PX1041A [NXP]

PCI Express stand-alone X4 PHY; PCI Express的独立X4 PHY
PX1041A
型号: PX1041A
厂家: NXP    NXP
描述:

PCI Express stand-alone X4 PHY
PCI Express的独立X4 PHY

PC
文件: 总36页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PX1041A  
PCI Express stand-alone X4 PHY  
Rev. 01 — 21 June 2007  
Objective data sheet  
1. General description  
The PX1041A is a high-performance, low-power, four-lane PCI Express electrical  
PHYsical layer (PHY) that handles the low level PCI Express protocol and signaling. The  
PX1041A PCI Express PHY is compliant to the PCI Express Base Specification,  
Rev. 1.0a, and Rev. 1.1. The PX1041A includes features such as Clock and Data  
Recovery (CDR), data serialization and de-serialization, 8b/10b encoding, analog buffers,  
elastic buffer and receiver detection, and provides superior performance to the Media  
Access Control (MAC) layer devices.  
The PX1041A is a 2.5 Gbit/s PCI Express PHY with 4 × 8-bit data PXPIPE interface. Its  
PXPIPE interface is a superset of the PHY Interface for the PCI Express (PIPE)  
specification, enhanced and adapted for off-chip applications with the introduction of a  
source synchronous clock for transmit and receive data. The 4 × 8-bit data interface  
operates at 250 MHz with SSTL Class I signaling at 2.5 V or 1.8 V. The SSTL signaling is  
compatible with the I/O interfaces available in FPGA products.  
The PX1041A PCI Express PHY supports advanced power management functions. The  
PX1041AI is for the industrial temperature range (40 °C to +85 °C).  
2. Features  
2.1 PCI Express interface  
I Compliant to PCI Express Base Specification 1.0a and 1.1  
I Four PCI Express 2.5 Gbit/s lane  
I Data and clock recovery from serial stream  
I Serializer and De-serializer (SerDes)  
I Receiver detection  
I 8b/10b coding and decoding, elastic buffer and word alignment  
I Supports direct disparity control for use in transmitting compliance pattern  
I Supports lane polarity inversion  
I Low jitter and Bit Error Rate (BER)  
I Supports PCI Express-side parallel loopback  
I Supports PXPIPE-side parallel loopback  
I Supports receiver lane-to-lane deskew (optional)  
I Supports lane reversal (optional)  
2.2 PHY/MAC interface  
I Based on Intel PHY Interface for PCI Express architecture v2.0 (PIPE)  
I Adapted for off-chip with additional synchronous clock signals (PXPIPE)  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
I PIPE mode selectable  
I 4 × 8-bit parallel data interface for transmit and receive at 250 MHz  
I SSTL Class I signaling at 2.5 V or 1.8 V, without select pin  
2.3 JTAG interface  
I JTAG (IEEE 1149.1) boundary scan interface  
I Built-In Self Test (BIST) controller tests SerDes and I/O blocks at speed  
I 3.3 V CMOS signaling  
2.4 Power management  
I Dissipates < 1 W in L0 normal mode  
I Support power management of L0, L0s, L1, and L2  
2.5 Clock  
I 100 MHz external reference clock with ±300 ppm tolerance  
I Supports spread spectrum clock to reduce EMI  
I On-chip reference clock termination  
2.6 Miscellaneous  
I LFBGA208 lead free package  
I Operating ambient temperature  
N PX1041A for commercial range: 0 °C to +70 °C  
N PX1041AI for industrial range: 40 °C to +85 °C  
I ESD protection voltage for Human Body Model (HBM): 2000 V  
3. Quick reference data  
Table 1.  
Symbol Parameter  
VDDD1 digital supply voltage 1  
VDDD2  
Quick reference data  
Conditions  
for JTAG I/O  
for SSTL_18 I/O  
for SSTL_2 I/O  
for core  
Min  
3.0  
Typ  
3.3  
1.8  
2.5  
1.2  
1.2  
Max  
3.6  
Unit  
V
[1]  
[1]  
digital supply voltage 2  
1.7  
1.9  
V
2.3  
2.7  
V
VDDD3  
VDD  
digital supply voltage 3  
supply voltage  
1.15  
1.15  
1.25  
1.25  
V
for high-speed  
V
serial I/O and PVT  
VDDA1  
VDDA2  
fclk(ref)  
Tamb  
analog supply voltage 1  
analog supply voltage 2  
reference clock frequency  
ambient temperature  
for serializer  
for serializer  
1.15  
3.0  
1.2  
3.3  
100  
1.25  
3.6  
V
V
99.97  
100.03 MHz  
operating  
commercial  
industrial  
0
-
-
+70  
+85  
°C  
°C  
40  
[1] No select pin needed.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
2 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
4. Ordering information  
Table 2.  
Ordering information  
Solder process  
Type number  
Package  
Name  
Description  
Version  
PX1041A-EL1/G Pb-free (SnAgCu  
solder ball compound)  
LFBGA208 plastic low profile fine-pitch ball grid array package; SOT631-4  
208 balls; body 15 × 15 × 1 mm  
PX1041AI-EL1/G Pb-free (SnAgCu  
solder ball compound)  
LFBGA208 plastic low profile fine-pitch ball grid array package; SOT631-4  
208 balls; body 15 × 15 × 1 mm  
5. Marking  
Table 3.  
Line  
A
Lead-free package marking  
Marking  
Description  
PX1041A-EL1/G  
PX1041AI-EL1/G[1]  
xxxxxxx  
full basic type number  
B
C
diffusion lot number  
manufacturing code:  
2 = diffusion site  
P = assembly site  
G = lead-free  
2PGyyww  
yy = year code  
ww = week code  
[1] Industrial temperature range.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
3 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
6. Block diagram  
PCI Express MAC  
Ln_TxData0  
Ln_TxData1  
REGISTER  
8
PCI Express PHY  
10b/8b  
DECODE  
LANE 0  
8b/10b  
ENCODE  
ELASTIC  
BUFFER  
PARALLEL  
TO  
10  
SERIAL  
K28.5  
DETECTION  
SERIAL  
TO  
LANE 1  
LANE 2  
LANE 3  
PARALLEL  
250 MHz  
clock  
DATA  
RECOVERY  
CIRCUIT  
CLOCK RECOVERY  
CIRCUIT PLL  
TX I/O  
RX I/O  
bit stream at 2.5 Gbit/s  
CLK  
GENERATOR  
REFCLK I/O  
002aac432  
Fig 1. Block diagram of PX1041A  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
4 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
7. Pinning information  
7.1 Pinning  
ball A1  
index area  
2
4
6
8
10 12 14 16  
9 11 13 15 17  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
PX1041A-EL1/G  
PX1041AI-EL1/G  
M
N
P
R
T
U
002aac433  
Transparent top view  
Fig 2. Pin configuration for LFBGA208  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
5 of 36  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
L0_  
RXDATA7  
L0_  
RXDATA5  
L0_  
RXDATA4  
L0_  
RXDATA2  
L0_  
RXDATA0  
L0_  
TXDATA7  
L0_  
TXDATA5  
L0_  
TXDATA4  
L0_  
TXDATA2  
L1_  
RXDATA7  
L1_  
RXDATA6  
REFCLK_P  
A
B
C
D
E
F
TMS  
TDI  
RESET_N  
RXCLK  
TXCLK  
L0_  
RXDATA6  
L0_  
RXDATA3  
L0_  
RXDATA1  
L0_  
TXDATA6  
L0_  
TXDATA3  
L0_  
TXDATA1  
DESKEW_  
START  
L1_  
RXDATA5  
REFCLK_N  
TRST_N  
TCK  
TDO  
PVT  
V
SS  
V
SS  
V
SS  
V
SS  
PWRDWN1  
V
SS  
L0_  
L0_  
L0_  
L0_  
L0_  
RXPOL  
L0_  
TXCOMP  
L0_  
TXDATAK  
L0_  
TXIDLE  
L0_  
TXDATA0  
DESKEW_  
VALID  
L1_  
RXDATAK  
L1_  
RXDATA4  
V
SS  
V
DDD1  
PIPELOOPB PWRDWN0  
RXDATAK RXSTATUS1 RXSTATUS0 RXVALID  
L0_  
RXIDLE  
L0_  
RXSTATUS2  
ENCODING PIPEMODE  
L1_  
RXIDLE  
L1_  
RXDATA3  
L0_RX_P  
L0_RX_N  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
DDD2  
V
DDD2  
V
V
DDD2  
V
DDD2  
V
SS  
PHYSTATUS  
SS  
EN  
SEL  
LANE  
REVERSAL  
RXDET_  
LOOPB  
L1_  
RXDATA2  
V
SS  
V
DDA2  
V
SS  
L1_  
L1_  
L1_  
L1_  
RXDATA0  
V
SS  
L0_TX_P  
L0_TX_N  
V
DD  
V
DD  
V
DD  
RXVALID RXSTATUS2 RXDATA1  
L1_  
L1_  
TXDATA7  
L1_RX_P  
L1_RX_N  
G
H
J
V
V
V
V
V
SS  
DDD2  
DDD2  
DDD2  
RXSTATUS1  
L1_  
L1_  
L1_  
TXDATA6  
V
SS  
RXSTATUS0 TXDATA5  
L1_  
RXPOL  
L1_  
TXDATA3  
L1_  
TXDATA4  
V
SS  
L1_TX_P  
L1_TX_N  
V
DDA1  
DDA1  
DDA1  
DDA1  
DDA1  
L1_  
TXDATAK  
L1_  
TXDATA2  
L2_RX_P  
L2_RX_N  
K
L
V
V
V
V
V
SS  
DDD2  
L1_  
TXCOMP  
L1_  
TXIDLE  
L1_  
TXDATA1  
L1_  
TXDATA0  
V
SS  
L2_  
RXVALID  
L2_  
RXIDLE  
L2_  
RXDATAK  
L2_  
RXDATA7  
V
SS  
M
N
P
R
T
L2_TX_P  
L2_TX_N  
L2_  
RXPOL  
L2_  
RXSTATUS2  
L2_  
RXDATA6  
L3_RX_P  
L3_RX_N  
V
SS  
L2_  
L2_  
L2_  
RXDATA5  
L3_  
TXCOMP  
L3_  
RXPOL  
L2_  
TXCOMP  
V
SS  
V
SS  
V
DDD3  
V
DDD3  
V
SS  
V
DDD2  
V
DDD2  
V
DDD2  
V
SS  
RXSTATUS1 RXDATA4  
L2_ L2_  
TXDATA4 RXSTATUS0 RXDATA2  
L3_  
TXDATA0  
L3_  
TXIDLE  
L3_  
TXDATAK  
L3_  
L3_  
L3_  
L3_  
L3_  
L3_  
RXIDLE  
L2_  
TXDATAK  
L2_  
TXIDLE  
L2_  
L2_  
RXDATA3  
V
SS  
RXVALID RXSTATUS0 RXSTATUS1 RXSTATUS2 RXDATAK  
L3_  
TXDATA1  
L3_  
TXDATA4  
L3_  
TXDATA6  
L3_  
RXDATA2  
L3_  
RXDATA3  
L3_  
RXDATA6  
L2_  
TXDATA1  
L2_  
TXDATA3  
L2_  
TXDATA6  
L2_  
RXDATA1  
V
SS  
L3_TX_P  
L3_TX_N  
V
SS  
V
SS  
V
SS  
V
SS  
L3_  
TXDATA2  
L3_  
TXDATA3  
L3_  
TXDATA5  
L3_  
TXDATA7  
L3_  
RXDATA0  
L3_  
RXDATA1  
L3_  
RXDATA4  
L3_  
RXDATA5  
L3_  
RXDATA7  
L2_  
TXDATA0  
L2_  
TXDATA2  
L2_  
TXDATA5  
L2_  
TXDATA7  
L2_  
RXDATA0  
U
VREFS  
002aac434  
Transparent top view.  
Fig 3. Ball mapping  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
7.2 Pin description  
The PHY input and output pins are described in Table 4 to Table 11. Note that input and  
output is defined from the perspective of the PHY. Thus a signal on a pin described as an  
output is driven by the PHY and a signal on a pin described as an input is received by the  
PHY. A basic description of each pin is provided.  
Signals named Lx_*, designate the per-lane signal where x = (0 to 3). For example,  
Lx_RX_P expands to the following signals L0_RX_P, L1_RX_P, L2_RX_P and L3_RX_P.  
All SSTL signaling is 2.5 V or 1.8 V selectable.  
Table 4.  
PCI Express serial data lines  
Symbol  
Pin  
D1  
E1  
F3  
G3  
G1  
H1  
J3  
Type  
input  
Signaling  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
PCIe I/O  
Description  
L0_RX_P  
L0_RX_N  
L0_TX_P  
L0_TX_N  
L1_RX_P  
L1_RX_N  
L1_TX_P  
L1_TX_N  
L2_RX_P  
L2_RX_N  
L2_TX_P  
L2_TX_N  
L3_RX_P  
L3_RX_N  
L3_TX_P  
L3_TX_N  
lane 0 differential input receive pair  
with 50 on-chip termination[1]  
input  
output  
output  
input  
lane 0 differential output transmit pair  
with 50 on-chip termination[1]  
lane 1 differential input receive pair  
with 50 on-chip termination  
input  
output  
output  
input  
lane 1 differential output transmit pair  
with 50 on-chip termination  
K3  
K1  
L1  
lane 2 differential input receive pair  
with 50 on-chip termination  
input  
M3  
N3  
N1  
P1  
T1  
U1  
output  
output  
input  
lane 2 differential output transmit pair  
with 50 on-chip termination  
lane 3 differential input receive pair  
with 50 on-chip termination  
input  
output  
output  
lane 3 differential output transmit pair  
with 50 on-chip termination  
[1] As PCIe specification defined.  
Table 5.  
Symbol  
PXPIPE interface transmit data signals  
Pin  
Type  
Signaling  
Description  
L0_TXDATA[7:0] A9, B9, A10,  
A11, B11,  
input  
SSTL  
8-bit transmit data input from the MAC  
to the PHY lane 0  
A12, B12, C12  
L0_TXDATAK  
C10  
input  
input  
input  
SSTL  
SSTL  
SSTL  
selection input for the symbols of  
transmit data at lane 0;  
LOW = data byte; HIGH = control byte  
L1_TXDATA[7:0] G17, H17,  
H16, J17, J16,  
8-bit transmit data input from the MAC  
to the PHY lane 1  
K17, L16, L17  
L1_TXDATAK  
K15  
selection input for the symbols of  
transmit data at lane 1;  
LOW = data byte; HIGH = control byte  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
7 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 5.  
Symbol  
PXPIPE interface transmit data signals …continued  
Pin  
Type  
Signaling  
Description  
L2_TXDATA[7:0] U16, T15,  
U15, R14,  
input  
SSTL  
8-bit transmit data input from the MAC  
to the PHY lane 2  
T14, U13,  
T12, U12  
L2_TXDATAK  
R12  
input  
input  
input  
SSTL  
SSTL  
SSTL  
selection input for the symbols of  
transmit data at lane 2;  
LOW = data byte; HIGH = control byte  
L3_TXDATA[7:0] U6, T6, U5,  
T5, U4, U3,  
8-bit transmit data input from the MAC  
to the PHY lane 3  
T3, R3  
L3_TXDATAK  
R5  
selection input for the symbols of  
transmit data at lane 3;  
LOW = data byte; HIGH = control byte  
Table 6.  
Symbol  
PXPIPE interface receive data signals  
Pin  
Type  
Signaling  
Description  
L0_RXDATA[7:0] A4, B5, A5,  
A6, B6, A7,  
output  
SSTL  
8-bit receive data output from the PHY  
lane 0 to the MAC  
B8, A8  
L0_RXDATAK  
C4  
output  
output  
SSTL  
SSTL  
selection output for the symbols of  
receive data at lane 0;  
LOW = data byte; HIGH = control byte  
L1_RXDATA[7:0] A16, A17,  
B17, C17,  
8-bit receive data output from the PHY  
lane 1 to the MAC  
D17, E17,  
F16, F17  
L1_RXDATAK  
C16  
output  
output  
SSTL  
SSTL  
selection output for the symbols of  
receive data at lane 1;  
LOW = data byte; HIGH = control byte  
L2_RXDATA[7:0] M17, N17,  
P17, P16,  
8-bit receive data output from the PHY  
lane 2 to the MAC  
R17, R16,  
T17, U17  
L2_RXDATAK  
M16  
output  
output  
output  
SSTL  
SSTL  
SSTL  
selection output for the symbols of  
receive data at lane 2;  
LOW = data byte; HIGH = control byte  
L3_RXDATA[7:0] U11, T11,  
U10, U9, T9,  
8-bit receive data output from the PHY  
lane 3 to the MAC  
T8, U8, U7  
L3_RXDATAK  
R10  
selection output for the symbols of  
receive data at lane 3;  
LOW = data byte; HIGH = control byte  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
8 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 7.  
PXPIPE interface command signals  
Symbol  
Pin  
Type  
Signaling  
Description  
L0_TXIDLE  
C11 input  
SSTL  
forces lane 0 TX output to electrical idle (see  
Table 13)  
L1_TXIDLE  
L2_TXIDLE  
L3_TXIDLE  
L0_TXCOMP  
L15  
input  
SSTL  
SSTL  
SSTL  
SSTL  
forces lane 1 TX output to electrical idle (see  
Table 13)  
R13 input  
forces lane 2 TX output to electrical idle (see  
Table 13)  
R4  
C9  
input  
input  
forces lane 3 TX output to electrical idle (see  
Table 13)  
used when transmitting the compliance  
pattern at lane 0; HIGH-level sets the running  
disparity to negative  
L1_TXCOMP  
L2_TXCOMP  
L3_TXCOMP  
L0_RXPOL  
L14  
P13  
P4  
input  
input  
input  
input  
SSTL  
SSTL  
SSTL  
SSTL  
used when transmitting the compliance  
pattern at lane 1; HIGH-level sets the running  
disparity to negative  
used when transmitting the compliance  
pattern at lane 2; HIGH-level sets the running  
disparity to negative  
used when transmitting the compliance  
pattern at lane 3; HIGH-level sets the running  
disparity to negative  
C8  
signals the PHY to perform a polarity  
inversion on the receive data at lane 0;  
LOW = PHY does no polarity inversion;  
HIGH = PHY does polarity inversion  
L1_RXPOL  
L2_RXPOL  
L3_RXPOL  
J15  
input  
SSTL  
SSTL  
SSTL  
signals the PHY to perform a polarity  
inversion on the receive data at lane 1;  
LOW = PHY does no polarity inversion;  
HIGH = PHY does polarity inversion  
N14 input  
signals the PHY to perform a polarity  
inversion on the receive data at lane 2;  
LOW = PHY does no polarity inversion;  
HIGH = PHY does polarity inversion  
P5  
input  
signals the PHY to perform a polarity  
inversion on the receive data at lane 3;  
LOW = PHY does no polarity inversion;  
HIGH = PHY does polarity inversion  
RESET_N  
A13  
E15  
input  
input  
SSTL  
SSTL  
PHY reset input; active LOW  
RXDET_ LOOPB  
instructs the PHY to begin a receiver  
detection operation or to begin loopback;  
LOW = reset state  
PWRDWN0  
PWRDWN1  
C14 input  
SSTL  
SSTL  
SSTL  
transceiver power-up and power-down inputs  
(see Table 12); 0x2 = reset state  
B14  
input  
input  
DESKEW_ START B15  
signals the PHY to start a lane to lane  
deskew (see Table 15); LOW = reset state  
LANEREVERS E14  
input  
SSTL  
signals the PHY to perform lane reversal  
(see Table 15), LOW = reset state  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
9 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 7.  
PXPIPE interface command signals …continued  
Symbol  
Pin  
Type  
Signaling  
Description  
PIPELOOPB  
C13 input  
D13 input  
D12 input  
SSTL  
signals the PHY to do loopback at PXPIPE  
side (see Table 15), LOW = reset state  
PIPESEL  
SSTL  
SSTL  
signals the PHY to switch from PXPIPE to  
PIPE interface, LOW = reset state  
ENCODEN  
enable the internal encoder to replace  
side-band signals to perform selected  
functions (see Table 15)  
Table 8.  
PXPIPE interface status signals  
Symbol  
Pin  
Type  
Signaling  
Description  
L0_RXVALID  
C7  
output  
SSTL  
indicates symbol lock and valid data on  
RX_DATA and RX_DATAK at lane 0  
L1_RXVALID  
L2_RXVALID  
L3_RXVALID  
L0_RXIDLE  
L1_RXIDLE  
L2_RXIDLE  
L3_RXIDLE  
F14  
output  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
indicates symbol lock and valid data on  
RX_DATA and RX_DATAK at lane 1  
M14 output  
indicates symbol lock and valid data on  
RX_DATA and RX_DATAK at lane 2  
R6  
D4  
output  
output  
indicates symbol lock and valid data on  
RX_DATA and RX_DATAK at lane 3  
indicates receiver detection of an electrical  
idle at lane 0; this is an asynchronous signal  
D16 output  
M15 output  
R11 output  
indicates receiver detection of an electrical  
idle at lane 1; this is an asynchronous signal  
indicates receiver detection of an electrical  
idle at lane 2; this is an asynchronous signal  
indicates receiver detection of an electrical  
idle at lane 3; this is an asynchronous signal  
L0_RXSTATUS0  
L0_RXSTATUS1  
L0_RXSTATUS2  
L1_RXSTATUS0  
L1_RXSTATUS1  
L1_RXSTATUS2  
L2_RXSTATUS0  
L2_RXSTATUS1  
L2_RXSTATUS2  
L3_RXSTATUS0  
L3_RXSTATUS1  
L3_RXSTATUS2  
C6  
C5  
D5  
output  
output  
output  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
encodes receiver status and error codes for  
the received data stream and receiver  
detection at lane 0 (see Table 14)  
H15 output  
G15 output  
encodes receiver status and error codes for  
the received data stream and receiver  
detection at lane 1 (see Table 14)  
F15  
R15 output  
P15 output  
N15 output  
output  
encodes receiver status and error codes for  
the received data stream and receiver  
detection at lane 2 (see Table 14)  
R7  
R8  
R9  
output  
output  
output  
encodes receiver status and error codes for  
the received data stream and receiver  
detection at lane 3 (see Table 14)  
DESKEW_VALID C15 output  
indicates the lane deskew is completed and  
passed (see Table 15)  
PHYSTATUS D15 output  
SSTL  
used to communicate completion of several  
PHY functions including power management  
state transitions and receiver detection  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
10 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 9.  
Clock and reference signals  
Symbol  
Pin  
Type  
Signaling  
Description  
TXCLK  
A15  
input  
SSTL  
source synchronous 250 MHz transmit clock  
input from MAC. All input data and signals to the  
PHY are synchronized to this clock.  
RXCLK  
A14  
output  
SSTL  
source synchronous 250 MHz clock output for  
received data and status signals bound for the  
MAC.  
REFCLK_P  
REFCLK_N  
A1  
B1  
input  
input  
PCIe I/O  
PCIe I/O  
100 MHz reference clock input. This is the  
spread spectrum source clock for PCI Express.  
Differential pair input with 50 on-chip  
termination.  
PVT  
D3  
-
analog I/O input or output to create a compensation signal  
internally that will adjust the I/O pads  
characteristics as PVT drifts. Connect to VDD  
through a 49.9 resistor.  
VREFS  
U14 input  
reference voltage input for SSTL signaling.  
Connect to 900 mV for SSTL_18, to 1.25 V for  
SSTL_2.  
Table 10. 3.3 V JTAG signals  
Symbol  
TMS  
Pin  
A2  
B2  
Type  
input  
input  
Signaling  
Description  
3.3 V CMOS test mode select input  
TRST_N  
3.3 V CMOS test reset input for the JTAG interface;  
active LOW. pull-down required for normal  
operation  
TCK  
TDI  
B3  
A3  
C3  
input  
input  
output  
3.3 V CMOS test clock input for the JTAG interface  
3.3 V CMOS test data input  
TDO  
3.3 V CMOS test data output  
Table 11. PCI Express PHY power supplies  
Symbol Pin  
VDDA1 J4, K4, L4, M4, N4  
Type  
Signaling Description  
1.2 V analog power supply for  
power  
serializer and de-serializer  
VDDA2  
E4  
power  
power  
3.3 V analog power supply for  
serializer and de-serializer  
VDDD1  
VDDD2  
C2  
3.3 V power supply for JTAG I/O  
D7, D8, D10, D11, G14, power  
H14, J14, K14, P10,  
P11, P12  
2.5 V or 1.8 V power supply for SSTL  
I/O  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
11 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 11. PCI Express PHY power supplies …continued  
Symbol Pin  
Type  
Signaling Description  
VDDD3  
VDD  
P7, P8  
power  
power  
1.2 V power supply for core  
F4, G4, H4  
1.2 V power supply for high-speed  
serial PCI Express I/O pads and PVT  
VSS  
B4, B7, B10, B13, B16, ground  
C1, D2, D6, D9, D14,  
ground  
E2, E3, E16, F1, F2, G2,  
G16, H2, H3, J1, J2, K2,  
K16, L2, L3, M1, M2, N2,  
N16, P2, P3, P6, P9,  
P14, R1, R2, T2, T4, T7,  
T10, T13, T16, U2  
8. Functional description  
The main function of the PHY is to convert digital data into electrical signals and vice  
versa. The PCI Express PHY handles the low level PCI Express protocol and signaling.  
The PX1041A PCI Express PHY consists of the Physical Coding Sub-layer (PCS), a  
Serializer and De-serializer (SerDes) and a set of I/Os (pads). The PCI Express PHY  
handles the low level PCI Express protocol and signaling. This includes features such as  
Clock and Data Recovery (CDR), data serialization and de-serialization, 8b/10b encoding,  
analog buffers, elastic buffer and receiver detection.  
The PXPIPE interface between the MAC and PX1041A is a superset of the PHY Interface  
for the PCI Express (PIPE) specification. The following feature have been added:  
Source synchronous clocks for RX and TX data to simplify timing closure.  
The 4 × 8-bit data width PXPIPE interface operates at 250 MHz with SSTL Class I  
signaling at 2.5 V or 1.8 V. PX1041A does not integrate SSTL termination resistors inside  
the IC.  
Each PCI Express lane consists of a differential input pair and a differential output pair.  
The data rate per lane is 2.5 Gbit/s.  
8.1 Receiving data  
Incoming data enters the chip at the RX interface. The receiver converts these signals  
from small-amplitude differential signals into rail-to-rail digital signals. The carrier detect  
circuit detects whether data is present on the line and passes this information through to  
the SerDes and PCS.  
If a valid stream of data is present the Clock and Data Recovery unit (CDR) first recovers  
the clock from the data and then uses this clock for re-timing the data (i.e., recovering the  
data).  
The de-serializer or Serial-to-Parallel converter (S2P) de-serializes this data into 10-bits  
parallel data.  
Since the S2P has no knowledge about the data, the word alignment is still random. This  
is fixed in the digital domain by the PCS block. It first detects a 10-bit comma character  
(K28.5) from the random data stream and aligns the bits. Then it converts the 10-bit raw  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
12 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
data into 8-bit words using 8b/10b decoding. An elastic buffer and FIFO brings the  
resulting data to the right clock domain, which is the RX source synchronous clock  
domain.  
8.2 Transmitting data  
When the PHY transmits, it receives 4 × 8-bit data from the MAC. This data is encoded  
using an 8b/10b encoding algorithm. The 2 bits overhead of the 8b/10b encoding ensures  
the serial data will be DC-balanced and has a sufficient 0-to-1 and 1-to-0 transition density  
for clock recovery at the receiver side.  
The serializer or Parallel-to-Serial converter (P2S) serializes the 10 bits data into serial  
data streams. These data streams are latched into the transmitter, where they are  
converted into small amplitude differential signals. The transmitter has built-in  
de-emphasis for a larger eye opening at the receiver side.  
The PLL has a sufficiently high bandwidth to handle a 100 MHz reference clock with a  
30 kHz to 33 kHz spread spectrum modulation.  
8.3 Clocking  
There are three clock signals used by the PX1041A:  
REFCLK is a 100 MHz external reference clock that the PHY uses to generate the  
250 MHz data clock and the internal bit rate clock. This clock may have  
30 kHz to 33 kHz Spread Spectrum Clock (SSC) modulation.  
TXCLK is a reference clock that the PHY uses to clock the TXDATA and command.  
This source synchronous clock is provided by the MAC. The PHY expects that the  
rising edge of TXCLK is centered to the data. The TXCLK has to be the same  
frequency as RXCLK.  
RXCLK is a source synchronous clock provided by the PHY. The RXDATA and status  
signals are synchronous to this clock. The PHY aligns the rising edge of RXCLK to  
the center of the data. RXCLK may be used by the MAC to clock its internal logic.  
8.4 Reset  
The PHY must be held in reset until power and REFCLK are stable. It takes the PHY  
64 µs maximum to stabilize its internal clocks. RXCLK frequency is the same as REFCLK  
frequency, 100 MHz, during this time. The PHY de-asserts PHYSTATUS when internal  
clocks are stable.  
The PIPE specification recommends that while RESET_N is asserted, the MAC should  
have RXDET_LOOPB de-asserted, TXIDLE asserted, TXCOMP de-asserted, RXPOL  
de-asserted and power state P1. The MAC can also assert a reset if it receives a physical  
layer reset packet.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
13 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
RXCLK  
RESET_N  
PHYSTATUS  
100 MHz  
250 MHz  
002aac172  
Fig 4. Reset  
8.5 Power management  
The power management signals allow the PHY to manage power consumption. The PHY  
meets all timing constraints provided in the PCI Express base specification regarding  
clock recovery and link training for the various power states.  
Four power states are defined: P0, P0s, P1 and P2. P0 state is the normal operational  
state for the PHY. When directed from P0 to a lower power state, the PHY can  
immediately take whatever power saving measures are appropriate.  
In states P0, P0s and P1, the PHY keeps internal clocks operational. For all state  
transitions between these three states, the PHY indicates successful transition into the  
designated power state by a single cycle assertion of PHYSTATUS. For all power state  
transitions, the MAC must not begin any operational sequences or further power state  
transitions until the PHY has indicated that the initial state transition is completed. TXIDLE  
should be asserted while in power states P0s and P1.  
P0 state: All internal clocks in the PHY are operational. P0 is the only state where the  
PHY transmits and receives PCI Express signaling. P0 is the appropriate PHY power  
management state for most states in the Link Training and Status State Machine  
(LTSSM). Exceptions are listed for each lower power PHY state (P0s, P1 and P2).  
P0s state: The MAC will move the PHY to this state only when the transmit channel is  
idle.  
While the PHY is in either P0 or P0s power states, if the receiver is detecting an electrical  
idle, the receiver portion of the PHY can take appropriate power saving measures. Note  
that the PHY is capable of obtaining bit and symbol lock within the PHY-specified time  
(N_FTS with or without common clock) upon resumption of signaling on the receive  
channel. This requirement only applies if the receiver had previously been bit and symbol  
locked while in P0 or P0s states.  
P1 state: Selected internal clocks in the PHY are turned off. The MAC will move the  
PHY to this state only when both transmit and receive channels are idle. The PHY  
indicates a successful entry into P1 (by asserting PHYSTATUS). P1 should be used  
for the disabled state, all detect states, and L1.idle state of the Link Training and  
Status State Machine (LTSSM).  
P2 state: PHY will enter P2 and power down the TX and the RX PLLs. RXCLK is  
turned off and the PHY interface is in asynchronous mode. The PHY still uses main  
power and cannot receive or transmit beacon.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
14 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 12. Summary of power management state  
PWRDWN[1:0]  
Power management state  
P0, normal operation  
Transmitter  
on[1]  
idle[2]  
idle[2]  
idle[2]  
Receiver  
on  
TX PLL  
on  
RXCLK  
on  
RX PLL/CDR  
00b  
01b  
10b  
11b  
on  
on  
off  
off  
P0s, power saving state  
P1, lower power state  
P2, lowest power state  
idle  
on  
on  
idle  
on  
on  
idle  
off  
off  
[1] TXIDLE = 0  
[2] TXIDLE = 1  
8.6 Receiver detect  
When the PHY is in the P1 state, it can be instructed to perform a receiver detection  
operation to determine if there is a receiver at the other end of the link. Basic operation of  
receiver detection is that the MAC requests the PHY to do a receiver detect sequence by  
asserting RXDET_LOOPB. When the PHY has completed the receiver detect sequence,  
each lane drives its own RXSTATUS signals to the value of 011b if a receiver is present, or  
to 000b if there is no receiver. Then the PHY will assert PHYSTATUS to indicate the  
completion of receiver detect operation. The MAC uses the rising edge of PHYSTATUS to  
sample each lane’s RXSTATUS signals and then de-asserts RXDET_LOOPB. A few  
cycles after the RXDET_LOOPB de-asserts, the PHYSTATUS is also de-asserted.  
TXCLK  
RXDET_LOOPB  
PWRDWN1,  
10b  
PWRDWN0  
RXCLK  
PHYSTATUS  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
000b  
011b  
000b  
002aac173  
Fig 5. Receiver detect - receiver present  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
15 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
8.7 Loopback  
The PHY supports an internal loopback from the PCI Express receiver to the transmitter  
of every lane with the following characteristics.  
The PHY retransmits each 10-bit data and control symbol exactly as received, without  
applying scrambling or descrambling or disparity corrections, with the following rules:  
If a received 10-bit symbol is determined to be an invalid 10-bit code (i.e., no legal  
translation to a control or data value possible), the PHY still retransmits the symbol  
exactly as it was received.  
If a SKP ordered set retransmission requires adding a SKP symbol to accommodate  
timing tolerance correction, any disparity can be chosen for the SKP symbol.  
The PHY continues to provide the received data on the PXPIPE interface, behaving  
exactly like normal data reception.  
The PHY transitions from normal transmission of data from the PXPIPE interface to  
looping back the received data at a symbol boundary.  
The PHY begins to loopback data when the MAC asserts RXDET_LOOPB while doing  
normal data transmission. The PHY stops transmitting data from the PXPIPE interface,  
and begins to loopback received symbols. While doing loopback, the PHY continues to  
present received data on the PXPIPE interface.  
The PHY stops looping back received data when the MAC de-asserts RXDET_LOOPB.  
Transmission of data on the parallel interface begins immediately.  
Since RXDET_LOOPB is a share signal, all lanes enter and exit the loopback mode at the  
same time.  
The timing diagram of Figure 6 shows example timing for beginning loopback. In this  
example, the receiver is receiving a repeating stream of bytes, Rx-a through Rx-z.  
Similarly, the MAC is causing the PHY to transmit a repeating stream of bytes Tx-a  
through Tx-z. When the MAC asserts RXDET_LOOPB to the PHY, the PHY begins to  
loopback the received data to the differential TX_P and TX_N lines.  
TXCLK  
RXDET_LOOPB  
TXDATA[7:0]  
RXCLK  
Tx-m  
Rx-c  
Tx-n  
Rx-d  
Tx-o  
Rx-e  
Tx-p  
Rx-f  
Tx-q  
Rx-g  
RXDATA[7:0]  
TX_P, TX_N  
Tx-m  
Tx-n  
Rx-e  
002aac174  
Fig 6. Loopback start  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
16 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
The timing diagram of Figure 7 shows an example of switching from loopback mode to  
normal mode. As soon as the MAC detects an electrical idle ordered-set, the MAC  
de-asserts RXDET_LOOPB, asserts TXIDLE and changes the POWERDOWN signals to  
state P1.  
RXCLK  
RXDATA[7:0]  
TXCLK  
COM  
IDL  
Junk  
RXDET_LOOPB  
TXIDLE  
includes electrical idle  
ordered set  
TX_P, TX_N  
Looped back RX data  
Junk  
001aac785  
Fig 7. Loopback end  
8.8 Electrical idle and lane turn off  
The PCI Express Base Specification requires that devices send an Electrical Idle  
ordered-set before TX goes to the electrical idle state.  
The timing diagram of Figure 8 shows an example of timing for entering electrical idle.  
TXCLK  
TXDATA[7:0]  
TXDATAK  
TXIDLE  
ScZero  
COM  
IDL  
TX_P, TX_N  
active (ends with Electrical Idle ordered-set)  
002aac175  
Fig 8. Electrical idle  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
17 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 13 summarizes the function of some PXPIPE control signals.  
Table 13. Control signals function summary  
PWRDWN[1:0]  
RXDET_LOOPB  
TXIDLE  
Function description  
normal operation  
transmitter in idle  
loopback mode  
illegal  
P0: 00b  
0
0
1
1
X
0
1
0
1
0
1
0
1
1
X
P0s: 01b  
P1: 10b  
illegal  
transmitter in idle  
illegal  
X
0
1
X
transmitter in idle  
receiver detect  
transmitter and receiver turned off.  
P2: 11b  
Remark: Beacon transmission and  
reception are not supported.  
The MAC can disable one or more lanes which are not in use. The MAC asserts both  
Lx_TXIDLE and Lx_TXCOMP at the same time to instruct the PHY to turn off the  
corresponding lane x. The disabled lane(s) of the PHY will ignore all other signals from the  
MAC, except RESET_N. The MAC will ignore any signals from the disabled lane(s).  
When the MAC wants to turn on the disabled lane(s), it must reset the whole PHY as  
described in Section 8.4.  
8.9 Clock tolerance compensation  
The PHY receiver contains an elastic buffer used to compensate for differences in  
frequencies between bit rates at the two ends of a link. The elastic buffer is capable of  
holding at least seven symbols to handle worst case differences (600 ppm) in frequency  
and worst case intervals between SKP ordered-sets. The PHY is responsible for inserting  
or removing SKP symbols in the received data stream to avoid elastic buffer overflow or  
underflow. The PHY monitors the receive data stream, and when a Skip ordered-set is  
received, the PHY can add or remove one SKP symbol from each SKP ordered-set as  
appropriate to manage its elastic buffer. Whenever a SKP symbol is added or removed,  
the PHY will signal this to the MAC using the RXSTATUS signals. These signals have a  
non-zero value for one clock cycle and indicate whether a SKP symbol was added or  
removed from the received SKP ordered-set. RXSTATUS should be asserted during the  
clock cycle when the COM symbol of the SKP ordered-set is moved across the parallel  
interface. If the removal of a SKP symbol causes no SKP symbols to be transferred across  
the parallel interface, then RXSTATUS is asserted at the same time that the COM symbol  
(that was part of the received skip ordered-set) is transmitted across the parallel interface.  
Figure 9 shows a sequence where the PHY inserted a SKP symbol in the data stream.  
Figure 10 shows a sequence where the PHY removed a SKP symbol from a SKP  
ordered-set.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
18 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
RXCLK  
RXDATA[7:0]  
RXVALID  
active  
000b  
COM  
001b  
SKP  
SKP  
active  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
000b  
001aac779  
Fig 9. Clock correction - insert a SKP  
RXCLK  
active  
000b  
COM  
010b  
SKP  
active  
RXDATA[7:0]  
RXVALID  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
000b  
002aac176  
Fig 10. Clock correction - remove a SKP  
8.10 Error detection  
The PHY is capable of detecting receive errors of several types. These errors are signaled  
per lane to the MAC layer using the receiver status signals Lx_RXSTATUS.  
Table 14. Function table PXPIPE status interface signals  
Operating mode  
Output pin  
RXSTATUS2 RXSTATUS1 RXSTATUS0  
Received data OK  
One SKP added  
L
L
L
L
L
H
L
One SKP removed  
Receiver detected  
8b/10b decode error  
Elastic buffer overflow  
Elastic buffer underflow  
Receive disparity error  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
Because of higher level error detection mechanisms (like CRC) built into the data link layer  
of PCI Express, there is no need to specifically identify symbols with errors. However,  
timing information about when the error occurred in the data stream is important. When a  
receive error occurs, the appropriate error code is asserted for one clock cycle at the point  
closest to where the error actually occurred.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
19 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
There are four error conditions that can be encoded on the RXSTATUS signals. If more  
than one error should happen to occur on a received byte, the errors are signaled with the  
priority shown below.  
1. 8b/10b decode error  
2. Elastic buffer overflow  
3. Elastic buffer underflow  
4. Disparity error  
8.10.1 8b/10b decode errors  
For a detected 8b/10b decode error, the PHY places an EDB (EnD Bad) symbol in the  
data stream in place of the bad byte, and encodes RXSTATUS with a decode error during  
the clock cycle when the effected byte is transferred across the parallel interface. In  
Figure 11 the receiver is receiving a stream of bytes Rx-a through Rx-z, and byte Rx-c has  
an 8b/10b decode error. In place of that byte, the PHY places an EDB on the parallel  
interface, and sets RXSTATUS to the 8b/10b decode error code. Note that a byte that  
cannot be decoded may also have bad disparity, but the 8b/10b error has precedence.  
RXCLK  
Rx-a  
000b  
Rx-b  
EDB  
100b  
Rx-d  
000b  
Rx-e  
RXDATA[7:0]  
RXVALID  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
001aac780  
Fig 11. 8b/10b decode errors  
8.10.2 Disparity errors  
For a detected disparity error, the PHY asserts RXSTATUS with the disparity error code  
during the clock cycle when the effected byte is transferred across the parallel interface. In  
Figure 12 the receiver detected a disparity error on Rx-c data byte, and indicates this with  
the assertion of RXSTATUS.  
RXCLK  
Rx-a  
000b  
Rx-b  
Rx-c  
111b  
Rx-d  
000b  
Rx-e  
RXDATA[7:0]  
RXVALID  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
001aac781  
Fig 12. Disparity errors  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
20 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
8.10.3 Elastic buffer  
For elastic buffer errors, an underflow is signaled during the clock cycle when the spurious  
symbol is moved across the parallel interface. The symbol moved across the interface is  
the EDB symbol. In the timing diagram Figure 13, the PHY is receiving a repeating set of  
symbols Rx-a through Rx-z. The elastic buffer underflow causing the EDB symbol to be  
inserted between the Rx-c and Rx-d symbols. The PHY drives RXSTATUS to indicate  
buffer underflow during the clock cycle when the EDB is presented on the parallel  
interface.  
RXCLK  
Rx-a  
000b  
Rx-b  
Rx-c  
EDB  
110b  
Rx-d  
000b  
RXDATA[7:0]  
RXVALID  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
001aac782  
Fig 13. Elastic buffer underflow  
For an elastic buffer overflow, the overflow is signaled during the clock cycle where the  
dropped symbol would have appeared in the data stream. In the timing diagram of  
Figure 14, the PHY is receiving a repeating set of symbols Rx-a through Rx-z. The elastic  
buffer overflows causing the symbol Rx-d to be discarded. The PHY drives RXSTATUS to  
indicate buffer overflow during the clock cycle when Rx-d would have appeared on the  
parallel interface.  
RXCLK  
Rx-a  
000b  
Rx-b  
Rx-c  
Rx-e  
101b  
Rx-f  
RXDATA[7:0]  
RXVALID  
RXSTATUS2,  
RXSTATUS1,  
RXSTATUS0  
000b  
001aac783  
Fig 14. Elastic buffer overflow  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
21 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
8.11 Polarity inversion  
The PHY supports lane polarity inversion for each lane. The PHY inverts received data for  
the lane which has its corresponding Lx_RXPOL asserted. The PHY begins data  
inversion within 20 symbols after RXPOL is asserted.  
RXCLK  
RXDATA[7:0]  
D21.5  
D21.5  
D10.2  
D10.2  
RXVALID  
RXPOL  
001aac786  
Fig 15. Polarity inversion  
8.12 Setting negative disparity  
To set the running disparity to negative, the MAC asserts the corresponding Lx_TXCOMP  
for one clock cycle that matches with the data that is to be transmitted with negative  
disparity.  
TXCLK  
data  
K28.5  
K28.5  
K28.5  
K28.5  
TXDATA[7:0]  
TXCOMP  
byte transmitted  
with negative disparity  
valid data  
K28.5−  
K28.5+  
TX_P, TX_N  
002aac177  
Fig 16. Setting negative disparity  
8.13 JTAG boundary scan interface  
Joint Test Action Group (JTAG) or IEEE 1149.1 is a standard, specifying how to control  
and monitor the pins of compliant devices on a printed-circuit board. This standard is  
commonly known as ‘JTAG Boundary Scan’.  
This standard defines a 5-pin serial protocol for accessing and controlling the signal levels  
on the pins of a digital circuit, and has some extensions for testing the internal circuitry on  
the chip itself, which is beyond the scope of this data sheet.  
Access to the JTAG interface is provided to the customer for the sole purpose of using  
boundary scan for interconnect test verification between other compliant devices that may  
reside on the board. Using JTAG for purposes other than boundary scan may produce  
undesired effects.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
22 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
The JTAG interface is a 3.3 V CMOS signaling. JTAG TRST_N must be asserted LOW for  
normal device operation. If JTAG is not planned to be used, it is recommended to  
pull down TRST_N and other JTAG input signals to VSS via resistors.  
8.14 Optional functions  
The PHY supports some optional functions:  
Lane-to-lane deskew  
Lane reversal  
PXPIPE-side parallel loopback  
PIPE mode select  
These features can be activated by either the side-band signals or the in-band encoded  
commands.  
When ENCODEN pin is set to LOW, all functions will be controlled by the dedicated  
side-band signal pins;  
When ENCODEN pin is set to HIGH, the PHY expects encoded commands to activate the  
required function. Any activity on the corresponding pins will be ignored.  
Table 15 summarizes these optional functions.  
Table 15. Optional functions summary  
Side-band signals  
DESKEW_START  
DESKEW_VALID  
ENCODEN = 0  
ENCODEN = 1  
1 = start lane-to-lane deskew  
don’t care; PHY expects an encoded command  
1 = indicates deskew operation is completed don’t care; PHY expects an encoded command  
and passed  
LANEREVERS  
PIPESEL  
1 = causes all lanes to reverse  
0 = PXPIPE interface selected  
1 = PIPE interface selected  
don’t care; PHY expects an encoded command  
0 = PXPIPE interface selected  
1 = PIPE interface selected  
PIPELOOPB  
1 = at PXPIPE side, TXDATA[7:0] directly  
loopback to RXDATA[7:0]  
0 = PHY expects an encoded command  
1 = reserved  
The principle of the in-band signaling is based on the use of some invalid 8b/10b special  
character symbols as encoded commands. Table 16 summarizes the encoded  
commands, and Table 17 is for the status signals.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
23 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 16. Encoded commands  
Command  
function  
Encoded TXDATA[7:0], TXDATAK  
TXDATA7 TXDATA6 TXDATA5 TXDATA4 TXDATA3 TXDATA2 TXDATA1 TXDATA0 TXDATAK  
Plain  
1
0
1
1
1
1
0
0
1
COMMA  
COMMA with 1  
lane-to-lane  
deskew  
0
1
1
1
1
0
1
1
COMMA with 1  
lane reversal  
0
0
1
1
1
1
1
1
1
1
1
1
0
1
1
COMMA with 1  
lane reversal  
and  
1
lane-to-lane  
deskew  
start  
PXPIPE-side  
loopback  
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
1
stop  
PXPIPE-side  
loopback  
Table 17. Encoded status  
Command  
function  
Encoded RXDATA[7:0], RXDATAK  
RXDATA7 RXDATA6 RXDATA5 RXDATA4 RXDATA3 RXDATA2 RXDATA1 RXDATA0 RXDATAK  
lane-to-lane  
deskew  
completed  
and passed  
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
lane-to-lane  
deskew  
completed  
but failed  
performing  
lane-to-lane  
deskew  
The PHY has priority to choose the physical lane 0 as the master lane, unless the lane  
has been turned off. The encoded commands and status signals should go to L0_TXDATA  
and L0_RXDATA, and affect all four lanes. If lane 0 is turned off, then the next highest  
physical lane becomes the master lane.  
8.14.1 Lane-to-lane deskew  
Lane-to-lane deskewing is required by PCIe specification, and is typically implemented in  
the MAC. When the PHY offers the feature of receiver lane-to-lane deskew, the MAC  
needs to instruct the PHY to start the lane deskew function when it is needed. The PHY  
will respond with some status signals.  
With the side-band signal, the PHY will detect the rising edge of the DESKEW_START to  
start the deskew operation. The PHY responds back by asserting DESKEW_VALID for a  
single cycle if deskew is completed and passed. The MAC needs a built-in counter to  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
24 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
check for the assertion of DESKEW_VALID signal, and if the MAC does not see this signal  
go valid within the 32 RXCLK cycles time-out period, it considers the deskew failed and  
can reinstruct the PHY to perform deskew by deasserting and reasserting  
DESKEW_START.  
Using in-band signals, the MAC send encoded lane-to-lane deskew command to PHY,  
and the PHY will respond with encoded status signal. if deskewing is successful, the MAC  
then send the PHY the special COMMA with bit 0 = 0, shown at Table 16, to stop the  
deskew. If deskewing fails, the MAC should first stop the deskew, then may resend the  
encoded deskew start command to restart the deskew process.  
The PHY internally arbitrates to decide the master lane to use for deskewing. All lanes  
that are turned off by the MAC, do not take part in arbitration or deskewing. The PHY has  
priority to choose lane 0 as the master lane, unless the lane has been turned off. Even  
when lane reversal is enabled and physical lane 0 becomes logical lane 3, physical lane 0  
still has priority for becoming the master. When the PHY is configured to perform  
lane-to-lane deskew the information about SKP insertion and removal from the PHY  
should be ignored by the MAC. This is because the deskewing is done by the PHY and  
hence the skip insertion and removal information is not required. All other information like  
decode error, disparity error, FIFO overflow, FIFO underflow, and OK are valid.  
8.14.2 Lane reversal  
Lane reversal for multi-lane implementation is particularly useful to ease PCB layout. It  
swaps the physical lane0, lane1, lane2, and lane3 to the logical lane3, lane2, lane1, and  
lane0, respectively. This feature is typically performed in the MAC. PX1041A has this  
optional built-in feature. It is required to have a signal from the MAC to the PHY to enable  
it.  
When the MAC asserts LANEREVERS, the PHY will enable the feature. Alternatively, the  
MAC can send the encoded command listed in Table 16 to enable this feature.  
8.14.3 PXPIPE-side parallel loopback  
The function of PXPIPE-side parallel loopback is mainly for test debugging purposes to  
check the PCB connection between the MAC and the PHY. The PHY will loopback any  
data that is present on the Lx_TXDATA and Lx_TXDATAK lines to the corresponding  
Lx_RXDATA and Lx_RXDATAK.  
PIPELOOPB being HIGH will enable the feature, or the MAC may use the encoded  
commands in Table 16. This feature requires the PHY to be in the P1 state.  
8.14.4 PIPE Mode  
By default, the interface between the MAC and PX1041A is PXPIPE, which has source  
synchronous clocks for transmit and receive data. The PIPE mode, which uses a single  
clock, RXCLK, for both transmit and receive, is selectable by setting the PIPESEL pin  
HIGH.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
25 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
9. Limiting values  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
for JTAG I/O  
for SSTL I/O  
for core  
Min  
Max  
+4.6  
+3.75  
+1.7  
+1.7  
Unit  
V
VDDD1  
VDDD2  
VDDD3  
VDD  
digital supply voltage 1  
0.5  
0.5  
0.5  
0.5  
[1]  
[1]  
digital supply voltage 2  
digital supply voltage 3  
supply voltage  
V
V
for high-speed  
V
serial I/O and PVT  
VDDA1  
VDDA2  
Vesd  
analog supply voltage 1  
analog supply voltage 2  
electrostatic discharge voltage  
for serializer  
for serializer  
HBM  
0.5  
0.5  
-
+1.7  
+4.6  
2000  
500  
V
V
[2]  
[3]  
V
CDM  
-
V
Tstg  
Tj  
storage temperature  
junction temperature  
ambient temperature  
55  
55  
+150  
+125  
°C  
°C  
Tamb  
operating  
commercial  
industrial  
0
+70  
+85  
°C  
°C  
40  
[1] No select pin needed.  
[2] Human Body Model: ANSI/EOS/ESD-S5.1-1994, standard for ESD sensitivity testing, Human Body Model -  
Component level; Electrostatic Discharge Association, Rome, NY, USA.  
[3] Charged Device Model: ANSI/EOS/ESD-S5.3.1-1999, standard for ESD sensitivity testing, Charged Device  
Model - component level; Electrostatic Discharge Association, Rome, NY, USA.  
10. Thermal characteristics  
Table 19. Thermal characteristics  
Symbol Parameter  
Conditions  
Typ  
Unit  
[1]  
[1]  
Rth(j-a)  
thermal resistance from junction to ambient in free air,  
32.6  
K/W  
JEDEC test  
card  
Rth(j-c)  
thermal resistance from junction to case  
in free air,  
JEDEC test  
card  
6.9  
K/W  
[1] Significant variations can be expected due to system variables, such as adjacent devices, or actual air flow  
across the package.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
26 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
11. Characteristics  
Table 20. PCI Express PHY characteristics  
Symbol  
Supplies  
VDDD1  
VDDD2  
VDDD2  
VDDD3  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
digital supply voltage 1  
digital supply voltage 2  
digital supply voltage 2  
digital supply voltage 3  
supply voltage  
for JTAG I/O  
for SSTL_18 I/O  
for SSTL_2 I/O  
for core  
3.0  
3.3  
1.8  
2.5  
1.2  
1.2  
3.6  
V
V
V
V
V
1.7  
1.9  
2.3  
2.7  
1.15  
1.15  
1.25  
1.25  
for high-speed  
serial I/O and PVT  
VDDA1  
VDDA2  
IDDD1  
IDDD2  
analog supply voltage 1  
analog supply voltage 2  
digital supply current 1  
digital supply current 2  
for serializer  
for serializer  
for JTAG I/O  
1.15  
1.2  
1.25  
3.6  
2
V
3.0  
3.3  
V
-
-
<tbd>  
mA  
mA  
for SSTL I/O;  
no load  
<tbd> 80  
IDDD3  
IDD  
digital supply current 3  
supply current  
for core  
-
-
<tbd> 60  
mA  
mA  
for high-speed  
<tbd> 100  
serial I/O and PVT  
IDDA1  
analog supply current 1  
analog supply current 2  
for serializer  
for serializer  
-
-
<tbd> 100  
<tbd> 60  
mA  
mA  
IDDA2  
Reference clock  
fclk(ref)  
reference clock frequency  
99.97 100  
100.03 MHz  
fmod(clk)(ref)  
reference clock SSC modulation  
frequency deviation  
0.5  
-
+0  
33  
-
%
fmod(clk)(ref)  
reference clock SSC modulation  
frequency  
30  
-
-
kHz  
V
VIH(se)REFCLK  
VIL(se)REFCLK  
REFCLK single-end HIGH-level input  
voltage  
0.7  
0
REFCLK single-end LOW-level input  
voltage  
-
-
V
Receiver  
UI  
unit interval  
399.88 400  
400.12 ps  
VRX_DIFFp-p  
tRX_MAX_JITTER  
differential input peak-to-peak voltage  
maximum receiver jitter time  
0.175  
-
1.2  
V
-
-
0.6  
UI  
mV  
VIDLE_DET_DIFFp-p electrical idle detect threshold  
65  
40  
200  
10  
6
-
175  
ZRX_DC  
DC input impedance  
50  
60  
-
ZRX_HIGH_IMP_DC  
RLRX_DIFF  
RLRX_CM  
powered-down DC input impedance  
differential return loss  
-
kΩ  
dB  
dB  
µs  
µs  
-
-
common mode return loss  
CDR lock time (reference loop)  
CDR lock time (data loop)  
receiver latency  
-
-
tlock(CDR)(ref)  
tlock(CDR)(data)  
tRX_latency  
-
<tbd>  
<tbd>  
<tbd>  
-
-
-
1 clock cycle is  
4 ns  
-
-
clock  
cycle  
LRX_SKEW  
total skew  
-
-
20  
ns  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
27 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 20. PCI Express PHY characteristics …continued  
Symbol  
Transmitter  
UI  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
unit interval  
399.88 400  
400.12 ps  
VTX_DIFFp-p  
differential peak-to-peak output voltage  
0.8  
-
-
1.2  
V
tTX_EYE_m-mJITTER maximum time between the jitter median  
and maximum deviation from the median  
<tbd> 50  
ps  
tTX_JITTER_MAX  
VTX_DE_RATIO  
maximum transmitter jitter time  
-
<tbd> 100  
ps  
de-emphasized differential output voltage  
ratio  
3.0  
3.5  
4.0  
dB  
tTX_RISE  
D+/DTX output rise time  
D+/DTX output fall time  
50  
50  
-
-
-
-
-
ps  
tTX_FALL  
-
ps  
VTX_CM_ACp  
RMS AC peak common mode output  
voltage  
20  
mV  
VCM_DC_ACT_IDLE absolute delta of DC common mode  
0
0
-
-
100  
25  
mV  
mV  
voltage during L0 and electrical idle  
VCM_DC_LINE  
absolute delta of DC common mode  
voltage between D+ and D−  
VTX_CM_DC  
ITX_SHORT  
RLTX_DIFF  
RLTX_CM  
ZTX_DC  
TX DC common mode voltage  
TX short-circuit current limit  
differential return loss  
common mode return loss  
transmitter DC impedance  
AC coupling capacitor  
PLL lock time  
0
-
3.6  
90  
-
V
-
-
mA  
dB  
dB  
10  
6
-
-
-
40  
75  
-
50  
60  
200  
50  
-
CTX  
100  
-
nF  
µs  
tlock(PLL)  
tTX_latency  
transmitter latency  
1 clock cycle is  
4 ns  
-
<tbd>  
clock  
cycle  
tP0s_exit_latency  
tP1_exit_latency  
P0s state exit latency  
P1 state exit latency  
-
-
-
<tbd>  
<tbd>  
-
-
µs  
µs  
µs  
-
tRESET-PHYSTATUS  
RESET_N HIGH to PHYSTATUS LOW  
time  
64  
LTX_SKEW  
lane-to-lane output skew  
-
-
500 + ps  
2UI  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
28 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 21. PXPIPE characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
MHz  
mV  
V
fRXCLK  
RXCLK frequency  
249.925  
250  
250.075  
fTXCLK  
TXCLK frequency  
249.925  
250  
250.075  
[1]  
[1]  
VVREFS  
voltage on pin VREFS  
for SSTL_18  
for SSTL_2  
-
900  
-
VVREFS  
voltage on pin VREFS  
-
1.25  
-
VOH(SSTL18)  
VOL(SSTL18)  
VIH(SSTL18)  
VIL(SSTL18)  
VOH(SSTL2)  
VOL(SSTL2)  
VIH(SSTL2)  
VIL(SSTL2)  
SSTL_18 HIGH-level output voltage  
SSTL_18 LOW-level output voltage  
SSTL_18 HIGH-level AC input voltage  
SSTL_18 LOW-level AC input voltage  
SSTL_2 HIGH-level output voltage  
SSTL_2 LOW-level output voltage  
SSTL_2 HIGH-level AC input voltage  
SSTL_2 LOW-level AC input voltage  
VTT = 900 mV  
VTT = 900 mV  
Vref = 900 mV  
Vref = 900 mV  
VTT = 1.25 V  
VTT = 1.25 V  
Vref = 1.25 V  
Vref = 1.25 V  
1.50  
-
-
-
-
-
-
-
-
-
V
-
0.30  
-
V
1.15  
V
-
0.65  
-
V
1.85  
V
-
0.64  
-
V
1.56  
-
V
0.94  
V
Input signals; measured with respect to TXCLK  
tsu(TX)(PXPIPE) setup time of PXPIPE input signal  
th(TX)(PXPIPE) hold time of PXPIPE input signal  
Output signals; measured with respect to RXCLK  
tsu(RX)(PXPIPE) setup time of PXPIPE output signal  
th(RX)(PXPIPE) hold time of PXPIPE output signal  
see Figure 17  
see Figure 17  
500  
500  
-
-
-
-
ps  
ps  
see Figure 17  
see Figure 17  
1500  
1500  
-
-
-
-
ps  
ps  
[1] Reference voltage for SSTL I/O.  
TXCLK  
PXPIPE  
INPUT  
t
su(TX)(PXPIPE)  
t
h(TX)(PXPIPE)  
RXCLK  
PXPIPE  
OUTPUT  
t
t
h(RX)(PXPIPE)  
su(RX)(PXPIPE)  
002aac316  
Fig 17. Definition of PXPIPE timing  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
29 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
12. Package outline  
LFBGA208: plastic low profile fine-pitch ball grid array package; 208 balls; body 15 x 15 x 1 mm  
SOT631-4  
D
B
A
ball A1  
index area  
E
A
2
A
1
A
detail X  
e
1
C
M
v
C
C
A
B
b
e
y
y
M
w
C
1
U
T
P
M
K
H
F
R
N
L
e
e
2
J
G
E
C
A
D
B
ball A1  
index area  
1
3
5
7
9
11 13 15 17  
10 12 14 16  
X
2
4
6
8
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
e
2
v
w
y
y
1
1
max  
0.4  
0.3  
1.10  
0.95  
0.5  
0.4  
15.1 15.1  
14.9 14.9  
mm  
1.5  
0.8  
12.8 12.8 0.15 0.08 0.12  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
07-03-09  
07-03-19  
SOT631-4  
MO-205  
Fig 18. Package outline SOT631-4 (LFBGA208)  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
30 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
13. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
31 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 19) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 22 and 23  
Table 22. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 23. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 19.  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
32 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 19. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
14. Abbreviations  
Table 24. Abbreviations  
Acronym  
BER  
Description  
Bit Error Rate  
BIST  
CMOS  
EMI  
Built-In Self Test  
Complementary Metal Oxide Semiconductor  
ElectroMagnetic Interference  
ElectroStatic Discharge  
Field Programmable Gate Array  
Link Training and Status State Machine  
Media Access Control  
Parallel to Serial  
ESD  
FPGA  
LTSSM  
MAC  
P2S  
PCI  
Peripheral Component Interconnect  
Physical Coding Sub-layer  
PHYsical layer  
PCS  
PHY  
PLL  
Phase-Locked Loop  
PIPE  
PVT  
PHY Interface for the PCI Express  
Process Voltage Temperature  
Receive  
RX  
S2P  
Serial to Parallel  
SerDes  
SKP  
Serializer and De-serializer  
SKiP  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
33 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
Table 24. Abbreviations …continued  
Acronym  
Description  
SSC  
Spread Spectrum Clock modulation  
Stub Series Terminated Logic for 1.8 Volts  
Stub Series Terminated Logic for 2.5 Volts  
Transmit  
SSTL_18  
SSTL_2  
TX  
15. References  
[1] PCI Express Base Specification — Rev. 1.1 - PCISIG  
[2] PHY Interface for the PCI Express Architecture Version 2.00 — Intel  
Corporation  
16. Revision history  
Table 25. Revision history  
Document ID  
Release date  
20070621  
Data sheet status  
Change notice  
Supersedes  
PX1041A_1  
Objective data sheet  
-
-
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
34 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
17.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
18. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
PX1041A_1  
© NXP B.V. 2007. All rights reserved.  
Objective data sheet  
Rev. 01 — 21 June 2007  
35 of 36  
PX1041A  
NXP Semiconductors  
PCI Express stand-alone X4 PHY  
19. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13.4  
14  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 32  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 33  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 34  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
PCI Express interface. . . . . . . . . . . . . . . . . . . . 1  
PHY/MAC interface. . . . . . . . . . . . . . . . . . . . . . 1  
JTAG interface . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Power management . . . . . . . . . . . . . . . . . . . . . 2  
Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
15  
16  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 35  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 35  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
17.1  
17.2  
17.3  
17.4  
3
4
5
6
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 35  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
Functional description . . . . . . . . . . . . . . . . . . 12  
Receiving data . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transmitting data . . . . . . . . . . . . . . . . . . . . . . 13  
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power management . . . . . . . . . . . . . . . . . . . . 14  
Receiver detect. . . . . . . . . . . . . . . . . . . . . . . . 15  
Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical idle and lane turn off . . . . . . . . . . . . 17  
Clock tolerance compensation . . . . . . . . . . . . 18  
Error detection . . . . . . . . . . . . . . . . . . . . . . . . 19  
8b/10b decode errors . . . . . . . . . . . . . . . . . . . 20  
Disparity errors . . . . . . . . . . . . . . . . . . . . . . . . 20  
Elastic buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Polarity inversion. . . . . . . . . . . . . . . . . . . . . . . 22  
Setting negative disparity . . . . . . . . . . . . . . . . 22  
JTAG boundary scan interface . . . . . . . . . . . . 22  
Optional functions. . . . . . . . . . . . . . . . . . . . . . 23  
Lane-to-lane deskew . . . . . . . . . . . . . . . . . . . 24  
Lane reversal . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PXPIPE-side parallel loopback. . . . . . . . . . . . 25  
PIPE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.8  
8.9  
8.10  
8.10.1  
8.10.2  
8.10.3  
8.11  
8.12  
8.13  
8.14  
8.14.1  
8.14.2  
8.14.3  
8.14.4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 26  
Thermal characteristics. . . . . . . . . . . . . . . . . . 26  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 30  
10  
11  
12  
13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Introduction to soldering . . . . . . . . . . . . . . . . . 31  
Wave and reflow soldering . . . . . . . . . . . . . . . 31  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 31  
13.1  
13.2  
13.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 21 June 2007  
Document identifier: PX1041A_1  

相关型号:

PX1041A-EL1

PCI Express stand-alone X4 PHY
NXP

PX1041A-EL1/G

IC DATACOM, INTERFACE CIRCUIT, PBGA208, 15 X 15 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, MO-205, SOT631-4, LFBGA-208, Network Interface
NXP

PX1041A-EL1G

PCI Express stand-alone X4 PHY
NXP

PX1041AI-EL1

PCI Express stand-alone X4 PHY
NXP

PX1041AI-EL1/G

IC DATACOM, INTERFACE CIRCUIT, PBGA208, 15 X 15 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, MO-205, SOT631-4, LFBGA-208, Network Interface
NXP

PX1041AI-EL1G

PCI Express stand-alone X4 PHY
NXP

PX10BR02

PCMCIA Connector
JAE

PX10BRB02

Card Edge Connector, 26 Contact(s), 1 Row(s), Male, Right Angle, Surface Mount Terminal,
JAE

PX10BSB00

PCMCIA Connector
JAE

PX10BSB02

PCMCIA Connector,
JAE

PX10BSB02-R1000

PCMCIA Connector, 26 Contact(s), 1 Row(s), Right Angle, 0.039 inch Pitch
JAE

PX10BSB16

PCMCIA Connector
JAE