S9S08SC4E0CTGR [NXP]

MC9S08SC4 8-Bit Microcontroller Data Sheet;
S9S08SC4E0CTGR
型号: S9S08SC4E0CTGR
厂家: NXP    NXP
描述:

MC9S08SC4 8-Bit Microcontroller Data Sheet

微控制器
文件: 总31页 (文件大小:746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08SC4  
Rev. 4, 6/2010  
MC9S08SC4 8-Bit  
Microcontroller Data Sheet  
MC9S08SC4  
948F-01  
Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging  
8-Bit HCS08 Central Processor Unit (CPU)  
Up to 40 MHz HCS08 CPU (central processor unit); up  
to 20 MHz bus frequency  
Peripherals  
HC08 instruction set with added BGND instruction  
SCI — Serial Communication Interface  
— Full-duplex non-return to zero (NRZ)  
— LIN master extended break generation  
— LIN slave extended break detection  
— Wake-up on active edge  
On-Chip Memory  
4 KB of FLASH with read/program/erase over full  
operating voltage and temperature  
256 bytes of Random-access memory (RAM)  
TPMx — Two 2-channel Timer/PWM modules (TPM1  
and TPM2)  
Power-Saving Modes  
Two very low power stop modes  
— 16-bit modulus or up/down counters  
Reduced power wait mode  
— Input capture, output compare, buffered  
edge-aligned or center-aligned PWM  
Clock Source Options  
Oscillator (XOSC) — Loop-control Pierce oscillator;  
Crystal or ceramic resonator range of 32 kHz to 38.4 kHz  
or 1 MHz to 16 MHz  
ADC — Analog to Digital Converter  
— 8-channel, 10-bit resolution  
— 2.5 μs conversion time  
— Automatic compare function  
— Temperature sensor  
Internal Clock Source (ICS) — Internal clock source  
module containing a frequency-locked loop (FLL)  
controlled by internal or external reference; precision  
trimming of internal reference allows 0.2 % resolution  
and 2.0 % deviation over temperature and voltage;  
supports bus frequencies from 2 MHz to 20 MHz.  
— Internal bandgap reference channel  
Input/Output  
12 general purpose I/O pins (GPIOs)  
System Protection  
8 interrupt pins with selectable polarity  
Watchdog computer operating properly (COP) reset with  
option to run from dedicated 1 kHz internal clock source  
or bus clock  
Hysteresis and configurable pull-up device on all input  
pins; Configurable slew rate and drive strength on all  
output pins.  
Low-voltage detection with reset or interrupt; selectable  
trip points  
Package Options  
16-TSSOP  
Illegal opcode detection with reset  
Illegal address detection with reset  
FLASH block protect  
Operating Parameters  
4.5-5.5 V operation  
Reset on loss of clock  
C,V, M temperature ranges available, covering -40 -  
125 °C operation  
Development Support  
Single-wire background debug interface  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.  
Table of Contents  
Chapter 1  
Device Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Chapter 2  
Pins and Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.1 Device Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Chapter 3  
3.9 Internal Clock Source (ICS) Characteristics . . . . . . . . 18  
3.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.11.2 TPM Module Timing. . . . . . . . . . . . . . . . . . . . . 22  
3.12 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.13 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.13.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . 24  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . .7  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .8  
3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . . .9  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .13  
3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .16  
Chapter 4  
Ordering Information and Mechanical Drawings . . . . . . . . . . 25  
4.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1.1 Device Numbering Scheme . . . . . . . . . . . . . . . 25  
4.2 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.3 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Chapter 5  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
2
Freescale Semiconductor  
Chapter 1  
Device Overview  
The MC9S08SC4 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The  
MC9S08SC4 uses the enhanced HCS08 core.  
1.1  
MCU Block Diagram  
The block diagram in Figure 1-1 shows the structure of the MC9S08SC4 MCU.  
PTA3/PIA3/ADP3  
PTA2/PIA2/ADP2  
HCS08 CORE  
BKGD/MS  
PTA1/PIA1/TPM2CH0/ADP1  
PTA0/PIA0/TPM1CH0/TCLK/ADP0  
BDC  
CPU  
RESET  
TCLK  
HCS08 SYSTEM CONTROL  
TPM1CH0  
16-BIT TIMER/PWM  
MODULE (TPM1)  
TPM1CH1  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
PTB7/EXTAL  
PTB6/XTAL  
TCLK  
16-BIT TIMER/PWM  
MODULE (TPM2)  
TPM2CH0  
PTB5/TPM1CH1  
PTB4/TPM2CH1  
PTB3/PIB3/ADP7  
COP  
LVD  
TPM2CH1  
RxD  
TxD  
PTB2/PIB2/ADP6  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI)  
USER FLASH  
PTB1/PIB1/TxD/ADP5  
PTB0/PIB0/RxD/ADP4  
(MC9S08SC4 = 4096 BYTES)  
USER RAM  
(MC9S08SC4 = 256 BYTES)  
SEE NOTE 1  
VDD  
VOLTAGE  
REGULATOR  
40-MHz INTERNAL CLOCK  
SOURCE (ICS)  
VSS  
ADP7-ADP0  
10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
LOW-POWER OSCILLATOR  
32 kHz to 38.4 kHz  
1 MHz to 16 MHz  
EXTAL  
XTAL  
VDDA  
VSSA  
VREFH  
VREFL  
NOTES  
VDDA/VREFH and VSSA/VREFL, are derived from VDD and VSS respectively.  
1:  
Figure 1-1. MC9S08SC4 Block Diagram  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
3
Chapter 1 Device Overview  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Chapter 2  
Pins and Connections  
This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and  
detailed discussions of signals.  
2.1  
Device Pin Assignment  
The following figure shows the pin assignments for the MC9S08SC4 device.  
PTA0/PIA0/TPM1CH0/TCLK/ADP0  
PTA1/PIA1/TPM2CH0/ADP1  
PTA2/PIA2/ADP2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RESET  
BKGD/MS  
VDD  
VSS  
PTB7/EXTAL  
PTB6/XTAL  
PTA3/PIA3/ADP3  
PTB0/PIB0/RxD/ADP4  
PTB1/PIB1/TxD/ADP5  
PTB2/PIB2/ADP6  
PTB5/TPM1CH1  
PTB4/TPM2CH1  
PTB3/PIB3/ADP7  
Table 2-1. Pin Function Priority  
Priority  
Pin  
Lowest  
Highest  
Number  
16-pin  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
2
RESET  
MS  
BKGD  
3
V
V
DD  
SS  
4
5
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
EXTAL  
6
XTAL  
7
TPM1CH1  
TPM2CH1  
PIB3  
8
9
ADP7  
ADP6  
ADP5  
10  
11  
PIB2  
PIB1  
TxD  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Chapter 2 Pins and Connections  
Table 2-1. Pin Function Priority (continued)  
Priority  
Pin  
Lowest  
Highest  
Number  
16-pin  
Port Pin  
Alt 1  
PIB0  
Alt 2  
RxD  
Alt 3  
Alt 4  
12  
13  
14  
15  
16  
PTB0  
PTA3  
PTA2  
PTA1  
PTA0  
ADP4  
ADP3  
ADP2  
ADP1  
ADP0  
PIA3  
PIA2  
PIA1  
PIA0  
TPM2CH0  
TPM1CH0  
TCLK  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Chapter 3  
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08SC4 Series of microcontrollers available at the time  
of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 3-1. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3-2 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Chapter 3 Electrical Characteristics  
Table 3-2. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +5.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 3-3. Thermal Characteristics  
Num  
C
Rating  
Symbol  
Value  
Unit  
1
Operating temperature range (packaged)  
TL to TH  
–40 to 85  
–40 to 105  
–40 to 125  
C
TA  
°C  
V
M
Maximum junction temperature  
2
D
C
V
TJM  
95  
°C  
115  
M
135  
Thermal resistance 1,2  
Single-layer board  
3
4
D
D
16-pin TSSOP  
θJA  
130  
87  
°C/W  
°C/W  
Thermal resistance1,2  
Four-layer board  
16-pin TSSOP  
θJA  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
1
2
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting  
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board,  
and board thermal resistance.  
Junction to Ambient Natural Convection  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 3-1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P = I × V , Watts — chip internal power  
int  
DD  
DD  
P
= Power dissipation on input and output pins — user determined  
I/O  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 3-2  
D
J
Solving Equation 3-1 and Equation 3-2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
Eqn. 3-3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 3-1 and Equation 3-2  
A
D
J
iteratively for any value of T  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 3-4. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
Human  
Body  
R1  
1500  
Ω
pF  
V
Storage capacitance  
C
100  
3
Number of pulses per pin  
Latch-up Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Chapter 3 Electrical Characteristics  
Table 3-5. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VCDM  
ILAT  
Min  
± 2000  
± 500  
± 100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 125°C  
2
V
3
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 3-6. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
4
— Operating voltage  
VDD  
4.5  
5.5  
V
C
All I/O pins,  
low-drive strength  
All I/O pins,  
5 V, ILoad = –4 mA  
5 V, ILoad = –2 mA  
5 V, ILoad = –20 mA  
5 V, ILoad = –10 mA  
VOUT < VDD  
VDD – 1.5  
VDD – 0.8  
VDD – 1.5  
VDD – 0.8  
P Output high  
C voltage  
P
VOH  
V
5
6
7
high-drive strength  
Output high  
current  
Max total IOH for  
all ports  
C
IOHT  
0
–100  
mA  
C
All I/O pins  
low-drive strength  
All I/O pins  
5 V, ILoad = 4 mA  
5 V, ILoad = 2 mA  
5 V, ILoad = 20 mA  
5 V, ILoad = 10 mA  
VOUT > VSS  
1.5  
0.8  
1.5  
0.8  
P Output low  
C voltage  
P
VOL  
V
high-drive strength  
Output low  
current  
Max total IOL for all ports  
8
9
C
IOLT  
0
100  
mA  
P Input high voltage; all digital inputs  
VIH  
VIL  
5V  
0.65 x VDD  
V
V
10 P Input low voltage; all digital inputs  
11 C Input hysteresis  
5V  
0.06 x VDD  
0.35 x VDD  
Vhys  
|IIn|  
1
V
12 P Input leakage current (per pin)  
VIn = VDD or VSS  
0.1  
μA  
P
Hi-Z (off-state) leakage current (per pin)  
13  
14  
input/output port pins |IOZ|  
VIn = VDD or VSS  
,
0.1  
0.2  
1
2
μA  
μA  
PTB6/XTAL,RESET  
VIn = VDD or VSS  
Pull-up or Pull-down2 resistors; when  
enabled  
P
C
I/O pins RPU,RPD  
RESET3  
RPU  
17  
17  
37  
37  
52  
52  
kΩ  
kΩ  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
Table 3-6. DC Characteristics (continued)  
Num  
C
Characteristic  
D DC injection current 4, 5, 6, 7  
Single pin limit  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
VIN > VDD  
0
0
2
–0.2  
25  
–5  
8
mA  
mA  
mA  
mA  
pF  
V
15  
IIC  
VIN < VSS  
,
Total MCU limit, includes  
sum of all stressed pins  
VIN > VDD  
0
VIN < VSS  
,
0
16 D Input Capacitance, all pins  
17 D RAM retention voltage  
18 D POR re-arm voltage8  
19 D POR re-arm time9  
CIn  
0.9  
10  
VRAM  
VPOR  
tPOR  
0.6  
1.4  
1.0  
2.0  
V
μs  
P Low-voltage detection threshold —  
high range  
VLVD1  
VLVW3  
VLVW2  
20  
VDD falling  
DD rising  
3.85  
3.95  
4.0  
4.1  
4.15  
4.25  
V
V
V
V
Low-voltage warning threshold —  
P high range 1  
21  
22  
VDD falling  
VDD rising  
4.45  
4.55  
4.6  
4.7  
4.75  
4.85  
Low-voltage warning threshold —  
P high range 0  
VDD falling  
VDD rising  
4.15  
4.25  
4.3  
4.4  
4.45  
4.55  
T
P
Low-voltage inhibit reset/recover  
hysteresis  
Bandgap Voltage Reference10  
Vhys  
VBG  
23  
24  
100  
mV  
V
1.17  
1.20  
1.22  
1
2
3
Typical values are measured at 25°C. Characterized, not tested.  
When a pin interrupt is configured to detect rising edges, pull-down resistors are used in place of pull-up resistors.  
The specified resistor value is the actual value internal to the device. The pull-up value may measure higher when measured  
externally on the pin.  
4
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if  
clock rate is very low (which would reduce overall power consumption).  
5
6
All functional non-supply pins are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
7
8
9
The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD  
.
Maximum is highest voltage that POR will occur.  
Simulated, not tested  
10 Factory trimmed at VDD = 5.0 V, Temp = 25°C  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Chapter 3 Electrical Characteristics  
2
1.5  
1
125°C  
25°C  
–40°C  
Max 1.5V@20mA  
0.5  
0
0
5
10  
15  
(mA)  
20  
25  
I
OL  
a) V = 5V, High Drive  
DD  
Figure 3-1. Typical V vs I , High Drive Strength  
OL  
OL  
2
1.5  
1
125°C  
25°C  
–40°C  
Max 1.5V@4mA  
0.5  
0
0
1
2
3
4
5
I
(mA)  
OL  
a) V = 5V, Low Drive  
DD  
Figure 3-2. Typical V vs I , Low Drive Strength  
OL  
OL  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
2
1.5  
1
125°C  
25°C  
–40°C  
Max 1.5V@ –20mA  
0.5  
0
0
–5  
–10  
–15  
(mA)  
–20  
–25  
I
OH  
a) V = 5V, High Drive  
DD  
Figure 3-3. Typical V – V vs I , High Drive Strength  
DD  
OH  
OH  
2
1.5  
1
125°C  
25°C  
–40°C  
Max 1.5V@ –4mA  
0.5  
0
0
–1  
–2  
–3  
(mA)  
–4  
–5  
I
OH  
a) V = 5V, Low Drive  
DD  
Figure 3-4. Typical V – V vs I , Low Drive Strength  
DD  
OH  
OH  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Chapter 3 Electrical Characteristics  
Table 3-7. Supply Current Characteristics  
VDD  
Num  
C
Parameter  
Symbol  
Typ1  
Max2  
Unit  
(V)  
1
C
Run supply current3 measured at  
(CPU clock = 4 MHz, fBus = 2 MHz)  
RIDD  
5
1.9  
2.4  
mA  
mA  
mA  
2
3
P
C
Run supply current3 measured at  
(CPU clock = 16 MHz, fBus = 8 MHz)  
Run supply current4 measured at  
(CPU clock = 32 MHz, fBus = 16 MHz)  
RIDD  
RIDD  
5
5
4.6  
7.8  
5.6  
8.9  
C
P
C5  
C5  
P5  
C
–40 °C (C & M suffix)  
0.71  
0.93  
4
11  
30  
60  
8
Stop3 mode  
25 °C (All parts)  
85 °C (C suffix only)  
105 °C (V suffix only)  
125 °C (M suffix only)  
–40 °C (C & M suffix)  
25 °C (All parts)  
4
5
supply current  
S3IDD  
5
5
μA  
μA  
9
28  
0.70  
0.89  
3
P
Stop2 mode  
C5  
C5  
P5  
C
supply current  
85 °C (C suffix only)  
105 °C (V suffix only)  
125 °C (M suffix only)  
S2IDD  
6
22  
41  
165  
8
17  
110  
5
6
7
LVD adder to stop3 (LVDE = LVDSE = 1)  
Adder to stop3 for oscillator enabled6  
(EREFSTEN =1)  
S3IDDLVD  
S3IDDOSC  
5
5
μA  
μA  
C
1
Typical values are based on characterization data at 25 °C. See Figure 3-5 through Figure 3-7 for typical curves  
across voltage/temperature.  
2
3
4
5
Max values in this column apply for the full operating temperature range of the device unless otherwise noted.  
All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.  
All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins.  
Stop currents are tested in production for 25 °C on all parts. Tests at other temperatures depend upon the part  
number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature  
from the production test flow once sufficient data has been collected and is approved.  
6
Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low  
power mode (HGO = 0).  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
10  
8
FEI  
FBELP  
6
4
2
0
20  
0 1  
2
4
8
16  
f
(MHz)  
bus  
Figure 3-5. Typical Run I vs. Bus Frequency (V = 5V)  
DD  
DD  
5
4
3
2
1
0
125  
–40  
0
25  
Temperature (°C  
85  
105  
)
Note: ICS is configured to FEI.  
Figure 3-6. Typical Run I vs. Temperature (V = 5V; f = 8MHz)  
DD  
DD  
bus  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Chapter 3 Electrical Characteristics  
50  
STOP2  
STOP3  
40  
30  
20  
10  
0
125  
–40  
0
25  
85  
105  
Temperature (°C  
)
Figure 3-7. Typical Stop I vs. Temperature (V = 5V)  
DD  
DD  
3.8  
External Oscillator (XOSC) Characteristics  
NOTE  
The MC9S08SC4 series supports a narrower low frequency external reference range than  
the standard ICS specification. All references to range "31.25 kHz to 39.0625 kHz" in this  
section should be limited to " 32.0 kHz to 38.4 kHz".  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
Table 3-8. Oscillator Electrical Specifications (Temperature Range = –40 to 125°C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi  
32  
1
38.4  
5
kHz  
MHz  
MHz  
MHz  
High range (RANGE = 1) FEE or FBE mode 2  
High range (RANGE = 1, HGO = 1) FBELP mode  
High range (RANGE = 1, HGO = 0) FBELP mode  
Load capacitors  
1
C
fhi-hgo  
fhi-lp  
1
16  
8
1
See crystal or resonator  
manufacturer’s recommendation  
C
1, C2  
2
3
Feedback resistor  
RF  
Low range (32 kHz to 100 kHz)  
High range (1 MHz to 16 MHz)  
Series resistor  
10  
1
MΩ  
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
8 MHz  
0
100  
0
RS  
4
kΩ  
0
0
0
0
4 MHz  
10  
20  
1 MHz  
Crystal start-up time 3  
t
Low range, low gain (RANGE = 0, HGO = 0)  
200  
400  
5
CSTL-LP  
t
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)4  
High range, high gain (RANGE = 1, HGO = 1)4  
5
6
T
T
ms  
CSTL-HGO  
t
CSTH-LP  
t
15  
CSTH-HGO  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE or FBE mode 2  
0.03125  
0
5
MHz  
MHz  
fextal  
FBELP mode  
40  
1
2
3
Typical data was characterized at 5.0 V, 25°C or is recommended value.  
The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.  
This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve  
specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized  
by the crystal manufacturer.  
4
4 MHz crystal.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Chapter 3 Electrical Characteristics  
MCU  
EXTAL  
XTAL  
RS  
RF  
C1  
Crystal or Resonator  
C2  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 3-9. ICS Frequency Specifications (Temperature Range = –40 to 125°C Ambient)  
Num  
C
P
T
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
Internal reference frequency - factory trimmed  
at VDD = 5 V and temperature = 25°C  
fint_ft  
1
31.25  
kHz  
Internal reference frequency - untrimmed1  
fint_ut  
fint_t  
2
3
4
25  
31.25  
36  
41.66  
39.0625  
6
kHz  
kHz  
μs  
P Internal reference frequency - user trimmed  
tirefst  
T Internal reference startup time  
DCO output frequency range - untrimmed1  
— value provided for reference assumes:  
fdco_ut = 1024 x fint_ut  
fdco_ut  
5
25.6  
36.86  
42.66  
MHz  
fdco_t  
6
7
D DCO output frequency range - trimmed  
32  
40  
MHz  
Resolution of trimmed DCO output frequency at fixed  
Δfdco_res_t  
%fdco  
D
± 0.1  
± 0.2  
voltage and temperature (using FTRIM)  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
Δfdco_res_t  
Δfdco_t  
%fdco  
%fdco  
%fdco  
8
9
D
± 0.2  
± 0.4  
± 2.0  
± 1  
Total deviation from actual trimmed DCO output  
frequency over voltage and temperature  
+ 0.5  
– 1.0  
D
Total deviation of trimmed DCO output frequency over  
fixed voltage and temperature range of 0°C to 70 °C  
Δfdco_t  
10  
D
± 0.5  
FLL acquisition time 2  
tacquire  
CJitter  
11  
12  
D
1
ms  
DCO output clock long term jitter (over 2mS interval) 3  
D
%fdco  
0.02  
0.2  
1
2
TRIM register at default value (0x80) and FTRIM control bit at default value (0x0).  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
3
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected  
into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given  
interval.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
3.10 ADC Characteristics  
Table 3-10. ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
2
Supply voltage  
Input Voltage  
Absolute  
VDDA  
2.7  
VREFL  
5.5  
VREFH  
5.5  
V
V
2
2
VADIN  
CADIN  
Input  
4.5  
pF  
Capacitance  
Input  
Resistance  
RADIN  
3
5
kΩ  
kΩ  
Analog Source  
Resistance  
10 bit mode  
ADCK > 4MHz  
RAS  
External to MCU  
f
5
10  
fADCK < 4MHz  
8 bit mode (all valid fADCK  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
)
10  
8.0  
4.0  
ADC  
Conversion  
Clock  
fADCK  
0.4  
0.4  
MHz  
Frequency  
1
2
Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
VDDA/VREFH and VSSA/VREFL, are derived from VDD and VSS respectively.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 3-8. ADC Input Impedance Equivalency Diagram  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Chapter 3 Electrical Characteristics  
Table 3-11. ADC Characteristics  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDA  
133  
μA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
T
IDDA  
IDDA  
IDDA  
218  
327  
1
μA  
μA  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.582  
mA  
MHz  
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
fADACK  
2
3.3  
2
5
tADACK =  
1/fADACK  
P
1.25  
3.3  
Conversion  
Time  
(Including  
sample time)  
Short Sample  
(ADLSMP=0)  
P
tADC  
20  
40  
ADCK  
cycles  
See ADC  
chapter in  
MC9S08SC4  
Reference  
Manual for  
conversion  
time  
Long Sample  
(ADLSMP=1)  
Sample Time  
Short Sample  
(ADLSMP=0)  
P
tADS  
3.5  
23.5  
ADCK  
cycles  
variances  
Long Sample  
(ADLSMP=1)  
Total  
Unadjusted  
Error  
10 bit mode  
8 bit mode  
P
P
ETUE  
DNL  
±1.5  
±0.7  
±3.5  
±1.5  
LSB  
LSB  
Includes  
quantization  
Differential  
Non-Linearity  
10 bit mode  
8 bit mode  
±0.5  
±0.3  
±1.0  
±0.5  
Monotonicity and No-Missing-Codes guaranteed  
Integral  
Non-Linearity  
10 bit mode  
8 bit mode  
10 bit mode  
8 bit mode  
10 bit mode  
8 bit mode  
C
INL  
EZS  
EFS  
±0.5  
±0.3  
±1.5  
±0.5  
±1  
±1.0  
±0.5  
±2.5  
±0.7  
±1.5  
±0.5  
LSB  
LSB  
LSB  
Zero-Scale  
Error  
P
VADIN = VSSA  
Full-Scale  
Error  
VADIN = VDDA  
P
±0.5  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
Table 3-11. ADC Characteristics  
Characteristic  
Conditions  
10 bit mode  
C
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Quantization  
Error  
D
EQ  
±0.5  
±0.5  
±2.5  
±1  
LSB  
8 bit mode  
10 bit mode  
8 bit mode  
−40°C– 25°C  
Input Leakage  
Error  
D
D
EIL  
m
±0.2  
±0.1  
3.266  
LSB  
Pad leakage2  
* RAS  
Temp Sensor  
Slope  
mV/°C  
25°C– 125°C  
25°C  
3.638  
1.396  
Temp Sensor  
Voltage  
D
VTEMP2  
V
5
1
2
Typical values assume VDDA = 5.0V, Temp = 25C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only  
and are not tested in production.  
Based on input pad leakage current. Refer to pad electricals.  
3.11 AC Characteristics  
This section describes AC timing characteristics for each peripheral system.  
3.11.1 Control Timing  
Table 3-12. Control Timing  
Num  
C
D
P
D
D
Rating  
Symbol  
fBus  
Min  
dc  
Typ1  
Max  
20  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
Internal low power oscillator period  
External reset pulse width2  
Reset low drive3  
1
2
3
4
tLPO  
700  
975  
1500  
textrst  
trstdrv  
100  
ns  
66 x tcyc  
ns  
Pin interrupt pulse width  
Asynchronous path2  
Synchronous path4  
5
D
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
40  
75  
6
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
11  
35  
1
Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Chapter 3 Electrical Characteristics  
2
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources. Refer to Figure 3-9.  
3
When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of tcyc. After POR reset the bus clock  
frequency changes to the untrimmed DCO frequency (freset = (fdco_ut)/4) because TRIM is reset to 0x80 and FTRIM is reset  
to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets trim stays at the pre-reset value.  
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
5
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 125°C.  
textrst  
RESET PIN  
Figure 3-9. Reset Timing  
3.11.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 3-13. TPM Input Timing  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
External clock frequency  
External clock period  
fTEXT  
tTEXT  
dc  
4
1/4 fop  
MHz  
tCYC  
tCYC  
tCYC  
tCYC  
External clock high time  
External clock low time  
Input capture pulse width  
tTCLKH  
tTCLKL  
fICPW  
1.5  
1.5  
1.5  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics  
tCYC  
ipg_clk  
tTEXT  
EXTERNAL  
CLOCK  
tTCLKL  
tTCLKH  
tICPW  
INPUT  
CAPTURE  
3.12 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the FLASH memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section.  
Table 3-14. FLASH Characteristics  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
1
2
3
4
5
6
7
8
Supply voltage for program/erase  
Supply voltage for read operation  
Internal FCLK frequency1  
Vprog/erase  
VRead  
fFCLK  
tFcyc  
4.5  
4.5  
150  
5
5.5  
5.5  
V
V
200  
6.67  
kHz  
μs  
Internal FCLK period (1/fFCLK  
)
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
tBurst  
4
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance3  
TL to TH = –40°C to +125°C  
T = 25°C  
nFLPE  
9
C
10,000  
100,000  
cycles  
years  
10  
C
Data retention4  
tD_ret  
15  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for  
calculating approximate time to program and erase.  
3
4
Typical endurance for FLASH is based on the intrinsic bit cell performance. For additional information on how Freescale  
defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer  
to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Chapter 3 Electrical Characteristics  
3.13 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
3.13.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East).  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported  
emissions levels.  
Table 3-15. Radiated Emissions, Electric Field  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
VRE_TEM  
VDD = 5 V  
TA = +25oC  
package type  
16-TSSOP  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
4 MHz crystal  
8 MHz bus  
–7  
–11  
–11  
–10  
N
dBμV  
Radiated emissions,  
electric field  
SAE Level  
1
1
Data based on qualification test results.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Chapter 4 Ordering Information and Mechanical Drawings  
Chapter 4  
Ordering Information and Mechanical Drawings  
4.1  
Ordering Information  
This section contains ordering information for MC9S08SC4 device.  
Table 4-1. Device Numbering System  
Memory  
Available  
Device Number1  
Packages2  
FLASH  
RAM  
S9S08SC4E0MTG  
4K  
256  
16 TSSOP  
1
2
See MC9S08SC4 Reference Manual for a complete description of modules.  
included on each device.  
See Table 4-2 for package information.  
4.1.1  
Device Numbering Scheme  
S 9 S08 SC 4 E0 M TG R  
Status  
- S = Auto Qualified  
Tape and Reel Suffix (optional)  
Package Designator  
Two letter descriptor  
(refer to Table 4-2).  
Main Memory Type  
- 9 = Flash-based  
Temperature Option  
- C = –40 to 85 °C  
- V = –40 to 105 °C  
- M = –40 to 125 °C  
Core  
S Family  
Memory Size  
- 4 Kbytes  
Mask Set Identifier  
- Identifies mask.  
4.2  
4.3  
Package Information  
Table 4-2. Package Information  
Pin Count  
Type  
Designator  
Case Number  
Document No.  
98ASH70247A  
16  
TSSOP  
TG  
948F-01  
Mechanical Drawings  
The following pages are mechanical drawings for the package described in Table 4-2.  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Chapter 4 Ordering Information and Mechanical Drawings  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Chapter 4 Ordering Information and Mechanical Drawings  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Chapter 4 Ordering Information and Mechanical Drawings  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Chapter 5 Revision History  
Chapter 5  
Revision History  
To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current.  
Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Revision  
Number  
Revision  
Date  
Description of Changes  
1
2
9/2008  
7/2009  
• Initial Release.  
• Incorporated editing updates.  
• Added C and V temperature ranges at page 1.  
• Updated Section 3.10, “ADC Characteristics”.  
• Updated Table 3-3, Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 3-15 and Section  
4.1.1, “Device Numbering Scheme”.  
• Added actual package mechanical drawings.  
• Updated Figure 3-5, Figure 3-6.  
• Removed Transient Susceptibilty Section.  
• Updated disclaimer page.  
3
4
3/2010  
6/2010  
• Updated TSSOP-16 package diagram, clarified ICS deviation, SCI LIN features at page  
1.  
• Updated Table 3-6, Table 3-7, Table 3-9, Table 3-12, Table 4-1.  
• Updated Figure 3-5 and Figure 3-7.  
• Document changed from Advance Information to Technical Data  
• Updated footnotes in Table 3-7  
• Updated Figure 3-5  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Chapter 5 Revision History  
MC9S08SC4 MCU Series Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and  
all liability, including without limitation consequential or incidental damages. “Typical” parameters that  
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in  
different applications and actual performance may vary over time. All operating parameters, including  
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale  
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale  
Semiconductor products are not designed, intended, or authorized for use as components in systems  
intended for surgical implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Freescale  
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify  
and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding  
the design or manufacture of the part.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2010. All rights reserved.  
MC9S08SC4  
Rev.4  
6/2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY