QN9090THN [NXP]

Bluetooth Low Energy 5.0 wireless MCU;
QN9090THN
型号: QN9090THN
厂家: NXP    NXP
描述:

Bluetooth Low Energy 5.0 wireless MCU

文件: 总99页 (文件大小:1392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QN9090(T)/QN9030(T)  
QN9090  
Bluetooth Low Energy 5.0 wireless MCU  
Rev. 1.2 — May 2021  
Product data sheet  
1. General description  
The QN9090 and QN9090T (called QN9090 throughout this document) are ultra-low  
power, high performance Arm® Cortex®-M4 based wireless microcontrollers supporting  
Bluetooth Low Energy 5.0 to facilitate the development of Bluetooth Low Energy  
applications.  
The QN9090, supporting eight simultaneous connections, includes a 2.4 GHz Bluetooth  
Low Energy 5 compliant transceiver and a comprehensive mix of analog and digital  
peripherals. Ultra-low current consumption in both radio receive and transmit modes and  
also in the power down modes allow use of coin cell batteries.  
The product has 640 KB embedded Flash, 152 KB RAM memory. The embedded flash  
can support Over The Air (OTA) code download to applications. The devices include  
10-channel PWM, two timers, one RTC/alarm timer, a Windowed Watchdog Timer  
(WWDT), two USARTs, two SPI interfaces, two I2C interfaces, a DMIC subsystem with  
dual-channel PDM microphone interface with voice activity detector, one 12-bit ADC,  
temperature sensor and comparator.  
The QN9090T variant has an internal NFC tag with connections to the external NFC  
antenna.  
The QN9030 variant has the same functionality as the QN9090 except for reduced  
memory sizes of 320 KB embedded Flash, 88 KB RAM. The QN9030T variant has the  
functionality of the QN9030 with the addition of an embedded NFC tag.  
The Arm Cortex-M4 is a 32-bit core that offers system enhancements such as low power  
consumption, enhanced debug features, and a high level support of the block integration.  
The Arm Cortex-M4 CPU, operates at up to 48 MHz.  
2. Features and benefits  
2.1 Benefits  
Very low current solution for long battery life  
Single chip device to run stack and application  
System BOM is low in component count and cost  
Flexible sensor interfacing  
Embedded NTAG on QN9090T and QN9030T devices  
Package  
6 6 mm HVQFN40, 0.5 mm pitch  
Lead-free and RoHS compliant  
Junction temperature range: 40 C to +125 C  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
2.2 Radio features  
2.4 GHz Bluetooth Low Energy 5.0 compliant  
Receiver current 4.3 mA  
Bluetooth Low Energy 5.0 2Mbps high data rate  
Bluetooth Low Energy Receiver sensitivity -97 dBm  
Improved co-existence with WiFi  
Configurable transmit power up to +11 dBm, with 46 dB range  
Transmit power / current +10 dBm / 20.3 mA  
Transmit power / current +3 dBm / 9.4 mA  
Transmit power / current 0 dBm / 7.4 mA  
1.9 V to 3.6 V supply voltage  
Antenna Diversity control  
32 MHz XTAL cell with internal capacitors, able with suitable external XTAL to meet  
the required accuracy for radio operation over the operating conditions  
Integrated RF balun  
Integrated ultra Low-power sleep oscillator  
Deep Power-down current 350 nA (with wake-up on IO)  
128-bit, 192-bit or 256-bit AES security processor  
2.3 Microcontroller features  
Application CPU, Arm Cortex-M4 CPU:  
Arm Cortex-M4 processor, running at a frequency of up to 48 MHz.  
Arm built-in Nested Vectored Interrupt Controller (NVIC)  
Memory Protection Unit (MPU)  
Non-maskable Interrupt (NMI) with a selection of sources  
Serial Wire Debug (SWD) with 8 breakpoints and 4 watchpoints  
System tick timer  
Includes Serial Wire Output for enhanced debug capabilities.  
On-Chip memory  
640 KB flash (320 KB for QN9030)  
152 KB SRAM (88 KB for QN9030)  
12 MHz to 48 MHz system clock speed for low-power  
2 x I2C-bus interface, operate as either master or slave  
10 x PWM  
2 x Low-power timers  
2 x USART, one with flow control  
2 x SPI-bus, master or slave  
1 x PDM digital audio interface with a hardware based voice activity detector to reduce  
power consumption in voice applications. Support for dual-channel microphone  
interface, flexible decimators, 16 entry FIFOs and optional DC blocking.  
19-channel DMA engine for efficient data transfer between peripherals and SRAM, or  
SRAM to SRAM. DMA can operate with fixed or incrementing addresses. Operations  
can be chained together to provide complex functionality with low CPU overhead.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
2 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Up to four GPIOs can be selected as pin interrupts (PINT), triggered by rising, falling or  
both input edges.  
Two GPIO grouped interrupts (GINT) enable an interrupt based on a logical (AND/OR)  
combination of input states.  
32-bit Real Time clock (RTC) with 1 s resolution. A timer in the RTC can be used to  
wake from Sleep, Deep-sleep and Power-down, with 1 ms resolution  
Voltage Brown Out with 8 programmable thresholds  
8-input 12-bit ADC, 190 ksamples/s (Max.). HW support for continuous operation or  
single conversions, single or multiple inputs can be sampled within a sequence. DMA  
operation can be linked to achieve low overhead operation.  
1 x analog comparator  
Battery and temperature sensors  
Watchdog timer and POR  
Standby power controller  
Up to 22 Digital IOs (DIO)  
1 x Quad SPIFI for accessing an external flash device  
Integrated NTAG I2C plus device, NFC Forum Type 2, on QN9090T and QN9030T  
only  
Random Number Generator engine  
AES engine AES-128 to 256  
Hash hardware accelerator supporting SHA-1, SHA-256  
EFuse:  
128-bit random AES key  
Configuration modes  
Trimming  
ISO7816 smart card digital interface which with a suitable external analogue device  
can operate as a smart card reader  
2.4 Low power features  
Sleep mode supported, the CPU in low power state waiting for interrupt  
Deep-sleep mode supported, the CPU in low power state waiting for interrupt, but  
extra functionality disabled or in low power state compared to sleep mode  
Power Down mode, main functionality powered down, wakeup possible from IOs,  
wakeup possible from some peripherals (I2C, USART, SPI) in a limited function mode  
and low power timers  
Deep -power down, very low power state with option of wake-up triggered by IOs, 350  
nA  
41-bit and 28-bit Low power timers can run in power down mode, clocked by 32 kHz  
FRO or 32 kHz XTAL. Timers can run for over one year or 2 days  
Dedicated low power timer, clocked by 32 kHz XTAL, closely integrated with the  
Bluetooth Low Energy link layer to maintain the timing reference through power-down  
cycles  
3. Applications  
Bluetooth Low Energy 5.0 networks  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
3 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Robust and secure Low-power wireless applications  
Lighting and Home automation  
Toys and gaming peripherals  
Activity and wellness monitors  
Personal healthcare devices  
Wireless occupancy sensors  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
QN9090HN  
HVQFN40  
Plastic thermal enhanced very thin quad  
flat package; no leads; 40 terminals; body  
6 6 0.85 mm  
SOT618-1  
QN9090THN  
QN9030HN  
QN9030THN  
Table 2.  
Ordering information details  
Type number Flash size  
SRAM size  
NTAG  
no  
QN9090HN  
QN9090THN  
QN9030HN  
QN9030THN  
640 KB  
152 KB  
yes  
no  
320 KB  
88 KB  
yes  
5. Marking  
Table 3.  
Marking codes  
Type number  
Marking code  
QN9090  
QN9090T  
QN9030  
QN9090HN  
QN9090THN  
QN9030HN  
QN9030THN  
QN9030T  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
4 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
6. Block diagram  
Core  
System  
Memories  
Digital peripherals  
Cortex-M4
Flash  
640/320 KB  
Watchdog timer
2
2 × I C  
48 MHz  
SRAM  
Serial wiredebug
POR  
2 × SPI  
2 × USART  
10 × PWM  
152/88 KB  
Brown-out  
detectors  
RF transceiver  
BLE 5.0  
Analog peripherals  
12-bit ADC  
8 channels  
DMA  
Antenna  
diversity
NFC Tag  
Power  
management  
1 × DMIC  
(QN9090T/QN9030T Only)  
controller
1 × Analog  
comparator  
1 × QSPI  
Battery sensor  
Clocks  
DC/DC converter  
Up to 22 × GPIO  
1 × IR modulator  
1 × ISO7816  
Temperature  
sensor  
32 MHz XTAL  
oscillator  
Timers  
Security  
HASH  
32.768 kHz XTAL  
oscillator  
2 × Counter/timer  
Low frequency free  
running oscillator  
AES 128/256  
Real time clock  
High frequency free  
running oscillator  
Random number  
Generator  
2 x Wakeup timers  
Fig 1. High level hardware block diagram  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
5 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
7. Pinning information  
7.1 HVQFN40 - with NTAG  
7.1.1 Pinning  
terminal 1  
index area  
XTAL_P  
XTAL_N  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
SS(DCDC)  
LX  
V
3
BAT  
PIO0  
PIO1  
4
RSTN  
PIO2  
PIO3  
5
TRST  
QN9090THN;QN9030THN  
6
PIO21/ACM  
PIO20/ACP  
PIO19/ADC5  
PIO18/ADC4  
PIO17/ADC3  
PIO4  
7
PIO5/ISP_ENTRY  
PIO6  
8
9
PIO7  
10  
aaa-023712  
Transparent top view  
(1) QN9090THN and QN9030THN HVQFN40 with NTAG  
Fig 2. Pin configuration  
7.1.2 Pin description  
Table 4.  
Symbol  
XTAL_P  
XTAL_N  
PIO0  
Pin descriptions  
Pin  
1
Type Default at reset Description  
System crystal oscillator 32 MHz  
System crystal oscillator 32 MHz  
2
3
IO  
GPIO0[1]  
GPIO0 — General Purpose digital Input/Output 0  
USART0_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - synchronous clock  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
PWM0 — Pulse Width Modulator output 0  
SPI1_SCK — Serial Peripheral Interface-bus 1 clock input/output  
PDM0_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 0)  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
6 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Symbol  
PIO1  
Pin descriptions  
Pin  
Type Default at reset Description  
4
IO  
GPIO1[1]  
GPIO1 — General Purpose digital Input/Output 1  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
PWM1 — Pulse Width Modulator output 1  
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input  
PDM0_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 0)  
PIO2  
5
IO  
GPIO2[1]  
GPIO2 — General Purpose digital Input/Output 2  
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output  
PWM2 — Pulse Width Modulator output 2  
SPI1_MOSI — Serial Peripheral Interface-bus 1 master output slave  
input  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
ISO7816_RST — RST signal, output, for ISO7816 interface  
MCLK — External clock, can be provided to DMIC IP  
GPIO3 — General Purpose digital Input/Output 3  
PIO3  
6
IO  
GPIO3[1]  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input  
PWM3 — Pulse Width Modulator output 3  
SPI1_SSELN0 — Serial Peripheral Interface-bus 1 slave select not 0  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
ISO7816_CLK — Clock output for ISO7816 interface  
PIO4  
7
IO  
GPIO4[1][2]  
GPIO4 — General Purpose digital Input/Output 4  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
PWM4 — Pulse Width Modulator output 4  
SPI1_SSELN1 — Serial Peripheral Interface-bus 1 slave select not 1  
USART0_CTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Clear To Send input  
ISO7816_IO — IO of ISO7816 interface  
RFTX — Radio Transmit Control Output  
ISP_SEL — In-System Programming Mode Selection  
PIO5/ISP_ENTR  
Y
8
IO  
GPIO5/ISP_ENT GPIO5/ISP_ENTRY — General Purpose digital Input/Output 5;  
RY[1][3]  
In-System Programming Entry  
SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not  
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input  
SPI1_SSELN2 — Serial Peripheral Interface-bus 1 slave select not 2  
USART0_RTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Request To Send output  
RFRX — Radio Receiver Control Output  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
7 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Symbol  
PIO6  
Pin descriptions  
Pin  
Type Default at reset Description  
9
IO  
IO  
IO  
GPIO6[1]  
GPIO6 — General Purpose digital Input/Output 6  
USART0_RTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Request to Send output  
CT32B1_MAT0 — 32-bit CT32B1 match output 0  
PWM6 — Pulse Width Modulator output 6  
I2C1_SCL — I2C-bus 1 master/slave SCL input/output  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
ADE — Antenna Diversity Even output  
SPI0_SCK — Serial Peripheral Interface 0- synchronous clock  
GPIO7 — General Purpose digital Input/Output 7  
PIO7  
10  
GPIO7[1]  
USART0_CTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Clear to Send input  
CT32B1_MAT1 — 32-bit CT32B1 match output 1  
PWM7 — Pulse Width Modulator output 7  
I2C1_SDA — I2C-bus 1 master/slave SDA input/output  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
ADO — Antenna Diversity Odd Output  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input  
PIO8/TXD0  
11  
GPIO8[1][4]  
GPIO8 — General Purpose digital Input/Output 8  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
CT32B0_MAT0 — 32-bit CT32B0 match output 0  
PWM8 — Pulse Width Modulator output 8  
ANA_COMP_OUT — Analog Comparator digital output  
PDM1_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 1)  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
RFTX — Radio Transmit Control Output  
PIO9/RXD0  
12  
IO  
GPIO9[1][5]  
GPIO9 — General Purpose digital Input/Output 9  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
CT32B1_CAP1 — 32-bit CT32B1 capture input 1  
PWM9 — Pulse Width Modulator output 9  
USART1_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - synchronous clock  
PDM1_CLK — Pulse Density Modulation Clock output  
to digital microphone (channel 1)  
SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not  
ADO — Antenna Diversity Odd Output  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
8 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Symbol  
PIO10  
Pin descriptions  
Pin  
Type Default at reset Description  
13  
IO  
GPIO10[1]  
GPIO10 — General Purpose digital Input/Output 10  
CT32B0_CAP0 — 32-bit CT32B0 capture input 0  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
RFTX — Radio Transmit Control Output  
I2C0_SCL — I2C-bus 0 master/slave SCL input/output (open drain)  
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output  
PDM0_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 0)  
PIO11  
14  
IO  
GPIO11[1]  
GPIO11 — General Purpose digital Input/Output 11  
CT32B1_CAP0 — 32-bit CT32B1 capture input 0  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
RFRX — Radio Receiver Control Output  
I2C0_SDA — I2C-bus 0 master/slave SDA input/output (open drain)  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input slave  
output  
PDM0_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 0)  
PIO12/SWCLK  
15  
IO  
SWCLK  
GPIO12 — General Purpose digital Input/Output 12  
SWCLK — Serial Wire Debug Clock  
PWM0 — Pulse Width Modulator output 0  
I2C1_SCL — I2C-bus 1 master/slave SCL input/output (open drain)  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
ANA_COMP_OUT — Analog Comparator digital output  
IR_BLASTER — Infra-Red Modulator output  
PIO13/SWDIO  
16  
IO  
SWDIO  
GPIO13 — General Purpose digital Input/Output 13  
SPI1_SSELN2 — Serial Peripheral Interface-bus 1, slave select not  
2
SWDIO — Serial Wire Debug Input/Output  
PWM2 — Pulse Width Modulator output 2  
I2C1_SDA — I2C-bus 1 master/slave SDA input/output (open drain)  
SPI0_SSELN — Serial Peripheral Interface-bus 0, slave select not  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
9 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Pin descriptions  
Symbol  
Pin  
Type Default at reset Description  
PIO14/ADC0  
17  
IO  
GPIO14[1]  
ADC0 — ADC input 0  
GPIO14 — General Purpose digital Input/Output 14  
SPI1_SSELN1 — Serial Peripheral Interface-bus 1, slave select not  
1
CT32B0_CAP1 — 32-bit CT32B0 capture input 1  
PWM1 — Pulse Width Modulator output 1  
SWO — Serial Wire Output  
USART0_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - synchronous clock  
MCLK — External clock, can be provided to DMIC IP  
RFTX — Radio Transmit Control Output  
PIO15/ADC1  
18  
IO  
GPIO15[1]  
ADC1 — ADC input 1  
GPIO15 — General Purpose digital Input/Output 15  
SPI1_SCK — Serial Peripheral Interface-bus 1, clock input/output  
ANA_COMP_OUT — Analog Comparator digital output  
PWM3 — Pulse Width Modulator output 3  
PDM1_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 1)  
I2C0_SCL — I2C-bus 0 master/slave SCL input/output (open drain)  
RFRX — Radio Receiver Control Output  
PIO16/ADC2  
19  
IO  
GPIO16[1]  
ADC2 — ADC input 2  
GPIO16 — General Purpose digital Input/Output 16  
SPI1_SSELN0 — Serial Peripheral Interface-bus 1, slave select not  
0
PWM5 — Pulse Width Modulator output 5  
PDM1_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 1)  
SPIFI_CSN — Quad-SPI Chip Select Not, output  
ISO7816_RST — RST signal, output, for ISO7816 interface  
I2C0_SDA — I2C-bus 0 master/slave SDA input/output (open drain)  
VDDE Supply voltage for IO  
VDDE  
20  
21  
P
PIO17/ADC3  
IO  
GPIO17[1]  
ADC3 — ADC input 3  
GPIO17 — General Purpose digital Input/Output 17  
SPI1_MOSI — Serial Peripheral Interface-bus 1, master output slave  
input  
SWO — Serial Wire Output  
PWM6 — Pulse Width Modulator output 6  
SPIFI_IO3 — Quad-SPI Input/Output 3  
ISO7816_CLK — Clock output for ISO7816 interface  
CLK_OUT — Clock out  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
10 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Pin descriptions  
Symbol  
Pin  
Type Default at reset Description  
PIO18/ADC4  
22  
IO  
GPIO18[1]  
ADC4 — ADC input 4  
GPIO18 — General Purpose digital Input/Output 18  
SPI1_MISO — Serial Peripheral Interface-bus 1, master data input  
CT32B0_MAT1 — 32-bit CT32B0 match output 1  
PWM7 — Pulse Width Modulator output 7  
SPIFI_CLK — Quad-SPI Clock output  
ISO7816_IO — IO of ISO7816 interface  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
PIO19/ADC5  
23  
IO  
GPIO19[1]  
ADC5 — ADC input 5  
GPIO19 — General Purpose digital Input/Output 19  
ADO — Antenna Diversity Odd Output  
PWM4 — Pulse Width Modulator output 4  
SPIFI_IO0 — Quad-SPI Input/Output 0  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
CLK_IN — External clock  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
PIO20/ACP  
24  
IO  
GPIO20[1]  
ACP — Analog Comparator Positive input  
GPIO20 — General Purpose digital Input/Output 20  
IR_BLASTER — Infra-Red Modulator output  
PWM8 — Pulse Width Modulator output 8  
RFTX — Radio Transmit Control Output  
SPIFI_IO2 — Quad-SPI Input/Output 2  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
PIO21/ACM  
25  
IO  
GPIO21[1]  
ACM — Analog Comparator Negative input  
GPIO21 — General Purpose digital Input/Output 21  
IR_BLASTER — Infra-Red Modulator output  
PWM9 — Pulse Width Modulator output 9  
RFRX — Radio Receiver Control Output  
SWO — Serial Wire Output  
SPIFI_IO1 — Quad-SPI Input/Output 1  
USART1_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - synchronous clock  
TRST  
RSTN  
VBAT  
26  
27  
28  
29  
30  
31  
G
I
TRST — must be connected to GND  
RSTN — Reset Not input  
P
VBAT Supply voltage DCDC input  
LX — DCDC filter  
LX  
VSS(DCDC)  
FB  
G
VSS(DCDC) ground for DCDC section  
FB — DCDC Feedback input  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
11 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 4.  
Pin descriptions  
Symbol  
Pin  
32  
33  
34  
35  
36  
37  
Type Default at reset Description  
VDD(PMU)  
XTAL_32K_P  
XTAL_32K_N  
VDD(RADIO)  
VSS(RF)  
P
VDD(PMU) supply voltage for PMU section  
crystal oscillator 32.768 kHz  
crystal oscillator 32.768 kHz  
P
VDD(RADIO) supply voltage for radio section  
VSS(RF) RF ground  
G
IO  
RF_IO  
RF_IO — RF antenna, RF pin which can be considered as RF  
Input/output. The radio transceiver is connected here.  
VSS(RF)  
38  
39  
40  
G
VSS(RF) RF ground  
LB  
NFC tag antenna input B  
LA  
NFC tag antenna input A  
exposed die pad  
G
must be connected to RF ground plane  
[1] I: input at reset.  
[2] For standard operation (normal boot or ISP programming mode), this pin should be high during the release  
of reset. If there is no external driver to this pin, then the internal pull-up will keep this pin high.  
[3] ISP programming mode: leave pin floating high during reset to avoid entering UART programming mode or  
hold it low to program.  
[4] In ISP mode, it is configured to USART0_TXD.  
[5] In ISP mode, it is configured to USART0_RXD.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
12 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
7.2 HVQFN40 - without NTAG  
7.2.1 Pinning  
terminal 1  
index area  
XTAL_P  
XTAL_N  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
SS(DCDC)  
LX  
V
3
BAT  
PIO0  
PIO1  
4
RSTN  
PIO2  
PIO3  
5
TRST  
QN9090HN; QN9030HN  
6
PIO21/ACM  
PIO20/ACP  
PIO19/ADC5  
PIO18/ADC4  
PIO17/ADC3  
PIO4  
7
PIO5/ISP_ENTRY  
PIO6  
8
9
PIO7  
10  
aaa-023713  
Transparent top view  
(1) QN9090HN and QN9030HN without NTAG  
Fig 3. Pin configuration  
7.2.2 Pin description  
Table 5.  
Symbol  
XTAL_P  
XTAL_N  
PIO0  
Pin descriptions  
Pin  
1
Type Default at reset Description  
System crystal oscillator 32 MHz  
System crystal oscillator 32 MHz  
2
3
IO  
GPIO0[1]  
GPIO0 — General Purpose digital Input/Output 0  
USART0_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - synchronous clock  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
PWM0 — Pulse Width Modulator output 0  
SPI1_SCK — Serial Peripheral Interface-bus 1 clock input/output  
PDM0_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 0)  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
13 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Symbol  
PIO1  
Pin descriptions  
Pin  
Type Default at reset Description  
4
IO  
GPIO1[1]  
GPIO1 — General Purpose digital Input/Output 1  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
PWM1 — Pulse Width Modulator output 1  
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input  
PDM0_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 0)  
PIO2  
5
IO  
GPIO2[1]  
GPIO2 — General Purpose digital Input/Output 2  
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output  
PWM2 — Pulse Width Modulator output 2  
SPI1_MOSI — Serial Peripheral Interface-bus 1 master output slave  
input  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
ISO7816_RST — RST signal, output, for ISO7816 interface  
MCLK — External clock, can be provided to DMIC IP  
GPIO3 — General Purpose digital Input/Output 3  
PIO3  
6
IO  
GPIO3[1]  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input  
PWM3 — Pulse Width Modulator output 3  
SPI1_SSELN0 — Serial Peripheral Interface-bus 1 slave select not 0  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
ISO7816_CLK — Clock output for ISO7816 interface  
PIO4  
7
IO  
GPIO4[1][2]  
GPIO4 — General Purpose digital Input/Output 4  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
PWM4 — Pulse Width Modulator output 4  
SPI1_SSELN1 — Serial Peripheral Interface-bus 1 slave select not 1  
USART0_CTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Clear To Send input  
ISO7816_IO — IO of ISO7816 interface  
RFTX — Radio Transmit Control Output  
ISP_SEL — In-System Programming Mode Selection  
PIO5/ISP_ENTRY  
8
IO  
GPIO5/ISP_ENT GPIO5/ISP_ENTRY — General Purpose digital Input/Output 5;  
RY[1][3]  
In-System Programming Entry  
SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not  
SPI1_MISO — Serial Peripheral Interface-bus 1 master data input  
SPI1_SSELN2 — Serial Peripheral Interface-bus 1 slave select not 2  
USART0_RTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Request To Send output  
RFRX — Radio Receiver Control Output  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
14 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Symbol  
PIO6  
Pin descriptions  
Pin  
Type Default at reset Description  
9
IO  
IO  
IO  
GPIO6[1]  
GPIO6 — General Purpose digital Input/Output 6  
USART0_RTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Request to Send output  
CT32B1_MAT0 — 32-bit CT32B1 match output 0  
PWM6 — Pulse Width Modulator output 6  
I2C1_SCL — I2C-bus 1 master/slave SCL input/output  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
ADE — Antenna Diversity Even output  
SPI0_SCK — Serial Peripheral Interface 0- synchronous clock  
GPIO7 — General Purpose digital Input/Output 7  
PIO7  
10  
GPIO7[1]  
USART0_CTS — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - Clear to Send input  
CT32B1_MAT1 — 32-bit CT32B1 match output 1  
PWM7 — Pulse Width Modulator output 7  
I2C1_SDA — I2C-bus 1 master/slave SDA input/output  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
ADO — Antenna Diversity Odd Output  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input  
PIO8/TXD0  
11  
GPIO8[1][4]  
GPIO8 — General Purpose digital Input/Output 8  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
CT32B0_MAT0 — 32-bit CT32B0 match output 0  
PWM8 — Pulse Width Modulator output 8  
ANA_COMP_OUT — Analog Comparator digital output  
PDM1_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 1)  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
RFTX — Radio Transmit Control Output  
PIO9/RXD0  
12  
IO  
GPIO9[1][5]  
GPIO9 — General Purpose digital Input/Output 9  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
CT32B1_CAP1 — 32-bit CT32B1 capture input 1  
PWM9 — Pulse Width Modulator output 9  
USART1_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - synchronous clock  
PDM1_CLK — Pulse Density Modulation Clock output  
to digital microphone (channel 1)  
SPI0_SSELN — Serial Peripheral Interface-bus 0 slave select not  
ADO — Antenna Diversity Odd Output  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
15 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Symbol  
PIO10  
Pin descriptions  
Pin  
Type Default at reset Description  
13  
IO  
GPIO10[1]  
GPIO10 — General Purpose digital Input/Output 10  
CT32B0_CAP0 — 32-bit CT32B0 capture input 0  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
RFTX — Radio Transmit Control Output  
I2C0_SCL — I2C-bus 0 master/slave SCL input/output (open drain)  
SPI0_SCK — Serial Peripheral Interface-bus 0 clock input/output  
PDM0_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 0)  
PIO11  
14  
IO  
GPIO11[1]  
GPIO11 — General Purpose digital Input/Output 11  
CT32B1_CAP0 — 32-bit CT32B1 capture input 0  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
RFRX — Radio Receiver Control Output  
I2C0_SDA — I2C-bus 0 master/slave SDA input/output (open drain)  
SPI0_MISO — Serial Peripheral Interface-bus 0 master input slave  
output  
PDM0_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 0)  
PIO12/SWCLK  
15  
IO  
SWCLK  
GPIO12 — General Purpose digital Input/Output 12  
SWCLK — Serial Wire Debug Clock  
PWM0 — Pulse Width Modulator output 0  
I2C1_SCL — I2C-bus 1 master/slave SCL input/output (open drain)  
SPI0_MOSI — Serial Peripheral Interface-bus 0 master output slave  
input  
ANA_COMP_OUT — Analog Comparator digital output  
IR_BLASTER — Infra-Red Modulator output  
PIO13/SWDIO  
16  
IO  
SWDIO  
GPIO13 — General Purpose digital Input/Output 13  
SPI1_SSELN2 — Serial Peripheral Interface-bus 1, slave select not  
2
SWDIO — Serial Wire Debug Input/Output  
PWM2 — Pulse Width Modulator output 2  
I2C1_SDA — I2C-bus 1 master/slave SDA input/output (open drain)  
SPI0_SSELN — Serial Peripheral Interface-bus 0, slave select not  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
16 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Pin descriptions  
Symbol  
Pin  
Type Default at reset Description  
PIO14/ADC0  
17  
IO  
GPIO14[1]  
ADC0 — ADC input 0  
GPIO14 — General Purpose digital Input/Output 14  
SPI1_SSELN1 — Serial Peripheral Interface-bus 1, slave select not  
1
CT32B0_CAP1 — 32-bit CT32B0 capture input 1  
PWM1 — Pulse Width Modulator output 1  
SWO — Serial Wire Output  
USART0_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - synchronous clock  
MCLK — External clock, can be provided to DMIC IP  
RFTX — Radio Transmit Control Output  
PIO15/ADC1  
18  
IO  
GPIO15[1]  
ADC1 — ADC input 1  
GPIO15 — General Purpose digital Input/Output 15  
SPI1_SCK — Serial Peripheral Interface-bus 1, clock input/output  
ANA_COMP_OUT — Analog Comparator digital output  
PWM3 — Pulse Width Modulator output 3  
PDM1_DATA — Pulse Density Modulation Data input from digital  
microphone (channel 1)  
I2C0_SCL — I2C-bus 0 master/slave SCL input/output (open drain)  
RFRX — Radio Receiver Control Output  
PIO16/ADC2  
19  
IO  
GPIO16[1]  
ADC2 — ADC input 2  
GPIO16 — General Purpose digital Input/Output 16  
SPI1_SSELN0 — Serial Peripheral Interface-bus 1, slave select not  
0
PWM5 — Pulse Width Modulator output 5  
PDM1_CLK — Pulse Density Modulation Clock output to digital  
microphone (channel 1)  
SPIFI_CSN — Quad-SPI Chip Select Not, output  
ISO7816_RST — RST signal, output, for ISO7816 interface  
I2C0_SDA — I2C-bus 0 master/slave SDA input/output (open drain)  
VDDE Supply voltage for IO  
VDDE  
20  
21  
P
PIO17/ADC3  
IO  
GPIO17[1]  
ADC3 — ADC input 3  
GPIO17 — General Purpose digital Input/Output 17  
SPI1_MOSI — Serial Peripheral Interface-bus 1, master output slave  
input  
SWO — Serial Wire Output  
PWM6 — Pulse Width Modulator output 6  
SPIFI_IO3 — Quad-SPI Input/Output 3  
ISO7816_CLK — Clock output for ISO7816 interface  
CLK_OUT — Clock out  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
17 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Pin descriptions  
Symbol  
Pin  
Type Default at reset Description  
PIO18/ADC4  
22  
IO  
GPIO18[1]  
ADC4 — ADC input 4  
GPIO18 — General Purpose digital Input/Output 18  
SPI1_MISO — Serial Peripheral Interface-bus 1, master data input  
CT32B0_MAT1 — 32-bit CT32B0 match output 1  
PWM7 — Pulse Width Modulator output 7  
SPIFI_CLK — Quad-SPI Clock output  
ISO7816_IO — IO of ISO7816 interface  
USART0_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - transmit data output  
PIO19/ADC5  
23  
IO  
GPIO19[1]  
ADC5 — ADC input 5  
GPIO19 — General Purpose digital Input/Output 19  
ADO — Antenna Diversity Odd Output  
PWM4 — Pulse Width Modulator output 4  
SPIFI_IO0 — Quad-SPI Input/Output 0  
USART1_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - receive data input  
CLK_IN — External clock  
USART0_RXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 0 - receive data input  
PIO20/ACP  
24  
IO  
GPIO20[1]  
ACP — Analog Comparator Positive input  
GPIO20 — General Purpose digital Input/Output 20  
IR_BLASTER — Infra-Red Modulator output  
PWM8 — Pulse Width Modulator output 8  
RFTX — Radio Transmit Control Output  
SPIFI_IO2 — Quad-SPI Input/Output 2  
USART1_TXD — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - transmit data output  
PIO21/ACM  
25  
IO  
GPIO21[1]  
ACM — Analog Comparator Negative input  
GPIO21 — General Purpose digital Input/Output 21  
IR_BLASTER — Infra-Red Modulator output  
PWM9 — Pulse Width Modulator output 9  
RFRX — Radio Receiver Control Output  
SWO — Serial Wire Output  
SPIFI_IO1 — Quad-SPI Input/Output 1  
USART1_SCK — Universal Synchronous/Asynchronous  
Receiver/Transmitter 1 - synchronous clock  
TRST  
RSTN  
VBAT  
26  
27  
28  
29  
30  
31  
G
I
TRST — must be connected to GND  
RSTN — Reset Not input  
P
VBAT Supply voltage DCDC input  
LX — DCDC filter  
LX  
VSS(DCDC)  
FB  
G
VSS(DCDC) ground for DCDC section  
FB — DCDC Feedback input  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
18 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 5.  
Pin descriptions  
Symbol  
Pin  
32  
33  
34  
35  
36  
37  
Type Default at reset Description  
VDD(PMU)  
XTAL_32K_P  
XTAL_32K_N  
VDD(RADIO)  
VSS(RF)  
P
VDD(PMU) supply voltage for PMU section  
crystal oscillator 32.768 kHz  
crystal oscillator 32.768 kHz  
P
VDD(RADIO) supply voltage for radio section  
VSS(RF) RF ground  
G
IO  
RF_IO  
RF_IO — RF antenna, RF pin which can be considered as RF  
Input/output. The radio transceiver is connected here.  
VSS(RF)  
38  
39  
40  
G
VSS(RF) RF ground  
not connected  
n.c.  
n.c.  
not connected  
exposed die pad  
G
must be connected to RF ground plane  
[1] I: input at reset.  
[2] For standard operation (normal boot or ISP programming mode), this pin should be high during the release  
of reset. If there is no external driver to this pin, then the internal pull-up will keep this pin high.  
[3] ISP programming mode: leave pin floating high during reset to avoid entering UART programming mode or  
hold it low to program.  
[4] In ISP mode, it is configured to USART0_TXD.  
[5] In ISP mode, it is configured to USART0_RXD.  
7.3 Pin properties  
Table 6.  
Pin properties  
1
2
3
4
5
6
7
8
9
XTAL_P  
XTAL_N  
PIO0  
H
L
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
PU  
PD  
PD  
PU  
PU  
PU  
PD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
PIO1  
Y
Y
PIO2  
L
Y
Y
PIO3  
H
H
H
L
Y
Y
PIO4  
Y
Y
PIO5/ISP_ENTRY  
PIO6  
Y
Y
Y
Y
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
19 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 6.  
Pin properties  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PIO7  
PIO8/TXD0  
PIO9/RXD0  
PIO10  
L
H
Y
Y
PD  
PU  
PU  
EPU[1]  
EPU[1]  
PU  
PU  
PU  
PU  
PU  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
N
N
N
N
N
N
Y
Y
N
N
H
Y
N
N
N
Y
N
Hi-Z  
Hi-Z  
H
N[1]  
N[1]  
Y
N
N
Y
Y
N
PIO11  
N
N
Y
Y
N
PIO12/SWCLK  
PIO13/SWDIO  
PIO14/ADC0  
PIO15/ADC1  
PIO16/ADC2  
VDDE  
N
N
N
Y
N
H
Y
N
N
N
Y
N
H
Y
N
N
N
Y
N
H
Y
N
N
N
Y
N
H
Y
N
N
N
Y
N
L
Y
N
N
N
Y
Y
PIO17/ADC3  
PIO18/ADC4  
PIO19/ADC5  
PIO20/ACP  
PIO21/ACM  
TRST[2]  
PD  
PD  
PD  
PD  
PU  
SS  
SS  
SS  
SS  
SS  
L
Y
N
N
N
Y
Y
L
Y
N
N
N
Y
Y
L
Y
N
N
N
Y
Y
H
Y
N
N
N
Y
Y
Hi-Z  
H
N
N
RSTN  
Y
PU  
N
VBAT  
LX  
VSS(DCDC)  
FB  
VDD(PMU)  
XTAL_32K_P  
XTAL_32K_N  
VDD(RADIO)  
VSS_RF  
RFIN  
VSS_RF  
LB  
LA  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
20 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
[1] External Pullup required  
[2] Tie to ground for functional mode  
Table 7:  
Abbreviation used in the Table 6  
Properties  
Abbreviation  
Descriptions  
High impendence  
Default status after POR  
Hi-Z  
H
High level  
Low level  
L
Pullup/ pulldown Enable after  
POR  
Y
Enabled  
N
Disabled  
Pullup/ pulldown selection after  
POR  
PU  
PD  
FS  
SS  
N
Pullup  
Pulldown  
Slew rate after POR  
Passive Pin Filter after POR  
Open drain enable after reset  
Open drain enable control  
Pin interrupt  
Fast slew rate  
Slow slew rate  
Disabled  
Y
Enabled  
N
Disabled  
Y
Enabled  
Disabled[1]  
N
Y
Enabled  
N
Yes  
Y
No  
Fast capability  
N
Not support fast capability  
Support fast capability  
Y
[1] All PIO except 10/11 can do pseudo-open drain  
8. Functional description  
8.1 Application CPU  
The Arm Cortex-M4 includes three AHB-Lite buses, one system bus and the I-code and  
D-code buses. One bus is dedicated for instruction fetch (I-code), and one bus is  
dedicated for data access (D-code). The use of two core buses allows for simultaneous  
operations if concurrent operations target different devices.  
A multi-layer AHB matrix connects the CPU buses and other bus masters to peripherals in  
a flexible manner that optimizes performance by allowing peripherals on different slave  
ports of the matrix to be accessed simultaneously by different bus masters. Note that  
while the AHB bus itself supports word, halfword, and byte accesses, not all AHB  
peripherals need or provide that support.  
APB peripherals are connected to the AHB matrix via two APB buses using separate  
slave ports from the multilayer AHB matrix. This allows for better performance by reducing  
collisions between the CPU and the DMA controller, and also for peripherals on the  
asynchronous bridge to have a fixed clock that does not track the system clock. Note that  
APB, by definition, does not directly support byte or halfword accesses.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
21 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The CPU, AHB and DMA sub-systems are all synchronous and can operate at 48 MHz  
(FRO), 32 MHz (FRO), 32 MHz (XTAL), 24 MHz (FRO), 16 MHz (XTAL), 12 MHz (FRO).  
8.1.1 Arm Cortex-M4 processor  
The Arm Cortex-M4 is a general purpose, 32-bit microprocessor, which offers high  
performance and very Low power consumption. The Arm Cortex-M4 offers many features,  
including a Thumb-2 instruction set, low interrupt latency, hardware divide,  
interruptible/continuable multiple load and store instructions, automatic state save and  
restore for interrupts, tightly integrated interrupt controller with wake-up interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
A 3-stage pipeline is employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
8.1.2 Memory Protection Unit  
The Cortex-M4 includes a Memory Protection Unit (MPU) which can be used to improve  
the reliability of an embedded system by protecting critical data within the user  
application.  
The MPU allows separating processing tasks by disallowing access to each other's data.  
Access to memory regions can be disabled and also be defined as read-only. It detects  
unexpected memory accesses that could potentially break the system.  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to eight regions, each of which is  
divided into eight sub-regions. Accesses to memory locations that are not defined in the  
MPU regions, or not permitted by the region setting, will trigger memory management fault  
exception.  
8.1.3 System Tick Timer (SysTick)  
The Arm Cortex-M4 core includes a System Tick timer (SysTick) that generates a  
dedicated SYSTICK exception. The clock source for the SysTick can be the system clock,  
or a divided version of this.  
8.1.4 Nested Vector Interrupt controller (NVIC)  
The NVIC is an integral part of the Cortex-M4 that efficiently supports many interrupt  
sources with configurable priority levels.  
8.1.4.1 Features  
Nested Vectored Interrupt Controller that is an integral part of the CPU  
Tightly coupled interrupt controller provides low interrupt latency  
Controls system exceptions and peripheral interrupts  
56 vectored interrupts  
8 programmable interrupt priority levels with hardware priority level masking  
Relocatable vector table using Vector Table Offset Register VTOR  
Software interrupt generation  
Support for Non-Maskable Interrupt (NMI) from any interrupt  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
22 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
8.1.4.2 General description  
The tight coupling of the NVIC to the CPU allows for low interrupt latency and efficient  
processing of late arriving interrupts.  
8.2 Memory  
The QN9090 incorporates several distinct memory regions.  
The registers incorporated into the CPU, such as NVIC, SysTick, and sleep mode control,  
are located on the private peripheral bus.  
The system memory map is shown in the following figure.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
23 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
32-bit Words  
0xFFFF_FFFF  
Reserved  
(Do not access)  
0xE00F_FFFF  
Private Peripheral  
Bus (External)  
0xE004_0000  
0xE003_FFFF  
Private Peripheral  
Bus (Internal)  
768 KBytes  
0xE000_0000  
Reserved  
(Do not access)  
0x400B_1FFF  
Reserved  
4 Kbytes  
4 Kbytes  
64 Kbytes  
(Do not access)  
0x400B_1000  
0x400B_0FFF  
Reserved  
(Do not access)  
0x400B_0000  
0x400A_FFFF  
BLE Link Layer  
0x400A_0000  
Reserved  
(Do not access)  
0x4008_FFFF  
4 Kbytes  
4 Kbytes  
4 Kbytes  
Hash  
SPI 1  
SPI 0  
0x4008_F000  
0x4008_EFFF  
0x4008_E000  
0x4008_DFFF  
0x4008_D000  
0x4008_CFFF  
USART 1  
USART 0  
4 Kbytes  
4 Kbytes  
4 Kbytes  
0x4008_C000  
0x4008_BFFF  
0x4008_B000  
0x4008_AFFF  
32-bit Words  
DMIC  
ADC  
0x4008_A000  
0x4008_9FFF  
0x4001_FFFF  
4 Kbytes  
Reserved  
(Do not access)  
0x4008_9000  
0x4008_8FFF  
32-bit Words  
40 KBytes  
Reserved  
(Do not access)  
Reserved  
(Do not access)  
0x4001_6000  
0x4001_5000  
0x4001_4000  
0x4001_3000  
0x4001_2000  
0x4001_1000  
0x4001_0000  
0x4000_F000  
0x4000_E000  
0x4000_D000  
0x4000_C000  
0x4000_B000  
0x4000_A000  
0x4000_9000  
0x4000_8000  
0x4000_7000  
0x4000_6000  
0x4000_5000  
0x4000_4000  
0x4000_3000  
0x4000_2000  
0x4000_1000  
0x4000_0000  
0x4003_FFFF  
4 Kbytes  
4 Kbytes  
Reserved  
0x4008_8000  
0x4008_7FFF  
Reserved  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
4 KBytes  
116 KBytes  
(Do not access)  
(Do not access)  
0x4002_3000  
0x4002_2FFF  
BLE MODEM  
RFP MODEM  
PMC  
0x4008_7000  
0x4008_6FFF  
CTIMER 1  
CTIMER 0  
4 KBytes  
4 KBytes  
0x4002_2000  
0x4002_1FFF  
AES-256  
4 Kbytes  
4 KBytes  
0x4008_6000  
0x4008_5FFF  
0x4002_1000  
0x4002_0FFF  
DMA Controller  
SPIFI Registers  
General Purpose I/O  
Asynchronous  
System Configuration  
0x4008_5000  
0x4008_4FFF  
4 KBytes  
GPIO Group  
Interrupt (GINT0)  
GPIOPattern  
Interrupt (PINT)  
IO CONFIG  
0x4002_0000  
4 KBytes  
0x4008_4000  
0x4008_3FFF  
APB Bridge 1 Memory Map  
16 KBytes  
(IOCON)  
0x4008_0000  
Reserved  
(Do not access)  
INPUT MUX  
Random Number  
Generator  
0x4003_FFFF  
APB Bridge 1  
(Asynchronous)  
128 KBytes  
128 KBytes  
0x4002_0000  
0x4001_FFFF  
PWM  
APB Bridge 0  
(Synchronous)  
Reserved  
RTC  
0x4000_0000  
WWDT  
0x10FF_FFFF  
0x1000_0000  
Quad SPIFI  
16 MBytes  
64 KBytes  
0x0402_FFFF  
(Memory-Mapped Space)  
Flash Controller  
SRAM 11 (16 KB)  
SRAM 10 (16 KB)  
SRAM 9 (16 KB)  
SRAM 8 (16 KB)  
0x0402_C000  
0x0402_BFFF  
Reserved  
Code Patch  
Module  
0x0402_FFFF  
0x0402_0000  
0x0401_5FFF  
0x0400_0000  
0x0402_8000  
0x0402_7FFF  
SRAM-CTRL1  
(4*16KB)  
0x0402_4000  
0x0402_3FFF  
0x0402_0000  
IR Modulator  
ISO7816  
I2C 2  
Reserved  
SRAM-CTRL0  
88 KBytes  
128 KBytes  
640 KBytes  
0x0401_5FFF  
(2*4KB, 2*8KB, 4*16KB)  
SRAM 7 (4 KB)  
SRAM 6 (4 KB)  
SRAM 5 (8 KB)  
SRAM 4 (8 KB)  
SRAM 3 (16 KB)  
SRAM 2 (16 KB)  
SRAM 1 (16 KB)  
SRAM 0 (16 KB)  
0x0401_5000  
0x0401_4FFF  
0x0401_4000  
0x0401_3FFF  
0x0401_2000  
0x0401_1FFF  
Reserved  
(Do not access)  
I2C 1  
0x0301_FFFF  
0x0300_0000  
ROM  
I2C 0  
0x0401_0000  
0x0400_FFFF  
0x0400_C000  
0x0400_BFFF  
0x0400_8000  
0x0400_7FFF  
Reserved (do not  
access)  
Reserved  
(Do not access)  
Reserved (do not  
access)  
0x0009_FFFF  
0x0000_0000  
FLASH Memory  
0x0400_4000  
0x0400_3FFF  
0x0400_0000  
Synchronous System  
Configuration  
Main Memory Map (AHB)  
APB Bridge 0 Memory Map  
SRAMs Memory Map  
1) The private peripheral bus includes CPU peripherals such as the NVIC, SysTick, and the core control registers.  
Fig 4. System memory map  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
24 of 99  
NXP Semiconductors  
8.2.1 SRAM  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The main SRAM is comprised of up to a total 152 KB on-chip static RAM memory. The  
main SRAM is implemented as several SRAM instances to allow for more control of power  
usage when less SRAM is required (2 4 KB instances, 2 8 KB instances and 8 16 KB  
instances). Each SRAM has a separate clock control and power switch.  
See Table 2 for SRAM size of each parts.  
8.2.2 SRAM usage  
Although always contiguous on all QN9090 devices, the SRAM instances are divided  
between two AHB matrix ports. This allows user programs to potentially obtain better  
performance by dividing RAM usage among the ports. For example, simultaneous access  
to SRAM0 by the CPU and SRAM1 by the system DMA controller does not result in any  
bus stalls for either master.  
Generally speaking, the CPU will read or write all peripheral data at some point, even  
when all such data is read from or sent to a peripheral by DMA. So, minimizing stalls is  
likely to involve putting data to/from different peripherals in RAM on each port.  
Alternatively, sequences of data from the same peripheral could be alternated between  
RAM on each port. This could be helpful if DMA fills or empties a RAM buffer, then signals  
the CPU before proceeding on to a second buffer. The CPU would then tend to access the  
data while the DMA is using RAM on the other port. On the QN9030, all the RAM is  
accessed through one AHB matrix slave port.  
8.2.3 FLASH  
The QN9090 embeds flash for code and data storage. It is accessed through a flash  
controller that simplifies the use of the flash.  
QN9090 embeds a total of 640 KB of Flash, QN9030 a total of 320 KB  
Flash sector is 512 bytes  
100 kcycles page endurance guaranteed  
Software is provided to manage data storage in the flash and provides wear leveling  
features  
Data retention 10 years  
8.2.4 AHB multilayer matrix  
The QN9090 uses a multi-layer AHB matrix to connect the CPU buses and other bus  
masters to peripherals in a flexible manner that optimizes performance by allowing  
peripherals that are on different slave ports of the matrix to be accessed simultaneously  
by different bus masters.  
8.3 System clocks  
The following system clocks are used to drive the on-chip subsystems of the QN9090:  
The low power wake timers are driven by a low frequency 32 kHz clock.  
The main digital systems are driven from a high frequency clock source.  
The system controller state machines are driven from a 1 MHz FRO.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
25 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
These system clocks are used within the device for the digital functionality. Some  
functional blocks can also source a clock from the interface and this is explained in when  
the digital blocks are presented.  
8.3.1 32 kHz clock  
There are two possible sources for the 32kHz clock.  
There is an internal FRO that gives 32.768 kHz with accuracy of ±2%; this requires no  
external components.  
A 32 kHz XTAL is also supported. The XTAL is connected to XTAL_32K_P and  
XTAL_32K_N pins. The cell has configurable internal capacitors and therefore, except for  
the XTAL itself, no other external components are typically required. Very accurate XTALs  
are available. This option is recommended for accurate timings.  
8.3.2 High frequency system clock  
There are two possible sources for the high-speed system clock.  
There is an internal high speed FRO that supports clock frequencies of 48 MHz, 32 MHz,  
24 MHz and 12 MHz. This does not require any external components and has an  
accuracy of ±2%.  
A 32 MHz XTAL is also supported. The cell has configurable internal capacitors and  
therefore, except for the XTAL itself, no other external components are typically required.  
An accurate XTAL must be used for the radio operation. The system clock can be chosen  
to be sourced from the FRO or XTAL and this choice is separate to the operation of the  
radio using the XTAL clock. When selecting the XTAL as the source for the high frequency  
system clock, it is possible to select 32 MHz or 16 MHz.  
The high frequency system clock is used for the processor and the system buses.  
8.3.3 1 MHz FRO  
A 1 MHz FRO is used by the core system controller and the state machine involved in the  
device start-up and shut-down. High accuracy of this clock is not necessary and it has a  
tolerance of ±15%.  
8.4 Resets and brownout  
A system reset initializes the device to a pre-defined state and forces the CPU to start  
program execution from the reset vector. The reset process that the QN9090 goes  
through is as follows.  
When power is first applied or when the external reset is released, the FRO1MHz is  
started, then the DCDC converter is started. After that, the system power domain is  
started. When these domains are stable, the flash and main core domain LDOs are  
enabled. When these are stable, the high speed FRO is enabled and the elements  
necessary for CPU operation are enabled. Configuration data is read from the flash and  
the boot process begins.  
Depending on the configuration and flash contents then the application may be executed,  
or the device may enter In System Programming (ISP) mode.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
26 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The initial power-up sequence will not begin if the device power is too low; in this case the  
Power-on reset module will keep the device in a reset state until there is sufficient voltage.  
Additionally, the brown-out detect block will keep the device in reset until a safe operating  
voltage is reached.  
Once the device is operating, the brownout module can be used to interrupt the processor  
in case operating voltage changes occur. This allows software to manage a clean  
response to the event. The brownout threshold is configurable to support a range of  
applications.  
Several resets are supported that can affect all or most of the device. These are  
presented in the following sub-sections.  
8.4.1 External reset  
An external reset is generated by a low level on the RSTN pin. Reset pulses longer than  
the minimum pulse width will generate a reset during active or power-down modes.  
Shorter pulses are not guaranteed to generate a reset. The QN9090 is held in reset while  
the RSTN pin is low. When the applied signal reaches the reset threshold voltage on its  
positive edge, the internal reset process starts.  
The QN9090 has an internal pull-up resistor connect to the RSTN pin. This pin is the input  
for an external reset only.  
8.4.2 Software reset  
A system reset can be triggered at any time through software control, causing a full chip  
reset and invalidating the RAM contents. For example, this can be executed within a  
user's application upon detection of a system failure.  
8.4.3 Watchdog timer  
The watchdog timer can cause a full chip reset if it reaches its timeout point and it is  
configured to generate a reset, rather than an interrupt. In normal operation, the software  
will periodically service the watchdog to prevent this timeout occurring. Typically, a  
watchdog timeout indicates an unexpected lock-up within the system.  
8.4.4 Arm system reset  
The CPU can cause a reset by requesting a System reset. This reset causes a reset of  
the CPU and the core digital functionality, digital peripherals and the 32 MHz XTAL. The  
power domains within the device, such as the DCDC converter and core LDO are  
unaffected so that the CPU will restart quicker than if a software reset is performed.  
8.5 System configuration (SYSCON)  
The device has many system level features which support the operation of the device,  
such as clock control. In addition there is functionality provided to allow the software to  
manage the system, such as controlling wake-up sources. These features include:  
System and bus configuration  
Clock select and control  
Reset control  
Wake-up control  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
27 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Brown-out (BOD) configuration  
High-accuracy frequency measurement function for on-chip and off-chip clocks, using  
a selection of on-chip clocks as reference clock  
Device ID register  
8.6 Power management  
This section provides an overview of power related information about  
QN9090(T)/QN9030(T) devices.  
These devices include a variety of adjustable regulators, power switches, and clock  
switches to allow fine tuning power usage to match requirements at different performance  
levels and reduced power modes. All devices include an on-chip API in the boot ROM to  
adjust power consumption in reduced power modes, and provide entry to those modes.  
8.6.1 Power supply  
The device is powered by VBAT, which requires a 10 F decoupling capacitor to ground.  
To give efficient operation, the device has an on-chip DCDC buck converter; it is turned on  
when the device is in active and sleep modes and, using external connections, it provides  
the supply voltage to the PMU and Radio. The converter is powered from VBAT and the  
external output of the DCDC converter, FB, requires a 10 F decoupling capacitor to  
ground. For the DCDC converter to function correctly, a filtered version of FB must be  
input to LX, This is achieved with a 4.7 H inductor. The DCDC converter output, FB, must  
be routed to device pins VDD(radio) and VDD(pmu) so that the whole system is powered  
correctly.  
The two VDD power inputs supply the power to most of the device, either directly or via  
on-chip regulators and power switches. These are used to manage power consumption  
based on the required mode of operation.  
There is an always-on power domain which is powered by VBAT and includes the core  
functions to control device start-up and the functionality required in the very low power  
modes. This domain always has power as long as sufficient voltage is supplied to VBAT.  
A further domain is important for supporting the power down mode. It includes the RTC,  
wake-up timer and some clock, reset and wakeup control. This domain is always has  
power as long as sufficient voltage is supplied to VDD and provided that the device is not  
in deep power-down mode.  
See Figure 8 “Application diagram – battery powered solution” for the power connections.  
8.6.2 Power modes  
A variety of power modes are supported for the optimization of power consumption,  
including active, sleep, deep-sleep, power-down and deep power-down. Upon power-up  
or reset, the device enters active mode. After processing is complete, the software puts  
the chip into sleep mode or power-down mode, to save power consumption. The device is  
woken up either by a reset or an interrupt trigger like a GPIO interrupt, timer timeout, or  
other wake-up sources.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
28 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
An API is provided so that software can easily use the power modes. The API performs all  
the configuration necessary for the different power modes, including setting power  
domains to the correct state and voltage, shutting down the flash controller safely,  
enabling the wake up mechanisms. The following sections introduces modes supported in  
order from highest to lowest power consumption.  
8.6.2.1 Active mode  
The part is in active mode after a Power-On Reset (POR) and when it is fully powered and  
operational after booting.  
8.6.2.2 Sleep mode  
Sleep mode saves a significant amount of power by stopping CPU execution without  
affecting peripherals or requiring significant wake-up time. The sleep mode affects the  
relevant CPU only. The clock to the core is shut off. Peripherals and memories are active  
and operational.  
8.6.2.3 Deep-sleep mode  
Deep-sleep mode is highly configurable and can reduce power consumption, compared to  
Sleep mode by turning off more functions. Additionally, core voltages are reduced to save  
power. Wake-up times are longer than for Sleep mode due to the time needed to restart  
the functions. The clock to the CPU is shut down. The clock to the peripherals may also  
be disabled. The SRAM and registers maintain their internal states.  
Entry to these modes can be accomplished by the CPU using the power profiles API,  
selected peripherals can be left running for safe operation of the part (e.g. RTC, WWDT  
and BOD, depending upon the mode). The flash is placed in standby mode and system  
clocks may be disabled.  
8.6.2.4 Power-down mode  
In Power-down mode the core of the device and the flash is powered down, most clocks  
are stopped. Power consumption is very low with the cost of a longer wake-up time. The  
processor and most digital peripherals are powered off. USART0, SPI0 and I2C0 can  
operate with limited functionality in power down mode and have the ability to wake the  
device. Low power sleep timers can be enabled to generate a wake-up at a certain time in  
the future. Wakeup is also possible by GPIOs, analog comparator, RTC, BOD VBAT and  
NTAG field detect. All, or part, of the SRAM can be optionally retained at the cost of extra  
current consumption.  
8.6.2.5 Deep power-down mode  
Deep Power-down mode shuts down virtually all on-chip power consumption, but requires  
a significantly longer wake-up time. For maximal power savings, the entire system (CPU,  
memories and all peripherals) is shut down except for the PMU. Wake-up is possible from  
reset, NTAG field detect, and optionally GPIO. On wake-up, the part reboots.  
8.6.2.6 Wake-up sources  
All interrupts to the CPU can be used as a wake-up from sleep.  
The following table shows the possible wake-up sources from deep-sleep, power-down  
and deep power-down.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
29 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 8.  
Power mode wake-up sources  
Wake-up source  
Deep sleep Power-down Deep power-down  
WWDT  
BOD  
Yes  
Yes  
Yes  
GINT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
IR Modulator  
PINT [3:0]  
SPIFI  
TIMER [1:0]  
USART0  
USART1  
I2C0  
Yes  
Yes  
Yes  
I2C1  
SPI0  
SPI1  
PWM[11:0]  
I2C2  
RTC  
Yes  
Yes  
NFCTAG  
ADC_SEQA  
ADC_THCMP_OVR  
DMIC  
Yes  
HWVAD  
ISO7816  
ANA_COMP  
WAKE_UP_TIMER[1:0]  
GPIO  
Yes  
Yes  
Yes  
Yes  
8.7 Digital I/O  
8.7.1 Features  
All 22 Digital I/Os can be configured a GPIO ports  
GPIO pins can be configured as input or output by software  
All GPIO pins default to inputs with interrupt disabled at reset  
Pin registers allow pins to be sensed and set individually  
Group Interrupt to generate a single interrupt from AND or OR function of the digital  
IOs.  
Pin/ Pattern Interrupt allowing 4 IOs to be able to create an interrupt based on pin  
values or a combination of the values  
2 IOs supporting true I2C mode or standard digital IO with configurable pull-up and  
drive strength  
20 standard IO cells configurable for drive strength, pull-up resistor, pull-down  
resistor, pseudo open-drain  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
30 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
8.7.2 General description  
The 22 digital IOs have multiplexed functionality, supporting one or more digital  
peripherals and also a basic General Purpose IO function (GPIO). In GPIO mode it is  
possible to configure the IO as an input or as an output.  
As an input it is possible to configure IO wake a device from powerdown and deep  
powerdown. The input value can also be read.  
Using the Pin Interrupt/ Pattern Match function (PINT) it is possible to configure up to 4  
digital IOs to be able to generate an interrupt based for active high or low functionality.  
Alternatively the 4 IOs can be combined in various ways to generate an interrupt. These  
interrupt are able to wake the CPU from sleep mode.  
Additionally, a Group Interrupt function (GINT) allows any selection of up to all 22 IOs to  
be combined into a AND or OR function in order to generate the group interrupt. The  
polarity of each IO used in the function can be configured.  
Two of the digital IO cells support true I2C functionality and standard digital IO  
functionality, These support a pull-up resistor, drive strength control.  
The other 20 digital IOs cells are configurable to support drive strength options, pull-up or  
pull-down functions and the ability to operate in a pseudo open-drain mode.  
The output value of each IO can be held during a power-down cycle if required.  
Two DIO pins can optionally be used to provide control signals for RF circuitry (e.g.  
switches and PA) in high-power range extenders. PIO4_8_10_14_20/RFTX is asserted  
when the radio is in the transmit state and similarly, PIO5_11_15_21/RFRX is asserted  
when the radio is in the receiver state. From software and test perspective, it is  
recommended to use PIO4 or PIO20 for RFTX and PIO5 or PIO21 for RFRX.  
8.8 DMA controller  
The DMA controller allows peripheral to memory, memory to peripheral, and memory  
single source and destination.  
19 channel which are connected to peripheral DMA requests. These come from the  
USART, SPI-bus, I2C-bus, PDM and SPIFI interfaces. Any otherwise unused  
channels can also be used for functions such as memory-to-memory moves.  
DMA operations can be triggered by on-chip or off-chip events. Each DMA channel  
can select one trigger input from 18 sources. Trigger sources include ADC interrupts,  
timer interrupts, pin interrupts, and the SCT DMA request lines  
Priority is user selectable for each channel (up to eight priority levels)  
Continuous priority arbitration  
Address cache with four entries (each entry is a pair of addresses)  
Efficient use of data bus  
Supports single transfers up to 1,024 words  
Address increment options allow packing and/or unpacking data  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
31 of 99  
NXP Semiconductors  
8.9 PWM  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The PWM module supports the generation of up to 10 PWM waveforms, each with its own  
prescaler, to support a range of applications.  
1 PWM module with 10 independent outputs  
Option for 1 channel to drive up to 1 channel driving the 10 outputs simultaneously  
Programmable 10-bit prescaler for eac.h channel  
16-bit auto-reload down counter for each channel  
16-bit compare register for each channel (toggling point in 1 full period)  
Predictable PWM initial output state for each channel (configurable initial waveform  
polarity – HIGH or LOW)  
Configurable level (HIGH or LOW) of PWM output when PWM is disabled  
Programmable overflow interrupt generation for each channel  
8.10 Timers  
Within the QN9090 there are several different timer blocks available. These timers are  
used in different ways as outlined here.  
Counter/Timers: The two blocks are the main functional timers for the application,  
running off a high speed clock and able to create interrupts from match registers.  
Watchdog Timer: slow speed timer with the ability to interrupt the processor or cause  
device reset. Often used to identify when application software is locked up or taking  
too long.  
Real-time clock: this block has two timers real time clock and high-resolution/wake-up  
timer. The real time clock has a 1Hz clock is often run continually as a clock. The  
high-resolution/ wake up timer is a simple counter that can generate an input to wake  
the device from sleep, deep-sleep and power-down. Maximum timeout is 64 seconds.  
Low Power Wake-up Timers: this block has two timers running on a 32kHz clock.  
Predominantly used to wake the device from power-down, with a maximum time  
period in excess of one year.  
Tick Timer: within the processor this is often used for a regular heart beat to trigger  
software scheduling.  
The device has different power modes and the following table shows when the timers can  
be used.  
Table 9.  
Allowed timer usage in different power modes  
Timer block  
Active mode Sleep mode  
Deep-sleep  
mode  
Power-down  
mode  
Deep power-down  
mode  
Counter/timer  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Watchdog timer  
Real-time clock  
Low Power wake-up timers  
Tick timer  
X
X
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
32 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
8.10.1 Counter/Timers  
There are two Counter/Timer blocks that support a range of functions such as timers or  
counting events from an IO pin. The match registers allow for configurable interrupts when  
the counter reaches certain values. The match events can also be indicated on device  
pins.  
8.10.1.1 Features  
2 counter/timer instances, CT32B0 and CT32B1  
Each is a 32-bit counter/timer with a programmable 32-bit prescaler. Both timers  
include external capture and match pin connections  
Counter or timer operation  
For each timer, up to 2 32-bit capture channels that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse-width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match  
Stop timer on match with optional interrupt generation  
Reset timer on match with optional interrupt generation  
For each timer with pin connections, up to 2 external outputs corresponding to match  
registers with the following capabilities:  
Set LOW on match  
Set HIGH on match  
Toggle on match  
Do nothing on match  
Two match registers can be used to trigger DMA transfers.  
8.10.1.2 General description  
Each counter/timer is designed to count cycles of the APB bus clock or an externally  
supplied clock and can optionally generate interrupts or perform other actions at specified  
timer values based on four match registers. Each counter/timer also includes one capture  
input to trap the timer value when an input signal transitions, optionally generating an  
interrupt.  
Capture inputs: The capture signal can be configured to load the capture register with  
the value in the counter/timer and optionally generate an interrupt. The capture signal is  
generated by one of the pins with a capture function. Each capture signal is connected to  
one capture channel of the timer.  
The counter/timer block can select a capture signal as a clock source instead of the APB  
bus clock.  
Match outputs: When a match register equals the Timer Counter (TC), the  
corresponding match output can either toggle, go LOW, go HIGH, or do nothing.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
33 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Applications  
Interval timer for counting internal events  
Pulse Width Modulator via match outputs  
Pulse Width Demodulator via capture input  
Free running timer  
8.10.2 Watchdog timer  
The purpose of the Watchdog Timer is to reset or interrupt the microcontroller within a  
programmable time if it enters an erroneous state. When enabled, a watchdog reset is  
generated if the user program fails to feed (reload) the Watchdog within a predetermined  
amount of time.  
When a watchdog window is programmed, an early watchdog feed is also treated as a  
watchdog event. This allows preventing situations where a system failure may still feed  
the watchdog. For example, application code could be stuck in an interrupt service that  
contains a watchdog feed. Setting the window such that this would result in an early feed  
will generate a watchdog event, allowing for system recovery.  
Internally resets chip if not reloaded during the programmable time-out period  
Optional windowed operation requires reload to occur between a minimum and  
maximum time-out period, both programmable  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out  
Clock fed to the watchdog function is selectable from 32 kHz clock, 32 MHz clock and  
FRO 1 MHz clock, This selected clock can be optionally pre-scaled before input to the  
block.  
Programmable 24-bit timer with internal fixed pre-scaler  
Selectable time period  
“Safe” watchdog operation. Once enabled, requires a hardware reset or a watchdog  
reset to be disabled  
Incorrect feed sequence causes immediate watchdog event if enabled  
The watchdog reload value can optionally be protected such that it can only be  
changed after the “warning interrupt” time is reached  
Flag to indicate watchdog reset  
The watchdog timer can be configured to run in Deep-sleep mode  
Debug mode  
8.10.3 Real-Time Clock (RTC)  
The Real-Time Clock provides two timers that are typically used as a Real-Time clock  
counter and a higher-resolution timer.  
8.10.3.1 Features  
The RTC has the following clock inputs generated from the 32 kHz FRO or 32 kHz  
XTAL:  
1 Hz clock for RTC timing  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
34 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
1 kHz clock for high-resolution RTC timing  
32-bit, 1 Hz RTC counter and associated match register for alarm generation  
Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution  
giving a maximum time-out period of over one minute.  
RTC alarm and high-resolution/wake-up timer time-out each generate independent  
interrupt requests. Either time-out can wake up the part from Low-power modes  
(Sleep mode, Deep-sleep mode or Power-down mode)  
8.10.3.2 General description  
The RTC contains two timers:  
Real time clock  
The real-time clock is a 32-bit up-counter which can be cleared or initialized by  
software. Once enabled, it counts continuously at a 1 Hz clock rate as long as the  
device is powered up and the RTC remains enabled.  
The main purpose of the RTC is to count seconds and generate an alarm interrupt to  
the processor whenever the counter value equals the value programmed into the  
associated 32-bit match register.  
If the part is in one of the reduced-power modes (Sleep, Deep-sleep, Power-down) an  
RTC alarm interrupt can also wake up the part to exit the Power mode and begin  
normal operation.  
High-resolution/wake-up timer  
The time interval required for many applications, including waking the part up from a  
Low-power mode, will often demand a greater degree of resolution than the  
one-second minimum interval afforded by the main RTC counter. For these  
applications, a higher frequency secondary timer has been provided.  
This secondary timer is an independent, stand-alone wake-up or general-purpose  
timer for timing intervals of up to 64 seconds with approximately one millisecond of  
resolution.  
The high-resolution/wake-up timer is a 16-bit down counter which is clocked at a 1  
kHz rate when it is enabled. Writing any non-zero value to this timer will automatically  
enable the counter and launch a countdown sequence. When the counter is being  
used as a wake-up timer, this write can occur just prior to entering a reduced power  
mode.  
When a starting count value is loaded, the high-resolution/wake-up timer will turn on,  
count from the pre-loaded value down to zero, generate an interrupt and/or a wake-up  
command, and then turn itself off until re-launched by a subsequent software write.  
8.10.4 Low Power Wake-up Timers  
Two low power wake-up timers are available on the QN9090, driven from the 32 kHz  
internal clock. They may run in power-down mode when the majority of the rest of the  
device is powered down, to time low-power periods or other long period timings that may  
be required by the application. The wake-up timers do not run during deep power-down  
and may optionally be disabled in power-down mode through software control. When a  
wake-up timer expires, it typically generates an interrupt; if the device is in deep sleep or  
power down mode then the interrupt may be used as an event to end the low power  
mode. Features include:  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
35 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
28-bit and 41-bit down counter  
Optionally runs during power-down periods  
Clocked by 32 kHz system clock; either 32 kHz RC oscillator, or 32 kHz XTAL  
oscillator  
Time-out period in excess of 1 year is possible  
A wake-up timer consists of a 28-bit or 41-bit down counter clocked from the selected 32  
kHz clock. An interrupt or wake-up event can be generated when the counter reaches  
zero. On reaching zero, the counter will continue to count down until stopped, which  
allows the latency in responding to the interrupt to be measured. If an interrupt or wake-up  
event is required, the timer interrupt should be enabled before loading the count value for  
the period. Once the counter value has been loaded and the counter started, the  
count-down begins. The counter can be stopped at any time through software control - the  
counter will remain at the value that it contained when it was stopped and no interrupt will  
be generated. The status of the timers can be read to indicate if the timers are running  
and/or have expired; this is useful when the timer interrupts are masked.  
8.11 USART  
There are 2 USART interfaces to provide Synchronous and Asynchronous serial  
communications with external devices. A range of features and flexible baud rate control  
supports a range of applications.  
2 USART interfaces, 1 with flow control  
7, 8 or 9 data bits and 1 or 2 stop bits  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option  
Multiprocessor/multidrop (9-bit) mode with software address compare  
RS-485 transceiver output enable  
Parity generation and checking: odd, even, or none  
Software selectable oversampling from 5 to 16 clocks in asynchronous mode  
One transmit and one receive data buffer  
The USART function supports separate transmit and receive FIFO with 4 entries each  
RTS/CTS supported on one USART. This allows for hardware signaling for automatic  
flow control. Software flow control can be performed using delta CTS detect, transmit  
disable control, and any GPIO as an RTS output  
Break generation and detection  
Receive data is 2 of 3 sample "voting". status flag set when one sample differs  
Built-in baud rate generator with auto-baud function  
A fractional rate divider is shared among all USARTs  
Interrupts available for FIFO receive level reached, FIFO transmit level reached,  
receiver idle, change in receiver break detect, framing error, parity error, overrun,  
underrun, delta CTS detect, and receiver sample noise detected  
Loopback mode for testing of data and flow control  
USART transmit and receive functions can operate with the system DMA controller  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
36 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC  
oscillator as the USART clock. This mode can be used, with USART0, while the  
device is in Power-down mode and can wake-up the device when a character is  
received  
8.12 Serial Peripheral Interfaces-bus (SPI-bus)  
The SPI-bus allows high-speed synchronous data transfer between the QN9090 and  
peripheral devices. Two SPI-buses are supported which can independently operate as a  
master or slave to support a range of system configurations.  
2 SPI-bus interfaces: SPI0 and SPI1 can be both configured as master or slave  
interfaces  
Data transmits of 1 to 16 bits supported directly. Larger frames supported by software  
The SPI-bus function supports separate transmit and receive FIFOs with 4 16-bit  
entries each  
Support DMA transfers: SPIn transmit and receive functions can operate with the  
system DMA controller  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI-bus memory  
Up to 3 slave select input/outputs with selectable polarity and flexible usage  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
8.13 I2C-bus interfaces  
The QN9090 supports the industry standard I2C-bus, a 2-wire synchronous serial  
interface that can operate as a master or slave, providing a simple and efficient method of  
data exchange between devices. The system uses serial data and clock to perform  
bidirectional data transfers.  
2 I2C-bus interfaces, one with I2C compliant IO cells  
Independent master, slave and monitor functions  
Bus speeds supported:  
Standard mode, up to 100 kbits/s  
Fast-mode, up to 400 kbits/s  
Fast-mode Plus, up to 1 Mbits/s (on specific I2C-bus pins)  
High speed mode, 3.4 Mbits/s as a slave only (on specific I2C-bus pins)  
Supports both multi-master and multi-master with slave functions  
Multiple I2C-bus slave addresses supported in hardware  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C-bus addresses  
10-bit addressing supported with software assist  
Supports System Management Bus (SMBus)  
Separate DMA requests for master, slave, and monitor functions  
No chip clocks are required in order to receive and compare an address as a slave, so  
this event can wake up the device from Power-down mode with I2C0  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
37 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Automatic modes optionally allow less software overhead for some use cases  
8.14 DMIC interface  
The DMIC subsystem supports mono or dual-channel digital PDM microphones  
Additionally, hardware voice activity detector (HWVAD), is provided to support low power  
voice applications.  
DMIC (dual/stereo digital microphone interface)  
PDM (Pulse-Density Modulation) data input for left and/or right channels on 1 or 2  
buses.  
Flexible decimation.  
16 entry FIFO for each channel.  
DC blocking or unaltered DC bias can be selected.  
Data can be transferred using DMA  
HWVAD (Hardware-based voice activity detector):  
Optimized for PCM signals with 16 kHz sampling frequency.  
Configurable detection levels.  
Noise envelope estimator register output for further software analysis  
8.15 12-bit general purpose ADC  
The QN9090 has a 12-bit, multi-channel, general purpose ADC. Sampling is controlled by  
a configurable sequencer that can support a range of sampling options. With connections  
to the DMA sub-system complex applications using the ADC are possible.  
Conversion rate 190 ksamples/s (Max.) for 12-bit resolution  
Single-ended analog input mode  
8 input channels, (6 external, 1 internal temperature sensor, 1 internal supply voltage  
monitoring)  
Selectable (max 32 clock-cycles) sampling time  
Power-down mode performing minimal power dissipation  
Peak to peak single-ended input range from 0 V to 3.6 V  
INL (Integral Non Linearity), full scale: 1.1 LSB typ.  
DNL (Differential Non Linearity): 0.85 LSB typ.  
ENOB (Effective Number Of Bit), 10% - 90% full scale, Fin = 25 kHz: 10.5 typ.  
SNR (Signal to Noise Ratio), Fin = 25 kHz: 65 dB typ.  
THD (Total Harmonic Distortion), 10% - 90% full scale, Fin = 25 kHz: 70 dB typ.  
SFDR (Spurious Free Dynamic Range), 10% - 90% full scale, Fin = 25 kHz: 75 dB typ.  
A sequencer to control use of ADC  
Sequencer triggered by software or PINT function, or PWM signal  
Sample any combination of the 8 ADC channels  
Digital comparator function with two pairs of configurable low and high thresholds  
Associate each ADC channel to one pair of low/high thresholds  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
38 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Single step and bursts  
Interrupts for data available, data overrun, threshold events  
8.16 Temperature sensor  
The QN9090 provides a temperature sensor which is connected to one of the ADC  
channels. It provides an application with a temperature measurement.  
calibrated to give accurate measurement  
simple to use with software driver  
8.17 Analog comparator  
The QN9090 provides an analog comparator that can compare two device pins or one pin  
against an internal reference.  
1 analog comparator with 2 external inputs  
The negative source of the comparator can be set to an internal bandgap reference  
Can be enabled/disabled to save power  
Can be used to wake-up the device, from sleep, deep-sleep or power-down  
Rail to rail inputs  
The comparator provides 2 power modes to compromise between speed and power  
consumption  
The external pins can be routed to the + or inputs of the comparator  
Hysteresis can be set to 0 mV or 40 mV  
The comparator output can be routed to an GPIO  
8.18 Infra-Red Modulator  
The Infra-red modulator can generate patterns suitable to drive an infra-red source. The  
modulator is configurable to support several different IR protocols.  
1 Infra-Red modulator instance  
Support Phillips RC5, RC6 & RCMM protocols  
Support SONY SIRC protocol  
Support 36 kHz sub-carrier frequency  
Support 40 kHz sub-carrier frequency  
8.19 Serial Wire Debug (SWD)  
Debug and trace functions are integrated into the Arm Cortex-M4. Serial wire debug and  
trace functions are supported. The Arm Cortex-M4 is configured to support up to 8  
breakpoints and 4 watch points.  
8.19.1 Features  
Supports Arm Serial Wire Debug mode for Cortex-M4  
Trace port provides Cortex-M4 CPU instruction trace capability. Output via a serial  
wire viewer  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
39 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Direct debug access to all memories, registers, and peripherals  
No target resources are required for the debugging session  
Breakpoints: the Cortex-M4 includes 8 instruction breakpoints that can also be used  
to remap instruction addresses for code patches. Two literal comparators that can  
also be used to remap addresses for patches to literal values.  
Watchpoints: the Cortex-M4 includes 4 data watchpoints that can also be used as  
triggers  
Instrumentation Trace Macrocell allows additional software controlled trace for the  
Cortex-M4  
8.19.2 Basic configuration  
The serial wire debug pins are enabled by default.  
8.20 Wireless transceiver  
The wireless transceiver comprises a 2.4 GHz radio, modem, link layer and PHY  
controller. These blocks, with protocol software provided as a library, implement an  
Bluetooth Low Energy 5.0 standards-based wireless transceiver that transmits and  
receives data over the air in the unlicensed 2.4 GHz band.  
RADIO  
AGC  
IF  
AMP  
LNA  
ADC  
CALIBRATION  
TRANSFORMER  
REFERENCE  
AND BIAS  
DAC  
DIVIDER  
BY 2  
SIGMA  
DELTA  
PA  
PLL  
Fig 5. Radio architecture  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
40 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The main features of the radio are:  
Single ended shared RF input for receive and transmit operations  
Each power domain has its own independent LDO  
A low noise PLL serving either the receiver or the transmitter. A 2-point modulation is  
used in TX  
The single-ended antenna is connected to the integrated transformer. The integrated  
transformer has 2 outputs, one for the receive chain one for the TX chain.  
The RX chain consists in an LNA, a mixer, an IF amplifier, an anti-aliasing filter and an  
ADC.  
The LNA has some gain steps that are controlled by the AGC system.  
The IF amplifier is the first gain stage after the mixer and provides some filtering. It has  
some gain steps that are controlled by the AGC system.  
The anti-aliasing filter is the main channel filter. It also provides some gain steps that are  
controlled by the AGC system.  
On the transmit side, the PA is built as 2 main blocks: one containing the RF pre-driver,  
one containing the power amplifier. The power amplifier has its own high power LDO.  
The 32 MHz crystal oscillator provides the frequency synthesizer with a reference  
frequency. The synthesizer contains programmable feedback dividers, phase detector,  
charge pump and internal Voltage Controlled Oscillator (VCO). The VCO has no external  
components, and includes calibration circuitry to compensate for differences in internal  
component values due to process and temperature variations. The VCO is controlled by a  
Phase-Locked Loop (PLL) that has an internal loop filter. A programmable charge pump is  
also used to tune the loop characteristic.  
The radio when enabled is automatically calibrated for optimum performance.  
2 DIO pins can optionally be used to provide control signals for RF circuitry (e.g. switches  
and PA) in high-power range extenders. DIOx/RFTX is asserted when the radio is in the  
transmit state and similarly, DIOy/RFRX is asserted when the radio is in the receiver state.  
8.20.1 Radio features  
50 single ended input (no external balun required)  
Flexible output power up to +11 dBm, programmable with 46 dB range  
Bluetooth Low Energy Sensitivity level -97 dBm  
Excellent linearity and phase noise to improve co-existence with WiFi interferences  
Ultra-fast AGC strategy  
Radio consumption in RX mode: 4.3 mA  
Radio consumption in TX mode at 0 dBm: 7.4 mA  
Radio consumption in TX mode at +10 dBm: 20.3 mA  
Antenna diversity, control led by software  
Option to use one or two GPIOs to control external LNA / PA devices  
Radio PHY ready for 2 Mbps bandwidth (Bluetooth Low Energy)  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
41 of 99  
NXP Semiconductors  
8.20.2 Modem  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
The modem provides all the necessary demodulation functions to receive Bluetooth Low  
Energy 5.0 data.  
8.20.3 Bluetooth Low Energy link layer  
The Link Layer supports the time-critical packet functions of the Bluetooth Low Energy 5.0  
protocol. Data processing includes whitening and CRC functions. Received packets can  
be checked against a whitelist. Packet transmission and reception can be scheduled in  
advance. Then hardware state machines manage enabling the radio at the correct time  
and interfacing to the system RAM to transfer packet data. Additionally, AES encryption  
and decryption supported within the link layer.  
For low power operation, a timer is able to operate in power down mode. Then the device  
will wake-up at the required time to continue Bluetooth Low Energy activity.  
8.20.4 Antenna diversity  
Support is provided for antenna diversity, which is a technique that maximizes the  
performance of an antenna system. It allows the Bluetooth Low Energy application  
Software to switch between two antennas that have very low correlation between their  
received signals. It is up to the Bluetooth Low Energy application SW to determine the  
best selection criteria (e.g. RSSI or packet error rate) to select the most appropriate  
antenna. The typical antenna’s design is achieved by spacing two antennae around 0.25  
wavelengths apart or by using 2 orthogonal polarizations. The switching is controlled by  
software and uses ADO (SELA) and ADE (SELB) outputs to control the external switch.  
The QN9090 provides an output (ADO) on one of DIO7, DIO9 or DIO19 and optionally its  
complement (ADE) on DIO6 that can be used to control an antenna switch; this enables  
antenna diversity to be implemented easily (see Figure 6).  
antenna A  
A
antenna B  
B
SEL  
ADO  
ADE  
RF switch: single-pole,  
double-throw (SPDT)  
SELB  
COM  
device RF port  
Fig 6. Simple antenna diversity implementation using external RF switch  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
42 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
ADE  
ADO  
TX active  
RX active  
st  
nd  
1
TX-RX cycle  
2
TX-RX cycle  
Fig 7. Antenna diversity change around the second TX-RX activity  
If two DIO pins cannot be spared, one of the signals (ADE or ADO) from the QN9090 can  
be used and its complement can be generated using an inverter on the PCB.  
8.21 AES engine  
The AES provides an on-chip hardware AES encryption and decryption engine to protect  
the image content and to accelerate processing for data encryption or decryption, data  
integrity, and proof of origin. Data can be encrypted or decrypted by the AES engine using  
the secret encrypted key in the OTP or a software supplied key  
1 instance of Advanced Encryption Standard (AES)  
Support 128-bit keys for encryption and decryption  
Support 192-bit keys for encryption and decryption  
Support 256-bit keys for encryption and decryption  
Support for several protocols  
ECB (Electronic Code Book)  
CBC (Cipher Block Chaining)  
CFB (Cipher Feedback)  
OFB (Output Feedback)  
CTR (Counter)  
DMA support with DMA triggers for input data and output data  
8.22 SPI-bus Flash Interface (SPIFI)  
The SPI-bus Flash Interface provides support for a master Quad SPI-bus capable of  
interfacing to a range of SPI devices for high throughput transfer of data between the  
QN9090 and an external device, such as a memory device.  
1 Quad SPI-bus Flash Interface (SPIFI) interface to external flash.  
Supports 1-bit, 2-bit, and 4-bit bidirectional serial protocols  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
43 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Half-duplex protocol compatible with various vendors and devices  
Operates at up to 32 MHz  
DMA support for transferring data to and from the SPIFI module  
8.23 Hash module  
The Hash function creates a fixed size signature from a block of data. It can be used as  
part of a scheme to check if data corruption has occurred.  
Support SHA-1  
Support SHA-256  
DMA support for efficient operation  
8.24 ISO7816 smart card interface  
The ISO smart card interface block, with suitable external analogue device, can support  
Smart Card reader applications.  
Compliant with ISO7816 standard  
Support of class A (5 V), Class B (3 V) and Class C (1.8 V) contact smart cards  
Support of ISO7816 UART interface  
Supports the asynchronous protocols (T=0 and T=1) in accordance with ISO7816  
Supports synchronous cards  
8.25 Random Number Generator  
The QN9090 integrates a random number generator (RNG) for security purposes. The  
RNG generates, with suitable software, true non-deterministic random numbers for  
generating keys, initialization vectors and other random number requirements.  
8.26 NTAG I2C  
See Table 2 for parts that have NTAG I2C plus device; this is the NXP device NT3H2211.  
For devices supporting the internal NTAG device, two device pins are used to connect the  
QN9090 to the external NFC antenna and matching components. Internally a dedicated  
I2C interface is used to communicate to the NTAG tag. The NFC tag can be accessed via  
the NFC antenna even when the device is not powered. One use of the feature is to allow  
commissioning of a device before it is installed. The field detect line from the NTAG is able  
to interrupt the processor in active mode and also cause wake-up from all power down  
modes.  
8.26.1 Features  
RF interface NFC forum type 2 tag compliant, operating frequency of 13.56 MHz  
Data transfer of 106 kbit/s  
Operating distance of up to 100 mm (depending on various parameters, such as field  
strength and antenna geometry)  
4 bytes (one page) written including all overhead in 4.8 ms via EEPROM or 0.8 ms via  
SRAM (Pass-through mode)  
Data integrity of 16-bit CRC, parity, bit coding, bit counting  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
44 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
True anticollision  
Unique 7 byte serial number (cascade level 2 according to ISO/IEC 14443-3)  
Tag Memory: 1912 bytes freely available with User Read/Write area (478 pages with 4  
bytes per pages)  
Field programmable RF read-only locking function with static and dynamic lock bits  
configurable from both I2C-bus and NFC interfaces  
64 bytes SRAM volatile memory without write endurance limitation  
Data retention time of 20 years  
Write endurance 200,000 cycles  
I2C-bus slave interface supports standard (100 kHz) and Fast (up to 400 kHz) mode  
16 bytes (one block) written in 4.5 ms (EEPROM) or 0.4 ms (SRAM - Pass-through  
mode) including all overhead  
Configurable field detection pin that can be triggered upon the following events:  
A RF field presence  
The first start-of-frame  
The selection of the tag only  
64 byte SRAM buffer for fast transfer of data (Pass-through mode) between the RF  
and the I2C-bus interfaces located outside the user memory  
Wake up signal at the field detect pin when:  
New data has arrived from one interface  
Wake up possible from sleep, deep-sleep, power-down and deep power-down  
Data has been read by the receiving interface  
Clear arbitration between RF and I2C-bus interfaces:  
First come, first serve strategy  
Status flag bits to signal if one interface is busy writing to or reading data from the  
EEPROM  
Fast read command for faster data reading  
Security:  
Manufacturer-programmed 7-byte UID for each device  
Capability container with one time programmable bits  
Field programmable read-only locking function per page (per 32 pages for the  
extended memory section)  
ECC-based originality signature  
32-bit password protection to prevent unauthorized memory operations from NFC  
perspective may be enabled for parts of, or complete memory  
Access to password protected data area may be restricted from I2C perspective  
Pass-through and mirror mode operation may be password protected  
Protected data can be safeguarded against limited number of negative password  
authentication attempts  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
45 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
8.26.2 General description  
The internal NTAG I2C-bus is offering a contactless interface to QN9090T/30T. That  
passive NFC Forum compliant contactless interface can communicate with QN9090T/30T  
microcontroller through a dedicated internal I2C-bus interface.  
An SRAM mapped into the memory allows a fast data transfer between the NFC antenna  
and the I2C-bus interface and vice versa, without the write cycle limitations of the  
EEPROM memory.  
The internal NTAG I2C-bus features a configurable field detection pin, which provides a  
trigger to the microcontroller depending on the activities at the NFC interface.  
Remark: To support the energy harvesting and power the platform through the NFC field,  
an external NTAGPlus must be populated on the target board.  
9. Application design-in information  
9.1 QN9090 module reference designs  
For customers wishing to integrate the QN9090 device directly into their system, NXP  
provides a range of Module Reference Designs.  
To ensure the correct performance, it is strongly recommended that where possible the  
design details provided by the reference designs are used in their exact form for all end  
designs; this includes component values, pad dimensions, track layouts etc. In order to  
minimize all risks, it is recommended that the entire layout of the appropriate reference  
module, if possible, be replicated in the end design.  
For full details, see web site or Contact technical support.  
9.2 Schematic diagram  
The PCB schematic and layout rules detailed in this datasheet must be followed. Failure  
to do so will likely result in the QN9090 failing to meet the performance specification  
detailed in this data sheet and the worst case may result in the device not functioning in  
the end application.  
A schematic diagram of the reference module is shown in Figure 8. Details of component  
values and PCB layout constraints can be found in Table 10.  
The paddle should be connected directly to ground. Any pads that require connection to  
ground should do so by connecting directly to the paddle.  
The QN9090 will enter UART programming mode if IN System Programming Entry (PIO5)  
pin 8 is low during RESET release.  
The preferred communication interface is USART0 pins (PIO8/USART0_TXD pin11 and  
PIO9/USART0_RXD pin12).  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
46 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
VBAT  
VBAT (Pin 28)  
VDDE (Pin 20)  
1.9 to 3.6 V  
C1  
C10  
C12  
10 μF  
47 pF  
100 nF  
C11  
LX (Pin 29)  
100 nF  
DC/DC  
CONVERTER  
I/O  
L4  
4.7 μH  
FB (Pin 31)  
LA (Pin 40)  
LB (Pin 39)  
NFC antenna  
C19  
10 μF  
PMU/CPU/  
MEMORY  
VDD_PMU (Pin 32)  
QN9090  
VDD_RADIO (Pin 35)  
2.4 GHz  
antenna  
L2  
RF_IO (Pin 37)  
3.3 nH  
C14  
C13  
100 nF  
47 pF  
RADIO  
TRANSCEIVER  
R5  
0 Ω  
C25  
2 pF  
C24  
1.2 pF  
32 kHz  
OSCILLATOR  
32 MHz  
OSCILLATOR  
(Pin 33)  
XTAL_32k_P  
XTAL_32k_N  
(Pin 34)  
XTAL_P  
(Pin 1)  
XTAL_N  
(Pin 2)  
C20  
NC  
C21  
NC  
X2  
Y1  
Fig 8. Application diagram – battery powered solution  
For single-ended antennas or connectors, a balun is not required. However, an external  
filtering is needed. In receiver, the RFIO pin shows a 50 impedance and external  
filtering (R5, C25, L2, C24) is needed in transmission to filter efficiently harmonics. These  
components are critical and must be placed close to the QN9090 pins and analog ground.  
The reference PCB is designed to present an accurate match to a 50 resistive network  
as well as provide a DC path to the final output stage or antenna. Users wishing to match  
to other active devices such as amplifiers must design their networks to match to 50 at  
the output of the QN9090.  
The paddle must be connected directly to the ground. Any pads that require connection to  
the ground should do so by connecting directly to the paddle.  
Table 10. Component descriptions about Figure 8  
Component  
Function  
Value  
RF  
Note  
RF filtering capacitor  
1.2 pF  
COG type  
C24  
C25  
L2  
RF filtering capacitor  
RF filtering inductor  
Optional RF tuning area  
2 pF  
3.3 nH  
0   
COG type  
MURATA (LQW15AN3N3B)  
R5  
Not needed on ref design. Maybe needed to put an  
inductor for RF path tuning  
Power  
10 μF  
C1  
Power source decoupling  
Power source decoupling  
MURATA (GRM21BR71A106KA73L)  
Locate less than 5mm from U1 pin 28  
C10  
100 nF  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
47 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 10. Component descriptions about Figure 8  
Component  
C12  
Function  
Value  
47 pF  
Note  
Power source decoupling  
DC-DC feedback filter inductor  
DC-DC feedback filter capacitor  
Radio and PMU decoupling  
Radio and PMU decoupling  
COG type  
L4  
4.7 μH  
10 μF  
100 nF  
47 pF  
TDK (MLZ2012M4R7H)  
X7R MURATA (GRM21BR71A106KA73L)  
Locate less than 5mm from U1 pins32/35  
COG type  
C19  
C13  
C14  
C11  
DigitL4 and IO power  
decoupling  
100 nF  
Locate less than 5mm from U1 pin 20  
Clock  
Y1  
X2  
32 MHz crystal  
32 MHz, 6 pF NDK (NX2016SA 32 MHZ EXS00A-CS11213 6 pF)  
32.768 kHz crystal  
32.768 kHz, 6 NDK (NX2012SA 32.768 kHZ EXS00A-MU01089  
pF  
6pF)  
C20-C21  
optional 32.768 kHz crystal load  
capacitance  
NC  
10. Limiting values  
Table 11. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VBAT  
Parameter  
Conditions  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-40  
Max  
3.96  
3.96  
1.6  
Unit  
V
Supply voltage DCDC input  
IO supply voltage  
Radio supply voltage  
PMU supply voltage  
IO pins voltage  
VDDE  
V
VDD(Radio)  
VDD(PMU)  
VIO  
V
1.6  
V
3.96  
3.96  
0
V
VRST  
RSTN voltage  
V
[1]  
VRFIO  
VADC  
Voltage on pin RFIO  
ADC pins voltage  
LA and LB pin voltage  
Storage temperature  
VDC  
V
3.96  
4.6  
VLx  
Vpeak  
C  
C  
V
Tstg  
QN9090/QN9030  
QN9090T/QN9030T  
HBM  
150  
125  
3000  
500  
2
[2]  
[3]  
[4]  
VESD  
Electrostatic discharge voltage  
Max. VBAT slope  
CDM  
V
ts  
Ambient temperature:  
-40 °C  
V/ms  
VBAT from 0 V up to  
+3.6 V  
[1] Primary input of RF transformer connected to the ground. No DC voltage.  
[2] Testing for HBM discharge is performed as specified in JEDEC Standard JS-001.  
[3] Testing for CDM discharge is performed as specified in JEDEC Standard JESD22-C101.  
[4] Risk of physical damage if the VBAT slope is out of this specification  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
48 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
V
BAT  
0 V  
ts  
Condition: Ambient temperature: -40 °C, VBAT: 3.6 V  
Fig 9.  
Power-up ramp  
Not measured  
Fig 10. Minimum VBAT rise time vs temperature  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
49 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Fig 11. Maximum VBAT slope vs temperature  
11. Recommended operating conditions  
Table 12. Operating conditions  
Symbol  
VBAT  
VDDE  
TJ  
Parameter  
Conditions  
Min  
1.9  
1.9  
-40  
-40  
Max  
3.6  
Unit  
V
DCDC supply voltage  
IO supply voltage  
3.6  
V
QN9090/QN9030 temperature  
QN9090T/QN9030T temperature  
125  
125  
C  
C  
TJ  
TAG not activated for Temp >  
105 C  
TAG activated  
-40  
105  
C  
12. Thermal characteristics  
Table 13. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-a)  
Thermal resistance from junction to  
ambient  
28  
K/W  
Rth(j-c)  
Tj(max)  
Thermal resistance from junction to case  
4
K/W  
QN9090/QN9030 maximum junction  
temperature  
125  
C  
Tj(max)  
QN9090T/QN9030T maximum junction TAG not activated for  
125  
105  
C  
C  
temperature  
Temp > 105 C  
TAG activated  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
50 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
13. Static characteristics  
13.1 Power consumption in Low-power mode  
Table 14. Typical current consumption in Low-power mode characteristics  
VBAT = 1.9 V to 3.6 V, Tamb = 25 °C, unless otherwise specified.  
Symbol Parameter Conditions  
Min Typ Max Unit  
IDD  
supply  
current  
Deep power-down (everything is powered off, wake-up on HW reset  
only)  
250  
nA  
Deep power-down-IO (everything is powered  
off, wake-up on HW reset only or an event on  
any of the 22 GPIOs and NTAG interrupt)  
350  
nA  
Power-down (wake-up on HW reset or an IO event, wake-up timer  
ON, 32 kHz FRO on, no SRAM retention)  
800  
1025  
1120  
nA  
nA  
nA  
Power-down-4K (wake-up on HW reset or an IO event, wake-up timer  
on, 32 kHz FRO on, with 4 KB SRAM retention])  
[1]  
Power-down-8K (wake-up on HW reset or an IO event, wake-up timer  
on, 32 kHz FRO on, with 8 KB SRAM retention)  
[2]  
[2]  
Power down - RTC 1 kHz  
200  
200  
200  
200  
300  
440  
nA  
nA  
nA  
nA  
nA  
nA  
Power down - RTC 1 Hz  
Power down - per wake-up timer0 or timer1 / 32 kHz FRO  
Power down - per wake-up timer0 or timer1 / 32 kHz XTAL  
Power down - BOD VBAT  
[2]  
[2] [3]  
Power down - wake up on COM interfaces  
[1] Value is achieved when application uses the optimized voltage configuration for power down. Any  
additional 4 KB RAM increases leakage current in typical condition by 105 nA.  
[2] Will be added to the power down current consumption if used.  
[3] Need to have retention on RAMBank7 (4 KB).  
13.2 Power consumption in Active mode  
Table 15. Typical current consumption in Active mode characteristics  
VBAT = 1.9 V to 3.6 V, Tamb = 25 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDD  
supply current  
radio in RX mode (Bluetooth Low Energy)  
radio in TX mode (Bluetooth Low Energy)  
output power 0 dBm  
4.3  
mA  
7.4  
9.4  
mA  
mA  
mA  
output power +3 dBm  
output power +10 dBm  
20.3  
Note: Infrastructure and CPU current consumption have to be added to Radio supply  
current.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
51 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 16. Typical CPU and peripherals current consumption characteristics  
VBAT = 1.9 V to 3.6 V, Tamb = 25 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
[1]  
[1]  
[1]  
IDD  
supply  
current  
Current consumption measured on VBAT; CPU core running  
CoreMark from embedded Flash memory, system clock 12  
MHz  
1.9  
2.5  
2.9  
mA  
mA  
mA  
Current consumption measured on VBAT; CPU core running  
CoreMark from embedded Flash memory, system clock 32  
MHz  
Current consumption measured on VBAT; CPU core running  
CoreMark from embedded Flash memory, system clock 48  
MHz  
[1]  
[1]  
[1]  
IDD(ADC)  
IDD(sintf)  
IDD(DMA)  
ADC supply Continuous single channel acquisition at 190 KSps  
current  
149.7  
282.7  
367.9  
A  
A  
A  
SPI supply  
current  
SPI bus supply current; continuous transmit at 2 MHz SPI  
CLK  
DMA supply Continuous transfer memory to memory of buffer size 1024  
current bytes  
[1] Radio and Modem are powered off. FRO at 32 kHz, XO at 32 kHz and XO at 32 MHz are powered off.  
FRO48M, FRO32M and FRO12M are on. Current consumption including FRO at 1 MHz, FRO at 192 MHz  
and Flash read access. All unused peripheral clocks are disabled. All unused IOs are in input mode.  
13.3 IO characteristics  
Table 17. IO characteristics  
VDD = 1.9 V to 3.6 V, Tj = -40 °C to +125 °C, unless otherwise specified.  
Symbol  
Parameter  
Min  
40  
Typ  
50  
Max  
60  
Unit  
k  
[1]  
[1]  
Rpu(int)(PIO)  
Internal pull-up resistance on pins PIOx  
Rpu(int)(RSTN) Internal pull-up resistance on pin RSTN  
40  
50  
60  
k  
Rpdn(int)(PIO)  
Internal pull-down resistance on pins PIOx  
40  
50  
60  
k  
IO  
VIH  
High-level input voltage  
Low-level input voltage  
0.7 *  
VDDE  
VDDE  
V
V
VIL  
0.27 *  
VDDE  
Output on pins PIO LS, with 1 mA load[2][4]  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.4 V  
VDD = 1.9 V  
3.4  
2.8  
2.2  
1.65  
0
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
VOL  
Low-level output voltage  
Output on pins PIO LS, with 2 mA load[2][4]  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.4 V  
VDD = 1.9 V  
3.3  
2.65  
2
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
1.4  
0
VOL  
Low-level output voltage  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
52 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 17. IO characteristics …continued  
VDD = 1.9 V to 3.6 V, Tj = -40 °C to +125 °C, unless otherwise specified.  
Symbol Parameter  
Output on pins PIO HS, with 3 mA load[3][4]  
Min  
Typ  
Max  
Unit  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.4 V  
VDD = 1.9 V  
3.35  
2.75  
2.1  
1.6  
0
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
VOL  
Low-level output voltage  
Output on pins PIO HS, with 5 mA load[3][4]  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.4 V  
VDD = 1.9 V  
3.2  
2.6  
2.05  
1.35  
0
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
VOL  
Low-level output voltage  
Output on pins PIO I2C, with 1 mA load[4][5]  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.5 V  
VDD = 1.9 V  
3.45  
2.82  
2.30  
1.52  
0
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
VOL  
Low-level output voltage  
Output on pins PIO I2C, with 2 mA load[4][5]  
VOH  
High-level output voltage  
VDD = 3.6 V  
VDD = 3.0 V  
VDD = 2.5 V  
VDD = 1.9 V  
3.30  
2.66  
2.10  
1.15  
0
VDDE  
VDDE  
VDDE  
VDDE  
0.4  
V
V
V
V
V
VOL  
Low-level output voltage  
Currents  
ILIL  
Low-level input leakage current  
High-level input leakage current  
4.5  
4.5  
nA  
nA  
ILIH  
[1] All PIO except RSTN (reset), PIO10 and PIO11 (I2C function).  
[2] PIO 0 to 9 and 12 to 16.  
[3] PIO 17 to 21.  
[4] Values from simulation.  
[5] PIO 10 and 11. IO cell in GPIO mode.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
53 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
14. Dynamic characteristics  
14.1 AC characteristics  
14.1.1 Reset and Supply Voltage Monitor  
Table 18. Externally applied reset  
VDDE = 1.9 V to 3.6 V, Tj = -40 °C to +125 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
trst  
Reset time  
External reset pulse width to  
initiate reset sequence  
500  
ns  
Vrh  
Reset high voltage  
Reset low voltage  
External threshold voltage, for  
reset to be sampled high  
(inactive)  
0.7 x  
VDDE  
V
V
[2]  
Vrl  
External threshold voltage for  
reset to be low (active)  
0.7 x  
VDDE  
Vth(POR)  
Power-on reset threshold  
voltage  
Rise time > 10 ms  
rising  
1.85  
1.75  
V
V
falling  
tSTAB  
Stabilisation time  
Supply current  
Time after release of reset until  
application runs  
1.9  
ms  
IDD  
Chip current when held in  
reset, VDDE = 3 V  
132  
46  
A  
A  
Irst(bod vbat)  
Brownout reset current  
Chip current when held in  
reset when voltage is above  
power-on-reset threshold but  
below brownout threshold  
[3]  
Vth  
Threshold voltage  
Supply (VBAT) threshold  
voltage monitor  
1.69  
1.74  
1.84  
1.94  
2.03  
2.13  
2.23  
2.32  
2.42  
2.52  
2.61  
2.71  
2.81  
2.91  
3.00  
3.10  
3.20  
1.75  
1.8  
1.9  
2
1.81  
1.86  
1.96  
2.06  
2.17  
2.27  
2.37  
2.48  
2.58  
2.68  
2.79  
2.89  
2.99  
3.09  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.3  
3.4  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
54 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 18. Externally applied reset …continued  
VDDE = 1.9 V to 3.6 V, Tj = -40 °C to +125 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
25  
Max  
31.25  
62.5  
Unit  
mV  
mV  
mV  
mV  
Vhys  
Hysteresis voltage  
Supply voltage (VBAT)  
monitor; configurable in 4  
levels  
18.75  
37.50  
56.25  
75.00  
50  
75  
93.75  
125  
[3]  
100  
[1] Assumes internal pull-up resistor value of 100 kworst case and 5 pF external capacitance.  
[2] Minimum voltage to avoid being reset.  
[3] Device setting from reset  
t
rst  
V
rh  
RST_IN  
V
rl  
internal RESET  
t
t
STAB  
STAB  
Fig 12. Reset signal timing  
14.1.2 Analog to Digital Converters  
Table 19. Analog to Digital Converters  
VDDE = 1.9 V to 3.6 V; Tj = -40 °C to +125 °C; unless otherwise specified.  
Symbol  
Vi  
Parameter  
Conditions  
switchable  
Min  
0
Typ  
Max  
Unit  
Input voltage  
VBAT  
3.62  
V
FSR  
IADCx  
INL  
Full scale range  
Current on pins ADCx[1]  
Integral non-linearity  
Differential non-linearity  
Offset error  
After calibration  
3.56  
3.6  
100  
1.1  
0.85  
A  
LSB  
LSB  
mV  
mV  
ksps  
s  
DNL  
EO  
After calibration  
After calibration  
Single channel  
-4.5  
-40  
78.4  
4.5  
20  
EG  
Gain error  
0
fS  
Sampling frequency  
Conversion time  
100  
10  
190  
tconv  
Ci(a)  
Analog input  
capacitance  
4
pF  
SFDR  
Spurious-free dynamic  
range  
For Fin = 25 kHz  
75  
dBc  
[1] With x = 0, 1, 2, 3, 4, or 5.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
55 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
14.1.3 Comparator  
Table 20. Comparator  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified.  
Symbol  
Parameter  
Min  
0
Typ  
2
Max  
Unit  
s  
s  
mV  
V
[1]  
tresp  
Response time - low power mode  
Response time - standard mode  
Hysteresis voltage  
1.3  
50  
Vhys  
Vref_ext  
Vref_int  
VI(cm)  
External reference voltage  
Internal reference voltage  
Common-mode input voltage  
VDDE  
0.8  
0.8  
V
V
[1] Response time to trigger caused by square wave input.  
14.1.4 32 kHz free running oscillator  
Table 21. 32 kHz free running oscillator  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
freq  
Parameter  
Min  
Typ  
Max  
Unit  
kHz  
%
FRO center frequency  
FRO accuracy  
FRO current  
32.768  
fffro  
IDD  
-2  
2
200  
nA  
14.1.5 1 MHz free running oscillator  
Table 22. 1 MHz free running oscillator  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
freq  
Parameter  
Min  
Typ  
1
Max  
Unit  
MHz  
%
FRO center frequency  
FRO accuracy  
FRO current  
fffro  
IDD  
-15  
18  
15  
A  
14.1.6 32 kHz crystal oscillator  
Table 23. 32 kHz crystal oscillator  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
freq  
Parameter  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
ppm  
s
XTAL center frequency  
XTAL accuracy  
Start-up time  
fffro  
-500  
500  
tstartup  
IDD  
1
XTAL current  
200  
nA  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
56 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
14.1.7 32 MHz crystal oscillator  
Table 24. 32 MHz crystal oscillator  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
freq  
XTAL center  
frequency  
32  
MHz  
fffro  
tstartup  
IDD  
XTAL accuracy  
Start-up time  
XTAL current  
-40  
150  
69  
40  
ppm  
s  
Time to reach 50 ppm accuracy  
A  
14.1.8 High-speed free running oscillator  
Table 25. High-speed free running oscillator  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
48  
32  
12  
Max  
Unit  
MHz  
MHz  
MHz  
%
freq  
FRO center  
frequency  
48 MHz clock output  
32 MHz clock output  
12 MHz clock output  
fffro  
FRO accuracy  
-2  
2
14.1.9 Temperature sensor  
Table 26. Temperature sensor  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified.  
Symbol  
Tsen  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
sensor temperature range  
sensor gain  
40  
10.12  
+125  
°C  
LSB/°C  
%
Gsen  
At ADC output after conversion  
TsenSlope  
Tsen25  
Temperature sensor slope After calibration at 25 °C  
2.5  
Temperature accuracy at  
25°C  
2  
°C  
Tsen  
Sensor temperature  
accuracy  
Full range -40 to +125 °C  
After calibration at 25 °C  
-4.5  
4.5  
°C  
TTN  
Temperature sensor  
thermal noise  
0.07  
°C·RMS  
14.2 Flash memory  
Table 27. Flash memory  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
cycles  
cycles  
cycles  
cycles  
year  
[1]  
[2]  
[1]  
[2]  
Nendu  
Endurance  
Page erase/program  
Page erase/program  
Mass erase/program  
Mass erase/program  
Powered  
100000  
10000  
100000  
10000  
10  
tret  
Retention time  
Unpowered  
10  
year  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
57 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 27. Flash memory  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified.  
Symbol  
terase  
Parameter  
Conditions  
Min  
Typ  
1.878  
21  
Max  
Unit  
ms  
s  
Erase time  
1 Page (512 Bytes)  
1 Page (512 Bytes)  
1 Page (512 Bytes)  
tblank  
Blank status time  
Programming time  
tprog  
1.09  
ms  
[1] Number of erase/program cycles, for Junction temperature range -40°C to 85°C  
[2] Number of erase/program cycles, for Junction temperature range -40°C to 125°C  
14.3 IO pins  
Table 28. Dynamic characteristic: I/O pins[1]  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified.  
Symbol  
PIO I2C[2][5]  
tR  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rise time  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
12  
14  
1.7  
3.2  
14  
18  
1.1  
2
22  
28  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.5  
29  
34  
2.6  
4.7  
tF  
Fall time  
PIO HS[3][5]  
tR  
Rise time  
Fall time  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
1.6  
2.4  
0.8  
1.2  
1.1  
1.6  
0.6  
0.9  
4
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
4
tF  
3.3  
5
3
3.5  
PIO LS[4][5]  
tR  
Rise time  
Fall time  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
Slow speed, 3.3 V  
Slow speed 1.9 V  
Fast speed 3.3 V  
Fast speed 1.9 V  
2.2  
3.3  
1.6  
2.5  
1.2  
1.9  
0.7  
1.1  
5
7.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.5  
3.5  
5
tF  
3
3.5  
[1] Simulated data.  
[2] PIO I2C values are for PIO10 and PIO11. IO cell in GPIO mode. Slow speed is EHS=0; Fast speed is  
EHS=1  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
58 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
[3] Values are for PIO17-21. Slow speed is SLEW(1:0) = 00b. Fast speed is SLEW(1:0) = 11b  
[4] Values are for PIO0-9 and PIO12-16. Slow speed is SLEW(1:0) = 00b. Fast speed is SLEW(1:0) = 11b  
[5] Pin capacitance load = 10 pF  
[6] The slew rate is configured in the IOCON block. See QN9090(T)/QN9030(T) User Manual.  
VDDE  
Output Signal  
80%  
80%  
20%  
20%  
GND  
tR  
tF  
Fig 13. Output timing measurement condition  
14.4 Wake-up timing  
Table 29. Wake-up timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tstartup  
CPU startup time  
Time for CPU to be running application  
code when VBAT > VBAT_BOD threshold  
1.9  
350  
0.2  
ms  
XTAL startup time  
Time to 32M XTAL ready for radio  
operation  
s  
s  
s  
s  
s  
twake  
Sleep wake-up time  
Time to CPU to be running after wake-up  
trigger  
power-down wake-up  
time  
Time to CPU to be running after wake-up  
trigger with RAM held  
392  
836  
936  
power-down wake-up  
time  
Time to CPU to be running after wake-up  
trigger without RAM held  
deep power-down  
wake-up  
Time to CPU to be running after wake-up  
trigger  
14.5 SPI timing  
Table 30. SPI master timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; Input slew  
= 1 ns; SLEW set to standard mode for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge.  
Symbol  
tDS  
Parameter  
Min  
10  
Typ  
Max  
Unit  
ns  
Data set-up time  
Data hold time  
Data output valid time  
SCK frequency  
tDH  
5
ns  
tV(Q)  
-2  
15  
8
ns  
tcy(SCK)  
0.01  
MHz  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
59 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 30. SPI master timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; Input slew  
= 1 ns; SLEW set to standard mode for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge.  
Symbol  
Parameter  
Min  
45  
1
Typ  
50  
Max  
55  
Unit  
%
Duty cycle  
[1]  
[2]  
tSS  
tSH  
SSEL low before SCK edge  
SSEL low after last SCK edge  
SCK cycles  
SCK cycles  
0.5  
[1] Pre-delay can be configured to increase this time in steps of 1 SCK cycle  
[2] Post-delay can be configured to increase this time in steps of 1 SCK cycle  
Table 31. SPI slave timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; Input slew  
= 1 ns; SLEW set to standard mode for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge.  
Symbol  
tDS  
Parameter  
Min  
12  
5
Typ  
Max  
35  
8
Unit  
ns  
Data set-up time  
tDH  
Data hold time  
ns  
tV(Q)  
tcy(SCK)  
tSS  
Data output valid time  
SCK frequency  
0
ns  
1
MHz  
ns  
[1]  
[2]  
SSEL low before SCK edge  
SSEL low after last SCK edge  
tSH  
0.5  
ns  
[1] Pre-delay can be configured to increase this time in steps of 1 SCK cycle  
[2] Post-delay can be configured to increase this time in steps of 1 SCK cycle  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
60 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SS  
SH  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
DATA VALID (MSB)  
Fig 14. SPI master interface timings  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
61 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SH  
SS  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
DATA VALID (MSB)  
Fig 15. SPI slave interface timings  
14.6 USART timing  
Table 32. USART master timing (in synchronous mode)  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 30 pF balanced loading on all pins; Input slew  
= 1 ns; SLEW set to standard mode for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge.  
Symbol  
tSU(D)  
Parameter  
Min  
45  
5
Typ  
Max  
Unit  
ns  
Data set-up time  
Data hold time  
th(D)  
ns  
tV(Q)  
Data output valid time  
SCLK frequency  
0
25  
5
ns  
tcy(SCLK)  
MHz  
Table 33. USART slave timing (in synchronous mode)  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 30 pF balanced loading on all pins; Input slew  
= 1 ns; SLEW set to standard mode for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge.  
Symbol  
tSU(D)  
Parameter  
Min  
5
Typ  
Max  
Unit  
ns  
Data set-up time  
Data hold time  
th(D)  
5
ns  
tV(Q)  
Data output valid time  
SCLK frequency  
0
55  
5
ns  
tcy(SCLK)  
MHz  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
62 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
RXD  
BIT0  
Fig 16. USART interface timings  
14.7 SPIFI timing  
Table 34. SPIFI timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; EHS=1  
for all pins; Parameters samples at the 90% and 10% level of the rising or falling edge; simulated values.  
Symbol  
tcy(clk)  
tDS  
Parameter  
Min  
30.0  
3
Typ  
Max  
5
Unit  
Clock cycle time  
Data set-up time  
Data hold time  
ns  
ns  
tDH  
3
ns  
tV(Q)  
Data output valid time  
Data output hold time  
Duty cycle  
ns  
tH(Q)  
-10.5  
40  
60  
ns  
%
tSS  
tSH  
SSEL set-up time, time SSEL is low  
before first SCK edge  
0.5  
SCK cycles  
SSEL hold time, time SSEL is low after  
last SCK  
0.5  
SCK cycles  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
63 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
SPIFI_SSEL  
SPIFI_SCK  
T
cy(clk)  
t
SH  
t
SS  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
SPIFI data out  
SPIFI data in  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
Fig 17. SPIFI interface timings  
14.8 PWM timing  
Table 35. PWM timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; Input slew  
= 1ns; SLEW set to standard mode for all pins; parameters samples at the 90% and 10% level of the rising or falling edge;  
simulated skew (over process, voltage and temperature) of any two PWM output signals; values guaranteed by design.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tSK  
Output skew time  
0
10  
ns  
14.9 DMIC timing  
Table 36. DMIC timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; CL = 10 pF balanced loading on all pins; Input slew  
= 1ns; SLEW set to standard mode for all pins; parameters samples at the 90% and 10% level of the rising or falling edge;  
bypass bit = 0; based on simulated values and for 1.9 V to 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
2
Unit  
MHz  
%
tcy(SCK)  
DMIC CLK frequency  
Duty cycle  
CL = 10 pF using 32MHz XTAL clock  
source  
48  
52  
tDS  
tDH  
Data set-up time  
Data hold time  
25  
1
ns  
ns  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
64 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
CLOCK  
DATA  
t
DH  
t
SU  
Fig 18. DMIC interface timings  
14.10 ISO7816  
Table 37. Clock of ISO7816  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; guaranteed by design; Not tested in production.  
Symbol  
VOH  
Parameter  
Min  
Typ  
Max  
VBAT  
Unit  
V
High-level output voltage  
Low-level output voltage  
Duty cycle  
0.7 x VBAT  
VOL  
0
48  
2
0.3 x VBAT  
52  
V
%
Freq  
CLK frequency  
12  
MHz  
Table 38. Input output of ISO7816  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; guaranteed by design; Not tested in production.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
High-level output voltage CL = 10 pF  
Low-level output voltage CL = 10 pF  
High-level input voltage  
0.7 x  
VBAT  
VBAT  
V
VOL  
VIH  
0
0.3 x  
VBAT  
V
V
0.75 x  
VBAT  
VBAT  
0.1  
+
VIL  
IOH  
IOL  
tr(O)  
Low-level input voltage For VBAT from 0 V to 3.6 V  
High-level output current  
0
10  
0.3  
1000  
1000  
1.2  
V
A  
A  
s  
Low-level output current  
600  
Output rise time  
CL= 30 pF; 10 % to 90 %;  
0 V to VBAT  
tf(O)  
Output fall time  
CL= 30 pF; 10 % to 90 %;  
0 V to VBAT  
1.2  
s  
tr(I)  
tf(I)  
Input rise time  
Input fall time  
100  
100  
ns  
ns  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
65 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
14.11 I2C timing  
Table 39. I2C timing  
VDDE = 1.9 V to 3.6 V; Tj = 40°C to +125°C; unless otherwise specified; guaranteed by design. Not tested in production.  
Symbol  
Parameter  
Conditions  
Min  
0
Typ  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SC clock frequency  
Standard-mode  
Fast-mode  
0
Fast-mode plus  
0
tf  
Fall time, of both SDA and Standard-mode  
SCL signals  
300  
300  
[8]  
Fast-mode  
20 x  
ns  
V
DDE/5.5  
Fast-mode plus  
4.7  
1.3  
0.5  
4
120  
ns  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
tLOW  
Low period of the SCL  
clock  
Standard-mode  
Fast-mode  
Fast-mode plus  
Standard-mode  
Fast-mode  
tHIGH  
High period of the SCL  
clock  
0.6  
0.26  
0
Fast-mode plus  
Standard-mode  
Fast-mode  
tHD;DAT  
Data hold time  
Data setup time  
0
Fast-mode plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
250  
100  
50  
Fast-mode plus  
[1] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[2] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[3] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[4] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[5] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less  
than the maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device  
does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be  
valid by the set-up time before it releases the clock.  
[6] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[7] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT  
= 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW  
period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the  
next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode  
I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up  
time.  
[8] Valid for I2C IO cells. When I2C functionality is supported on standard IO cells this Min time is 0.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
66 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
HD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
SCL  
S
Fig 19. I2C interface timings  
14.12 GPIO pin timing  
Table 40. GPIO pin timing  
VDDE = 1.9 V to 3.6 V; Tj = 40 °C to +125 °C; unless otherwise specified; Input slew = 1 ns; parameters samples at the 90%  
and 10% level of the rising or falling edge.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
GPIO pin interrupt pulse  
width (digital glitch filter  
disabled) - Synchronous  
path  
1.5  
Bus  
clock  
cycles  
[3]  
GPIO pin interrupt pulse  
width (digital glitch  
filterdisabled) -  
20  
ns  
Asynchronous path  
[1] This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run  
modes (Min CPU clock at 12 MHz)  
[2] The greater of synchronous and asynchronous timing must be met  
[3] This is the minimum pulse width that is guaranteed to be recognized  
14.13 Radio transceiver  
This QN9090(T)/QN9030(T) meets all the requirements of the Bluetooth Low Energy  
standard over 1.9 V to 3.6 V and offers the improved RF characteristics shown in the  
following table. All RF characteristics are measured single ended.  
This part also meets the following regulatory body approvals, when used with NXP’s  
Module Reference Designs. Compliant with FCC part 15 rules, IC Canada and ETSI ETS  
300-328, refer to the QN9090 Module Reference Design package on the Wireless  
Connectivity area of the NXP web site Ref. 2.  
The PCB schematic and layout rules detailed in Section 9 “Application design-in  
information” must be followed. Failure to do so will likely result in the  
QN9090(T)/QN9030(T) failing to meet the performance specification detailed herein and  
worst case may result in device not functioning in the end application.  
Table 41. RF port characteristics  
Single-ended; Impedance = 50 Ω; VDD = 1.9 V to 3.6 V; Tj = -40°C to +125°C; unless otherwise  
specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Frange  
Frequency range  
2.4  
2.485  
GHz  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
67 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Receiver Bluetooth Low Energy 1 Mb/s  
SRX_BLE_1 Receiver sensitivity  
0.1% BER  
Max gain  
97  
7
10  
dBm  
dB  
M
[1]  
[2]  
NF_BLE_1 Noise figure  
M
PinMaxRX_B Maximum receiver input 0.1% BER  
-7  
dBm  
dB  
power  
LE_1M  
Coch_BLE_1 Co-channel Interference 0.1% BER, with wanted channel at -67 dBm  
rejection  
M
Rej-1M_BLE_ Interference rejection,  
Channel -1 MHz  
Channel +1 MHz  
Channel -2 MHz  
Channel +2 MHz  
Channel -3 MHz  
Channel +3 MHz  
2.5  
5.2  
29  
44  
36  
46  
0
dB  
0.1% BER, with wanted  
channel at -67 dBm[2]  
1M  
Rej+1M_BLE  
dB  
_1M  
Rej-2M_BLE_  
dB  
1M  
Rej+2M_BLE  
dB  
_1M  
Rej-3M_BLE_  
dB  
1M  
Rej+3M_BLE  
dB  
_1M  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
dBm  
_1M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
0
dBm  
dBm  
[4]  
[4]  
[4]  
IMP3,6_B Inter-modulation  
LE_1M  
With CW interferer at ± 3 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 6 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-27  
IMP4,8_B  
LE_1M  
With CW interferer at ± 4 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 8 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-29  
-30  
dBm  
dBm  
IMP5,10_  
BLE_1M  
With CW interferer at ± 5 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 10 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
68 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PinBlock_ Blocking input power  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
-24  
dBm  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2300 MHz, 2330 MHz, or 2360 MHz  
-21  
-19  
dBm  
dBm  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
[5]  
RSSIvar_ RSSI variation  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mbps, over the RSSI range -97 dBm to +5  
dBm  
2  
-80  
-67  
dB  
PspRX_BL Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
dBm  
dBm  
E_1M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
LOLeakRX Local oscillator leakage  
_BLE_1M power  
-98  
42  
dBm  
dB  
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 1 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20 MHz  
mode)  
_1M  
Transmitter Bluetooth Low Energy 1 Mb/s  
PoutMax_BL Maximum output power  
11  
0.2  
46  
dBm  
dB  
E_1M  
Pout_BLE_1 Output power in band tilt At +10 dBm  
M
PoutRange_B Output power control  
dB  
range  
LE_1M  
TxAdj2M_ Bluetooth Low Energy  
-42.0  
dBm  
BLE_1M  
adjacent channel  
transmit Power at 2 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-44.2  
251  
dBm  
kHz  
BLE_1M  
adjacent channel  
transmit Power at 3  
MHz offset  
f1avg_BL Average frequency  
E_1M  
deviation using a  
00001111 sequence  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
69 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
f299_9_B 99.9% of absolute peak  
205  
kHz  
LE_1M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.9  
avg_BLE_ frequency deviation  
1M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_1M  
9.8  
-8.0  
-0.9  
-5.5  
-61.5  
kHz  
kHz  
kHz  
kHz  
dBm  
FD_BLE_1 Frequency drift  
M
MaxFD_B Maximum drift rate  
LE_1M  
InitFD_BL Initial frequency drift  
E_1M  
TXH2_1M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
frequency  
TXH3_1M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
<-68  
dBm  
frequency  
PspTX_1 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
-44.8  
-41.6  
-54  
dBm  
dBm  
dBm  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
1 GHz to 12.75 GHz, peak detector, RBW = 1  
MHz, based on ETSI at +10 dBm  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-60  
-57  
dBm  
dBm  
Receiver Bluetooth Low Energy 2 Mb/s  
SRX_BLE_2 Receiver sensitivity  
0.1 % BER  
-93  
7
10  
dBm  
dB  
M
[1]  
[6]  
NF_BLE_2 Noise figure  
M
Max gain  
PinMaxRX_B Maximum receiver input 0.1 % BER  
dBm  
dB  
power  
LE_2M  
Coch_BLE_2 Co-channel Interference 0.1 % BER, with wanted channel at -67 dBm  
-8.5  
rejection  
M
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
70 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rej-2M_BLE_ Interference rejection,  
Channel -2 MHz  
1
dB  
0.1% BER, with wanted  
channel at -67 dBm[6]  
2M  
Rej+2M_BLE  
Channel +2 MHz  
Channel -4 MHz  
Channel +4 MHz  
Channel -6 MHz  
Channel +6 MHz  
10  
28.7  
47.5  
41  
dB  
dB  
_2M  
Rej-4M_BLE_  
2M  
Rej+4M_BLE  
dB  
_2M  
Rej-6M_BLE_  
dB  
2M  
Rej+6M_BLE  
51  
dB  
_2M  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
_2M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
0
dBm  
dBm  
[4]  
[4]  
[4]  
IMP6,12_ Inter-modulation  
BLE_2M  
With CW interferer at ± 6 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 12 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-32  
IMP8,16_  
BLE_2M  
With CW interferer at ± 8 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 16 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-32.5  
-30.5  
-22.8  
-21.6  
-20  
dBm  
dBm  
dBm  
dBm  
dBm  
IMP10,20_  
BLE_2M  
With CW interferer at ± 10 MHz and  
Bluetooth Low Energy interferer 2 Mb/s at ±  
20 MHz, wanted channel Bluetooth Low  
Energy 2 Mb/s at -64 dBm, 0.1% BER  
PinBlock_ Blocking input power  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2300 MHz, 2330 MHz, or 2360 MHz  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
[5]  
RSSIvar_ RSSI variation  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mbps, over the RSSI range -93 dBm to +5  
dBm  
2  
dB  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
71 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PspRX_BL Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
-80  
dBm  
E_2M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
-67  
dBm  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
LOLeakRX Local oscillator leakage  
_BLE_2M power  
-98  
44  
dBm  
dB  
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 2 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20 MHz  
mode)  
_2M  
Transmitter Bluetooth Low Energy 2 Mb/s  
PoutMax_BL Maximum output power  
11  
0.2  
46  
dBm  
dB  
E_2M  
Pout_BLE_2 Output power in band tilt At +10 dBm  
M
PoutRange_B Output power control  
dB  
range  
LE_2M  
TxAdj2M_ Bluetooth Low Energy  
-44.4  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 4 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-47  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 6  
MHz offset  
f1avg_BL Average frequency  
505  
kHz  
kHz  
E_2M  
deviation using a  
00001111 sequence  
f299_9_B 99.9% of absolute peak  
417.7  
LE_2M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.88  
avg_BLE_ frequency deviation  
2M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_2M  
11.2  
-7.4  
-2.2  
-4.7  
kHz  
kHz  
kHz  
kHz  
FD_BLE_2 Frequency drift  
M
MaxFD_B Maximum drift rate  
LE_2M  
InitFD_BL Initial frequency drift  
E_2M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
72 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 42. Radio transceiver characteristics: +25 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TXH2_2M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
-61.0  
dBm  
frequency  
TXH3_2M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
<-68  
dBm  
frequency  
PspTX_2 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
-44  
dBm  
dBm  
dBm  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
1 GHz to 12.75 GHz, peak detector, RBW = 1  
MHz, based on ETSI at +10 dBm  
-41.5  
-59.3  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-59  
dBm  
dBm  
-57.4  
[1] Considering an integrated BW of 1 MHz, and a minimum SNR of 9 dB for the demodulator.  
[2] Interference rejection 1 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 1  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 1 Mb/s, for 0.1% BER.  
[3] -10 dBm at 2399 MHz  
[4] The intermodulation is the power of one of the two interferers. Both interferers have the same power.  
[5] This RSSI variation over temperature is obtain with the use of the embedded thermometer and the  
integrated API (see application note).  
[6] Interference rejection 2 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 2  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 2 Mb/s, for 0.1% BER.  
Table 43. Radio transceiver characteristics: -40 °C  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Receiver Bluetooth Low Energy 1 Mb/s  
SRX_BLE_1 Receiver sensitivity  
0.1% BER  
Max gain  
98  
6
10  
dBm  
dB  
M
[1]  
[2]  
NF_BLE_ Noise figure  
1M  
PinMaxRX_B Maximum receiver input 0.1% BER  
dBm  
dB  
power  
LE_1M  
Coch_BLE_1 Co-channel Interference 0.1% BER, with wanted channel at -67 dBm  
-7.3  
rejection  
M
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
73 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rej-1M_BLE_ Interference rejection,  
Channel -1 MHz  
3.6  
dB  
0.1% BER, with wanted  
channel at -67 dBm[2]  
1M  
Rej+1M_BLE  
Channel +1 MHz  
Channel -2 MHz  
Channel +2 MHz  
Channel -3 MHz  
Channel +3 MHz  
3.7  
29.5  
43  
dB  
dB  
_1M  
Rej-2M_BLE_  
1M  
Rej+2M_BLE  
dB  
_1M  
Rej-3M_BLE_  
35.6  
47  
dB  
1M  
Rej+3M_BLE  
dB  
_1M  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
_1M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
0
dBm  
dBm  
[5]  
[5]  
[5]  
IMP3,6_B Inter-modulation  
LE_1M  
With CW interferer at ± 3 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 6 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-27  
IMP4,8_B  
LE_1M  
With CW interferer at ± 4 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 8 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-27  
-29  
dBm  
dBm  
dBm  
dBm  
dBm  
IMP5,10_  
BLE_1M  
With CW interferer at ± 5 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 10 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
PinBlock_ Blocking input power  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
-24.5  
-23  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW  
at 2300 MHz, 2330 MHz, or 2360 MHz  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW  
at 2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
-21  
[6]  
RSSIvar_ RSSI variation  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mbps, over the RSSI range -98 dBm to +5  
dBm  
2  
dB  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
74 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PspRX_B Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
-80  
dBm  
LE_1M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
-67  
-98  
41  
dBm  
dBm  
dB  
LOLeakR Local oscillator leakage  
X_BLE_1 power  
M
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 1 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20 MHz  
mode)  
_1M  
Transmitter Bluetooth Low Energy 1 Mb/s  
PoutMax_BL Maximum output power  
11  
0.2  
46  
dBm  
dB  
E_1M  
Pout_BLE_1 Output power in band tilt At +10 dBm  
M
PoutRange_B Output power control  
dB  
range  
LE_1M  
TxAdj2M_ Bluetooth Low Energy  
-41.0  
dBm  
BLE_1M  
adjacent channel  
transmit Power at 2 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-43.2  
dBm  
BLE_1M  
adjacent channel  
transmit Power at 3  
MHz offset  
f1avg_BL Average frequency  
252.7  
203.9  
kHz  
kHz  
E_1M  
deviation using a  
00001111 sequence  
f299_9_ 99.9% of absolute peak  
BLE_1M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.91  
avg_BLE_ frequency deviation  
1M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_1M  
47.4  
-5.5  
0.1  
kHz  
kHz  
kHz  
FD_BLE_ Frequency drift  
1M  
MaxFD_B Maximum drift rate  
LE_1M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
75 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
InitFD_BL Initial frequency drift  
E_1M  
-3.9  
kHz  
TXH2_1M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
-60.9  
<-68  
dBm  
dBm  
frequency  
TXH3_1M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
frequency  
PspTX_1 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
-43.6  
-40  
dBm  
dBm  
dBm  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
1 GHz to 12.75 GHz, peak detector, RBW =  
1 MHz, based on ETSI at +10 dBm  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
-53.5  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-59.3  
-58.0  
dBm  
dBm  
Receiver Bluetooth Low Energy 2 Mb/s  
SRX_BLE_2 Receiver sensitivity  
0.1 % BER  
-95  
7
10  
dBm  
dB  
M
[1]  
[4]  
NF_BLE_ Noise figure  
2M  
Max gain  
PinMaxRX_B Maximum receiver input 0.1 % BER  
dBm  
dB  
power  
LE_2M  
Coch_BLE_2 Co-channel Interference 0.1 % BER, with wanted channel at -67 dBm  
-8.6  
1.7  
rejection  
M
Rej-2M_BLE_ Interference rejection,  
Channel -2 MHz  
Channel +2 MHz  
Channel -4 MHz  
Channel +4 MHz  
Channel -6 MHz  
Channel +6 MHz  
dB  
0.1% BER, with wanted  
channel at -67 dBm[4]  
2M  
Rej+2M_BLE  
9.8  
dB  
_2M  
Rej-4M_BLE_  
28.6  
47.8  
41.2  
53.3  
dB  
2M  
Rej+4M_BLE  
dB  
_2M  
Rej-6M_BLE_  
dB  
2M  
Rej+6M_BLE  
dB  
_2M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
76 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
_2M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
0
dBm  
dBm  
[5]  
[5]  
[5]  
IMP6,12_ Inter-modulation  
BLE_2M  
With CW interferer at ± 6 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 12 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-32  
IMP8,16_  
BLE_2M  
With CW interferer at ± 8 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 16 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-33.5  
-32  
dBm  
dBm  
dBm  
dBm  
dBm  
IMP10,20_  
BLE_2M  
With CW interferer at ± 10 MHz and  
Bluetooth Low Energy interferer 2 Mb/s at ±  
20 MHz, wanted channel Bluetooth Low  
Energy 2 Mb/s at -64 dBm, 0.1% BER  
PinBlock_ Blocking input power  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
-24.8  
-23  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW  
at 2300 MHz, 2330 MHz, or 2360 MHz  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW  
at 2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
-21.6  
[6]  
RSSIvar_ RSSI variation  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mbps, over the RSSI range -94.5 dBm to +5  
dBm  
2  
-80  
-67  
-98  
44  
dB  
PspRX_B Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
dBm  
dBm  
dBm  
dB  
LE_2M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
LOLeakR Local oscillator leakage  
X_BLE_2 power  
M
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 2 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20 MHz  
mode)  
_2M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
77 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Transmitter Bluetooth Low Energy 2 Mb/s  
PoutMax_BL Maximum output power  
11  
0.2  
46  
dBm  
dB  
E_2M  
Pout_BLE_2 Output power in band tilt At +10 dBm  
M
PoutRange_B Output power control  
dB  
range  
LE_2M  
TxAdj2M_ Bluetooth Low Energy  
-44.0  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 4 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-46.4  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 6  
MHz offset  
f1avg_BL Average frequency  
515.0  
422.4  
kHz  
kHz  
E_2M  
deviation using a  
00001111 sequence  
f299_9_ 99.9% of absolute peak  
BLE_2M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.87  
avg_BLE_ frequency deviation  
2M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_2M  
46.9  
-4.5  
-0.5  
-2.7  
-61  
kHz  
kHz  
kHz  
kHz  
dBm  
FD_BLE_ Frequency drift  
2M  
MaxFD_B Maximum drift rate  
LE_2M  
InitFD_BL Initial frequency drift  
E_2M  
TXH2_2M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
frequency  
TXH3_2M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
<-68  
dBm  
frequency  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
78 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 43. Radio transceiver characteristics: -40 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PspTX_2 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
-45  
-40  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz, peak detector, RBW =  
1 MHz, based on ETSI at +10 dBm  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
-53.6  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-59.1  
-57.2  
dBm  
dBm  
[1] Considering an integrated BW of 1 MHz, and a minimum SNR of 9 dB for the demodulator.  
[2] Interference rejection 1 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 1  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 1 Mb/s, for 0.1% BER.  
[3] -10 dBm at 2399 MHz  
[4] Interference rejection 2 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 2  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 2 Mb/s, for 0.1% BER.  
[5] The intermodulation is the power of one of the two interferers. Both interferers have the same power.  
[6] This RSSI variation over temperature is obtain with the use of the embedded thermometer and the  
integrated API (see application note).  
Table 44. Radio transceiver characteristics: +125 °C  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Receiver Bluetooth Low Energy 1 Mb/s  
SRX_BLE_1 Receiver sensitivity  
0.1% BER  
Max gain  
94  
10  
10  
dBm  
dB  
M
[1]  
[2]  
NF_BLE_1 Noise figure  
M
PinMaxRX_B Maximum receiver input 0.1% BER  
dBm  
dB  
power  
LE_1M  
Coch_BLE_1 Co-channel Interference 0.1% BER, with wanted channel at -67 dBm  
-7.5  
3.6  
4.6  
29.6  
44  
rejection  
M
Rej-1M_BLE_ Interference rejection,  
Channel -1 MHz  
Channel +1 MHz  
Channel -2 MHz  
Channel +2 MHz  
Channel -3 MHz  
Channel +3 MHz  
dB  
0.1% BER, with wanted  
channel at -67 dBm[2]  
1M  
Rej+1M_BLE  
dB  
_1M  
Rej-2M_BLE_  
dB  
1M  
Rej+2M_BLE  
dB  
_1M  
Rej-3M_BLE_  
36.7  
49  
dB  
1M  
Rej+3M_BLE  
dB  
_1M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
79 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 44. Radio transceiver characteristics: +125 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
_1M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
0
dBm  
dBm  
[5]  
[5]  
[5]  
IMP3,6_B Inter-modulation  
LE_1M  
With CW interferer at ± 3 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 6 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-29  
IMP4,8_B  
LE_1M  
With CW interferer at ± 4 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 8 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
-31  
-32  
dBm  
dBm  
dBm  
dBm  
dBm  
IMP5,10_  
BLE_1M  
With CW interferer at ± 5 MHz and Bluetooth  
Low Energy interferer 1 Mb/s at ± 10 MHz,  
wanted channel Bluetooth Low Energy 1  
Mb/s at -64 dBm, 0.1% BER  
PinBlock_ Blocking input power  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
-21  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2300 MHz, 2330 MHz, or 2360 MHz  
-19  
Desired channel Bluetooth Low Energy 1  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
-17.5  
[6]  
RSSIvar_ RSSI variation  
BLE_1M  
Desired channel Bluetooth Low Energy 1  
Mbps, over the RSSI range -94 dBm to +5  
dBm  
2  
-80  
-67  
dB  
PspRX_BL Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
dBm  
dBm  
E_1M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
LOLeakRX Local oscillator leakage  
_BLE_1M power  
-98  
44  
dBm  
dB  
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 1 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20MHz  
mode)  
_1M  
Transmitter Bluetooth Low Energy 1 Mb/s  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
80 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 44. Radio transceiver characteristics: +125 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PoutMax_BL Maximum output power  
11  
dBm  
E_1M  
Pout_BLE_1 Output power in band tilt At +10 dBm  
0.2  
46  
dB  
dB  
M
PoutRange_B Output power control  
range  
LE_1M  
TxAdj2M_ Bluetooth Low Energy  
-42.6  
dBm  
BLE_1M  
adjacent channel  
transmit Power at 2 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-44.8  
dBm  
BLE_1M  
adjacent channel  
transmit Power at 3  
MHz offset  
f1avg_BL Average frequency  
251.1  
206.3  
kHz  
kHz  
E_1M  
deviation using a  
00001111 sequence  
f299_9_B 99.9% of absolute peak  
LE_1M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.9  
avg_BLE_ frequency deviation  
1M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_1M  
18.6  
-1.9  
0
kHz  
kHz  
kHz  
kHz  
dBm  
FD_BLE_1 Frequency drift  
M
MaxFD_B Maximum drift rate  
LE_1M  
InitFD_BL Initial frequency drift  
E_1M  
-1.6  
-62.2  
TXH2_1M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
frequency  
TXH3_1M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 1 Mb/s channel  
at +10 dBm  
<-68  
dBm  
frequency  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
81 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 44. Radio transceiver characteristics: +125 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PspTX_1 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
-44.7  
-43.8  
-55  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz, peak detector, RBW = 1  
MHz, based on ETSI at +10 dBm  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-60  
-58  
dBm  
dBm  
Receiver Bluetooth Low Energy 2 Mb/s  
SRX_BLE_2 Receiver sensitivity  
0.1 % BER  
-90  
7
10  
dBm  
dB  
M
[1]  
[4]  
NF_BLE_2 Noise figure  
M
Max gain  
PinMaxRX_B Maximum receiver input 0.1 % BER  
dBm  
dB  
power  
LE_2M  
Coch_BLE_2 Co-channel Interference 0.1 % BER, with wanted channel at -67 dBm  
-8.6  
1
rejection  
M
Rej-2M_BLE_ Interference rejection,  
Channel -2 MHz  
Channel +2 MHz  
Channel -4 MHz  
Channel +4 MHz  
Channel -6 MHz  
Channel +6 MHz  
dB  
0.1% BER, with wanted  
channel at -67 dBm[4]  
2M  
Rej+2M_BLE  
11.3  
29  
48.8  
42  
54  
0
dB  
_2M  
Rej-4M_BLE_  
dB  
2M  
Rej+4M_BLE  
dB  
_2M  
Rej-6M_BLE_  
dB  
2M  
Rej+6M_BLE  
dB  
_2M  
RejOOB_BLE Out-of-band blocking  
From 30 MHz to 2000 MHz, wanted channel  
Bluetooth Low Energy 1 Mb/s at -67 dBm,  
0.1% BER, CW interferer.  
dBm  
_2M  
[3]  
From 2003 MHz to 2399 MHz and 2484 MHz  
to 2999 MHz, wanted signal at -67 dBm,  
0.1% BER, CW interferer.  
0
0
dBm  
dBm  
From 3000 MHz to 12750 MHz, wanted  
signal at -67 dBm, 0.1% BER, CW interferer.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
82 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 44. Radio transceiver characteristics: +125 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[5]  
[5]  
[5]  
IMP6,12_ Inter-modulation  
BLE_2M  
With CW interferer at ± 6 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 12 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-32  
dBm  
IMP8,16_  
BLE_2M  
With CW interferer at ± 8 MHz and Bluetooth  
Low Energy interferer 2 Mb/s at ± 16 MHz,  
wanted channel Bluetooth Low Energy 2  
Mb/s at -64 dBm, 0.1% BER  
-31.3  
-30.6  
-22.6  
-19.7  
-18.3  
dBm  
dBm  
dBm  
dBm  
dBm  
IMP10,20_  
BLE_2M  
With CW interferer at ± 10 MHz and  
Bluetooth Low Energy interferer 2 Mb/s at ±  
20 MHz, wanted channel Bluetooth Low  
Energy 2 Mb/s at -64 dBm, 0.1% BER  
PinBlock_ Blocking input power  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB.  
Unwanted channel CW at 2380 MHz, or  
2503.5 MHz  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2300 MHz, 2330 MHz, or 2360 MHz  
Desired channel Bluetooth Low Energy 2  
Mb/s, level = measured sensitivity + 6dB,  
channels 0 and 39. Unwanted channel CW at  
2523.5 MHz, 2553.5 MHZ, 2583.5 MHz,  
2613.5 MHz, 2643.5 MHz, or 2673.5 MHz  
[6]  
RSSIvar_ RSSI variation  
BLE_2M  
Desired channel Bluetooth Low Energy 2  
Mbps, over the RSSI range -90 dBm to +5  
dBm  
2  
-80  
-67  
dB  
PspRX_BL Receiver spurious  
30 MHz to 1 GHz, 100 kHz RBW, 300 kHz  
VBW, filter type 3 dB (Gaussian), peak  
dBm  
dBm  
E_2M  
emission, measured  
conducted into 50 ohms detector, trace mode Max hold  
1 GHz to 12.75 GHz, 1 MHz RBW, 3 MHz  
VBW, filter type 3 dB (Gaussian), peak  
detector, trace mode Max hold  
LOLeakRX Local oscillator leakage  
_BLE_2M power  
-98  
43  
dBm  
dB  
RejWIFI_BLE WIFI rejection  
0.1% BER, with wanted signal Bluetooth Low  
Energy 2 Mb/s -67 dBm 2470 MHz, WIFI  
signal IEEE 802.11n 2447 MHz (20 MHz  
mode)  
_2M  
Transmitter Bluetooth Low Energy 2 Mb/s  
PoutMax_BL Maximum output power  
11  
0.2  
46  
dBm  
dB  
E_2M  
Pout_BLE_2 Output power in band tilt At +10 dBm  
M
PoutRange_B Output power control  
dB  
range  
LE_2M  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
83 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 44. Radio transceiver characteristics: +125 °C …continued  
VDD = 1.9 V to 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TxAdj2M_ Bluetooth Low Energy  
-46.5  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 4 MHz  
offset  
TxAdj3M_ Bluetooth Low Energy  
-51.3  
dBm  
BLE_2M  
adjacent channel  
transmit Power at 6  
MHz offset  
f1avg_BL Average frequency  
508.7  
419.4  
kHz  
kHz  
E_2M  
deviation using a  
00001111 sequence  
f299_9_B 99.9% of absolute peak  
LE_2M  
frequency deviation  
using a 10101010  
sequence  
f2avg/Δf1 Ratio of average  
0.88  
avg_BLE_ frequency deviation  
2M  
using a 10101010  
sequence, and average  
frequency deviation  
using a 00001111  
sequence  
CFO_BLE Carrier frequency offset  
_2M  
18.6  
-1.3  
0
kHz  
kHz  
kHz  
kHz  
dBm  
FD_BLE_2 Frequency drift  
M
MaxFD_B Maximum drift rate  
LE_2M  
InitFD_BL Initial frequency drift  
E_2M  
-0.9  
-62.1  
TXH2_2M Second harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
frequency  
TXH3_2M Third harmonic of  
transmit carrier  
With Bluetooth Low Energy 2 Mb/s channel  
at +10 dBm  
<-68  
dBm  
frequency  
PspTX_2 Transmitter spurious  
30 MHz to 1 GHz, peak detector, RBW = 100  
kHz  
-78  
-45.5  
-43.7  
-55  
dBm  
dBm  
dBm  
dBm  
M
emission, measured  
conducted into 50 ohms  
1 GHz to 26 GHz, peak detector, RBW = 1  
MHz, based on FCC at +10 dBm  
1 GHz to 12.75 GHz, peak detector, RBW = 1  
MHz, based on ETSI at +10 dBm  
1 GHz to 26 GHz, average detector, RBW =  
1 MHz, based on FCC at +10 dBm  
Transmitter spurious  
emission, ETSI  
exceptions  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
-60  
dBm  
dBm  
-57.4  
[1] Considering an integrated BW of 1 MHz, and a minimum SNR of 9 dB for the demodulator.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
84 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
[2] Interference rejection 1 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 1  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 1 Mb/s, for 0.1% BER.  
[3] -10 dBm at 2399 MHz.  
[4] Interference rejection 2 Mb/s is the difference between the power of the wanted Bluetooth Low Energy 2  
Mb/s at -67 dBm and the power of the modulated interferer Bluetooth Low Energy 2 Mb/s, for 0.1% BER.  
[5] The intermodulation is the power of one of the two interferers. Both interferers have the same power.  
[6] This RSSI variation over temperature is obtain with the use of the embedded thermometer and the  
integrated API (see application note).  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
85 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
15. Package outline  
+94)1ꢀꢁꢂꢃSODVWLFꢃWKHUPDOꢃHQKDQFHGꢃYHU\ꢃWKLQꢃTXDGꢃIODWꢃSDFNDJHꢄꢃQRꢃOHDGVꢄ  
ꢀꢁꢃWHUPLQDOVꢄꢃERG\ꢃꢅꢃ[ꢃꢅꢃ[ꢃꢁꢆꢇꢈꢃPP  
627ꢅꢉꢇꢊꢉ  
%
$
'
WHUPLQDOꢀꢂ  
LQGH[ꢀDUHD  
$
$
(
F
GHWDLOꢀ;  
H
&
Y
Z
&
&
$ %  
H
E
ꢂꢏꢅꢀH  
\
\
&
ꢂꢂ  
ꢅꢆ  
/
ꢅꢂ  
ꢂꢆ  
H
(
H
K
ꢂꢏꢅꢀH  
ꢇꢆ  
WHUPLQDOꢀꢂ  
LQGH[ꢀDUHD  
ꢊꢆ  
ꢇꢂ  
;
'
K
ꢅꢉꢈ  
ꢈꢀPP  
Y
VFDOH  
'LPHQVLRQVꢀꢋPPꢀDUHꢀWKHꢀRULJLQDOꢀGLPHQVLRQVꢌ  
ꢋꢂꢌ  
ꢋꢂꢌ  
ꢋꢂꢌ  
(
8QLW  
$
$
E
F
'
'
(
H
H
H
/
Z
\
\
K
K
PD[ ꢂꢉꢆꢆ ꢆꢉꢆꢈ ꢆꢉꢇꢆ ꢆꢉꢅ ꢁꢉꢂ ꢊꢉꢅꢈ ꢁꢉꢂ ꢊꢉꢅꢈ ꢆꢉꢈ ꢊꢉꢈ ꢊꢉꢈ ꢆꢉꢈ ꢆꢉꢂ ꢆꢉꢆꢈ ꢆꢉꢆꢈ ꢆꢉꢂ  
PP QRP ꢆꢉꢃꢈ ꢆꢉꢆꢅ ꢆꢉꢅꢂ  
PLQ ꢆꢉꢃꢆ ꢆꢉꢆꢆ ꢆꢉꢂꢃ  
ꢁꢉꢆ ꢊꢉꢂꢆ ꢁꢉꢆ ꢊꢉꢂꢆ  
ꢈꢉꢎ ꢇꢉꢎꢈ ꢈꢉꢎ ꢇꢉꢎꢈ  
ꢆꢉꢊ  
ꢆꢉꢇ  
1RWH  
ꢂꢉꢀ3ODVWLFꢀRUꢀPHWDOꢀSURWUXVLRQVꢀRIꢀꢆꢉꢆꢍꢈꢀPPꢀPD[LPXPꢀSHUꢀVLGHꢀDUHꢀQRWꢀLQFOXGHGꢉꢀ  
VRWꢀꢁꢂꢃꢁBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢀGDWH  
,(&  
-('(&  
-(,7$  
ꢆꢅꢄꢂꢆꢄꢅꢅ  
ꢂꢇꢄꢂꢂꢄꢆꢈ  
627ꢁꢂꢃꢄꢂ  
02ꢄꢅꢅꢆ  
Fig 20. Package outline SOT618-1 HVQFN40  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
86 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
87 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 21) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 45 and 46  
Table 45. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 46. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 21.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
88 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
maximum peak temperature  
MSL limit, damage level  
temperature  
minimum peak temperature  
minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 21. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10366 “Lead  
less package surface mount reflow soldering description”.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
89 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
17. Abbreviations  
Table 47. Abbreviations  
Acronym  
ADC  
ADE  
ADO  
AES  
AGC  
API  
Description  
Analog to Digital Converter  
Antenna diversity Even  
Antenna diversity Odd  
Advanced Encryption Standard  
Automatic Gain Control  
Application Program Interface  
Analog Peripheral Timer  
Bill Of Material  
APT  
BOM  
BOR  
CCA  
CCM  
CDM  
CLK  
CPU  
CRC  
CSMA/CA  
CTS  
CW  
Brown-Out Reset  
Clear Channel Assessment  
Counter with CBC-MAC  
Charged Device Model  
CLocK  
Central Processing Unit  
Cyclic redundancy Check  
Carrier Sense Multiple Access with Collision Avoidance  
Clear-To-Send  
Continuous Wave  
DALI  
DC  
Digitally Addressable Lighting Interface  
Direct current  
DIO  
Digital Input Output  
DMA  
DO  
Direct memory Access  
Digital Output  
ED  
Energy Detection  
EEPROM  
ESR  
FIFO  
GP  
Electrically-Erasable Programmable Read Only Memory  
Equivalent Series Resistance  
First In First Out  
General Purpose  
GPIO  
HBM  
HS  
General Purpose Input Output  
Human Body Model  
High Speed  
HVQFN  
ID  
Heatsink Very-thin Quad Flat No-Leads  
IDentification  
IF  
Intermediate frequency  
Input Output  
IO  
IPC  
Interconnecting and Packaging Electronic Circuits  
Joint Test Action Group  
Low Noise Amplifier  
JTAG  
LNA  
LQI  
Link Quality Indication  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
90 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 47. Abbreviations …continued  
Acronym  
LSB  
Description  
Low Significant Bit  
MAC  
MSB  
MSIF  
MSL  
Media Access Control  
Most Significant Bit  
Master Serial InterFace  
Moisture sensitivity level  
Not ACKnowledge  
NACK  
NFET  
NRZ  
Negative Field Effect Transistor  
Non-Return-to-Zero  
NVIC  
OOK  
OTA  
Nested Vector Interrupt Controller  
On-Off Key  
Over-The-Air  
OTP  
One Time Programmable  
Power Amplifier  
PA  
PAN  
Personal Area Network  
Printed-Circuit Board  
Persistent Data Manager  
PHYsical  
PCB  
PDM  
PHY  
PLL  
Phase-Locked Loop  
POR  
PPF  
Power-On Reset  
Palladium Pre Plated  
Pulse Width Modulation  
Random Access Memory  
Remote Control  
PWM  
RAM  
RC  
RF  
Radio Frequency  
RF4CE  
RoHS  
RSSI  
RTS  
Radio frequency for Consumer Electronic  
Restriction of Hazardous Substances  
Receive Signal Strength Indication  
Request-To-Send  
RTOS  
RTZ  
Real-Time Operating System  
Return-To-Zero  
RX  
Received  
SCL  
Serial CLock  
SDA  
Serial DatA  
SDK  
Software Developer’s Kit  
System Management bus  
Surface Mount Devices  
Switched Mode Power Supply  
Single-Pole Double-Throw  
Serial Peripheral Interface -bus  
Slave Transmitter Stop Detect  
Slave Serial InterFace  
SMbus  
SMDs  
SMPS  
SPDT  
SPI-bus  
STSD  
SSIF  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
91 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
Table 47. Abbreviations …continued  
Acronym  
SVM  
Description  
Supply Voltage Monitor  
SYNTHesizer  
SYNTH  
SysTick  
TAF  
System Tick timer  
Transmitter Arbitration Failure  
Tightly-Coupled Memory  
Transmit  
TCM  
TX  
UART  
VCO  
Universal Asynchronous Receiver Transmitter  
Voltage Controlled Oscillator  
Vector Table Offset Register  
Wideband Power Detector  
VTOR  
WPD  
18. References  
[1] Bluetooth SIG Core 5.0 specification —  
Bluetooth Test Specification RF-PHY.TS  
[2] Wireless Connectivity —  
http://www.nxp.com/products/wireless-connectiv  
ity:WIRELESS-CONNECTIVITY  
[3] QN9090(T)/QN9030(T) User Manual  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
92 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
19. Revision history  
Table 48. Revision history  
Document ID  
QN9090 v1.2  
Modifications:  
Release date  
2021/05  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
-
Updated Figure 4 “System memory map” for the QSPI.  
Updated BOD as wake-up source to exit Deep sleep and Power-down in Table 8 “Power  
mode wake-up sources”  
Added ts in the Table 11 “Limiting values”, added Figure 9 “Power-up ramp”, Figure 10  
“Minimum VBAT rise time vs temperature”, Figure 11 “Maximum VBAT slope vs temperature”.  
Updated to “8-input 12-bit ADC, 190 ksamples/s (Max.)” in the Section 2.3 “Microcontroller  
features”.  
Updated to “Conversion rate 190 ksamples/s (Max.) for 12-bit resolution” in the Section  
8.15 “12-bit general purpose ADC”.  
QN9090 v1.1  
Modifications:  
2020/06  
Product data sheet  
-
-
Updated SPIFI and NTAG features in Section 2.3 “Microcontroller features”  
Updated Section 3 “Applications”.  
Corrected typos and made descriptions aligned in the Table 4 “Pin descriptions” and Table  
5 “Pin descriptions”  
Removed ADC_SEQB in the Table 8 “Power mode wake-up sources”  
Updated Section 8.25 “Random Number Generator”  
Updated Section 8.26 “NTAG I2C”  
Updated NTAG security features in the Section 8.26.1 “Features”  
Updated Figure 8 “Application diagram – battery powered solution”  
Updated the IDD values of Power-down-4K and Power-down-8K in the Table 14 “Typical  
current consumption in Low-power mode characteristics”  
Updated VIL in the Table 17 “IO characteristics”.  
Updated the IDD typical values in the Table 23 “32 kHz crystal oscillator” and Table 24  
“32 MHz crystal oscillator”  
QN9090 v1.0  
Modifications:  
2020/01  
Product data sheet  
-
-
Initial public release.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
93 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
20.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
94 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
21. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .4  
Table 2. Ordering information details . . . . . . . . . . . . . . . .4  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Table 4. Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 5. Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 6. Pin properties . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 7: Abbreviation used in the Table 6. . . . . . . . . . . .21  
Table 8. Power mode wake-up sources . . . . . . . . . . . . .30  
Table 9. Allowed timer usage in different power modes.32  
Table 10. Component descriptions about Figure 8. . . . . .47  
Table 11. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 12. Operating conditions . . . . . . . . . . . . . . . . . . . .50  
Table 13. Thermal characteristics . . . . . . . . . . . . . . . . . .50  
Table 14. Typical current consumption in Low-power mode  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 15. Typical current consumption in Active mode  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . .51  
Table 16. Typical CPU and peripherals current consumption  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 17. IO characteristics . . . . . . . . . . . . . . . . . . . . . . .52  
Table 18. Externally applied reset . . . . . . . . . . . . . . . . . .54  
Table 19. Analog to Digital Converters . . . . . . . . . . . . . .55  
Table 20. Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Table 21. 32 kHz free running oscillator . . . . . . . . . . . . .56  
Table 22. 1 MHz free running oscillator . . . . . . . . . . . . . .56  
Table 23. 32 kHz crystal oscillator . . . . . . . . . . . . . . . . . .56  
Table 24. 32 MHz crystal oscillator . . . . . . . . . . . . . . . . . 57  
Table 25. High-speed free running oscillator . . . . . . . . . 57  
Table 26. Temperature sensor . . . . . . . . . . . . . . . . . . . . 57  
Table 27. Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 28. Dynamic characteristic: I/O pins[1] . . . . . . . . . . 58  
Table 29. Wake-up timing . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 30. SPI master timing. . . . . . . . . . . . . . . . . . . . . . . 59  
Table 31. SPI slave timing . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 32. USART master timing (in synchronous mode). 62  
Table 33. USART slave timing (in synchronous mode) . . 62  
Table 34. SPIFI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 35. PWM timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 36. DMIC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 37. Clock of ISO7816. . . . . . . . . . . . . . . . . . . . . . . 65  
Table 38. Input output of ISO7816. . . . . . . . . . . . . . . . . . 65  
Table 39. I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 40. GPIO pin timing . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 41. RF port characteristics . . . . . . . . . . . . . . . . . . 67  
Table 42. Radio transceiver characteristics: +25 °C . . . . 68  
Table 43. Radio transceiver characteristics: -40 °C . . . . 73  
Table 44. Radio transceiver characteristics: +125 °C . . . 79  
Table 45. SnPb eutectic process (from J-STD-020D) . . . 88  
Table 46. Lead-free process (from J-STD-020D) . . . . . . 88  
Table 47. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 48. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 93  
22. Figures  
Fig 1. High level hardware block diagram . . . . . . . . . . . .5  
Fig 2. Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Fig 3. Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 4. System memory map. . . . . . . . . . . . . . . . . . . . . .24  
Fig 5. Radio architecture . . . . . . . . . . . . . . . . . . . . . . . .40  
Fig 6. Simple antenna diversity implementation using  
external RF switch . . . . . . . . . . . . . . . . . . . . . . . .42  
Fig 7. Antenna diversity change around the second TX-RX  
activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Fig 8. Application diagram – battery powered solution .47  
Fig 9.  
Power-up ramp . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Fig 10. Minimum VBAT rise time vs temperature . . . . . . .49  
Fig 11. Maximum VBAT slope vs temperature . . . . . . . . .50  
Fig 12. Reset signal timing. . . . . . . . . . . . . . . . . . . . . . . .55  
Fig 13. Output timing measurement condition . . . . . . . . .59  
Fig 14. SPI master interface timings . . . . . . . . . . . . . . . .61  
Fig 15. SPI slave interface timings. . . . . . . . . . . . . . . . . .62  
Fig 16. USART interface timings . . . . . . . . . . . . . . . . . . .63  
Fig 17. SPIFI interface timings. . . . . . . . . . . . . . . . . . . . .64  
Fig 18. DMIC interface timings. . . . . . . . . . . . . . . . . . . . .65  
Fig 19. I2C interface timings. . . . . . . . . . . . . . . . . . . . . . .67  
Fig 20. Package outline SOT618-1 HVQFN40 . . . . . . . .86  
Fig 21. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
95 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
23. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.9  
8.10  
8.10.1  
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Counter/Timers. . . . . . . . . . . . . . . . . . . . . . . . 33  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Radio features . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Microcontroller features . . . . . . . . . . . . . . . . . . 2  
Low power features . . . . . . . . . . . . . . . . . . . . . 3  
2.1  
2.2  
2.3  
2.4  
8.10.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.10.1.2 General description . . . . . . . . . . . . . . . . . . . . 33  
8.10.2  
8.10.3  
8.10.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.10.3.2 General description . . . . . . . . . . . . . . . . . . . . 35  
8.10.4  
8.11  
8.12  
8.13  
8.14  
8.15  
8.16  
8.17  
8.18  
8.19  
8.19.1  
8.19.2  
8.20  
8.20.1  
8.20.2  
8.20.3  
8.20.4  
8.21  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 34  
Real-Time Clock (RTC) . . . . . . . . . . . . . . . . . 34  
3
4
5
6
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Low Power Wake-up Timers . . . . . . . . . . . . . 35  
USART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Serial Peripheral Interfaces-bus (SPI-bus). . . 37  
I2C-bus interfaces. . . . . . . . . . . . . . . . . . . . . . 37  
DMIC interface . . . . . . . . . . . . . . . . . . . . . . . . 38  
12-bit general purpose ADC. . . . . . . . . . . . . . 38  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 39  
Analog comparator. . . . . . . . . . . . . . . . . . . . . 39  
Infra-Red Modulator . . . . . . . . . . . . . . . . . . . . 39  
Serial Wire Debug (SWD) . . . . . . . . . . . . . . . 39  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Basic configuration. . . . . . . . . . . . . . . . . . . . . 40  
Wireless transceiver. . . . . . . . . . . . . . . . . . . . 40  
Radio features . . . . . . . . . . . . . . . . . . . . . . . . 41  
Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Bluetooth Low Energy link layer. . . . . . . . . . . 42  
Antenna diversity . . . . . . . . . . . . . . . . . . . . . . 42  
AES engine . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SPI-bus Flash Interface (SPIFI) . . . . . . . . . . . 43  
Hash module . . . . . . . . . . . . . . . . . . . . . . . . . 44  
ISO7816 smart card interface . . . . . . . . . . . . 44  
Random Number Generator. . . . . . . . . . . . . . 44  
NTAG I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General description . . . . . . . . . . . . . . . . . . . . 46  
7
7.1  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
HVQFN40 - with NTAG. . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
HVQFN40 - without NTAG . . . . . . . . . . . . . . . 13  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin properties . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.1.1  
7.1.2  
7.2  
7.2.1  
7.2.2  
7.3  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . 21  
Application CPU . . . . . . . . . . . . . . . . . . . . . . . 21  
Arm Cortex-M4 processor. . . . . . . . . . . . . . . . 22  
Memory Protection Unit . . . . . . . . . . . . . . . . . 22  
System Tick Timer (SysTick) . . . . . . . . . . . . . 22  
Nested Vector Interrupt controller (NVIC). . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General description. . . . . . . . . . . . . . . . . . . . . 23  
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SRAM usage. . . . . . . . . . . . . . . . . . . . . . . . . . 25  
FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 25  
System clocks. . . . . . . . . . . . . . . . . . . . . . . . . 25  
32 kHz clock . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
High frequency system clock . . . . . . . . . . . . . 26  
1 MHz FRO. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Resets and brownout . . . . . . . . . . . . . . . . . . . 26  
External reset . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Software reset. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 27  
Arm system reset . . . . . . . . . . . . . . . . . . . . . . 27  
System configuration (SYSCON) . . . . . . . . . . 27  
Power management . . . . . . . . . . . . . . . . . . . . 28  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 29  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 29  
Deep power-down mode. . . . . . . . . . . . . . . . . 29  
Wake-up sources . . . . . . . . . . . . . . . . . . . . . . 29  
Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General description. . . . . . . . . . . . . . . . . . . . . 31  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.4.1  
8.1.4.2  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.5  
8.22  
8.23  
8.24  
8.25  
8.26  
8.26.1  
8.26.2  
9
9.1  
9.2  
Application design-in information. . . . . . . . . 46  
QN9090 module reference designs . . . . . . . 46  
Schematic diagram . . . . . . . . . . . . . . . . . . . . 46  
10  
11  
12  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 48  
Recommended operating conditions . . . . . . 49  
Thermal characteristics . . . . . . . . . . . . . . . . . 49  
13  
Static characteristics . . . . . . . . . . . . . . . . . . . 50  
Power consumption in Low-power mode . . . . 50  
Power consumption in Active mode . . . . . . . . 50  
IO characteristics . . . . . . . . . . . . . . . . . . . . . . 51  
13.1  
13.2  
13.3  
8.6  
8.6.1  
8.6.2  
8.6.2.1  
8.6.2.2  
8.6.2.3  
8.6.2.4  
8.6.2.5  
8.6.2.6  
8.7  
14  
14.1  
Dynamic characteristics. . . . . . . . . . . . . . . . . 53  
AC characteristics . . . . . . . . . . . . . . . . . . . . . 53  
Reset and Supply Voltage Monitor. . . . . . . . . 53  
Analog to Digital Converters . . . . . . . . . . . . . 54  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
32 kHz free running oscillator. . . . . . . . . . . . . 55  
1 MHz free running oscillator . . . . . . . . . . . . . 55  
32 kHz crystal oscillator . . . . . . . . . . . . . . . . . 55  
32 MHz crystal oscillator . . . . . . . . . . . . . . . . 56  
High-speed free running oscillator . . . . . . . . . 56  
14.1.1  
14.1.2  
14.1.3  
14.1.4  
14.1.5  
14.1.6  
14.1.7  
14.1.8  
8.7.1  
8.7.2  
8.8  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
96 of 99  
NXP Semiconductors  
Bluetooth Low Energy 5.0 wireless MCU  
QN9090(T)/QN9030(T)  
14.1.9  
14.2  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 56  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 56  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
14.10  
14.11  
14.12  
14.13  
IO pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Wake-up timing. . . . . . . . . . . . . . . . . . . . . . . . 58  
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
USART timing. . . . . . . . . . . . . . . . . . . . . . . . . 61  
SPIFI timing . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PWM timing . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
DMIC timing . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
ISO7816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
GPIO pin timing . . . . . . . . . . . . . . . . . . . . . . . 66  
Radio transceiver . . . . . . . . . . . . . . . . . . . . . . 66  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 85  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 86  
Introduction to soldering . . . . . . . . . . . . . . . . . 86  
Wave and reflow soldering . . . . . . . . . . . . . . . 86  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 86  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 87  
16.1  
16.2  
16.3  
16.4  
17  
18  
19  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 89  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 92  
20  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 93  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 93  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
20.1  
20.2  
20.3  
21  
22  
23  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
QN9090(T)/QN9030(T)  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020-2021. All rights reserved.  
Product data sheet  
Rev. 1.2 — May 2021  
97 of 99  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,  
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,  
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved.  
©
NXP B.V. 2020-2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 05/2021  
Document identifier: QN9090  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY