SA1620 [NXP]

Low voltage GSM front-end transceiver; 低压GSM前端收发器
SA1620
型号: SA1620
厂家: NXP    NXP
描述:

Low voltage GSM front-end transceiver
低压GSM前端收发器

GSM
文件: 总26页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA1620  
Low voltage GSM front-end transceiver  
Product specification  
1997 May 22  
Supersedes data of 1996 Oct 08  
IC17 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
DESCRIPTION  
Feedthrough attenuation LNA1 to Rx mixer 35dB  
The SA1620 is a combined receive (Rx) and transmit (Tx) front-end  
for GSM cellular telephones. The receive path contains two low  
noise amplifiers (LNA1 and LNA2) with four switchable attenuation  
steps. A Gilbert Cell mixer in the receive path down-converts the  
RF signal to a first IF of 70 to 500 MHz. A second Gilbert Cell in the  
transmit path transposes a GMSK or phase modulated IF to RF by  
image reject mixing and has a fixed IF of 400 MHz. A buffered LO  
signal is fed to Rx and Tx mixers. Rx or Tx path or the entire circuit  
may be powered-down.  
Tx power adjustable from -3 to +12dBm by external resistor  
Direct supply: 2.7V to 5.5V  
Battery supply voltage V  
= 3.3V to 7.5V or direct supply  
BATT  
Two DC regulators programmable for 3.0V, 3.4V, 3.7V or 5.1V  
Low current consumption: 28mA for Rx or 59mA for Tx  
Fully compatible with SA1638 GSM IF Digital I/Q circuit  
FEATURES  
APPLICATIONS  
Excellent noise figure: <2dB for the LNAs at 950MHz  
900MHz front end for GSM hand-held units  
LNAs matched to 50with external matching components  
LNAs with gain control, 59dB dynamic range in four discrete steps  
LNA gain stability ±0.5dB within -40 to 85°C  
Portable radio, TDMA systems  
PIN CONFIGURATION  
LQFP Package  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
V
BATT  
PON  
1
2
V
CCL2  
IN2  
34 GNDREG1  
VREG1  
32 VREGF2  
3
GNDL2  
GNDL2A  
OUT2  
33  
4
5
31  
30  
29  
28  
27  
26  
25  
VREG2  
GNDREG2  
CON1  
6
B
A
48–PIN LQFP  
7
INM  
8
LO INX  
LO IN  
9
INMX  
COMP2  
COMP1  
10  
11  
12  
CON2  
GNDTx2  
V
BM  
CC  
13 14 15 16 17 18 19 20 21 22 23 24  
SR00127  
Figure 1. Pin Configuration  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
ORDER CODE  
DWG #  
-40 to +85°C  
48-Pin Thin Quad Flat Pack (TQFP)  
SA1620BE  
SOT313-2  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
Supply voltages  
2.7 to 5.5  
3.3 to 7.5  
-40 to +85  
V
V
CCXX  
V
Battery voltage  
BATT  
T
A
Operating ambient temperature range  
°C  
2
1997 May 22  
853-1784 18066  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
BLOCK DIAGRAM  
PDTx  
VREG2  
PONRx  
BANDGAP  
VREG2F2  
GNDREG2  
BIAS SUPPLIES  
VOLTAGE REGULATORS  
PONBUF  
GNDREG1  
VREG1  
V
V
Tx1  
Tx2  
CC  
CC  
TxO  
TxIF  
SINGLE  
SIDEBAND  
MIXER  
LINEAR  
IF LEVEL  
CONTROL  
TxOX  
TxIFX  
RETx  
TLO  
LO IN  
LO INPUT  
BUFFER  
LO INX  
BUFFER  
A
B
TLOX  
ATTENUATION  
CONTROL LOGIC  
BUFFER  
V
L1  
L2  
CC  
CC  
V
RxIF  
IN1  
LNA2  
LNA1  
RxIFX  
SR00129  
Figure 2. Block Diagram  
3
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
PIN DESCRIPTIONS  
Pin No. Pin Name  
DC Regulators  
Description  
Pin No. Pin Name  
Description  
13  
14  
GNDBM  
PONRx  
RxIF  
Ground for Rx Bias and Rx mixer  
Power on input for Rx bias supply  
IF output, open collector  
Inverse IF output, open collector  
Input to LNA1  
15  
18  
21  
26  
GND1  
GND2  
GND3  
CON2  
Ground of regulator supply  
Ground of regulator supply  
Ground of regulator supply  
16  
17  
RxIFX  
IN1  
Control 2, voltage select for regulator 1  
and 2  
44  
45  
GNDL1  
GNDL1A  
OUT1  
Ground L1 for LNA1  
29  
CON1  
Control 1, voltage select for regulator 1  
and 2  
46  
Ground L1A for LNA1  
47  
Output LNA1  
30  
GNDREG2 Ground of regulator 2  
48  
V
L1  
Positive supply for LNA1  
CC  
31  
VREG2  
Output of regulator 2  
Feedback of regulator 2  
Output of regulator 1  
Tx Path  
19  
32  
VREG2F2  
VREG1  
TxIF  
IF input for Tx  
33  
20  
TxIFX  
Inverse IF input for Tx  
34  
GNDREG1 Ground of regulator 1  
22  
V
Tx1  
Positive supply for Tx input  
Ground for Tx input  
CC  
35  
PON  
Power-on input of regulators  
Input of regulator 1 and 2  
23  
GNDTx1  
Tx2  
36  
V
BATT  
24  
V
CC  
Positive supply for LO and Tx input  
Ground for LO and Tx input  
Power down Tx input  
Rx Path  
25  
GNDTx2  
PDTx  
1
2
3
4
5
6
7
8
9
V
CC  
L2  
Positive supply for LNA2  
Input LNA2  
38  
IN2  
39  
GNDTx4  
TxOX  
Ground for Tx output  
GNDL2  
GNDL2A  
OUT2  
B
Ground L2 for LNA2  
40  
Inverse Tx output, open collector  
Tx output, open collector  
Ground 1 for Tx output side  
Reference resistor for Tx output current  
Ground L2A for LNA2  
41  
TxO  
Output LNA2  
42  
GNDTx3  
RETx  
Attenuation select B for LNA1 and LNA2  
Attenuation select A for LNA1 and LNA2  
RF input for Rx mixer, open emitter  
43  
A
Elements for Tx and Rx Path  
INM  
27  
28  
37  
LO IN  
Input for Local Oscillator signal  
Inverse input for LO or AC ground  
INMX  
Inverse RF input for Rx mixer, open  
emitter  
LO INX  
PONBUF  
10  
11  
12  
COMP2  
COMP1  
Capacitor for bias stabilization  
Capacitor for bias stabilization  
Power on first stage LO input buffer and  
bias  
V
CC  
BM  
V
CC  
for Rx Bias and Rx mixer  
NOTES:  
1. Device is ESD sensitive. There are no ESD protection diodes at Pins 16, 17, 40 and 41. Thus, open-collector outputs may have increased  
DC voltage or higher AC peak voltage.  
2. Pins 15, 18 and 21 are connected to each other and to a separate ground in REG1 and REG2.  
3. Pins 23, 25, 42 and 39 are connected to each other and to the Tx path, LO buffer and associated bias supplies.  
4. Pins 22 and 24 are connected to each other providing a sense input. They are also connected to the Tx path, LO buffer and associated bias  
supplies.  
5. Pins 30 and 34 are not internally connected. They must be connected to external grounds.  
6. Pins 48, 1, and 12 are not internally connected and have no ESD protection diodes between them. Power may be saved by connecting  
V
CC  
L1 and IN1 or V L2 and IN2 to ground if LNA1 or LNA2 is not needed.  
CC  
4
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
-0.3 to +6.0  
-0.3 to +8.0  
UNITS  
V
V
CCXX  
Supply voltages  
Battery voltage  
V
BATT  
V
V
Voltage applied to any other pin  
Tx1,2 pins to V BM  
-0.3 to (V  
+0.3)  
V
IN  
CCXX  
V  
V
-0.3 to +1  
V
CC  
CC  
VG  
Any GND pin to any other GND pin  
0
V
P
Power dissipation, T = 25°C (still air)  
800  
mW  
°C  
dBm  
°C  
V
D
A
T
Maximum operating junction temperature  
Maximum power input/output  
150  
JMAX  
P
MAX  
+20  
T
STG  
Storage temperature range  
–65 to +150  
V
, V  
Positive RF peak voltage at Tx outputs  
Positive IF peak voltage at Rx mixer outputs  
6
6
TXO TXOX  
V
, V  
V
RXIF RXIFX  
NOTE:  
1. Maximum junction temperature is determined by the power dissipation is determined by the operating ambient temperature and the thermal  
resistance, θ . 48-pin TQFP: θ = 67°C/W.  
JA  
JA  
DC REGULATORS  
Table 1. DC Reg Output Voltage Control Pins  
Two low drop regulators (REG1 and REG2) are included on the chip  
and may be used to deliver the supply voltage of the main circuitry  
CON1  
CON2  
VREG1  
3 ± 5%  
VREG2  
3 ± 5%  
UNITS  
L
L
L
H
L
V
V
V
V
(e.g., 3V) out of the battery (at V  
Figure 4 and in Table 1.  
= 3.3 to 7.5V) as shown in  
BATT  
3.4 ± 5%  
3.7 ± 5%  
5.1 ± 5%  
3.4 ± 5%  
3.7 ± 5%  
5.1 ± 10%  
REG1 is intended to supply, at least, the internal functions of the  
SA1620. Both regulators may also be used for external circuitry.  
For this application, different voltages may be programmed as  
shown in Table 1.  
H
H
H
NOTES:  
1. Logic levels at CON1 and CON2:  
The transmitter supply pins (V Tx1,2) also operate as a sensor  
H – Open circuit. Pin must not be connected externally.  
Logic high level supplied on chip.  
L – Connected to ground.  
CC  
connection in the feedback loop of REG1 and must be externally  
connected to pin VREG1. For REG2, the sensor pin VREGF2 must  
be connected to VREG2.  
2. Currents at CON1 and CON2:  
H – 0µA  
All ground pins are internally bonded to the header except for pins  
GNDL1, GNDREG1 and GNDREG2.  
L (PON = H) – 50µA  
L (PON = L) – <1µA  
When both regulators are not used, connect pins V  
, PON,  
BATT  
CON1, CON2, VREG1, VREG2 and VREG2F2 to ground.  
5
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
Table 2. DC Regulators  
LIMITS  
TYP  
TEST  
CONDITIONS  
SYMBOL  
PARAMETER  
UNITS  
MAX  
MIN  
V
Common positive input voltage at both regulators  
Output voltages of regulators 1 and 2  
VREG1+0.3  
V
BATT  
VREG1,  
VREG2  
V
BATT  
= 3.3V  
2.85  
3
3.15  
V
I
Internal current of REG1 in power-on mode  
Internal current of REG2 in power-on mode  
Internal current in power-down mode  
Max output current at VREG1  
4 + I  
/10  
mA  
mA  
µA  
INT1  
INT2  
VREG1  
I
2.5 + I  
/10  
VREG2  
I
, I  
<15  
INT01 INT02  
5
I
100  
30  
mA  
mA  
VREG1MAX  
VREG2MAX  
5
I
Max output current at VREG2  
V
BATT  
V
BATT  
V
BATT  
= 3.3V, I  
= 3.3V, I  
= 7.5V, I  
= 0.1mA  
= 100mA  
= 100mA  
0.03  
60  
REG1  
REG1  
REG1  
6
BW  
kHz  
80  
100kHz  
10MHz  
–61  
–32  
–37  
–48  
7
F
REG  
f
dB  
100MHz  
400MHz  
NOTES:  
1. Power-on pin of Regulator 1 and 2: PON  
2. Input currents at PON: <1µA. There are no pull-up or pull-down resistors.  
3. Feedthrough attenuation from the logic input PON to the outputs VREG1 and VREG2: 40dB.  
4. Recommended load capacitors: C529 = C530 = 1µF to ground with series resistance 0.1Ω. See Figure 4. Additional optional capacitor  
1000µF with series resistance 5.  
5. At T 150°C a thermal switch reduces the output current.  
j
6. Typical open loop bandwidths of regulator 1 at V  
= 3V and C529 = 1µF.  
REG1  
7. Feedthrough attenuation (at the indicated frequency f) from the input V  
(CON1=CON2=L)  
to the outputs V  
and V  
at V  
= 3.3V,  
BATT  
BATT  
REG1  
REG2  
6
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
DC ELECTRICAL CHARACTERISTICS  
V
CCxxx  
= +3V, T = 25°C; unless otherwise stated.  
A
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MAX  
MIN  
Transmitter  
Transmit mode  
I
Total supply current  
59  
90  
mA  
VCC  
R
= 240Ω  
546  
1
R1  
External resistor  
240  
0.43  
0.45  
1.7  
V
V
Tx1,2 = 2.7V  
Tx1,2 = 5.5V  
CC  
V
R1  
Internal supply at pin RETx  
Current at pin RETx  
V
CC  
R546 = 240, V Tx1,2 = 2.7V  
CC  
I
R1  
mA  
R546 = 240, V Tx1,2 = 5.5V  
1.8  
CC  
Low noise amplifiers  
I
I
L1  
L2  
Current at pin V L1  
G1hi mode  
G2hi mode  
2.5  
2.5  
3.5  
3.5  
5
5
mA  
mA  
VCC  
VCC  
CC  
Current at pin V L2  
CC  
Receiver  
Receive mode  
I
Total supply current  
28  
39  
mA  
VCC  
R
= 240Ω  
546  
Regulators  
Vreg1  
Voltage @ 100mA load  
Con1  
Con2  
L
L
L
H
2.85  
3.23  
3.0  
3.4  
3.7  
5.1  
3.15  
3.57  
V
V
V
V
H
L
3.515  
4.61  
3.885  
5.61  
H
H
Vreg2  
Voltage @ 30mA load  
Con1  
L
Con2  
L
2.85  
3.23  
3.0  
3.4  
3.7  
5.1  
3.15  
3.57  
V
V
V
V
L
H
H
L
3.515  
4.61  
3.885  
5.61  
H
H
2
Logic levels  
3
V
V
Logic 1 level  
P
ON  
BUF, PDTx, P Rx, A, B  
2.0  
2.0  
0
V
CCBM  
V
V
IH  
IH  
ON  
Logic 1 level  
P
ON  
V
BATT  
V
Logic 0 level  
0.8  
V
IL  
I
Input logic current  
Input logic capacitance  
1
µA  
pF  
I
C
1.7  
Ia  
NOTES:  
1. The output current I  
+ I  
is adjustable by the external resistor R546. I  
+ I  
= 10 * I  
, I  
= V /R546,  
TXO  
TXOX  
TXO  
TXOX  
R546 R546 R1  
2. Thresholds are independent of supply voltages. Thus the SA1620 is compatible with SA1638 and with the power down inputs of usual  
external voltage regulators.  
3. P logic 1 max is V  
.
ON  
BATT  
7
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
AC ELECTRICAL CHARACTERISTICS  
V
CCXX  
= +3V, T = 25°C; RF = 940MHZ; IF=400MHz, f =RF + IF; LO = –15dBm; unless otherwise stated.  
A LO  
1
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
1
1
MIN  
-3σ  
9.4  
–13  
3σ  
MAX  
2
Low Noise Amplifier LNA1  
G1hi mode  
G1hi mode, RF = 1800MHz  
G1lo mode  
10  
–2.5  
–12  
28  
10.6  
–11  
Gain  
S
21  
dB  
IP3  
G1lo mode  
G1hi mode  
0.003  
S /T  
Gain temperature sensitivity  
dB/°C  
21  
G1lo mode  
0.0140  
S  
/
21  
Gain/voltage sensitivity  
0.1  
dB/V  
V  
CCL1  
S /f  
Gain frequency variation  
Reverse isolation  
0.01  
–19  
–11  
–14  
–14  
–4  
dB/MHz  
dB  
21  
S
12  
G1hi mode  
50Ω  
3
S
Input match  
dB  
11  
22  
3
S
Output match  
50Ω  
dB  
P
-1dB  
Input 1dB gain compression  
Input third order intercept  
Input third order intercept  
Noise figure  
G1hi mode  
–15.5  
–5.5  
–12.5  
–2.5  
dBm  
dBm  
dB/°C  
dB  
IIP3  
IIP3/t  
NF  
0.011  
1.9  
t
Turn-on time  
7
µs  
ON  
t
Turn-off time  
0.5  
µs  
OFF  
2
Low Noise Amplifier LNA2  
G2hi mode  
G2hi mode, RF = 1800MHz  
G2lo1 mode  
9
10  
–1.5  
–7.5  
–21.5  
–28.5  
18  
11  
dB  
dB  
Gain  
–8.5  
–22.5  
–30  
–6.5  
–20.5  
–27  
G2lo2 mode  
S
21  
G2lo3 mode  
dB  
G2lo1 mode  
IP3  
G2lo2 mode  
20  
G2lo3 mode  
25  
G2hi mode  
0.003  
0.014  
S /T  
Gain temperature sensitivity  
Gain/voltage sensitivity  
dB/°C  
21  
G2lo1,2,3 modes  
S  
/
21  
0.1  
dB/V  
V  
CCL2  
S /f  
Gain frequency variation  
Reverse isolation  
0.01  
–24  
–13  
–15  
–16  
–6  
dB/MHz  
dB  
21  
S
12  
G2hi mode  
50Ω  
3
S
Input match  
dB  
11  
22  
3
S
Output match  
50Ω  
dB  
P
-1dB  
Input 1dB gain compression  
Input third order intercept  
Input third order intercept  
Noise figure  
G2hi mode  
–18  
–8  
–14  
–4  
dBm  
dBm  
dB/°C  
dB  
IIP3  
IIP3/t  
NF  
0.019  
2
t
Turn-on time  
7
µs  
ON  
t
Turn-off time  
0.5  
µs  
OFF  
8
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
AC ELECTRICAL CHARACTERISTICS (continued)  
1
LIMITS  
TYP  
SYMBOL  
Rx Mixer  
PARAMETER  
TEST CONDITIONS  
UNITS  
1
1
MIN  
-3σ  
3σ  
MAX  
7.5  
+8.5  
–4  
9.5  
5
PG  
Power conversion gain  
dB  
dB  
C
RF = 1800MHz  
Mixer input match at ports INM  
S
11  
–13  
4
and INMX  
NF  
SSB combined noise figure  
Input 1dB compression  
Input third order intercept  
Input third order intercept  
Input second order intercept  
RF feedthrough  
10  
–7.3  
2
dB  
dBm  
dBm  
dB/°C  
dBm  
dB  
M
P
-1dB  
IIP3  
IIP3/t  
IIP2  
0
4
0.005  
19  
G
400MHz  
400MHz  
1.3GHz  
1.3GHz  
–26  
–30  
–16  
–50  
RFM-IF  
G
LO floor feedthrough  
dB  
LOfloor  
G
LO feedthrough to IF  
dB  
LO-IF  
G
LO to mixer input feedthrough  
dBm  
LO-RFM  
LO to RF LNA1 input  
feedthrough  
G
1.3GHz  
–65  
dBm  
dB  
LO-RF1  
LNA1 output to LNA2 input  
feedthrough  
400MHz  
1290-1760MHz  
–41  
–26  
G
LNA1-2  
LNA2-M  
LNA1-M  
LNA2 output to mixer input  
feedthrough  
G
G
1290-1760MHz  
–23  
dB  
LNA1 output to mixer input  
feedthrough  
400MHz  
1290-1760MHz  
–50  
–35  
dB  
6
Receiver  
Cascaded gain  
A,B Logic Level  
H,H  
H,L  
L,H  
L,L  
23.5  
6
26.5  
9
28.5  
11  
30.5  
13  
33.5  
16  
dB  
dB  
–8  
–5  
–3  
–1  
+2  
dB  
–41  
–36  
–20  
–32  
–18  
+28  
–16  
–23  
dB  
Input IP3 @ RFin=–40dBm  
H,H  
dBm  
LO input  
Input impedance  
(each single-ended input)  
Z
P
1.3GHz  
400MHz  
35-j97  
–15  
IN  
IN  
7
Input power  
–25  
dBm  
mV  
Transistor saturation limit,  
max input amplitude  
A
SAT  
500  
Tx IF input  
|Z  
P
|
Input impedance  
Input power  
2
kΩ  
IN  
–20  
dBm  
IN  
Tx RF output  
R546 = 240,  
P
OUT  
5
7.5  
8.5  
9.5  
dBm  
V
CC  
Tx1,2 = 3V  
NOTES:  
1. Due to our automatic test equipment accuracy and repeatability test limits may not reflect the ultimate device performance. Standard  
deviations are calculated from characterization data.  
2. If the LNA1 is not needed, connect pin V L1 and IN1 to GND. If the LNA2 is not needed, connect pin V L2 and IN2 to GND.  
CC  
CC  
3. Simple L/C elements are needed to achieve specified return loss.  
4. The mixer RF inputs (emitters of a Gilbert Cell) may be driven by a symmetrical matching network.  
5. Input symmetry suppression is such that the product 6*RF–4*LO is to be suppressed by at least 66dB relative to the wanted IF output when  
the input to the mixer is at –32dBm.  
6. LNA1, LNA2, and the mixer are cascaded. 0 db insertion loss between LNA1 out to LNA2 in and LNA2 out to mixer in.  
7. Lowering the LO input power (P ) from TYP to MIN will lower the mixer gain (PG ) by 1 dB.  
IN  
C
9
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
Table 3. Power-Down and Tx/Rx Control Logic  
No. PONBUF  
PDTX  
PONRX  
MODE  
Standby  
RESULT  
LO buffer active, Tx and Rx path inactive  
1
2
3
4
H
H
H
H
L
H
L
H
L
x
L
L
Transmit  
Receive  
LO buffer active, Tx path active, Rx path inactive (LNAs + mixer)  
Tx path inactive, LO buffer and Rx path active (LNAs + mixer)  
Tx path and Rx LNAs inactive, LO buffer and Rx mixer active  
Tx- and Rx-path, LO buffers and Bias inactive  
H
H
x
Calibrate  
Power-Down  
5
NOTES:  
1. Logic levels of PONBUF, PDTx and PONRx: TTL, see DC Electrical Characteristics.  
2. Logic levels / polarities are compatible with Philips Semiconductors Power Amp Controller PCA5075 and synthesizers UMA1019 or SA8025.  
3. First stage of LO buffer and parts of bias supply are powered on by PONBUF.  
4. Tx- or Rx-paths may be activated for special timeslots. Lines 1 and 4 show options to support DC offset calibrations at baseband mixers,  
following in the receiver chain (SA1638).  
Table 4. Gain Control Logic for LNA1 and LNA2  
INPUT  
GAIN  
POWER CONSUMPTION  
ATTENUATION  
STEP  
a
b
H
L
LNA1  
G1hi  
G1hi  
G1hi  
G1lo  
LNA2  
G2hi  
LNA1  
on  
LNA2  
on  
H
H
L
0
1
2
3
G2lo1  
G2lo2  
G2lo3  
on  
off  
H
L
on  
off  
L
off  
off  
NOTES:  
1. Logic levels of a and b: TTL  
2. For values of G1hi and G1lo, G2hi, G2lo1, G2lo2 and G2lo3 see LNA1 and LNA2 AC Electrical Characteristics.  
10  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
SR00130  
Figure 3.  
11  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
Overview of Dual GSM/PCN Architecture  
The SA1620 RF front-end and SA1638 IF transceivers form a dual  
conversion architecture which uses a common IF and standard I/Q  
baseband interface for both transmit and receive paths. This  
approach avoids the screening difficulties of direct modulation in the  
transmit direction and the mass production and practical  
performance issues related to direct conversion in the receive  
direction. The time division multiplex nature of the GSM system  
permits integration of the transmit and receive functions together on  
the one RF and one IF chips. This simplifies the distribution of local  
oscillator signals, maximizes circuitry commonality, and reduces  
power consumption.  
Receive Path  
Multiple LNAs allow the flexibility to exploit the best choice of  
currently available filters (on performance, size, or cost grounds).  
This approach is preferable to a single high-gain stage as the stray  
cross-coupling effects between pins remain manageable. In a single  
stage amplifier this would limit the amount of rejection of out-of-band  
signals that could be achieved, and would also limit the amount of  
AGC attenuation that could be practically implemented.  
The LNAs are powered up only when PONBUF, PDTx and PONRx  
are high, to allow a high degree of battery economy. If greater  
sensitivity is required for an application, an external preamplifier  
circuit can be used instead of LNA1, and LNA1 left unconnected.  
The SA1620 and SA1638 allow considerable flexibility to optimize  
the transceiver design for particular price/size/performance  
requirements, through choice of appropriate RF and IF filters. The  
receive IF may be chosen freely in the range 70–500MHz, while the  
transmit IF is fixed to 400 MHz. The comparison frequency of the  
SA1638 PLL is high in order to provide fast switching time.  
A special mode is provided with just the IF output related circuitry  
active in order to allow calibration of the DC offset at the SA1638  
baseband receive outputs. This offset contains a contribution due to  
coupling effects between the second local oscillator and the IF  
circuitry, and therefore the receiver is set up in the receive state (but  
with incoming signals excluded) to allow accurate offset calibration.  
With suitable choice of the IF, an identical SA1638 IF receiver  
design can be used for both 900MHz GSM and 1800MHz PCN  
(DCS1800) equipment.  
Gain Control  
Gain control is implemented in the SA1620 RF front-end. This  
avoids the disruption of the DC offset at the baseband IQ outputs  
that is typically caused by changes in the AGC. The SA1620 and  
SA1638 are designed so that the GSM dynamic range requirements  
can be met with the AGC remaining on the maximum gain setting.  
General Benefits/Advantages  
2.7V operation. Compatible with 3V digital technology and  
portable applications. (Higher voltage operation also possible, if  
desired.)  
These gain steps scale the dynamic range of the received signal  
(e.g., 90dB for GSM) into the dynamic range of the baseband  
processing device.  
Excellent dynamic range. The availability of two LNAs allows  
flexibility in receiver dynamic design for portable and mobile GSM  
spec. applications with appropriate filters. If for a particular  
application a GaAs or discrete front-end is desired, one of the  
LNAs can be left unpowered. The placing of the AGC gains  
switches at the front means that for most of the time some  
attenuation will be inserted, further increasing typical dynamic  
performance beyond that specified by GSM.  
The absolute gain tolerances may be measured together with the  
attenuation tolerances of external filters during production of the  
receiver equipment. After software calibration switching from one  
dynamic range to another will cause only minor errors.  
Tx Path  
TXIF and TXIFX are differential IF inputs for phase modulated  
signals (e.g., GMSK). There is an IF level control loop which  
provides a constant amplitude to an image reject up mixer. Thus,  
this mixer operates linearly in the IF path, independent of IF level  
tolerances.  
High power transmit output driver, delivering +8.5dBm output.  
This is sufficient to drive a filter and power amplifier input, without  
a driver amplifier. To avoid unnecessary current consumption the  
output power can be reduced, if not required, by appropriate  
choice of an external resistor.  
The single sideband up mixer is sufficient in quadrature to achieve  
the typical performance indicated in Table 6 over an IF range of 250  
to 500MHz. The mixer is operating in switching mode by well  
matched 0° and 90° LO signals, optimized for 1.1 to 1.5GHz.  
DC offsets generated in the receive channel are independent of  
the AGC setting, and correctable by software to prevent erosion of  
signal handling dynamic range by DC offsets. Independence of  
DC from AGC setting is achieved by putting the gain switches in  
the RF front-end.  
The Tx output stage operates in switching mode. Thus, parasitic  
AM at the IF is not transferred. The outputs TXO and TXOX may be  
used symmetrically or single-ended. Some spurious emissions will  
be very low when a symmetrical output signal is used.  
Minimal high-quality filter requirements. As a result of the  
integration in the SA1638 of high quality channel selectivity filters,  
only sufficient filtering is needed in the receive path to provide  
blocking protection for the second mixers. This reduces receiver  
cost and size.  
2
ƪ
ƫ
P
OUT  
= Re 6.25V @ (ZPin 40 ) ZPin 41) @ (IR546  
)
V
Operation at a high IF allows RF image reject filters to be relaxed.  
For example, at a 400MHz IF, the natural gain roll-off in the LNAs  
and mixer suppresses the image signal in the 1800MHz band by  
typically 28dB below the desired 900MHz band signal.  
R546 according to DC Electrical  
I
+
according to Figure 4 and  
R546  
R546  
Characteristics. P  
is adjustable with R546 and is accurate to  
within ±1dB over the full voltage range 2.7 to 5.5V, and ±0.5dB from  
OUT  
a given supply voltage. The absolute limit of the negative peak  
voltage swing at pins TxO and TxOX is V  
= V Tx1,2 – 1V. The  
CC  
SAT  
absolute limit of the positive peak voltage is +6V.  
12  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
V c c / G n d  
P O N B U F  
V c c T x 2  
G N D T x 1  
V c c T x 1  
P D T x  
V c c / G n d  
G N D T x 4  
3 3 5  
G D N 3  
T x I F X  
T x O X  
6 9 0  
3 3 5  
T x O  
3 5 0  
3 5 0  
G N D T x 3  
T x I F  
R E T x  
I N 1  
G N D 2  
9 4 0  
R x I F X  
R x I F  
3 5 0  
3 5 0  
G N D L 1  
G N D L 1 A  
G N D 1  
6 0 5  
P O N R x  
G N D B M  
O U T 1  
V c c L 1  
V c c / G n d  
1 8 0  
4 2 0  
SR01332  
Figure 4. Application Circuit  
13  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
recommended to be the receiver band plus 400MHz. Additionally,  
the LO leakage at the input of LNA1 is extremely low, which can  
greatly alleviate the LO re–radiation problem.  
APPLICATION CIRCUIT  
LNA  
Impedance Match: Intrinsic return losses at the input and output  
ports are 7dB and 11dB, respectively. However, since long and  
narrow traces are always needed to fan out the pins, the user can  
adjust the traces’ dimensions so that only one shunt capacitor at the  
input is required to achieve excellent impedance match for both  
ports. If the user wants to skip the input matching network for  
simplicity, then roughly 0.7dB gain would be lost, although it benefits  
the system IP3.  
Outband Blocking: For optimum performance, passive R/C network  
is added at each input of the mixer. The resistors degenerate the  
noise conversion gain, while the capacitors preserve the gain and  
noise figure at RF frequencies.  
Noise Figure and IP3: The resonant balun is superior to the  
conventional balun in terms of insertion loss, size and cost. As a  
result, the user can expect excellent SSB noise figure and gain  
which is 10dB and 8.5dB, respectively, at 400MHz IF. And the  
associated input IP3 is 2dBm typically. In the meantime, due to the  
internal LO buffer, the noise figure and IP3 are not sensitive to the  
LO levels. As discussed in the LNA Impedance Match session, a  
better system IP3 can be achieved (if necessary) through LNAs’  
gain reduction.  
Noise Match: The LNA1 and LNA2 can achieve 1.9dB and 2.0dB  
noise figure, respectively, when S11 = –11dB. Further improvement  
in S will slightly decrease NF and increase S  
.
11  
21  
Gain Control: The LNA1 can be switched to the attenuation mode,  
while LNA2 has three attenuation modes to choose from. When  
gain and loss modes from two LNAs are combined, there will be a  
total dynamic range of 59dB in the RF block; 3.0V operation is  
preferred to achieve better IP3 for both LNA1 and LNA2.  
Transmitter  
The resonant balun is applied again to maximize the gain and output  
power, for a given bias current. Typical output power is 8.5dBm  
when the input level exceeds –25dBm.  
Temperature Compensation: Both LNAs have a built–in temperature  
compensation scheme to reduce the gain drift rate to 0.003dB/°C  
from –40°C to +85°C.  
LO Input  
The LO input is used in Tx- and in Rx-mode.  
Supply Voltage Compensation: Unique circuitry provides gain  
stabilization over wide supply voltage range. The gain changes no  
Only one synthesizer PLL is necessary to supply the LO input with  
different frequencies in Tx and Rx timeslots.  
more than 0.5dB when V increases from 2.7V to 5.5V.  
CC  
The LO input buffer should only be set in power-down mode  
together with the PLL. As further buffering is included on chip there  
will be no influence on the PLL in active mode when the SA1620 Rx-  
or Tx-path is power On or Off. Current consumption can thus be  
saved by powering on the Rx- and Tx-circuitry just before it is  
required, without disruption of the LO circuitry. LO input pins LO IN  
and LO INX may be used single-ended or symmetrically.  
Mixer  
Mixer Input Match: The mixer is configured for best gain, noise  
figure and spurious response. The user must supply an external,  
patented resonant balun to provide the differential drive as well as  
the impedance match (embedded in). Because the mixer consists  
of two single–balance mixers, whose inputs are connected in  
parallel instead of in series, the differential and common–mode  
impedances are equal.  
Table 5. GSM/DSC1800 Frequency Specification  
(GSM 05.05, Version 4.2.0, April 1992) Mobile Stations Frequency  
Bands  
Output Match: The mixer output circuit also features an external,  
patented resonant balun to optimize the conversion gain and noise  
figure. The principal IF operating frequency is 400 MHz.  
GSM  
EGSM  
DCS1800  
1710 to 1785  
1805 to 1880  
Unit  
MHz  
MHz  
LO Drive: The internal buffer only requires –15dBm from an external  
source. Furthermore, the transmitter incorporates an integrated  
SSB upconverter that consists of narrowband phase shifters at  
1300MHz (LO side) and 400MHz (IF side), so the LO frequency is  
Tx  
Rx  
890 to 915  
935 to 960  
880.2 to 915  
925.2 to 960  
14  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
Table 6. Measured Tx Output Frequency and Tx Mixer Products  
IF=400MHz, symmetrical load at pins TxO, TxOX.  
SPECTRAL LINE f=n*IF+m*LO MHz  
RELATIVE POWER OF SPECTRAL  
LINE  
No.  
REMARKS  
Order  
LO =  
LO =  
LO =  
1280MHz  
1300MHz  
1315MHz  
n
–3  
–6  
4
m
1
min dBc  
typ dBc  
–70  
–76  
–60  
–46  
–31  
–62  
–56  
–37  
0
max dBc  
1
80  
100  
200  
115  
230  
2
160  
2
3
320  
300  
285  
–1  
0
4
400  
400  
400  
1
IF  
5
480  
500  
515  
–2  
–5  
5
1
6
560  
600  
630  
2
7
720  
700  
685  
–1  
0
8
800  
800  
800  
2
Note 2  
Note 1  
Note 3  
9
880  
900  
915  
–1  
–4  
6
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
960  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
1030  
1185  
1200  
1315  
1430  
1545  
1600  
1715  
1830  
1945  
2000  
2115  
2230  
2345  
2400  
2515  
2630  
2
–46  
–63  
–60  
–32  
–46  
–64  
–75  
–50  
–34  
–68  
–77  
–74  
–67  
–59  
–75  
–76  
–70  
1020  
1200  
1280  
1360  
1440  
1600  
1680  
1760  
1840  
2000  
2080  
2160  
2240  
2400  
2480  
2560  
–1  
0
3
0
1
LO  
–3  
–6  
4
2
3
0
1
1
Notes 4 and 5  
Note 3  
–2  
–5  
5
2
3
Note 3  
0
2
1
–1  
–4  
6
2
3
0
3
1
26  
0
2
2LO  
NOTES:  
1. Desired Tx output frequency LO–IF corresponding to EGSM Tx band in Table 5.  
2. (LO+IF)–(LO–IF) = 2 * IF  
3. See Rx bands in Table 5.  
4. LO+IF = mixer image frequency  
5. See Tx bands in Table 5.  
15  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
Table 7. Measured Tx Output Noise Floor  
dBc/Hz  
TYP  
Frequency MHz  
MIN  
REMARKS  
MAX  
< 860  
860 to 880  
–135  
–134  
–133  
–133  
–133  
–134  
–135  
–135  
–135  
–146  
–145  
–144  
–147  
–130  
880.2 to 890  
890 to 915  
EGSM TX extension  
GSM TX  
915 to 925  
925.2 to 935  
935 to 960  
EGSM RX extension  
GSM RX  
960 to 1000  
1000 to 1710  
1710 to 1785  
1785 to 1805  
1805 to 1880  
1880 to 12750  
Adjacent Channel  
DCS1800 TX  
DCS1800 RX  
16  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
40  
35  
30  
25  
20  
15  
5
4.5  
4
3V  
3V  
4V  
3.5  
4V  
5V  
5V  
3
2.5  
2
-40°  
25°  
85°  
-40°  
25°  
85°  
Temp (°C)  
Temp (°C)  
SR01334  
SR01333  
Figure 8. Receive ICC vs. Temp  
Figure 5. LNA1_ICC vs. Temp  
5
4.5  
4
10  
9
5V  
8
3V  
4V  
3.5  
3
4V  
7
5V  
3V  
6
2.5  
2
5
4
-40°  
25°  
85°  
-40°  
25°  
Temp (°C)  
85°  
Temp (°C)  
SR01338  
SR01339  
Figure 9. Standby_ICC vs. Temp  
Figure 6. LNA_2 ICC vs. Temp  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
70  
65  
60  
55  
50  
45  
40  
5V  
3V  
4V  
4V  
3V  
5V  
-40°  
25°  
Temp (°C)  
85°  
-40°  
25°  
85°  
Temp (°C)  
SR01337  
SR01344  
Figure 10. Calibrate_ICC vs. Temp  
Figure 7. Transmit_ICC vs. Temp  
17  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-36  
34  
32  
30  
3V  
28  
4V  
3V  
26  
5V  
24  
22  
20  
4V  
5V  
-40°  
25°  
Temp (°C)  
85°  
-40°  
25°  
Temp (°C)  
85°  
SR01342  
SR01336  
Figure 11. Receive_Gain Mode1 vs. Temp  
Figure 14. Receive_Gain_Mode4 vs. Temp  
15  
13  
11  
9
-15  
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
3V  
4V  
5V  
4V  
5V  
3V  
7
5
-40°  
25°  
85°  
-40°  
25°  
85°  
Temp (°C)  
Temp (°C)  
SR01335  
SR01343  
Figure 12. Receive_Gain_Mode2 vs. Temp  
Figure 15. Receive IIP3 vs. Temp  
0
-1  
-2  
-3  
-4  
-5  
-6  
5V  
4V  
3V  
-40°  
25°  
85°  
Temp (°C)  
SR01341  
Figure 13. Receive_Gain_Mode3 vs. Temp  
18  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
2.0  
10.80  
10.40  
10.00  
9.60  
3.0V  
3.0V  
1.9  
5.0V  
2.7V  
2.7V  
5.5V  
1.8  
1.7  
1.6  
5.0V  
5.5V  
9.20  
–40  
0
25  
85  
–40  
0
25  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SR00140  
SR00134  
Figure 16. Receive LNA1 Noise Figure  
Figure 18. Receive Mixer Noise Figure  
10.00  
9.00  
8.00  
7.00  
6.00  
2.50  
2.30  
2.10  
1.90  
1.70  
1.50  
5.5V  
5.0V  
5.5V  
3.0V  
3.0V  
2.7V  
5.0V  
2.7V  
–40  
0
25  
85  
SR00137  
–40  
0
25  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SR00149  
Figure 17. Receive LNA2 Noise Figure  
Figure 19. Transmit Power @ -25dBm  
12  
11  
10  
9
5V  
4V  
3V  
8
7
6
5
4
-40°  
25°  
85°  
Temp (°C)  
SR01345  
Figure 20. Transmit_Power @ –20 dBm Input  
19  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
9.50  
9.00  
–40  
0
5.5V  
5.0V  
8.50  
8.00  
7.50  
7.00  
2.7V  
25  
3.0V  
85  
–40  
0
25  
85  
SR00150  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
TEMPERATURE (°C)  
FORCED CURRENT (mA)  
SR00153  
Figure 21. Transmit Power @ -15dBm  
Figure 24. Regulator 2 Load Regulation (V  
= 3.5V)  
BATT  
3.01  
3.00  
–40  
9.00  
8.50  
8.00  
7.50  
5.5V  
2.99  
2.98  
3.0V  
0
25  
5.0V  
2.97  
2.7V  
85  
2.96  
2.95  
2.94  
2.93  
7.00  
–25.00  
–20.00  
–15.00  
3.3  
3.5  
4.5  
5.5  
6.5  
7.5  
SR00154  
INPUT POWER (dBm)  
FORCED CURRENT (mA)  
SR00151  
Figure 22. Transmit Power @ 25°C  
Figure 25. Regulator 1 Line Regulation @ 100mA Load  
3.01  
–40  
–40  
3.00  
0
0
25  
2.99  
25  
2.98  
85  
2.98  
85  
2.97  
2.93  
2.96  
3.3  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
3.5  
4.5  
5.5  
6.5  
7.5  
FORCED CURRENT (mA)  
FORCED CURRENT (mA)  
SR00155  
SR00152  
Figure 23. Regulator 1 Load Regulation (V  
= 3.5V)  
Figure 26. Regulator 2 Line Regulation @ 30mA Load  
BATT  
20  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
100  
90  
80  
70  
60  
50  
40  
30  
20  
12  
10  
V
= 3V  
CC  
V
= 3V  
CC  
Temp = 25°C  
8
6
Temp = 25°C  
4
2
0
-2  
-4  
R546 ()  
R546 ()  
SR00156  
SR00157  
Figure 27. Transmit Output Power vs R(546) @ V = 3V  
Figure 28. Transmit Mode Current vs R(546) @ V = 3V  
CC  
CC  
21  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
PIN FUNCTIONS  
PIN  
PIN  
PIN  
PIN  
DC V  
EQUIVALENT CIRCUIT  
DC V  
EQUIVALENT CIRCUIT  
No. MNEMONIC  
No. MNEMONIC  
1
12  
1
2
V
3.0  
12  
13  
V
BM  
3.0  
CC  
CC  
GND  
0.0  
2
IN2  
0.8  
POnRx  
CMOS  
INPUT  
+
14  
14  
3
4
GNDL2  
0.0  
0.0  
GNDL2a  
15  
16  
GND  
Rxif  
0.0  
3.0  
16  
17  
5
5
6
OUT2  
2.2  
17  
18  
19  
RxifX  
GND  
Txif  
3.0  
0.0  
2.2  
B
+
6
CMOS  
INPUT  
19  
20  
A
+
20  
TxifX  
GND  
2.2  
7
7
CMOS  
INPUT  
21  
22  
0.0  
3.0  
22  
V
CC  
Tx  
8
8
9
INM  
0.4  
0.4  
23  
24  
GND  
0.0  
3.0  
24  
V
CC  
Tx  
9
INMX  
25  
26  
GND  
0.0  
10  
11  
COMP2  
COMP1  
2.2  
2.2  
CON2  
CMOS  
INPUT  
+
10 or 11  
26  
SR00162  
Figure 29. Pin Functions  
22  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
PIN FUNCTIONS (continued)  
PIN  
PIN  
PIN  
PIN  
DC V  
EQUIVALENT CIRCUIT  
DC V  
EQUIVALENT CIRCUIT  
No. MNEMONIC  
No. MNEMONIC  
+
POnBuf  
27  
28  
LOin  
2.2  
37  
37  
38  
CMOS  
INPUT  
27  
28  
LOinX  
2.2  
PDTx  
CMOS  
INPUT  
+
38  
CON1  
CMOS  
INPUT  
29  
29  
+
39  
40  
GndTx  
TxOx  
0.0  
3.0  
40  
41  
30  
31  
GndReg1  
VReg2  
0.0  
3.0  
V
BATT  
41  
42  
TxO  
3.0  
0.0  
+
31  
GndTx  
GndReg2  
32  
V
BATT  
43  
RETx  
0.4  
43  
+
+
32  
VRegF2  
3.0  
GndReg2  
44  
44  
IN1  
0.8  
V
BATT  
+
33  
VReg1  
3.0  
0.0  
33  
GndReg1  
45  
45  
46  
GndL1  
GndTx  
0.0  
0.0  
34  
35  
GndReg1  
POn  
+
35  
CMOS  
INPUT  
47  
47  
48  
OUT1  
2.2  
3.0  
36  
48  
+
V
CC  
L1  
36  
V
BATT  
3.0  
SR00163  
Figure 29. Pin Functions (continued)  
23  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
24  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
NOTES  
25  
1997 May 22  
Philips Semiconductors  
Product specification  
Low voltage GSM front-end transceiver  
SA1620  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1997  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Philips  
Semiconductors  

相关型号:

SA1620BE

Low voltage GSM front-end transceiver
NXP

SA1620BE-T

IC SPECIALTY TELECOM CIRCUIT, PQFP48, Telecom IC:Other
NXP

SA1622

AUDIO PREAMPLIFIER&
SILAN

SA1630

IF quadrature transceiver
NXP

SA163040

CONN IC DIP SOCKET 16POS GOLD
ETC

SA1630BE

IF quadrature transceiver
NXP

SA1638

Low voltage IF I/Q transceiver
NXP

SA1638BE

Low voltage IF I/Q transceiver
NXP

SA1638BE-S

暂无描述
NXP

SA1638BE-T

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP48, Cellular Telephone Circuit
NXP

SA1641-.10K

1 ELEMENT, 0.1 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.15K

1 ELEMENT, 0.15 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK