SA56203STW [NXP]

IC BRUSHLESS DC MOTOR CONTROLLER, 2.1 A, PDSO56, 6.1 MM, HTSSOP-56, Motion Control Electronics;
SA56203STW
型号: SA56203STW
厂家: NXP    NXP
描述:

IC BRUSHLESS DC MOTOR CONTROLLER, 2.1 A, PDSO56, 6.1 MM, HTSSOP-56, Motion Control Electronics

电动机控制 光电二极管
文件: 总30页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA56203S  
One-chip motor driver  
Rev. 01 — 31 January 2005  
Preliminary data sheet  
1. General description  
The SA56203S is a one-chip motor driver IC that is capable of driving all motors of CD or  
DVD systems e.g. spindle, sled and loading motors and actuators on the optical pick-up  
unit. The driver intended for the 3-phase, brushless, Hall-commutated spindle motor uses  
True-Silent PWM. This proprietary technology ensures that all 3-phase motor currents are  
sinusoidal resulting in an optimally silent driver. Internal regeneration of the back EMF of  
the spindle motor enables the driver to operate in current-steering mode without using  
external power-dissipating sense resistors. The driver for the 2-phase sled stepper motor  
operates in current-steering PWM mode. In addition the IC contains four full-bridge linear  
channels that can be used to drive a loading motor and 3D actuators (focus, tracking and  
tilt).  
The SA56203S is available in an exposed die pad HTSSOP56 package.  
2. Features  
True-Silent PWM spindle motor driver  
Low heat generation due to power-efficient direct full-bridge switching of spindle motor  
driver  
Controlled spindle motor current during acceleration and brake  
Reverse torque brake function (full bridge)  
Adjustable spindle motor current limiter  
Internal regeneration for EMF of spindle motor  
Current-steering PWM controlled stepper motor driver for sled  
Four class-AB linear channels for loading motor and 3D actuators (focus, tracking and  
tilt)  
Tracking actuator driver with back EMF amplifier  
Loading motor driver with transresistance amplifier for loading current  
Low on-resistance D-MOSFET output power stages  
Built-in thermal shutdown and thermal warning  
Interfaces to 3 V and 5 V logic  
Package with low thermal resistance to heatsink (reflowable die pad)  
Lead free package.  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
3. Applications  
DVD+RW, DVD-RW and DVD-RAM  
Combi  
CD-RW  
Other compact disc media.  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
SA56203STW  
HTSSOP56 plastic thermal enhanced thin shrink small outline package; 56 leads;  
body width 6.1 mm; exposed die pad  
SOT793-1  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
2 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
5. Block diagram  
1
2
3
4
5
6
56  
HU+  
HU−  
HV+  
HV−  
HW+  
HW−  
REVERSE  
DETECTION  
OSCILLATOR  
COSC  
THERMAL  
SHUTDOWN  
HALL  
AMP  
FG  
55  
VINLD  
54  
VINTRK  
53  
VINFCS  
52  
VINTLT  
51  
V
7
DD(LD)  
50  
HBIAS  
RREF  
HALL BIAS  
V
DD(TRK)  
49  
48  
47  
47 kΩ  
LDO+  
LEVEL  
SHIFT  
8
VINREF  
LDO−  
9
CURRENT  
REFERENCE  
REMF  
RLIM  
10  
TRKO+  
TRKO−  
47 kΩ  
LEVEL  
SHIFT  
46  
45  
44  
43  
11  
VINREF  
V
SS1(SPN)  
V
V
SS(ACT)  
DD(ACT)  
12  
13  
14  
15  
16  
17  
U
47 kΩ  
FCSO+  
FCSO−  
TLTO+  
TLTO−  
V
LEVEL  
SHIFT  
DD1(SPN)  
42  
41  
SPINDLE  
LOGIC  
VINREF  
V
V
SS2(SPN)  
47 kΩ  
LEVEL  
SHIFT  
W
40  
39  
38  
VINREF  
V
DD2(SPN)  
V
DD(SLD)  
18  
RSLD1  
FG  
FG  
SA56203S  
19  
20  
37  
V
SLDO1+  
SSA  
VINSPN  
VINREF  
ADC  
36  
35  
34  
SLDO1−  
RSLD2  
21  
22  
VINREF  
SLED  
LOGIC  
500 kΩ  
SLDO2+  
V
DDA  
33  
32  
SLDO2−  
23  
24  
25  
CP1  
CP2  
CP3  
V
SS(SLD)  
CHARGE  
PUMP  
31  
30  
VLDTRK  
VINSLD2  
47 kΩ  
26  
27  
28  
CTL1  
CTL2  
TEMP  
MUTE/  
STANDBY  
FUNCTIONS  
VINREF  
47 kΩ  
29  
VINSLD1  
VINREF  
001aac121  
Fig 1. Block diagram  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
3 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
6. Pinning information  
6.1 Pinning  
1
56  
COSC  
HU+  
HU−  
2
55 VINLD  
3
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
HV+  
VINTRK  
VINFCS  
VINTLT  
4
HV−  
5
HW+  
HW−  
HBIAS  
RREF  
REMF  
RLIM  
6
V
V
DD(LD)  
7
DD(TRK)  
8
LDO+  
9
LDO−  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
TRKO+  
TRKO−  
V
V
SS1(SPN)  
U
V
V
SS(ACT)  
DD(ACT)  
DD1(SPN)  
V
FCSO+  
FCSO−  
TLTO+  
TLTO−  
SA56203STW  
V
SS2(SPN)  
W
V
DD2(SPN)  
FG  
V
DD(SLD)  
V
SSA  
RSLD1  
VINSPN  
VINREF  
SLDO1+  
SLDO1−  
RSLD2  
V
DDA  
CP1  
CP2  
SLDO2+  
SLDO2−  
V
CP3  
SS(SLD)  
VLDTRK  
CTL1  
CTL2  
TEMP  
30 VINSLD2  
29  
VINSLD1  
001aac122  
Fig 2. Pin configuration  
6.2 Pin description  
Table 2:  
Symbol  
HU+  
Pin description  
Pin  
1
Description  
Hall input U positive  
Hall input U negative  
Hall input V positive  
Hall input V negative  
Hall input W positive  
Hall input W negative  
Hall element bias  
HU−  
2
HV+  
3
HV−  
4
HW+  
5
HW−  
6
HBIAS  
RREF  
7
8
external resistor for current reference  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
4 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 2:  
Symbol  
REMF  
RLIM  
Pin description …continued  
Pin  
9
Description  
external resistor for EMF regeneration  
external resistor for current limit  
spindle driver ground 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
VSS1(SPN)  
U
VDD1(SPN)  
V
VSS2(SPN)  
W
VDD2(SPN)  
FG  
spindle driver output U  
spindle driver supply voltage 1  
spindle driver output V  
spindle driver ground 2  
spindle driver output W  
spindle driver supply voltage 2  
frequency generator output  
analog ground  
VSSA  
VINSPN  
VINREF  
VDDA  
spindle driver input voltage for spindle motor current  
reference input voltage for all motor drivers  
analog supply voltage  
CP1  
charge pump capacitor connection 1  
charge pump capacitor connection 2  
charge pump capacitor connection 3  
driver logic control input 1  
CP2  
CP3  
CTL1  
CTL2  
driver logic control input 2  
TEMP  
thermal warning  
VINSLD1  
VINSLD2  
VLDTRK  
VSS(SLD)  
SLDO2−  
SLDO2+  
RSLD2  
SLDO1−  
SLDO1+  
RSLD1  
VDD(SLD)  
TLTO−  
TLTO+  
FCSO−  
FCSO+  
VDD(ACT)  
VSS(ACT)  
TRKO−  
TRKO+  
LDO−  
sled driver 1 input for sled motor current  
sled driver 2 input for sled motor current  
voltage output loader/track  
sled driver ground  
sled driver output 2 negative  
sled driver output 2 positive  
sled driver 2 current sense  
sled driver output 1 negative  
sled driver output 1 positive  
sled driver 1 current sense  
sled driver sense supply voltage  
tilting driver output negative  
tilting driver output positive  
focus driver output negative  
focus driver output positive  
focus/tilt drivers supply voltage  
actuator drivers ground  
tracking driver output negative  
tracking driver output positive  
loading driver output negative  
loading driver output positive  
LDO+  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
5 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 2:  
Symbol  
VDD(TRK)  
VDD(LD)  
VINTLT  
VINFCS  
VINTRK  
VINLD  
Pin description …continued  
Pin  
50  
51  
52  
53  
54  
55  
56  
Description  
tracking driver supply voltage  
loading driver supply voltage  
tilting driver input for tilt actuator driver  
focus driver input for focus actuator voltage  
tracking driver input for tracking actuator voltage  
loading driver input for loading motor voltage  
external capacitor for internal oscillator  
COSC  
7. Functional description  
7.1 Spindle motor control  
The control input voltage on pin VINSPN is converted into a digital value by the ADC  
where the voltage on pin VINREF is the midpoint reference. The transconductance gain  
from input voltage VVINSPN to output motor current IMOT is:  
IMOT  
-----------------------------------------------------  
(VVINSPN VVINREF  
ILIM  
gm(SPN)  
=
=
---------------------  
)
VVINREF  
where ILIM can be programmed by means of external resistor RLIM. The motor current is  
described by Figure 3.  
I
LIM  
I
MOT  
forward  
torque  
0
V
2V  
VINREF  
VINREF  
reverse  
torque  
brake  
I  
LIM  
V
VINSPN  
001aaa431  
Fig 3. Spindle motor current as a function of control input voltage VINSPN  
For VINSPN voltages larger than VVINREF the motor will accelerate with forward torque  
control. For VINSPN voltages smaller than VVINREF the motor will brake with reverse  
torque control.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
6 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
7.2 Spindle brake  
Because the U, V and W half-bridges of the spindle motor driver use a direct PWM  
full-bridge switching scheme, the motor current can also be controlled and limited during  
brake. It should be noted that because of this active brake mechanism energy of the motor  
can be recuperated back to the supply. Especially at large speeds, this can result in  
currents delivered back to the supply.  
If the supply and / or other circuits than the motor driver do not use this recuperated  
current, then the supply voltage can rise to unacceptable values. In this event it is  
recommended to lower the spindle current during brake by means of the VINSPN setting.  
The SA56203S has a clamp incorporated on the spindle driver supply voltage for  
protecting the IC against this overvoltage.  
Upon detection of reverse rotation all U, V and W driver outputs are connected to  
VDD(SPN). This short brake prevents the motor from spinning backwards.  
7.3 Internal regeneration of back EMF spindle motor  
The spindle motor driver uses the information from the Hall sensors to internally  
regenerate the back EMF of the motor (see Figure 4).  
ANALOG DOMAIN  
DIGITAL DOMAIN  
VINSPN  
U
V
W
V
= R × I  
V
= V + V  
MOT RI EMF  
torque  
control  
signal  
RI  
m
m
A
A
A
PWM  
D
D
D
spindle  
motor  
V
= ω × k  
EMF  
R
LIM  
Hall U  
Hall V  
Hall W  
maximum  
motor  
current  
ω
SPEED  
R
EMF  
motor  
k-factor  
001aaa438  
Fig 4. Regeneration of back EMF voltage spindle motor  
Rotational speed ω is derived from the Hall event frequency. Multiplying ω with the k-factor  
of the motor gives the back EMF voltage VEMF. This VEMF is added to the current-limited  
scaled spindle input voltage VVINSPN. This sum VMOT steers the PWM outputs U, V and W.  
The result is that the input voltage VVINSPN represents the current through the motor. This  
explains how the SA56203S spindle motor driver exhibits a current control transfer  
function without using external sense resistors.  
The simplified motor schematic in Figure 5 shows the series resistance and back EMF  
voltage of the motor.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
7 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
V
M1  
V
RM  
V
V
EMF  
2
EMF  
2
V
RM  
001aaa450  
V
M2  
Fig 5. Simplified spindle motor schematic  
Figure 6 shows the motor voltages VM1 and VM2 during accelerating and braking. The  
back EMF voltage is part of these motor voltages.  
V
M1  
V
DD(SPN)  
V
EMF  
2
V
RM  
V
V
M2  
V
DD(SPN)  
2
k
ω
0
ω
max  
ω
0
V
EMF  
2
V
RM  
M1  
V
0
M2  
accelerating  
braking  
001aaa432  
Fig 6. Motor voltages when accelerating and braking with constant motor current  
7.4 Sine generation using True-Silent signals  
For the phase relation between the Hall inputs and the spindle outputs in forward rotation,  
see Figure 7. These are the signal shapes in sine mode using our True-Silent PWM  
technology. The particular shape of the 120° symmetrical U, V and W steering voltages  
are because of improved drive strength and improved power efficiency. The drive strength  
is improved because with this signal shape a 15 % larger sine can be fit within the supply  
rails compared to direct-written sine signals. Also the power efficiency is improved  
because this signal shape has 33 % less switching losses compared to a direct-written  
sine.  
The result is that the motor currents (and motor torques) are pure sine waves generated in  
such a way that the motor is driven optimally silent, optimally power efficient and with  
maximum driving strength.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
8 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
HALL U  
HALL W  
HALL V  
U(V)  
U
U(I)  
V(V)  
V
V(I)  
W(V)  
W
W(I)  
001aaa433  
Fig 7. Phase relation between Hall input signals and spindle motor driver output  
voltages U(V), V(V), W(V) and motor currents U(I), V(I), W(I) in forward rotation  
mode  
7.5 Programming RLIM  
If the supply is connected between the terminals of a non-running spindle motor, then  
usually a current will flow that is too large. The motor current can be limited to a value ILIM  
ILIM can be programmed by means of RLIM. In order to calculate the required RLIM first a  
typical maximum motor current IMAX needs to be determined:  
.
VDD(SPN)  
IMAX  
=
-------------------------------------------------------------------  
Rmotor + Rswitches + Rwiring  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
9 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
ILIM can be chosen to be a fraction of this maximum current IMAX. By making the ratio  
between RLIM and RREF this same fraction, ILIM is programmed as expressed in the  
RLIM  
following formula: ILIM  
=
× I  
------------  
MAX  
RREF  
Figure 8 shows the limit current as a function of RLIM with RREF = 47 k.  
001aaa434  
100  
I
LIM  
(% of I  
)
MAX  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
R
50  
(k)  
LIM  
Fig 8. Limit current ILIM as a function of external resistor RLIM  
During accelerating and braking the motor current will not exceed ILIM. ILIM also sets the  
ILIM  
transconductance gain, gm  
=
of the spindle driver.  
---------------------  
VVINREF  
7.6 Programming REMF  
The back EMF voltage is internally regenerated. The ratio between REMF and RREF is  
used to scale the internal EMF regeneration. The value of external resistor REMF depends  
on the type of motor (k-factor and number of pole pairs NPP) and the motor supply voltage  
VDD(SPN). The following formula should be used to determine the REMF resistor:  
k × 2.6 × 103 × RREF  
REMF  
=
with k in units Nm/A.  
--------------------------------------------------  
NPP × VDD(SPN)  
7.7 Frequency generator  
The raw zero-crossings of the Hall sensors are first filtered and debounced before being  
passed to the Frequency generator (FG). The FG toggles its output at every filtered Hall  
zero-crossing. For three Hall sensors this means that the motor frequency is linked to the  
FG  
3 × NPP  
FG frequency by: f motor  
=
-------------------  
where NPP indicates the number of pole pairs of the motor. The FG has an open-drain  
output for easy interfacing to 3 V and 5 V logic.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
10 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
7.8 Sled motor driver  
Two current steering channels are available to drive a stepper motor. Per channel an  
external sense resistor Rsense is used that is connected to VDD(SLD). A peak-current control  
loop is implemented that modulates the duty cycle of the PWM signal (see Figure 9).  
R
sense  
V
RSLD  
RSLD  
DD(SLD)  
47 kΩ  
A
I
47 kΩ  
VINSLD  
SLDO+  
+
Σ
R
S
LOGIC  
DRIVE  
M
DRIVER  
Q
SLDO−  
V
VINREF  
CLOCK  
input amplifier  
I
O
001aab483  
V
SS(SLD)  
Fig 9. Peak-current control architecture of sled motor driver  
f osc  
The clock generator has a nominal frequency of  
= 70 kHz. See Figure 10, transfer  
---------  
256  
function from input voltage VVINSLD to output current at a typical Rsense of 0.5 .  
Input-to-output transconductance gain can be scaled down by connecting external resistor  
Rext in series with the input VINSLD.  
I
(A)  
OUT  
1 A  
(V)  
dead zone  
+1 A/V  
30 mV  
V
V  
VINREF  
VINSLD  
30 mV  
+1 A/V  
1 A  
001aaa436  
Fig 10. Transfer function of sled motor driver  
Both limiting current and transconductance gain are related to Rsense in the following way:  
Io  
1
Transconductance gain: gm  
=
=
-------  
-----------------------  
2 × Rsense  
Vin  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
11 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
1
Limiting current: ILIM  
=
-----------------------  
2 × Rsense  
7.9 Loading motor driver  
One of the linear channels is available to drive a DC loading motor. Pin VDD(LD) is used to  
set the supply voltage for the loading motor driver. The following voltage-steering bridge  
topology is implemented in the SA56203S.  
188 kΩ  
47 kΩ  
47 kΩ  
47 kΩ  
LDO−  
47 kΩ  
VINLD  
188 kΩ  
188 kΩ  
R
23.5 kΩ  
V
DD(LD)  
R
47 kΩ  
47 kΩ  
VINREF  
LDO+  
188 kΩ  
001aab246  
Fig 11. Voltage steering bridge topology of linear driver  
7.10 Actuator motor drivers  
Three linear channels are available to drive 3D actuators: focus, tracking and tilt. Pin  
VDD(ACT) is used to set the supply voltage for the focus and tilt actuators (maximum 5.5 V).  
A separate pin VDD(TRK) sets the supply voltage for the tracking actuator (maximum 14 V).  
The voltage-steering bridge topology is the same as depicted in Figure 11.  
7.11 Charge pump  
The on-board charge pump generates a voltage of typically 18.2 V by using the VDD(SPN)  
supply voltage. This boosted voltage is used to turn on the upper n-type DMOS transistors  
of the output stages of the spindle driver, sled driver, loading driver and actuator drivers.  
Recommended values for the pump and hold capacitor are 10 nF and 22 nF respectively  
(see default settings). The charge pump should not be loaded with other components or  
circuitry other than these capacitors.  
7.12 Thermal protection  
If the junction temperature of the SA56203S exceeds 150 °C, then a thermal warning  
signal is given at pin TEMP. Pin TEMP has an active-LOW open-drain output for easy  
interfacing to the 3 V and 5 V logic. The temperature hysteresis for the thermal warning is  
20 °C. If the junction temperature of the IC rises to 160 °C, then a thermal shutdown is  
activated that sets all power outputs in 3-state. The temperature hysteresis for the thermal  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
12 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
shutdown is 30 °C. As soon as the thermal shutdown deactivates at 130 °C, all motor  
drivers continue normal operation. At the same time the thermal warning signal is  
deactivated.  
7.13 Oscillator  
The RC oscillator uses two external components (RREF and COSC) to fix its frequency at  
18 MHz. RREF is used to generate a reference current. This reference current is used to  
charge and discharge COSC. The nominal oscillation frequency fosc is 18 MHz with  
RREF = 47 k(2 % tolerance) and COSC = 70 pF (5 % tolerance). These values are fixed.  
The oscillator can be overruled by applying an 18 MHz clock to pin COSC. The reference  
current derived from RREF is also used for RLIM and REMF. RREF should always be  
connected.  
7.14 Muting Functions  
Pins CTL1 and CTL2 are used to mute certain parts of the IC; see Table 3.  
Table 3:  
Muting functions[1]  
CTL1 CTL2 Loading Sled  
Focus  
tilt  
Tracking Spindle Special  
motor  
motor  
off  
motor  
L
L
L
off  
off  
off  
off  
off  
off  
off  
off  
standby  
H
on  
FG and Hall bias on; pin  
VLDTRK for loader motor  
H
H
L
off  
off  
on  
on  
off  
on  
off  
on  
on  
on  
all actuators off; pin  
VLDTRK for tracking  
actuator  
H
spindle, sled and all  
actuators on  
[1] Off equals 3-state.  
8. Internal circuitry  
Table 4:  
Symbol  
Internal circuitry  
Pin Equivalent circuit  
Hall amplifiers  
HU+  
1
HU−  
2
1, 3, 5  
2, 4, 6  
HV+  
3
19  
HV−  
4
001aab696  
HW+  
HW−  
VSSA  
5
6
19  
Hall bias  
HBIAS  
VSSA  
7
7
19  
off when standby  
(CTL1 and CTL2 = LOW)  
19  
001aab697  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
13 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 4:  
Symbol  
Internal circuitry …continued  
Pin Equivalent circuit  
Current reference  
RREF  
REMF  
RLIM  
VSSA  
8
22  
9
10  
1.65 V  
19  
22  
VDDA  
8
9
10  
19  
001aab698  
Spindle motor driver  
VSS1(SPN) 11  
13, 17  
U
12  
VDD1(SPN) 13  
14  
VSS2(SPN) 15  
16  
12  
14  
16  
V
W
11, 15  
001aab699  
VDD2(SPN) 17  
Frequency generator  
FG  
18  
19  
18  
VSSA  
19  
001aab700  
Spindle input  
VSSA  
19  
VINSPN  
VINREF  
20  
21  
20  
21  
500 kΩ  
19  
001aab701  
Charge pump  
VDD1(SPN) 13  
VDD2(SPN) 17  
13, 17  
VSSA  
CP1  
CP2  
CP3  
19  
23  
24  
25  
24  
25  
23  
170 kΩ  
12 kΩ  
19  
001aab702  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
14 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 4:  
Symbol  
Control  
VSSA  
Internal circuitry …continued  
Pin Equivalent circuit  
19  
26  
27  
to mute table  
26 27  
CTL1  
CTL2  
19  
001aab703  
Temperature warning  
VSSA  
19  
28  
28  
19  
TEMP  
temperature  
above 150 °C  
001aab704  
Sled inputs  
VSSA  
19  
21  
47 kΩ  
VINREF  
47 kΩ  
VINSLD1 29  
VINSLD2 30  
29, 30  
19  
21  
001aab705  
VLDTRK output  
VSSA  
19  
22  
31  
22  
VDDA  
VLDTRK  
150 Ω  
31  
19  
001aab706  
Sled motor driver  
VSS(SLD)  
SLDO2−  
SLDO2+  
RSLD2  
32  
33  
34  
35  
36  
37  
38  
35  
38  
33  
34  
36  
37  
SLDO1−  
SLDO1+  
RSLD1  
32  
44  
32  
44  
001aab707  
001aab708  
Linear motor drivers  
TLTO−  
40  
41  
42  
43  
44  
45  
TLTO+  
FCSO−  
FCSO+  
VDD(ACT)  
VSS(ACT)  
40  
41  
42  
43  
45  
45  
001aab709  
001aab710  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
15 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 4:  
Symbol  
VSS(ACT)  
TRKO−  
TRKO+  
LDO−  
Internal circuitry …continued  
Pin Equivalent circuit  
45  
50  
51  
46  
47  
46  
47  
48  
49  
48  
LDO+  
49  
VDD(TRK)  
VDD(LD)  
50  
45  
45  
001aab711  
001aab712  
51  
Linear inputs  
VSSA  
19  
21  
52  
53  
54  
55  
47 kΩ  
VINREF  
VINTLT  
VINFCS  
VINTRK  
VINLD  
Oscillator  
VSSA  
47 kΩ  
52, 53, 54, 55  
21  
19  
001aab713  
19  
22  
56  
22  
VDDA  
COSC  
56  
19  
001aab714  
9. Limiting values  
Table 5:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD1(SPN)  
VDD2(SPN)  
,
spindle driver supply  
voltage  
0.5  
+16  
V
VDD(SLD)  
VDD(LD)  
sled driver sense supply  
0.5  
0.5  
+16  
+16  
V
V
loading driver supply  
voltage  
VDD(TRK)  
VDD(ACT)  
tracking driver supply  
voltage  
0.5  
0.5  
+16  
V
V
focus/tilt drivers supply  
voltage  
+6.5  
VDDA  
Tstg  
analog supply voltage  
storage temperature  
0.5  
55  
40  
+6.5  
+150  
+85  
V
°C  
°C  
Tamb  
operating temperature  
range  
Tj  
junction temperature  
40  
+160  
2.1  
°C  
IO(SPN)  
spindle output current, pins  
12, 14 and 16  
-
A
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
16 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 5:  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
IO(SLD)  
sled output current, pins  
33, 34, 35, 36, 37 and 38  
-
1.2  
A
IO(ACT)  
loading/actuator drivers  
output current, pins 40, 41,  
42, 43, 46, 47, 48 and 49  
-
2.0  
A
IHall  
Hall current on pins 1, 2, 3,  
4, 5 and 6  
1  
1  
1  
1  
1  
20  
1  
+1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IHBIAS  
IRPROG  
IO(n)  
Hall bias current on pin  
HBIAS  
+100  
+1  
current on external resistor  
pins 8, 9 and 10  
current on pins 18, 28 and  
31  
+10  
+1  
IDIG  
driver logic control current  
on pins 26 and 27  
ICPUMP  
ISTEER  
charge pump current on  
pins 23, 24 and 25  
+20  
+1  
steering current on pins 20,  
21, 29, 30, 52, 53, 54 and  
55  
ICOSC  
Vesd  
current on pin COSC  
20  
+20  
mA  
electrostatic discharge  
voltage  
pins 23, 40 to 44 and 51 human body model  
machine model  
-
-
-
-
1000  
100  
V
V
V
V
all other pins  
human body model  
machine model  
2000  
200  
10. Recommended operating conditions  
Table 6:  
Symbol  
Recommended operating conditions  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD1(SPN)  
VDD2(SPN)  
,
spindle driver supply VDD1(SPN)  
=
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
12  
5.0  
12  
5
14  
V
V
V
V
V
V
voltage  
VDD2(SPN)  
VDDA  
analog supply  
voltage  
5.5  
14  
5.5  
14  
14  
VDD(SLD)  
VDD(ACT)  
VDD(TRK)  
VDD(LD)  
sled driver sense  
supply  
focus/tilt drivers  
supply voltage  
tracking driver  
supply voltage  
12  
12  
loading driver supply  
voltage  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
17 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
11. Thermal characteristics  
Table 7:  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
Unit  
thermal resistance from  
junction to ambient  
in free air; multilayer  
printed-circuit board  
33  
K/W  
001aaa428  
4
P
(W)  
3
2
1
0
0
50  
100  
150  
T
(°C)  
amb  
Fig 12. Maximum power dissipation as a function of ambient temperature  
12. Characteristics  
Table 8:  
Characteristics  
VDDA = 5 V; VDD1(SPN) = VDD2(SPN) = 12 V; VDD(SLD) = 12 V; VDD(TRK) = 12 V; VDD(ACT) = 5 V; VDD(LD) = 12 V; Tamb = 25 °C; all  
characteristics are specified for the default settings (see Table 9); all voltages are referenced to VSS; positive currents flow  
into the device; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies: pins VDD1(SPN), VDD2(SPN), VDDA, VDD(ACT), VDD(SLD), VDD(LD), VDD(TRK)  
IDD(SPN)  
spindle driver supply  
current  
IDD1(SPN) + IDD2(SPN)  
2
3
5
mA  
IDDA  
analog supply current  
14  
-
16  
1
18  
1.5  
26  
mA  
mA  
mA  
IDD(SLD)  
IDD(ACT)  
sled driver supply current  
focus/tilt drivers supply  
current  
-
19  
IDD(TRK)  
IDD(LD)  
tracking driver supply  
current  
2
2
4
4
6
6
mA  
mA  
loading driver supply  
current  
CTL2 = H  
Istb(tot)  
total standby current  
CTL1 = CTL2 = L  
-
-
6
9
-
mA  
V
VDDA(POR)  
power-on reset voltage on  
VDDA  
3.5  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
18 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 8:  
Characteristics …continued  
VDDA = 5 V; VDD1(SPN) = VDD2(SPN) = 12 V; VDD(SLD) = 12 V; VDD(TRK) = 12 V; VDD(ACT) = 5 V; VDD(LD) = 12 V; Tamb = 25 °C; all  
characteristics are specified for the default settings (see Table 9); all voltages are referenced to VSS; positive currents flow  
into the device; unless otherwise specified.  
Symbol  
Charge pump: pin CP3  
VO output voltage  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
-
18.7  
-
V
Spindle motor driver: pins HU+, HV+, HW+ HU, HV, HW, HBIAS, RREF, REMF, RLIM, U, V, W FG, VINSPN, VINREF  
and COSC  
[1]  
VIO  
input offset voltage Hall  
amplifier  
VHU= VHV= VHW= 1.65 V  
3.5  
-
-
+3.5  
mV  
V
Vi  
input voltage range Hall  
amplifier  
0
VDDA  
VHBIAS  
fosc  
voltage on pin HBIAS  
IHBIAS = 32 mA  
-
-
0.6  
18  
-
-
V
oscillator frequency on pin  
COSC  
MHz  
fPWM  
PWM frequency on pins  
U, V and W  
-
70  
-
kHz  
Rds(on)  
VVINREF  
VVINSPN  
IU, IV, IW  
D-MOSFET on-resistance I = 100 mA  
(high or low)  
-
0.35  
1.65  
-
-
input voltage range on  
reference pin VINREF  
1.2  
0
2.5  
VDDA  
-
V
input voltage range on  
torque control pin VINSPN  
V
[2]  
[3]  
spindle motor current limit see Figure 3;  
-
2.0  
A
R
switches + Rmotor + Rwiring = 2.5 ;  
VVINSPN = 0 V and 3.3 V  
gm(SPN)  
transconductance gain  
spindle  
see Figure 3;  
R
-
1.24  
-
A/V  
switches + Rmotor + Rwiring= 2.5 ;  
VVINSPN = 0 V and 3.3 V  
Sled motor driver: pins RSLD1, SLDO1+, SLDO1, RSLD2, SLDO2+, SLDO2, VINSLD2 and VINSLD1  
ISLDO  
motor current limit  
Rsense = 0.5 ; VVINSLD = 0 V  
-
1.0  
-
A
and 3.3 V  
fPWM  
PWM frequency on pins  
SLDO1+, SLDO1,  
-
70  
-
kHz  
SLDO2+ and SLDO2−  
[4]  
Vi(trip)  
gm  
input dead zone trip level  
transconductance gain  
15  
0.60  
-
30  
45  
0.90  
-
mV  
A/V  
[4] [5]  
0.75  
1.0  
Rds(on)  
D-MOSFET on-resistance I = 100 mA; VVINSLD = 0 V  
(high or low) and 3.3 V  
Loading motor driver: pins VINLD, LDO+ and LDO−  
ILDO  
current limit (high or low) CTL1 = L; RL = 4 ; VVINLD = 0 V  
0.85  
1.0  
1.5  
A
and 3.3 V  
VOO  
GV  
output offset voltage  
voltage gain  
CTL1 = L; no load  
CTL1 = L; no load  
100  
17.2  
-
0
+100  
18.8  
1.0  
mV  
dB  
[6]  
18.0  
0.7  
Rds(on)  
D-MOSFET on-resistance CTL1 = L; I = 100 mA; VVINLD = 0 V  
(high or low) and 3.3 V  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
19 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 8:  
Characteristics …continued  
VDDA = 5 V; VDD1(SPN) = VDD2(SPN) = 12 V; VDD(SLD) = 12 V; VDD(TRK) = 12 V; VDD(ACT) = 5 V; VDD(LD) = 12 V; Tamb = 25 °C; all  
characteristics are specified for the default settings (see Table 9); all voltages are referenced to VSS; positive currents flow  
into the device; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tracking actuator driver: pins VINTRK, TRKO+ and TRKO−  
ITRKO  
VOO  
GV  
current limit  
RL = 4 ; VVINTRK = 0 V and 3.3 V  
1.0  
1.5  
0
2.0  
A
output offset voltage  
no load  
70  
17.2  
+70  
18.8  
mV  
dB  
[7]  
voltage gain tracking  
driver  
18.0  
Rds(on)  
D-MOSFET on-resistance I = 100 mA; VVINTRK = 0 V or 3.3 V  
(high or low)  
-
0.7  
1.0  
2.0  
Focus and tilt actuator drivers: pins VINFCS, VINTLT, FCSO+, FCSO, TLTO+ and TLTO−  
IFCSO, ITLTO current limit  
RL = 4 ; VVINFCS = 0 V or 3.3 V;  
VINTLT = 0 V or 3.3 V  
1.0  
1.5  
A
V
VOO  
GV  
output offset voltage  
no load  
55  
0
+55  
mV  
dB  
[7]  
[8]  
voltage gain focus/tilt  
drivers  
11.2  
12  
12.8  
Gv(m)  
gain mismatch between  
focus and tilt drivers  
0
-
-
5
%
Rds(on)  
MOSFET on-resistance  
(high or low)  
I = 100 mA; VVINFCS = 0 V or 3.3 V;  
0.6  
0.9  
VVINTLT = 0 V or 3.3 V  
Voltage output loader/tracking actuator: pin VLDTRK  
GR  
transresistance gain of  
current loading motor  
CTL1 = L; ILDO = 250 mA; RL = 4 Ω  
1.3  
1.5  
1.7  
V/A  
mV  
dB  
mV  
V
VOO  
GV  
output offset  
transresistance amplifier  
CTL1 = L; no load  
100  
29.2  
250  
-
0
+100  
30.8  
+250  
-
[9]  
voltage gain of back EMF CTL2 = L  
voltage tracking actuator  
30.0  
0
VOO  
VO(CM)  
RO  
output offset back EMF  
amplifier  
CTL2 = L; RL = 4 Ω  
common mode output  
voltage  
VVINREF  
output resistance  
I = 0.1 mA  
-
-
150  
-
-
IO(source/sink) source and sink current  
drive capability  
0.3  
mA  
Digital inputs and outputs  
Inputs: pins CTL1 and CTL2  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
2.0  
-
-
-
-
V
V
0.8  
Outputs: pins FG and TEMP  
VOL  
LOW-level output voltage I = 2 mA  
-
-
0.5  
V
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
20 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 8:  
Characteristics …continued  
VDDA = 5 V; VDD1(SPN) = VDD2(SPN) = 12 V; VDD(SLD) = 12 V; VDD(TRK) = 12 V; VDD(ACT) = 5 V; VDD(LD) = 12 V; Tamb = 25 °C; all  
characteristics are specified for the default settings (see Table 9); all voltages are referenced to VSS; positive currents flow  
into the device; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Temperature protection: pin TEMP  
TTEMP  
thermal warning  
temperature  
-
-
-
-
150  
20  
-
-
-
-
°C  
°C  
°C  
°C  
Thys(TEMP)  
TSD  
thermal warning  
hysteresis  
thermal shutdown  
temperature  
160  
30  
Thys(SD)  
thermal shutdown  
hysteresis  
[1] The recommended minimum Hall amplifier differential input voltage is 25 mV (p-p).  
[2] The motor current limit of the spindle is tested by applying VINSPN = 0 V and 3.3 V, measuring the duty cycles on the U, V and W  
spindle driver outputs and calculating the corresponding motor currents with the applied 12 V supply voltage and the 2.5 motor,  
switches and wiring resistance.  
[3] The transconductance gain of the spindle is tested by applying VINSPN = 0 V and 3.3 V and calculating the corresponding motor  
currents (see Table note 2) and determining the slope (see Figure 3).  
[4] The sled motor is tested loaded with RL = 4 in series with LL = 1 mH.  
[5] The transconductance gain of the sled motor driver is tested as:  
gm = {(ISLDOat VVINSLD = 1.85 V) (ISLDOat VVINSLD = 1.45 V)}/0.4 V.  
[6] The voltage gain of the loading motor driver is tested as:  
GV = {(VLDO+ VLDOat VVINLD = 2.4 V) (VLDO+ VLDOat VVINLD = 0.9 V)}/1.5 V.  
[7] The voltage gain of the actuator driver is tested as:  
GV = {(VACTO+ VACTOat VVINACT = 2.4 V) (VACTO+ VACTOat VVINACT = 0.9 V)}/1.5 V.  
[8] The gain mismatch is related to the absolute gain; an absolute gain of 8 (18 dB) corresponds with a maximum mismatch of 0.4 (5 %)  
and an absolute gain of 4 (12 dB) corresponds with a maximum mismatch of 0.2 (5 %).  
[9] The voltage gain of the back EMF voltage tracking actuator is tested as:  
GV = {(VVLDTRK at VTRKO+ = 1.03 V and VTRKO= 1.00 V) (VVLDTRK at VTRKO+ = 1.00 V and VTRKO= 1.03 V)}/0.06 V.  
Table 9:  
Pin  
Default settings  
Default setting  
HU+, HV+  
HW+  
5 V  
ground  
HU, HV, HW−  
HBIAS  
1.650 V  
open-circuit  
RREF  
47 kto VSS, fixed value, should not be changed  
REMF  
12 kto VSS  
20 kto VSS  
ground  
RLIM  
VSS1(SPN), VSS2(SPN)  
U, V, W  
open-circuit  
12 V supply  
open-circuit  
ground  
VDD1(SPN), VDD2(SPN)  
FG  
VSSA  
VINSPN, VINREF  
VDDA  
1.65 V  
5 V supply  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
21 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
Table 9:  
Pin  
Default settings …continued  
Default setting  
10 nF between CP1 and CP2  
22 nF to ground  
5 V  
CP1, CP2  
CP3  
CTL1, CTL2  
TEMP  
open-circuit  
COSC  
70 pF to ground, fixed value, should not be changed  
VINLD, VINTRK, VINFCS, VINTLT  
VDD(LD), VDD(TRK)  
LDO+, LDO, TRKO+, TRKO−  
VSS(ACT)  
1.65 V  
12 V supply  
open-circuit  
ground  
VDD(ACT)  
5 V supply  
FCSO+, FCSO, TLTO+, TLTO−  
VDD(SLD)  
open-circuit  
12 V supply  
RSLD1  
0.5 sense resistor to VDD(SLD)  
open-circuit  
SLDO1+, SLDO1−  
RSLD2  
0.5 sense resistor to VDD(SLD)  
open-circuit  
SLDO2+, SLDO2−  
VSS(SLD)  
ground  
VLDTRK  
open-circuit  
VINSLD2, VINSLD1  
1.65 V  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
22 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
13. Application information  
5 V  
150 Ω  
70 pF  
0 V  
1
56  
HALL U  
REVERSE  
DETECTION  
OSCILLATOR  
2
3
THERMAL  
SHUTDOWN  
HALL  
AMP  
HALL V  
HALL W  
4
5
6
FG  
55  
54  
53  
52  
51  
50  
49  
loading motor in  
tracking in  
focus in  
tilt in  
12 V  
12 V  
7
HALL BIAS  
(1)  
0 V  
R
REF  
47 kΩ  
47 kΩ  
LEVEL  
SHIFT  
loading  
M
8
motor  
48  
47  
(2)  
VINREF  
R
EMF  
9
CURRENT  
REFERENCE  
10  
R
LIM  
47 kΩ  
tracking  
actuator  
LEVEL  
SHIFT  
46  
45  
44  
43  
11  
VINREF  
0 V  
0 V  
5 V  
12  
13  
14  
15  
16  
17  
spindle  
motor  
47 kΩ  
12 V  
0 V  
LEVEL  
SHIFT  
focus  
actuator  
42  
41  
40  
SPINDLE  
LOGIC  
VINREF  
47 kΩ  
tilt  
actuator  
LEVEL  
SHIFT  
VINREF  
12 V  
39  
38  
12 V  
47 kΩ  
18  
3.3 V  
FG  
SA56203S  
sled motor  
M
19  
20  
37  
0 V  
spindle input  
1.65 V  
ADC  
36  
35  
34  
21  
VINREF  
SLED  
LOGIC  
500 kΩ  
22  
23  
5 V  
33  
32  
10 nF  
22 nF  
CHARGE  
PUMP  
0 V  
24  
25  
31  
30  
VLDTRK  
sled in2  
47 kΩ  
26  
27  
MUTE/  
STANDBY  
FUNCTIONS  
VINREF  
MUTE/  
SELECT  
47 kΩ  
29  
sled in1  
47 kΩ  
VINREF  
28  
3.3 V  
001aac123  
(1) For REMF values see Section 7.6.  
(2) For RLIM values see Section 7.5.  
Fig 13. Application diagram  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
23 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
14. Package outline  
HTSSOP56: plastic thermal enhanced thin shrink small outline package; 56 leads;  
body width 6.1 mm; exposed die pad  
SOT793-1  
D
E
A
X
c
y
exposed die pad  
H
v M  
A
E
D
h
Z
56  
29  
(A )  
3
A
A
2
E
h
θ
A
pin 1 index  
1
L
p
L
detail X  
1
28  
w M  
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
Z
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
v
w
y
θ
p
p
1
2
3
h
h
E
max.  
8o  
0o  
0.15 1.05  
0.05 0.80  
0.27 0.20 14.1  
0.17 0.09 13.9  
4.3  
4.1  
6.2  
6.0  
4.3  
4.1  
8.3  
7.9  
0.8  
0.4  
0.4  
0.1  
mm  
1.2  
0.25  
0.5  
1
0.2  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-03-04  
SOT793-1  
143E36T  
MO-153  
Fig 14. Package outline SOT793-1 (HTSSOP56)  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
24 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
15. Soldering  
15.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
15.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
15.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
25 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
15.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
15.5 Package related soldering information  
Table 10: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
26 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
27 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
16. Revision history  
Table 11: Revision history  
Document ID  
Release date Data sheet status  
20050131 Preliminary data sheet  
Change notice Doc. number  
9397 750 14192  
Supersedes  
SA56203S_1  
-
-
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
28 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
17. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
18. Definitions  
19. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14192  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 31 January 2005  
29 of 30  
SA56203S  
Philips Semiconductors  
One-chip motor driver  
21. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
Functional description . . . . . . . . . . . . . . . . . . . 6  
Spindle motor control . . . . . . . . . . . . . . . . . . . . 6  
Spindle brake . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Internal regeneration of back EMF spindle  
7.1  
7.2  
7.3  
motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Sine generation using True-Silent signals. . . . . 8  
Programming RLIM . . . . . . . . . . . . . . . . . . . . . . 9  
Programming REMF. . . . . . . . . . . . . . . . . . . . . 10  
Frequency generator. . . . . . . . . . . . . . . . . . . . 10  
Sled motor driver . . . . . . . . . . . . . . . . . . . . . . 11  
Loading motor driver. . . . . . . . . . . . . . . . . . . . 12  
Actuator motor drivers . . . . . . . . . . . . . . . . . . 12  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal protection . . . . . . . . . . . . . . . . . . . . . 12  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Muting Functions . . . . . . . . . . . . . . . . . . . . . . 13  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
8
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 13  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Recommended operating conditions. . . . . . . 17  
Thermal characteristics. . . . . . . . . . . . . . . . . . 18  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application information. . . . . . . . . . . . . . . . . . 23  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 24  
9
10  
11  
12  
13  
14  
15  
15.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 25  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 25  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 26  
Package related soldering information . . . . . . 26  
15.2  
15.3  
15.4  
15.5  
16  
17  
18  
19  
20  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 29  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Contact information . . . . . . . . . . . . . . . . . . . . 29  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 31 January 2005  
Document number: 9397 750 14192  
Published in The Netherlands  

相关型号:

SA56203TW

IC CD MOTOR DRIVER, PDSO56, 6.10 MM, MO-153, SOT-793-1, HTSSOP-56, Drive Electronics
NXP

SA5624

ACTUATOR DRIVER WITH CURRENT FEEDBACK FOR CD - ROM / DVD
SILAN

SA565006KE9

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6 V, 5.6 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

SA56600-42

System reset for lithium battery backup
NXP

SA56600-42D-T

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOP-8, Power Management Circuit
NXP

SA56606-18GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-353, UMT-5, Power Management Circuit
NXP

SA56606-20

CMOS system reset
NXP

SA56606-20GW

CMOS system reset
NXP

SA56606-20GW

Power Management Circuit,
PHILIPS

SA56606-20GW-G

暂无描述
NXP

SA56606-27

CMOS system reset
NXP

SA56606-27GW

CMOS system reset
NXP