0.3 x NVCC_XXXX, VI = 0.7 x  
NVCC_XXXX  
105  
175  
1
Overshoot and undershoot conditions (transitions above NVCC_XXXX and below GND) on switching pads must be held  
below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/  
undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line  
termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage  
to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.3.1.3  
LVDS I/O DC parameters  
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,  
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
Table 23 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.  
1
Table 23. LVDS I/O DC characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Differential Voltage  
Output High Voltage  
Output Low Voltage  
Offset Voltage  
VOD  
VOH  
VOL  
VOS  
Rload-100 Diff  
IOH = 0 mA  
IOL = 0 mA  
250  
1.25  
0.9  
350  
1.375  
1.025  
1.2  
450  
1.6  
mV  
V
1.25  
1.375  
V
1.125  
V
1
Note: The LVDS interface is limited to CCM_CLK1_P and CCM_CLK1_N.  
4.3.2  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Figure 4 shows load circuit for output, and Figure 5 show the output transition time waveform.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
35  
Electrical Characteristics  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 4. Load circuit for output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 5. Output transition time waveform  
4.3.2.1  
General purpose I/O AC parameters  
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 24 and Table 25,  
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the  
IOMUXC control registers.  
Table 24. General purpose I/O AC parameters 1.8 V mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, ipp_dse=111)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.72/2.79  
1.51/1.54  
Output Pad Transition Times, rise/fall  
(High Drive, ipp_dse=101)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.20/3.36  
1.96/2.07  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, ipp_dse=100)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.64/3.88  
2.27/2.53  
Output Pad Transition Times, rise/fall  
(Low Drive. ipp_dse=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
4.32/4.50  
3.16/3.17  
Input Transition Times1  
25  
ns  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
36  
NXP Semiconductors  
Electrical Characteristics  
Table 25. General purpose I/O AC parameters 3.3 V mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, ipp_dse=101)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall  
(High Drive, ipp_dse=011)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, ipp_dse=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall  
(Low Drive. ipp_dse=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
ns  
ns  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
4.3.3  
Output buffer impedance parameters  
This section defines the I/O impedance parameters of the i.MX RT1064 processors for the following I/O  
types:  
Single Voltage General Purpose I/O (GPIO)  
NOTE  
GPIO I/O output driver impedance is measured with “long” transmission  
line of impedance Ztl attached to I/O pad and incident wave launched into  
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines  
specific voltage of incident wave relative to NVCC_XXXX. Output driver  
impedance is calculated from this voltage divider (see Figure 6).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
37  
Electrical Characteristics  
OVDD  
PMOS (Rpu)  
Ztl , L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
(do)  
Vin  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vref2  
Vovdd - Vref1  
Vref1  
Rpd =  
Ztl  
Rpu =  
Ztl  
Vovdd - Vref2  
Figure 6. Impedance matching load for measurement  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
38  
NXP Semiconductors  
Electrical Characteristics  
4.3.3.1  
Single voltage GPIO output buffer impedance  
Table 26 shows the GPIO output buffer impedance (NVCC_XXXX 1.8 V).  
Table 26. GPIO output buffer average impedance (NVCC_XXXX 1.8 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
260  
130  
88  
65  
52  
Output Driver  
Impedance  
Rdrv  
43  
37  
Table 27 shows the GPIO output buffer impedance (NVCC_XXXX 3.3 V).  
Table 27. GPIO output buffer average impedance (NVCC_XXXX 3.3 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
157  
78  
53  
39  
32  
26  
23  
Output Driver  
Impedance  
Rdrv  
4.4  
System modules  
This section contains the timing and electrical parameters for the modules in the i.MX RT1064 processor.  
4.4.1  
Reset timings parameters  
Figure 7 shows the reset timing and Table 28 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 7. Reset timing diagram  
Table 28. Reset timing parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
39  
Electrical Characteristics  
4.4.2  
WDOG reset timing parameters  
Figure 8 shows the WDOG reset timing and Table 29 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 8. WDOGn_B timing diagram  
Table 29. WDOGn_B timing parameters  
ID  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOGn_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
4.4.3  
SCAN JTAG Controller (SJC) timing parameters  
Figure 9 depicts the SJC test clock input timing. Figure 10 depicts the SJC boundary scan timing.  
Figure 11 depicts the SJC test access port. Signal parameters are listed in Table 30.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 9. Test clock input timing diagram  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
40  
NXP Semiconductors  
Electrical Characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 10. Boundary Scan (JTAG) timing diagram  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
41  
Electrical Characteristics  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ8  
Input Data Valid  
SJ9  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 11. Test access port timing diagram  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 12. JTAG_TRST_B timing diagram  
Table 30. JTAG timing  
All Frequencies  
ID  
Parameter1,2  
Unit  
Min  
Max  
1
SJ0  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
JTAG_TCK cycle time in crystal mode  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
ns  
ns  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
5
40  
40  
ns  
24  
ns  
ns  
ns  
5
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
42  
NXP Semiconductors  
Electrical Characteristics  
Table 30. JTAG timing (continued)  
Parameter1,2  
All Frequencies  
ID  
Unit  
Min  
Max  
SJ9  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
25  
44  
44  
ns  
ns  
ns  
ns  
ns  
SJ10  
SJ11  
SJ12  
SJ13  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
1
2
T
= target frequency of SJC  
DC  
VM = mid-point voltage  
4.4.4  
Debug trace timing specifications  
Table 31. Debug trace operating behaviors  
Symbol  
Description  
Min  
Max  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
ARM_TRACE_CLK frequency of operation  
ARM_TRACE_CLK period  
Low pulse width  
1/T1  
6
70  
1
MHz  
MHz  
ns  
High pulse width  
6
ns  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
ns  
1
ns  
ns  
Data hold  
0.7  
ns  
!2-?42!#%?#,+  
4ꢀ  
T6  
T4  
4ꢂ  
4ꢁ  
Figure 13. ARM_TRACE_CLK specifications  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
43  
Electrical Characteristics  
ARM_TRACE_CLK  
ARM_TRACE0-3  
T7  
T8  
T7  
T8  
Figure 14. Trace data specifications  
4.5  
External memory interface  
The following sections provide information about external memory interfaces.  
4.5.1  
SEMC specifications  
The following sections provide information on SEMC interface.  
Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.  
4.5.1.1  
SEMC output timing  
There are ASYNC and SYNC mode for SEMC output timing.  
4.5.1.1.1  
SEMC output timing in ASYNC mode  
Table 32 shows SEMC output timing in ASYNC mode.  
Table 32. SEMC output timing in ASYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
Frequency of operation  
Internal clock period  
Address output valid time  
Address output hold time  
ADV# low time  
6
166  
2
MHz  
ns  
TCK  
TAVO  
TAHO  
TADVL  
TDVO  
TDHO  
TWEL  
ns  
These timing parameters  
apply to Address and ADV#  
for NOR/PSRAM in ASYNC  
mode.  
(TCK - 2) 1  
(TCK - 1) 2  
ns  
Data output valid time  
Data output hold time  
WE# low time  
2
ns  
ns  
ns  
These timing parameters  
apply to Data/CLE/ALE and  
WE# for NAND, apply to  
Data/DM/CRE for  
NOR/PSRAM, apply to  
Data/DCX and WRX for DBI  
interface.  
(TCK - 2) 3  
(TCK - 1) 4  
1
Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set  
with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1064 Reference Manual (IMXRT1064RM) for more  
detail about SEMC_*CR0.AH register field.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
44  
NXP Semiconductors  
Electrical Characteristics  
2
3
4
ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N,  
T
ADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1064 Reference Manual (IMXRT1064RM) for more detail about  
SEMC_*CR0.AS register field.  
Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set  
with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1064 Reference Manual (IMXRT1064RM) for more  
detail about SEMC_*CR0.WEH register field.  
WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value  
N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1064 Reference Manual (IMXRT1064RM) for more detail  
about SEMC_*CR0.WEL register field.  
Figure 15 shows the output timing in ASYNC mode.  
4#+  
)NTERNAL CLOCK  
!$$2  
!
$
4!(/  
4$(/  
4!6/  
4$6/  
!$6ꢃ  
$!4!  
7%ꢃ  
Figure 15. SEMC output timing in ASYNC mode  
4.5.1.1.2  
SEMC output timing in SYNC mode  
Table 33 shows SEMC output timing in SYNC mode.  
Table 33. SEMC output timing in SYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
Frequency of operation  
Internal clock period  
Data output valid time  
Data output hold time  
6
166  
1
MHz  
ns  
TCK  
TDVO  
TDHO  
-1  
ns  
These timing parameters apply to  
Address/Data/DM/CKE/control  
signals with SEMC_CLK for  
SDRAM.  
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
45  
Electrical Characteristics  
Figure 16 shows the output timing in SYNC mode.  
3%-#?#,+  
4$6/  
4
$(/  
$!4!  
$
Figure 16. SEMC output timing in SYNC mode  
4.5.1.2  
SEMC input timing  
There are ASYNC and SYNC mode for SEMC input timing.  
4.5.1.2.1  
SEMC input timing in ASYNC mode  
Table 34 shows SEMC output timing in ASYNC mode.  
Table 34. SEMC output timing in ASYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
8.67  
0
ns  
ns  
ForNAND/NOR/PSRAM/DBI,  
thesetimingparametersapply  
to RE# and Read Data.  
Figure 17 shows the input timing in ASYNC mode.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
46  
NXP Semiconductors  
Electrical Characteristics  
.!.$ NONꢆ%$/ MODE AND ./2ꢇ032!-ꢇꢈꢄꢈꢄ TIMING  
/%ꢃ  
$!4!  
$ꢄ  
$ꢅ  
4)3  
4)(  
.!.$ %$/ MODE TIMING  
/%ꢃ  
$!4!  
$ꢄ  
$ꢅ  
4
)3  
4)(  
Figure 17. SEMC input timing in ASYNC mode  
4.5.1.2.2  
SEMC input timing in SYNC mode  
Table 35 and Table 36 show SEMC input timing in SYNC mode.  
Table 35. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
8.67  
0
ns  
ns  
Table 36. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
0.6  
1
ns  
ns  
Figure 18 shows the input timing in SYNC mode.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
47  
Electrical Characteristics  
3%-#?#,+  
$!4!  
$ꢄ  
4)3  
3%-#?$13  
4)(  
Figure 18. SEMC input timing in SYNC mode  
4.5.2  
FlexSPI parameters  
Measurements are with a load 15 pf and input slew rate of 1 V/ns.  
4.5.2.1 FlexSPI input/read timing  
There are four sources for the internal sample clock for FlexSPI read data:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the  
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
The following sections describe input signal timing for each of these four internal sample clock sources.  
4.5.2.1.1  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 37. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
60  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
Table 38. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
133  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
48  
NXP Semiconductors  
Electrical Characteristics  
SCK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge, and FlexSPI controller sampling read data on the falling edge.  
4.5.2.1.2  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in SDR mode:  
A1Memory generates both read data and read strobe on SCK rising edge (or falling  
edge)  
A2Memory generates read data on SCK falling edge and generates read strobe on  
SCK rising edgeSCK rising edge  
Table 39. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
166  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
DQS  
Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
49  
Electrical Characteristics  
NOTE  
Timing shown is based on the memory generating read data and read strobe  
on the SCK rising edge. The FlexSPI controller samples read data on the  
DQS falling edge.  
Table 40. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
166  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
TSCKDQS  
DQS  
Internal Sample Clock  
Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2)  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge and read strobe on the SCK rising edge. The FlexSPI controller  
samples read data on a half cycle delayed DQS falling edge.  
4.5.2.1.3  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 41. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
30  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
50  
NXP Semiconductors  
Electrical Characteristics  
Table 42. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
66  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
SCLK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
4.5.2.1.4  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in DDR mode:  
B1Memory generates both read data and read strobe on SCK edge  
B2Memory generates read data on SCK edge and generates read strobe on SCK2  
edge  
Table 43. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
166  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
51  
Electrical Characteristics  
SCK  
TSCKD  
SIO[0:7]  
TSCKDQS  
DQS  
Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)  
Table 44. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
166  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
SIO[0:7]  
SCK2  
TSCKD  
TSCK2DQS  
DQS  
Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)  
4.5.2.2  
FlexSPI output/write timing  
The following sections describe output signal timing for the FlexSPI controller including control signals  
and data outputs.  
4.5.2.2.1  
SDR mode  
Table 45. FlexSPI output timing in SDR mode  
Parameter Min  
Symbol  
Max  
Unit  
Frequency of operation  
SCK clock period  
6.0  
-1  
1661  
MHz  
ns  
Tck  
TDVO  
TDHO  
Output data valid time  
Output data hold time  
1
ns  
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
52  
NXP Semiconductors  
Electrical Characteristics  
Table 45. FlexSPI output timing in SDR mode (continued)  
Symbol  
Parameter  
Min  
Max  
Unit  
TCSS  
TCSH  
Chip select output setup time  
Chip select output hold time  
3 x TCK - 1  
3 x TCK + 2  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1064 Reference Manual (IMXRT1064RM) for more details.  
SCK  
TCSH  
T
CSS  
T
CK  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 25. FlexSPI output timing in SDR mode  
4.5.2.2.2  
SDR mode  
Table 46. FlexSPI output timing in SDR mode  
Symbol  
Parameter  
Min  
Max  
Unit  
MHz  
Frequency of operation1  
166  
Tck  
SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Output data valid time  
6.0  
ns  
ns  
ns  
ns  
ns  
TDVO  
TDHO  
TCSS  
TCSH  
2.2  
Output data hold time  
0.8  
Chip select output setup time  
Chip select output hold time  
3 x TCK /2 - 0.7  
3 x TCK /2 + 0.8  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1064 Reference Manual (IMXRT1064RM) for more details.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
53  
Electrical Characteristics  
SCK  
T
CSS  
T
CK  
TCSH  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 26. FlexSPI output timing in DDR mode  
4.6  
Display and graphics  
The following sections provide information on display and graphic interfaces.  
4.6.1  
CMOS Sensor Interface (CSI) timing parameters  
The following sections describe the CSI timing in gated and ungated clock modes.  
4.6.1.0.1 Gated clock mode timing  
Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 47 describes the timing  
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC  
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,  
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P5 P6  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
54  
NXP Semiconductors  
Electrical Characteristics  
CSI_VSYNC  
CSI_HSYNC  
P1  
P7  
P2  
P6 P5  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge  
Table 47. CSI gated clock mode timing parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
CSI_VSYNC to CSI_HSYNC time  
CSI_HSYNC setup time  
CSI DATA setup time  
tV2H  
tHsu  
tDsu  
tDh  
33.5  
1
80  
ns  
ns  
1
ns  
CSI DATA hold time  
1
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
MHz  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
55  
Electrical Characteristics  
4.6.1.0.2  
Ungated clock mode timing  
Figure 29 shows the ungated clock mode timings of CSI, and Table 48 describes the timing parameters  
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are  
used, and the CSI_HSYNC signal is ignored.  
CSI_VSYNC  
P1  
P6  
P4 P5  
CSI_PIXCLK  
P2 P3  
CSI_DATA[23:00]  
Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge  
Table 48. CSI ungated clock mode timing parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
CSI_VSYNC to pixel clock time  
CSI DATA setup time  
tVSYNC  
tDsu  
33.5  
1
80  
ns  
ns  
CSI DATA hold time  
tDh  
1
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
MHz  
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as  
dumb or smart as follows:  
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync  
(HSYNC)) and output-only Bayer and statistics data.  
Smart sensors support CCIR656 video decoder formats and perform additional processing of the  
image (for example, image compression, image pre-filtering, and various data output formats).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
56  
NXP Semiconductors  
Electrical Characteristics  
4.6.2  
LCD Controller (LCDIF) timing parameters  
Figure 30 shows the LCDIF timing and Table 49 lists the timing parameters.  
L1  
L2  
L3  
LCDn_CLK  
(falling edge capture)  
LCDn_CLK  
(rising edge capture)  
LCDn_DATA[23:00]  
LCDn Control Signals  
L4  
L5  
L6  
L7  
Figure 30. LCD timing  
Table 49. LCD timing parameters  
Parameter  
ID  
Symbol  
Min  
Max  
Unit  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
LCD pixel clock frequency  
tCLK(LCD)  
tCLKH(LCD)  
tCLKL(LCD)  
td(CLKH-DV)  
td(CLKL-DV)  
3
75  
1
MHz  
ns  
LCD pixel clock high (falling edge capture)  
LCD pixel clock low (rising edge capture)  
3
ns  
LCD pixel clock high to data valid (falling edge capture)  
LCD pixel clock low to data valid (rising edge capture)  
-1  
-1  
-1  
-1  
ns  
1
ns  
LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV)  
1
ns  
LCD pixel clock low to control signal valid (rising edge capture)  
td(CLKL-CTRLV)  
1
ns  
4.7  
Audio  
This section provide information about SAI/I2S and SPDIF.  
4.7.1  
SAI/I2S switching specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
57  
Electrical Characteristics  
Num  
Table 50. Master mode SAI timing  
Characteristic Min  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_MCLK cycle time  
15  
40%  
40  
40%  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
Figure 31. SAI timing—Master modes  
Table 51. Slave mode SAI timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
40  
40%  
10  
2
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
60%  
BCLK period  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
0
20  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
58  
NXP Semiconductors  
Electrical Characteristics  
Table 51. Slave mode SAI timing  
Characteristic Min  
Num  
Max  
Unit  
S17  
S18  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
10  
2
ns  
ns  
Figure 32. SAI timing—Slave mode  
4.7.2  
SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 52 and Figure 33 and Figure 34 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 52. SPDIF timing parameters  
Timing Parameter Range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT1 output (Load = 30pf)  
ns  
ns  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
Modulating Rx clock (SPDIF_SR_CLK) period  
srckp  
40.0  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
59  
Electrical Characteristics  
Table 52. SPDIF timing parameters (continued)  
Timing Parameter Range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIF_SR_CLK high period  
srckph  
srckpl  
stclkp  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
stclkph  
stclkpl  
SPDIF_ST_CLK low period  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 33. SPDIF_SR_CLK timing diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 34. SPDIF_ST_CLK timing diagram  
4.8  
Analog  
The following sections provide information about analog interfaces.  
4.8.1  
DCDC  
Table 53 introduces the DCDC electrical specifications.  
Table 53. DCDC electrical specifications  
Buck mode, one output  
3.3 V  
Mode  
Notes  
Min = 2.8 V, Max = 3.6 V  
Input voltage  
Output voltage  
1.1 V  
Configurable 0.8 - 1.575 with 25 mV one step  
in Run mode  
Max loading  
500 mA  
Loading in low power modes  
200 A ~ 30 mA  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
60  
NXP Semiconductors  
Electrical Characteristics  
Notes  
Table 53. DCDC electrical specifications (continued)  
Buck mode, one output  
Mode  
Efficiency  
90% max  
@150 mA  
Low power mode  
Run mode  
Open loop mode  
Ripple is about 15 mV in Run mode  
Configurable by register  
• Always continuous mode  
• Support discontinuous mode  
Inductor  
4.7 H  
33 F  
1.55 V  
Capacitor  
Over voltage protection  
Detect VDDSOC, when the voltage is higher  
than 1.6 V, shutdown DCDC.  
Over Current protection  
1 A  
Detect the peak current  
• Run mode: when the current is larger than  
1 A, shutdown DCDC.  
Low DCDC_IN detection  
2.6 V  
Detect the DCDC_IN, when battery is lower  
than 2.6 V, shutdown DCDC.  
4.8.2  
A/D converter  
This section introduces information about A/D converter.  
4.8.2.1  
12-bit ADC electrical characteristics  
The section provide information about 12-bit ADC electrical characteristics.  
4.8.2.1.1  
12-bit ADC operating conditions  
Table 54. 12-bit ADC operating conditions  
Typ1  
Characteristic  
Conditions  
Absolute  
Symb  
Min  
Max  
Unit  
Comment  
Supply voltage  
VDDA  
3.0  
-
3.6  
V
Delta to  
VDDA  
-100  
-100  
0
100  
100  
mV  
VDDA_ADC_3P3  
2
(VDD-VDDA  
)
Ground voltage  
Delta to VSS  
VSSAD  
0
mV  
(VSS-VSSAD)  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
VDDA  
VSS  
1.13  
VSS  
VSS  
VDDA  
VSS  
VDDA  
VSS  
VDDA  
2
V
V
VADIN  
CADIN  
RADIN  
V
Input Capacitance  
Input Resistance  
8/10/12 bit modes  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
1.5  
5
pF  
7
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
61  
Electrical Characteristics  
Characteristic  
Table 54. 12-bit ADC operating conditions (continued)  
Typ1  
Conditions  
Symb  
Min  
Max  
Unit  
kohms  
Comment  
Analog Source  
Resistance  
12 bit mode fADCK = 40 RAS  
MHz ADLSMP=0,  
1
Tsamp=150  
ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time vs RAS  
ADC Conversion Clock ADLPC=0, ADHSC=1  
fADCK  
4
4
4
40  
30  
20  
MHz  
MHz  
MHz  
Frequency  
12 bit mode  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1
2
Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential differences  
Figure 35. 12-bit ADC input impedance equivalency diagram  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
62  
NXP Semiconductors  
Electrical Characteristics  
12-bit ADC characteristics  
Table 55. 12-bit ADC characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDA  
REFL  
Characteristic  
Conditions1  
Symb  
IDDA  
Min  
Typ2  
Max  
Unit  
Comment  
ADLSMP=0  
Supply Current  
ADLPC=1,  
ADHSC=0  
350  
460  
750  
1.4  
µA  
ADSTS=10 ADCO=1  
ADLPC=0,  
ADHSC=0  
ADLPC=0,  
ADHSC=1  
Supply Current  
Stop, Reset, Module IDDA  
Off  
2
µA  
ADC Asynchronous ADHSC=0  
fADACK  
10  
20  
2
MHz  
tADACK = 1/fADACK  
Clock Source  
ADHSC=1  
Sample Cycles  
ADLSMP=0,  
ADSTS=00  
Csamp  
cycles  
ADLSMP=0,  
ADSTS=01  
4
ADLSMP=0,  
ADSTS=10  
6
ADLSMP=0,  
ADSTS=11  
8
ADLSMP=1,  
ADSTS=00  
12  
16  
20  
24  
ADLSMP=1,  
ADSTS=01  
ADLSMP=1,  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
63  
Electrical Characteristics  
Table 55. 12-bit ADC characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDA  
REFL  
Characteristic  
Conditions1  
Symb  
Cconv  
Min  
Typ2  
Max  
Unit  
cycles  
Comment  
Conversion Cycles  
ADLSMP=0  
28  
30  
32  
34  
38  
42  
46  
50  
ADSTS=00  
ADLSMP=0  
ADSTS=01  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Conversion Time  
ADLSMP=0  
ADSTS=00  
Tconv  
0.7  
µs  
Fadc=40 MHz  
ADLSMP=0  
ADSTS=01  
0.75  
0.8  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
0.85  
0.95  
1.05  
1.15  
1.25  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Total Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
TUE  
DNL  
3.4  
1.5  
1.2  
LSB  
1 LSB = 11  
(VREFH  
VREFL)/2  
N
AVGE = 1, AVGS =  
-
Differential  
Non-Linearity  
12 bit mode  
10bit mode  
8 bit mode  
0.76  
0.36  
0.14  
LSB  
AVGE = 1, AVGS =  
11  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
64  
NXP Semiconductors  
Electrical Characteristics  
) (continued)  
Table 55. 12-bit ADC characteristics (V  
= V  
, V  
= V  
REFL SSAD  
REFH  
DDA  
Characteristic  
Integral  
Conditions1  
12 bit mode  
Symb  
INL  
Min  
Typ2  
2.78  
Max  
Unit  
LSB  
Comment  
AVGE = 1, AVGS =  
11  
Non-Linearity  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
0.61  
0.14  
Zero-Scale Error  
EZS  
-1.14  
-0.25  
-0.19  
-1.06  
-0.03  
-0.02  
10.7  
LSB  
LSB  
AVGE = 1, AVGS =  
11  
Full-Scale Error  
EFS  
AVGE = 1, AVGS =  
11  
Effective Number of 12 bit mode  
Bits  
ENOB  
SINAD  
10.1  
Bits  
dB  
AVGE = 1, AVGS =  
11  
Signal to Noise plus See ENOB  
Distortion  
SINAD = 6.02 x ENOB + 1.76  
AVGE = 1, AVGS =  
11  
1
2
All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
Typical values assume VDDA = 3.0 V, Temp = 25°C, Fadck = 20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
NOTE  
The ADC electrical spec is met with the calibration enabled configuration.  
Figure 36. Minimum Sample Time Vs Ras (Cas = 2 pF)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
65  
Electrical Characteristics  
Figure 37. Minimum Sample Time Vs Ras (Cas = 5 pF)  
Figure 38. Minimum Sample Time Vs Ras (Cas = 10 pF)  
4.8.3  
ACMP  
Table 56 lists the ACMP electrical specifications.  
Table 56. Comparator and 6-bit DAC electrical specifications  
Description Min. Typ. Max.  
Supply voltage  
Symbol  
Unit  
VDD  
3.0  
3.6  
V
IDDHS  
Supply current, High-speed mode  
(EN = 1, PMODE = 1)  
347  
A  
IDDLS  
Supply current, Low-speed mode  
(EN = 1, PMODE = 0)  
42  
A  
VAIN  
VAIO  
Analog input voltage  
VSS  
VDD  
21  
V
Analog input offset voltage  
mV  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
66  
NXP Semiconductors  
Electrical Characteristics  
Table 56. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VH  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
Output high  
mV  
1
2
21  
42  
64  
25  
54  
108  
184  
VCMPOH  
VCMPOI  
tDHS  
VDD - 0.5  
V
Output low  
0.5  
40  
V
Propagation delay, high-speed  
mode (EN = 1, PMODE = 1)2  
ns  
tDLS  
Propagation delay, low-speed  
mode (EN = 1, PMODE = 0)2  
50  
90  
ns  
tDInit  
Analog comparator initialization  
delay3  
1.5  
s  
IDAC6b  
6-bit DAC current adder (enabled) —  
5
A  
RDAC6b  
6-bit DAC reference inputs  
VDD  
V
INLDAC6b  
DNLDAC6b  
6-bit DAC integral non-linearity  
-0.3  
0.3  
0.15  
LSB4  
LSB4  
6-bit DAC differential non-linearity -0.15  
1
2
3
Typical hysteresis is measured with input voltage range limited to 0.7 to VDD - 0.7 V in high speed mode.  
Signal swing is 100 mV.  
Comparator initialization delay is defined as the time between software writes to the enable comparator module and the  
comparator output setting to a stable level.  
4
1 LSB = Vreference / 64  
4.9  
Communication interfaces  
The following sections provide the information about communication interfaces.  
4.9.1  
LPSPI timing parameters  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables provide timing  
characteristics for classic LPSPI timing modes.  
All timing is shown with respect to 20% V and 80% V thresholds, unless noted, as well as input  
DD  
DD  
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
67  
Electrical Characteristics  
Table 57. LPSPI Master mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
3
4
5
6
7
8
9
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
fperiph / 2  
Hz  
ns  
2
SCK period  
2 x tperiph  
8
Enable lead time  
1
tperiph  
tperiph  
ns  
Enable lag time  
1
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SCK edge)  
Data hold time (outputs)  
tSCK / 2 - 3  
10  
2
ns  
tHI  
ns  
tV  
0
ns  
tHO  
ns  
1
2
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
tperiph = 1 / fperiph  
1
PCS  
(OUTPUT)  
3
2
4
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
2
LSB IN  
BIT 6 . . . 1  
MSB IN  
8
9
SOUT  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 39. LPSPI Master mode timing (CPHA = 0)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
68  
NXP Semiconductors  
Electrical Characteristics  
1
PCS  
(OUTPUT)  
2
4
3
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
LSB IN  
9
8
MASTER MSB OUT2  
SOUT  
(OUTPUT)  
PORT DATA  
BIT 6 . . . 1  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 40. LPSPI Master mode timing (CPHA = 1)  
s
Table 58. LPSPI Slave mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
0
fperiph / 2  
Hz  
ns  
2
SCK period  
2 x tperiph  
3
Enable lead time  
1
tperiph  
tperiph  
ns  
4
Enable lag time  
1
5
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
tSCK / 2 - 5  
6
2.7  
3.8  
0
ns  
7
tHI  
ns  
3
8
ta  
tperiph  
tperiph  
14.5  
ns  
4
9
tdis  
Slave MISO disable time  
Data valid (after SCK edge)  
Data hold time (outputs)  
ns  
10  
11  
tV  
ns  
tHO  
ns  
1
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
2
3
4
tperiph = 1 / fperiph  
Time to data active from high-impedance state  
Hold time to high-impedance state  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
69  
Electrical Characteristics  
PCS  
(INPUT)  
2
4
SCK  
(CPOL=0)  
(INPUT)  
5
5
3
SCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
SEE  
NOTE  
SIN  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
note  
6
SOUT  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 41. LPSPI Slave mode timing (CPHA = 0)  
PCS  
(INPUT)  
4
2
3
SCK  
(CPOL=0)  
(INPUT)  
5
5
SCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
SIN  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
SOUT  
MSB IN  
(INPUT)  
NOTE: Not defined  
Figure 42. LPSPI Slave mode timing (CPHA = 1)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
70  
NXP Semiconductors  
Electrical Characteristics  
4.9.2  
LPI2C module timing parameters  
This section describes the timing parameters of the LPI2C module.  
Table 59. LPI2C module timing parameters  
Symbol  
Description  
Standard mode (Sm)  
Min  
Max  
100  
Unit  
Notes  
1, 2  
fSCL  
SCL clock frequency  
0
0
0
0
0
kHz  
Fast mode (Fm)  
400  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1
Hs-mode is only supported in slave mode.  
See General switching specifications.  
2
4.9.3  
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single  
Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.  
4.9.3.1  
SD/eMMC4.3 (single data rate) AC timing  
Figure 43 depicts the timing of SD/eMMC4.3, and Table 60 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 43. SD/eMMC4.3 timing  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
71  
Electrical Characteristics  
Table 60. SD/eMMC4.3 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD -6.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
3.6  
ns  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.9.3.2  
eMMC4.4/4.41 (dual data rate) AC timing  
Figure 44 depicts the timing of eMMC4.4/4.41. Table 61 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
72  
NXP Semiconductors  
Electrical Characteristics  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 44. eMMC4.4/4.41 timing  
Table 61. eMMC4.4/4.41 interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1 Clock Frequency (eMMC4.4/4.41 DDR)  
SD1 Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2 uSDHC Output Delay tOD 2.5 7.1  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ns  
SD3 uSDHC Input Setup Time  
SD4 uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
73  
Electrical Characteristics  
4.9.3.3  
SDR50/SDR104 AC timing  
Figure 45 depicts the timing of SDR50/SDR104, and Table 62 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SD7  
SCK  
4-bit output from uSDHC to card  
4-bit input from card to uSDHC  
SD4/SD5  
SD6  
SD8  
Figure 45. SDR50/SDR104 timing  
Table 62. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
1
ns  
ns  
1
SD5  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
SD8  
1Data window in SDR104 mode is variable.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
74  
NXP Semiconductors  
Electrical Characteristics  
4.9.3.4  
HS200 mode timing  
Figure 46 depicts the timing of HS200 mode, and Table 63 lists the HS200 timing characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 46. HS200 mode timing  
Table 63. HS200 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
4.9.3.5  
Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 22,  
"Single voltage GPIO DC parameters," on page 34.  
4.9.4  
Ethernet controller (ENET) AC electrical specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
75  
Electrical Characteristics  
4.9.4.1  
ENET MII mode timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.9.4.1.1  
MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.  
Figure 47 shows MII receive signal timings. Table 64 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 47. MII receive signal timing diagram  
Table 64. MII receive signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
5
ns  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
4.9.4.1.2  
MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET_TX_CLK frequency.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
76  
NXP Semiconductors  
Electrical Characteristics  
Figure 48 shows MII transmit signal timings. Table 65 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 48. MII transmit signal timing diagram  
Table 65. MII transmit signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M5  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
ns  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.9.4.1.3  
MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)  
Figure 49 shows MII asynchronous input timings. Table 66 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 49. MII asynchronous inputs timing diagram  
Table 66. MII asynchronous inputs signal timing  
ID  
M91  
Characteristic  
Min.  
Max.  
Unit  
ENET_CRS to ENET_COL minimum pulse width  
1.5  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
77  
Electrical Characteristics  
4.9.4.1.4  
MII serial management channel timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 50 shows MII asynchronous input timings. Table 67 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 50. MII serial management channel timing diagram  
Table 67. MII serial management channel timing  
ID  
M10  
Characteristic  
Min.  
Max.  
Unit  
ENET_MDC falling edge to ENET_MDIO output invalid (min.  
propagation delay)  
0
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
4.9.4.2  
RMII mode timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference  
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include  
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
78  
NXP Semiconductors  
Electrical Characteristics  
Figure 51 shows RMII mode timings. Table 68 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 51. RMII mode signal timing diagram  
Table 68. RMII signal timing  
ID  
M16  
Characteristic  
Min.  
Max.  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
M17  
M18  
M19  
M20  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
13  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER  
to ENET_CLK setup  
2
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER  
hold  
2
ns  
4.9.5  
Flexible Controller Area Network (FLEXCAN) AC electrical  
specifications  
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.  
4.9.6  
LPUART electrical specifications  
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
79  
Electrical Characteristics  
4.9.7  
USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG with the following amendments.  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
4.10 Timers  
This section provide information on timers.  
4.10.1 Pulse Width Modulator (PWM) characteristics  
This section describes the electrical information of the PWM.  
Table 69. PWM timing parameters  
Parameter  
PWM Clock Frequency  
Symbo  
Min  
Typ  
Max  
Unit  
150  
MHz  
4.10.2 Quad timer timing  
Table 70 listed the timing parameters.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
80  
NXP Semiconductors  
Electrical Characteristics  
Table 70. Quad timer timing  
Characteristic  
Timer input period  
Symbol  
Min1  
Max  
Unit  
See Figure  
TIN  
2T + 6  
1T + 3  
33  
ns  
ns  
ns  
ns  
Timer input high/low period  
Timer output period  
TINHL  
TOUT  
Timer output high/low period  
TOUTHL  
16.7  
1
T = clock cycle. For 60 MHz operation, T = 16.7 ns.  
4IMER )NPUTS  
4
4
).(,  
).(,  
4
).  
4IMER /UTPUTS  
4
4
/54(,  
/54(,  
4
/54  
Figure 52. Quad timer timing  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
81  
Flash  
5 Flash  
This section introduces the on-chip flash electrical parameters.  
Table 71 shows the operating ranges of on-chip flash power supply by NVCC_GPIO.  
Table 71. Operating ranges  
Spec.  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Supply voltage  
NVCC_GPIO  
FR = 133 MHz, fR = 50 MHz  
3.0  
3.6  
V
For details about the flash AC parameters, refer to the following link.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
82  
NXP Semiconductors  
Boot mode configuration  
6 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
6.1  
Boot mode configuration pins  
Table 72 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1064  
Fuse Map document and the System Boot chapter in i.MX RT1064 Reference Manual (IMXRT1064RM).  
Table 72. Fuses and associated pins used for boot  
Pad  
Default setting on reset  
eFuse name  
Details  
GPIO_AD_B0_04  
GPIO_AD_B0_05  
GPIO_B0_04  
GPIO_B0_05  
GPIO_B0_06  
GPIO_B0_07  
GPIO_B0_08  
GPIO_B0_09  
GPIO_B0_10  
GPIO_B0_11  
GPIO_B0_12  
GPIO_B0_13  
GPIO_B0_14  
GPIO_B0_15  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
BOOT_MODE0  
BOOT_MODE1  
BT_CFG[0]  
BT_CFG[1]  
BT_CFG[2]  
BT_CFG[3]  
BT_CFG[4]  
BT_CFG[5]  
BT_CFG[6]  
BT_CFG[7]  
BT_CFG[8]  
BT_CFG[9]  
BT_CFG[10]  
BT_CFG[11]  
Boot Options, Pin value overrides  
fuse settings for BT_FUSE_SEL =  
‘0’. Signal Configuration as Fuse  
Override Input at Power Up.  
These are special I/O lines that  
control the boot up configuration  
during product development. In  
production, the boot configuration  
can be controlled by fuses.  
6.2  
Boot device interface allocation  
The following tables list the interfaces that can be used by the boot process in accordance with the specific  
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 73. Boot trough NAND  
PAD Name  
IO Function  
ALT  
Comments  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
semc.DATA[0]  
semc.DATA[1]  
semc.DATA[2]  
ALT 0  
ALT 0  
ALT 0  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
83  
Boot mode configuration  
Table 73. Boot trough NAND  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_30  
GPIO_EMC_31  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_18  
GPIO_EMC_19  
GPIO_EMC_20  
GPIO_EMC_22  
GPIO_EMC_41  
semc.DATA[3]  
semc.DATA[4]  
semc.DATA[5]  
semc.DATA[6]  
semc.DATA[7]  
semc.DATA[8]  
semc.DATA[9]  
semc.DATA[10]  
semc.DATA[11]  
semc.DATA[12]  
semc.DATA[13]  
semc.DATA[14]  
semc.DATA[15]  
semc.ADDR[9]  
semc.ADDR[11]  
semc.ADDR[12]  
semc.BA1  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.CSX[0]  
Table 74. Boot trough NOR  
IO Function  
PAD Name  
ALT  
Comments  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_30  
GPIO_EMC_31  
GPIO_EMC_32  
GPIO_EMC_33  
semc.DATA[0]  
semc.DATA[1]  
semc.DATA[2]  
semc.DATA[3]  
semc.DATA[4]  
semc.DATA[5]  
semc.DATA[6]  
semc.DATA[7]  
semc.DATA[8]  
semc.DATA[9]  
semc.DATA[10]  
semc.DATA[11]  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
84  
NXP Semiconductors  
Boot mode configuration  
Table 74. Boot trough NOR  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_09  
GPIO_EMC_10  
GPIO_EMC_11  
GPIO_EMC_12  
GPIO_EMC_13  
GPIO_EMC_14  
GPIO_EMC_15  
GPIO_EMC_16  
GPIO_EMC_19  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_41  
semc.DATA[12]  
semc.DATA[13]  
semc.DATA[14]  
semc.DATA[15]  
semc.ADDR[0]  
semc.ADDR[1]  
semc.ADDR[2]  
semc.ADDR[3]  
semc.ADDR[4]  
semc.ADDR[5]  
semc.ADDR[6]  
semc.ADDR[7]  
semc.ADDR[11]  
semc.ADDR[12]  
semc.BA0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.BA1  
semc.CSX[0]  
Table 75. Boot through FlexSPI  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B0_05  
GPIO_SD_B0_04  
GPIO_SD_B0_01  
GPIO_SD_B1_05  
GPIO_SD_B1_06  
GPIO_SD_B0_00  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
flexspi.B_DATA[3]  
flexspi.B_DATA[2]  
flexspi.B_DATA[1]  
flexspi.B_DATA[0]  
flexspi.B_SCLK  
flexspi.B_DQS  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
ALT 4  
ALT 4  
ALT 6  
ALT 1  
ALT 1  
ALT 6  
ALT 1  
ALT 1  
ALT 1  
flexspi.B_SS0_B  
flexspi.B_SS1_B  
flexspi.A_DQS  
flexspi.A_SS0_B  
flexspi.A_SS1_B  
flexspi.A_SCLK  
flexspi.A_DATA[0]  
flexspi.A_DATA[1]  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
85  
Boot mode configuration  
PAD Name  
Table 75. Boot through FlexSPI (continued)  
IO Function  
Mux Mode  
Comments  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
flexspi.A_DATA[2]  
flexspi.A_DATA[3]  
ALT 1  
ALT 1  
Table 76. Boot through SD1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B0_00  
GPIO_SD_B0_01  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_04  
GPIO_SD_B0_05  
usdhc1.CMD  
usdhc1.CLK  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
usdhc1.DATA0  
usdhc1.DATA1  
usdhc1.DATA2  
usdhc1.DATA3  
Table 77. Boot through SD2  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B1_06  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
usdhc2.DATA3  
usdhc2.DATA2  
usdhc2.DATA1  
usdhc2.DATA0  
usdhc2.CLK  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
usdhc2.CMD  
usdhc2.RESET_B  
usdhc2.DATA4  
usdhc2.DATA5  
usdhc2.DATA6  
usdhc2.DATA7  
Table 78. Boot through SPI-1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B0_00  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_01  
lpspi1.SCK  
lpspi1.SDO  
lpspi1.SDI  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
lpspi1.PCS0  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
86  
NXP Semiconductors  
Boot mode configuration  
Comments  
Table 79. Boot through SPI-2  
IO Function  
PAD Name  
Mux Mode  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_06  
lpspi2.SCK  
lpspi2.SDO  
lpspi2.SDI  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
lpspi2.PCS0  
Table 80. Boot through SPI-3  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B0_00  
GPIO_AD_B0_01  
GPIO_AD_B0_02  
GPIO_SD_B0_03  
lpspi3.SCK  
lpspi3.SDO  
lpspi3.SDI  
ALT 7  
ALT 7  
ALT 7  
ALT 7  
lpspi3.PCS0  
Table 81. Boot through SPI-4  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_B0_03  
GPIO_B0_02  
GPIO_B0_01  
GPIO_B0_00  
lpspi4.SCK  
lpspi4.SDO  
lpspi4.SDI  
ALT 3  
ALT 3  
ALT 3  
ALT 3  
lpspi4.PCS0  
Table 82. Boot through UART1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
lpuart1.TX  
lpuart1.RX  
ALT 2  
ALT 2  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
87  
Package information and contact assignments  
7 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
7.1  
10 x 10 mm package information  
7.1.1  
10 x 10 mm, 0.65 mm pitch, ball matrix  
Figure 53 shows the top, bottom, and side views of the 10 x 10 mm MAPBGA package.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
88  
NXP Semiconductors  
Package information and contact assignments  
Figure 53. 10 x 10 mm BGA, case x package top, bottom, and side Views  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
89  
Package information and contact assignments  
7.1.2  
10 x 10 mm supplies contact assignments and functional contact  
assignments  
Table 83 shows the device connection list for ground, sense, and reference contact signals.  
Table 83. 10 x 10 mm supplies contact assignment  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
DCDC_IN  
DCDC_IN_Q  
DCDC_GND  
DCDC_LP  
L1, L2  
K4  
N1, N2  
M1, M2  
DCDC_PSWITCH  
DCDC_SENSE  
GPANAIO  
K3  
J5  
N10  
NGND_KEL0  
NVCC_EMC  
NVCC_GPIO  
NVCC_PLL  
K9  
E6, F5  
E9, F10, J10  
P10  
NVCC_SD0  
J6  
NVCC_SD1  
K5  
VDDA_ADC_3P3  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_IN  
VDD_USB_CAP  
VSS  
N14  
P8  
P12  
M10  
M9  
F6, F7, F8, F9, G6, G9, H6, H9, J9  
K8  
A1, A14, B5, B10, E2, E13, G7, G8, H7, H8, J7, J8, K2, K13, L9, N5, N8, P1, P14  
Table 84 shows an alpha-sorted list of functional contact assignments for the 10 x 10 mm package.  
Table 84. 10 x 10 mm functional contact assignments  
Default Setting  
10 x 10  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
CCM_CLK1_N  
CCM_CLK1_P  
P13  
N13  
CCM_CLK1_N  
CCM_CLK1_P  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
90  
NXP Semiconductors  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_AD_B0_00  
GPIO_AD_B0_01  
GPIO_AD_B0_02  
GPIO_AD_B0_03  
GPIO_AD_B0_04  
GPIO_AD_B0_05  
GPIO_AD_B0_06  
GPIO_AD_B0_07  
GPIO_AD_B0_08  
GPIO_AD_B0_09  
GPIO_AD_B0_10  
GPIO_AD_B0_11  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
GPIO_AD_B0_14  
GPIO_AD_B0_15  
GPIO_AD_B1_00  
GPIO_AD_B1_01  
GPIO_AD_B1_02  
GPIO_AD_B1_03  
GPIO_AD_B1_04  
M14  
H10  
M11  
G11  
F11  
G14  
E14  
F12  
F13  
F14  
G13  
G10  
K14  
L14  
H14  
L10  
J11  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1.IO[0]  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
GPIO1.IO[1]  
Digital  
GPIO  
GPIO1.IO[2]  
Digital  
GPIO  
GPIO1.IO[3]  
Digital  
GPIO  
SRC.BOOT.MODE[0]  
SRC.BOOT.MODE[1]  
JTAG.MUX.TMS  
JTAG.MUX.TCK  
JTAG.MUX.MOD  
JTAG.MUX.TDI  
JTAG.MUX.TDO  
JTAG.MUX.TRSTB  
GPIO1.IO[12]  
Input 100 K PD  
Input 100 K PD  
Digital  
GPIO  
Digital  
GPIO  
Input  
Input  
47 K PU  
47 K PU  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PU  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
47 K PU  
Keeper  
47 K PU  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
GPIO1.IO[13]  
Digital  
GPIO  
GPIO1.IO[14]  
Digital  
GPIO  
GPIO1.IO[15]  
Digital  
GPIO  
GPIO1.IO[16]  
K11  
L11  
Digital  
GPIO  
GPIO1.IO[17]  
Digital  
GPIO  
GPIO1.IO[18]  
M12  
L12  
Digital  
GPIO  
GPIO1.IO[19]  
Digital  
GPIO  
GPIO1.IO[20]  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
91  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_AD_B1_05  
GPIO_AD_B1_06  
GPIO_AD_B1_07  
GPIO_AD_B1_08  
GPIO_AD_B1_09  
GPIO_AD_B1_10  
GPIO_AD_B1_11  
GPIO_AD_B1_12  
GPIO_AD_B1_13  
GPIO_AD_B1_14  
GPIO_AD_B1_15  
GPIO_B0_00  
K12  
J12  
K10  
H13  
M13  
L13  
J13  
H12  
H11  
G12  
J14  
D7  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1.IO[21]  
GPIO1.IO[22]  
GPIO1.IO[23]  
GPIO1.IO[24]  
GPIO1.IO[25]  
GPIO1.IO[26]  
GPIO1.IO[27]  
GPIO1.IO[28]  
GPIO1.IO[29]  
GPIO1.IO[30]  
GPIO1.IO[31]  
GPIO2.IO[0]  
GPIO2.IO[1]  
GPIO2.IO[2]  
GPIO2.IO[3]  
GPIO2.IO[4]  
GPIO2.IO[5]  
GPIO2.IO[6]  
GPIO2.IO[7]  
GPIO2.IO[8]  
GPIO2.IO[9]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
GPIO_B0_01  
E7  
Digital  
GPIO  
GPIO_B0_02  
E8  
Digital  
GPIO  
GPIO_B0_03  
D8  
Digital  
GPIO  
GPIO_B0_04  
C8  
Digital  
GPIO  
GPIO_B0_05  
B8  
Digital  
GPIO  
GPIO_B0_06  
A8  
Digital  
GPIO  
GPIO_B0_07  
A9  
Digital  
GPIO  
GPIO_B0_08  
B9  
Digital  
GPIO  
GPIO_B0_09  
C9  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
92  
NXP Semiconductors  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_B0_10  
GPIO_B0_11  
GPIO_B0_12  
GPIO_B0_13  
GPIO_B0_14  
GPIO_B0_15  
GPIO_B1_00  
GPIO_B1_01  
GPIO_B1_02  
GPIO_B1_03  
GPIO_B1_04  
GPIO_B1_05  
GPIO_B1_06  
GPIO_B1_07  
GPIO_B1_08  
GPIO_B1_09  
GPIO_B1_10  
GPIO_B1_11  
GPIO_B1_12  
GPIO_B1_13  
GPIO_B1_14  
D9  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2.IO[10]  
GPIO2.IO[11]  
GPIO2.IO[12]  
GPIO2.IO[13]  
GPIO2.IO[14]  
GPIO2.IO[15]  
GPIO2.IO[16]  
GPIO2.IO[17]  
GPIO2.IO[18]  
GPIO2.IO[19]  
GPIO2.IO[20]  
GPIO2.IO[21]  
GPIO2.IO[22]  
GPIO2.IO[23]  
GPIO2.IO[24]  
GPIO2.IO[25]  
GPIO2.IO[26]  
GPIO2.IO[27]  
GPIO2.IO[28]  
GPIO2.IO[29]  
GPIO2.IO[30]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
A10  
C10  
D10  
E10  
E11  
A11  
B11  
C11  
D11  
E12  
D12  
C12  
B12  
A12  
A13  
B13  
C13  
D13  
D14  
C14  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
93  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_B1_15  
B14  
E3  
F3  
F4  
G4  
F2  
G5  
H5  
H4  
H3  
C2  
G1  
G3  
H1  
A6  
B6  
B1  
A5  
A4  
B2  
B4  
NVCC_GPIO  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2.IO[31]  
GPIO4.IO[0]  
GPIO4.IO[1]  
GPIO4.IO[2]  
GPIO4.IO[3]  
GPIO4.IO[4]  
GPIO4.IO[5]  
GPIO4.IO[6]  
GPIO4.IO[7]  
GPIO4.IO[8]  
GPIO4.IO[9]  
GPIO4.IO[10]  
GPIO4.IO[11]  
GPIO4.IO[12]  
GPIO4.IO[13]  
GPIO4.IO[14]  
GPIO4.IO[15]  
GPIO4.IO[16]  
GPIO4.IO[17]  
GPIO4.IO[18]  
GPIO4.IO[19]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_08  
GPIO_EMC_09  
GPIO_EMC_10  
GPIO_EMC_11  
GPIO_EMC_12  
GPIO_EMC_13  
GPIO_EMC_14  
GPIO_EMC_15  
GPIO_EMC_16  
GPIO_EMC_17  
GPIO_EMC_18  
GPIO_EMC_19  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
94  
NXP Semiconductors  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_23  
GPIO_EMC_24  
GPIO_EMC_25  
GPIO_EMC_26  
GPIO_EMC_27  
GPIO_EMC_28  
GPIO_EMC_29  
GPIO_EMC_30  
GPIO_EMC_31  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_38  
GPIO_EMC_39  
GPIO_EMC_40  
A3  
C1  
F1  
G2  
D3  
D2  
B3  
A2  
D1  
E1  
C6  
C5  
D5  
C4  
D4  
E5  
C3  
E4  
D6  
B7  
A7  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4.IO[20]  
GPIO4.IO[21]  
GPIO4.IO[22]  
GPIO4.IO[23]  
GPIO4.IO[24]  
GPIO4.IO[25]  
GPIO4.IO[26]  
GPIO4.IO[27]  
GPIO4.IO[28]  
GPIO4.IO[29]  
GPIO4.IO[30]  
GPIO4.IO[31]  
GPIO3.IO[18]  
GPIO3.IO[19]  
GPIO3.IO[20]  
GPIO3.IO[21]  
GPIO3.IO[22]  
GPIO3.IO[23]  
GPIO3.IO[24]  
GPIO3.IO[25]  
GPIO3.IO[26]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
95  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
GPIO_EMC_41  
GPIO_SD_B0_00  
GPIO_SD_B0_01  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_04  
GPIO_SD_B0_05  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B1_06  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
ONOFF  
C7  
NVCC_EMC  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
VDD_SNVS_IN  
VDD_SNVS_IN  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
GPIO3.IO[27]  
GPIO3.IO[12]  
GPIO3.IO[13]  
GPIO3.IO[14]  
GPIO3.IO[15]  
GPIO3.IO[16]  
GPIO3.IO[17]  
GPIO3.IO[0]  
GPIO3.IO[1]  
GPIO3.IO[2]  
GPIO3.IO[3]  
GPIO3.IO[4]  
GPIO3.IO[5]  
GPIO3.IO[6]  
GPIO3.IO[7]  
GPIO3.IO[8]  
GPIO3.IO[9]  
GPIO3.IO[01]  
GPIO3.IO[11]  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
J4  
Digital  
GPIO  
J3  
Digital  
GPIO  
J1  
Digital  
GPIO  
K1  
H2  
J2  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
L5  
M5  
M3  
M4  
P2  
N3  
L3  
L4  
P3  
N4  
P4  
P5  
M6  
K7  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PU  
PMIC_ON_REQ  
Digital  
GPIO  
ALT0 SNVS_LP.PMIC_ON_RE Output 100 K PU  
Q
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
96  
NXP Semiconductors  
Package information and contact assignments  
Table 84. 10 x 10 mm functional contact assignments (continued)  
PMIC_STBY_REQ  
POR_B  
L7  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
CCM.PMIC_VSTBY_RE Output 100 K PU  
Q
(PKE  
disabled)  
M7  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
SRC.POR_B  
Input 100 K PU  
RTC_XTALI  
RTC_XTALO  
TEST_MODE  
N9  
P9  
K6  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
TCU.TEST_MODE  
Input 100 K PU  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
XTALI  
N12  
M8  
L8  
N6  
N7  
P7  
P6  
P11  
N11  
L6  
XTALO  
WAKEUP  
VDD_SNVS_IN  
Digital  
GPIO  
ALT5  
GPIO5.IO[0]  
Input 100 K PU  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
97  
Package information and contact assignments  
7.1.3  
10 x 10 mm, 0.65 mm pitch, ball map  
Table 85 shows the 10 x 10 mm, 0.65 mm pitch ball map for the i.MX RT1064.  
Table 85. 10x10 mm, 0.65 mm pitch, ball map  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
98  
NXP Semiconductors  
Package information and contact assignments  
Table 85. 10x10 mm, 0.65 mm pitch, ball map (continued)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
99  
Package information and contact assignments  
7.2  
12 x 12 mm package information  
12 x 12 mm, 0.8 mm pitch, ball matrix  
7.2.1  
Figure 54 shows the top, bottom, and side views of the 12 x 12 mm MAPBGA package.  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
100  
NXP Semiconductors  
Package information and contact assignments  
Figure 54. 12 x 12 mm BGA, case x package top, bottom, and side Views  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
101  
Package information and contact assignments  
7.2.2  
12 x 12 mm supplies contact assignments and functional contact  
assignments  
Table 86 shows the device connection list for ground, sense, and reference contact signals.  
Table 86. 12 x 12 mm supplies contact assignment  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
DCDC_IN  
DCDC_IN_Q  
DCDC_GND  
DCDC_LP  
L1, L2  
K4  
N1, N2  
M1, M2  
DCDC_PSWITCH  
DCDC_SENSE  
GPANAIO  
K3  
J5  
N10  
NGND_KEL0  
NVCC_EMC  
NVCC_GPIO  
NVCC_PLL  
K9  
E6, F5  
E9, F10, J10  
P10  
NVCC_SD0  
J6  
NVCC_SD1  
K5  
VDDA_ADC_3P3  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_IN  
VDD_USB_CAP  
VSS  
N14  
P8  
P12  
M10  
M9  
F6, F7, F8, F9, G6, G9, H6, H9, J9  
K8  
A1, A14, B5, B10, E2, E13, G7, G8, H7, H8, J7, J8, K2, K13, L9, N5, N8, P1, P14  
Table 87 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.  
Table 87. 12 x 12 mm functional contact assignments  
Default Setting  
12 x 12  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
CCM_CLK1_N  
CCM_CLK1_P  
P13  
N13  
CCM_CLK1_N  
CCM_CLK1_P  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
102  
NXP Semiconductors  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_AD_B0_00  
GPIO_AD_B0_01  
GPIO_AD_B0_02  
GPIO_AD_B0_03  
GPIO_AD_B0_04  
GPIO_AD_B0_05  
GPIO_AD_B0_06  
GPIO_AD_B0_07  
GPIO_AD_B0_08  
GPIO_AD_B0_09  
GPIO_AD_B0_10  
GPIO_AD_B0_11  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
GPIO_AD_B0_14  
GPIO_AD_B0_15  
GPIO_AD_B1_00  
GPIO_AD_B1_01  
GPIO_AD_B1_02  
GPIO_AD_B1_03  
GPIO_AD_B1_04  
M14  
H10  
M11  
G11  
F11  
G14  
E14  
F12  
F13  
F14  
G13  
G10  
K14  
L14  
H14  
L10  
J11  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1.IO[0]  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
GPIO1.IO[1]  
Digital  
GPIO  
GPIO1.IO[2]  
Digital  
GPIO  
GPIO1.IO[3]  
Digital  
GPIO  
SRC.BOOT.MODE[0]  
SRC.BOOT.MODE[1]  
JTAG.MUX.TMS  
JTAG.MUX.TCK  
JTAG.MUX.MOD  
JTAG.MUX.TDI  
JTAG.MUX.TDO  
JTAG.MUX.TRSTB  
GPIO1.IO[12]  
Input 100 K PD  
Input 100 K PD  
Digital  
GPIO  
Digital  
GPIO  
Input  
Input  
47 K PU  
47 K PU  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PU  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
47 K PU  
Keeper  
47 K PU  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
GPIO1.IO[13]  
Digital  
GPIO  
GPIO1.IO[14]  
Digital  
GPIO  
GPIO1.IO[15]  
Digital  
GPIO  
GPIO1.IO[16]  
K11  
L11  
Digital  
GPIO  
GPIO1.IO[17]  
Digital  
GPIO  
GPIO1.IO[18]  
M12  
L12  
Digital  
GPIO  
GPIO1.IO[19]  
Digital  
GPIO  
GPIO1.IO[20]  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
103  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_AD_B1_05  
GPIO_AD_B1_06  
GPIO_AD_B1_07  
GPIO_AD_B1_08  
GPIO_AD_B1_09  
GPIO_AD_B1_10  
GPIO_AD_B1_11  
GPIO_AD_B1_12  
GPIO_AD_B1_13  
GPIO_AD_B1_14  
GPIO_AD_B1_15  
GPIO_B0_00  
K12  
J12  
K10  
H13  
M13  
L13  
J13  
H12  
H11  
G12  
J14  
D7  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1.IO[21]  
GPIO1.IO[22]  
GPIO1.IO[23]  
GPIO1.IO[24]  
GPIO1.IO[25]  
GPIO1.IO[26]  
GPIO1.IO[27]  
GPIO1.IO[28]  
GPIO1.IO[29]  
GPIO1.IO[30]  
GPIO1.IO[31]  
GPIO2.IO[0]  
GPIO2.IO[1]  
GPIO2.IO[2]  
GPIO2.IO[3]  
GPIO2.IO[4]  
GPIO2.IO[5]  
GPIO2.IO[6]  
GPIO2.IO[7]  
GPIO2.IO[8]  
GPIO2.IO[9]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
GPIO_B0_01  
E7  
Digital  
GPIO  
GPIO_B0_02  
E8  
Digital  
GPIO  
GPIO_B0_03  
D8  
Digital  
GPIO  
GPIO_B0_04  
C8  
Digital  
GPIO  
GPIO_B0_05  
B8  
Digital  
GPIO  
GPIO_B0_06  
A8  
Digital  
GPIO  
GPIO_B0_07  
A9  
Digital  
GPIO  
GPIO_B0_08  
B9  
Digital  
GPIO  
GPIO_B0_09  
C9  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
104  
NXP Semiconductors  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_B0_10  
GPIO_B0_11  
GPIO_B0_12  
GPIO_B0_13  
GPIO_B0_14  
GPIO_B0_15  
GPIO_B1_00  
GPIO_B1_01  
GPIO_B1_02  
GPIO_B1_03  
GPIO_B1_04  
GPIO_B1_05  
GPIO_B1_06  
GPIO_B1_07  
GPIO_B1_08  
GPIO_B1_09  
GPIO_B1_10  
GPIO_B1_11  
GPIO_B1_12  
GPIO_B1_13  
GPIO_B1_14  
D9  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2.IO[10]  
GPIO2.IO[11]  
GPIO2.IO[12]  
GPIO2.IO[13]  
GPIO2.IO[14]  
GPIO2.IO[15]  
GPIO2.IO[16]  
GPIO2.IO[17]  
GPIO2.IO[18]  
GPIO2.IO[19]  
GPIO2.IO[20]  
GPIO2.IO[21]  
GPIO2.IO[22]  
GPIO2.IO[23]  
GPIO2.IO[24]  
GPIO2.IO[25]  
GPIO2.IO[26]  
GPIO2.IO[27]  
GPIO2.IO[28]  
GPIO2.IO[29]  
GPIO2.IO[30]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
A10  
C10  
D10  
E10  
E11  
A11  
B11  
C11  
D11  
E12  
D12  
C12  
B12  
A12  
A13  
B13  
C13  
D13  
D14  
C14  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
105  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_B1_15  
B14  
E3  
F3  
F4  
G4  
F2  
G5  
H5  
H4  
H3  
C2  
G1  
G3  
H1  
A6  
B6  
B1  
A5  
A4  
B2  
B4  
NVCC_GPIO  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2.IO[31]  
GPIO4.IO[0]  
GPIO4.IO[1]  
GPIO4.IO[2]  
GPIO4.IO[3]  
GPIO4.IO[4]  
GPIO4.IO[5]  
GPIO4.IO[6]  
GPIO4.IO[7]  
GPIO4.IO[8]  
GPIO4.IO[9]  
GPIO4.IO[10]  
GPIO4.IO[11]  
GPIO4.IO[12]  
GPIO4.IO[13]  
GPIO4.IO[14]  
GPIO4.IO[15]  
GPIO4.IO[16]  
GPIO4.IO[17]  
GPIO4.IO[18]  
GPIO4.IO[19]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_08  
GPIO_EMC_09  
GPIO_EMC_10  
GPIO_EMC_11  
GPIO_EMC_12  
GPIO_EMC_13  
GPIO_EMC_14  
GPIO_EMC_15  
GPIO_EMC_16  
GPIO_EMC_17  
GPIO_EMC_18  
GPIO_EMC_19  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
106  
NXP Semiconductors  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_23  
GPIO_EMC_24  
GPIO_EMC_25  
GPIO_EMC_26  
GPIO_EMC_27  
GPIO_EMC_28  
GPIO_EMC_29  
GPIO_EMC_30  
GPIO_EMC_31  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_38  
GPIO_EMC_39  
GPIO_EMC_40  
A3  
C1  
F1  
G2  
D3  
D2  
B3  
A2  
D1  
E1  
C6  
C5  
D5  
C4  
D4  
E5  
C3  
E4  
D6  
B7  
A7  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
NVCC_EMC  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4.IO[20]  
GPIO4.IO[21]  
GPIO4.IO[22]  
GPIO4.IO[23]  
GPIO4.IO[24]  
GPIO4.IO[25]  
GPIO4.IO[26]  
GPIO4.IO[27]  
GPIO4.IO[28]  
GPIO4.IO[29]  
GPIO4.IO[30]  
GPIO4.IO[31]  
GPIO3.IO[18]  
GPIO3.IO[19]  
GPIO3.IO[20]  
GPIO3.IO[21]  
GPIO3.IO[22]  
GPIO3.IO[23]  
GPIO3.IO[24]  
GPIO3.IO[25]  
GPIO3.IO[26]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
107  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
GPIO_EMC_41  
GPIO_SD_B0_00  
GPIO_SD_B0_01  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_04  
GPIO_SD_B0_05  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B1_06  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
ONOFF  
C7  
NVCC_EMC  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
VDD_SNVS_IN  
VDD_SNVS_IN  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
GPIO3.IO[27]  
GPIO3.IO[12]  
GPIO3.IO[13]  
GPIO3.IO[14]  
GPIO3.IO[15]  
GPIO3.IO[16]  
GPIO3.IO[17]  
GPIO3.IO[0]  
GPIO3.IO[1]  
GPIO3.IO[2]  
GPIO3.IO[3]  
GPIO3.IO[4]  
GPIO3.IO[5]  
GPIO3.IO[6]  
GPIO3.IO[7]  
GPIO3.IO[8]  
GPIO3.IO[9]  
GPIO3.IO[01]  
GPIO3.IO[11]  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
J4  
Digital  
GPIO  
J3  
Digital  
GPIO  
J1  
Digital  
GPIO  
K1  
H2  
J2  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
L5  
M5  
M3  
M4  
P2  
N3  
L3  
L4  
P3  
N4  
P4  
P5  
M6  
K7  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Input 100 K PU  
PMIC_ON_REQ  
Digital  
GPIO  
ALT0 SNVS_LP.PMIC_ON_RE Output 100 K PU  
Q
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
108  
NXP Semiconductors  
Package information and contact assignments  
Table 87. 12 x 12 mm functional contact assignments (continued)  
PMIC_STBY_REQ  
POR_B  
L7  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
CCM.PMIC_VSTBY_RE Output 100 K PU  
Q
(PKE  
disabled)  
M7  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
SRC.POR_B  
Input 100 K PU  
RTC_XTALI  
RTC_XTALO  
TEST_MODE  
N9  
P9  
K6  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
TCU.TEST_MODE  
Input 100 K PU  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
XTALI  
N12  
M8  
L8  
N6  
N7  
P7  
P6  
P11  
N11  
L6  
XTALO  
WAKEUP  
VDD_SNVS_IN  
Digital  
GPIO  
ALT5  
GPIO5.IO[0]  
Input 100 K PU  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
109  
Package information and contact assignments  
7.2.3  
12 x 12 mm, 0.8 mm pitch, ball map  
Table 88 shows the 10 x 10 mm, 0.8 mm pitch ball map for the i.MX RT1064.  
Table 88. 12 x 12 mm, 0.8 mm pitch, ball map  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
110  
NXP Semiconductors  
Package information and contact assignments  
Table 88. 12 x 12 mm, 0.8 mm pitch, ball map (continued)  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
NXP Semiconductors  
111  
Revision history  
8 Revision history  
Table 89 provides a revision history for this data sheet.  
Table 89. i.MX RT1064 Data Sheet document revision history  
Rev.  
Number  
Date  
Substantive Change(s)  
Rev. 2  
08/2020 • Changed the MPCore to core in the Section 1.1, Features  
• Added new part numbers in the Table 1, Ordering information  
• Updated the Figure 1, "Part number nomenclature—i.MX RT1064"  
• Updated the frequency of RTC OSC in the Table 2, i.MX RT1064 modules list  
• Updated conditions and maximum current of DCDC_IN in the Table 12, Maximum supply currents  
• Added a restrictions in the Section 4.2.1.1, Power-up sequence  
• Added IOH and IOL in the Table 22, Single voltage GPIO DC parameters  
• Updated the minimum and maximum values in the Table 33, SEMC output timing in SYNC mode  
• Updated the VDDAD to VDDA in the Table 54, 12-bit ADC operating conditions and Table 55, 12-bit  
ADC characteristics (VREFH = VDDA, VREFL = VSSAD)  
Rev. 1  
12/2019 • Updated SPI NAND Flash in the Section 1.1, Features  
• Updated FlexSPI, LCD/CSI/PXP, and SNVS in the Table 1, Ordering information; added KPP, SPI,  
XBAR/AOI, and CSU in the Table 1, Ordering information  
• Updated RAM in the Figure 2, "i.MX RT1064 system block diagram"  
• Updated the Section 4.1.2, Thermal resistance  
• Updated the Table 82, Boot through UART1 and removed the Table, Booth through UART2  
• Updated the Figure 53, "10 x 10 mm BGA, case x package top, bottom, and side Views" and  
Figure 54, "12 x 12 mm BGA, case x package top, bottom, and side Views"  
Rev. 0  
05/2019 • Initial version  
i.MX RT1064 Crossover Processors for Industrial Products, Rev. 2, 08/2020  
112  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data  
sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals” must be validated for each  
customer application by customer‚ customer’s technical experts. NXP does not convey any  
license under its patent rights nor the rights of others. NXP sells products pursuant to standard  
terms and conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks associated  
with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,  
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,  
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US  
and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of  
Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and  
Power.org logos and related marks are trademarks and service marks licensed by Power.org.  
© 2019-2020 NXP B.V.  
Document Number: IMXRT1064IEC  
Rev. 2  
08/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY