SA57001-28GW [NXP]

IC VREG 2.8 V FIXED POSITIVE LDO REGULATOR, 0.2 V DROPOUT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOT-23, SOP-5, Fixed Positive Single Output LDO Regulator;
SA57001-28GW
型号: SA57001-28GW
厂家: NXP    NXP
描述:

IC VREG 2.8 V FIXED POSITIVE LDO REGULATOR, 0.2 V DROPOUT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOT-23, SOP-5, Fixed Positive Single Output LDO Regulator

光电二极管
文件: 总15页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA57001-XX  
Microminiature, low power consumption,  
low dropout regulator  
Product data  
2003 Oct 16  
Supersedes data of 2003 Mar 20  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
GENERAL DESCRIPTION  
The SA57001-XX is a series of micro-miniature linear regulators  
providing fixed output voltages with a precision accuracy of ±2% at  
output currents up to 200 mA. The regulator is designed to serve as  
a post regulator in microprocessor power supplies. The device has  
an ON/OFF pin for output On/Off control, and a Noise pin which can  
be used to bypass the internal voltage reference node for enhanced  
noise reduction.  
The SA57001 has a dropout voltage of only 0.1 V (typical) while  
delivering 50 mA of output current. The maximum no load quiescent  
current is less than 190 µA in the ON state. The device has thermal  
shutdown and output current limiting circuits to prevent damage from  
overheating and short circuits. The SA57001 regulator series is  
available in the small outline 5-lead package (SOP003).  
FEATURES  
No load quiescent current of 95 µA  
APPLICATIONS  
Cordless phones  
0.1 V typical (I = 50 mA) dropout voltage  
Portable minidiscs  
O
70 dB typical ripple rejection  
Other battery-operated equipment.  
200 mA maximum output current  
35 µV  
(typical)  
rms  
Preset output voltages of 2.0, 2.5, 2.8, 3.0, 3.1, 3.3, 3.6, 4.5, 4.8,  
5.0 V available  
Output current limiting  
Thermal shutdown protection  
Output ON/OFF control.  
SIMPLIFIED SYSTEM DIAGRAM  
V
V
OUT  
IN  
4
OUTPUT (±2%)  
5
THERMAL  
PROTECT  
CURRENT  
LIMIT  
DRIVER  
C
OUT  
ON/OFF  
4.7 µF  
(ALUMINUM  
ELECTROLYTIC)  
1
3
NOISE  
V
GND  
REF  
2
0.01 µF  
CERAMIC  
(OPTIONAL)  
SA57001-XX  
SL01418  
Figure 1. Simplified system diagram.  
2
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
TEMPERATURE  
RANGE  
DESCRIPTION  
VERSION  
SOP003  
SA57001-XXGW plastic small outline package; 5 leads (see dimensional drawing)  
–40 to +85 °C  
NOTE:  
Marking code  
The device has ten voltage output options, indicated by the XX on  
the Type Number.  
Each device is marked with a four letter code. The first three letters  
designate the product. The fourth, represented by an ‘x’, designates  
the date tracking code.  
XX  
20  
25  
28  
30  
31  
33  
36  
45  
48  
50  
VOLTAGE (Typical)  
2.0 V  
Part  
Marking  
ADKx  
AMFx  
ADJx  
SA57001-20GW  
SA57001-25GW  
SA57001-28GW  
SA57001-30GW  
SA57001-31GW  
SA57001-33GW  
SA57001-36GW  
SA57001-45GW  
SA57001-48GW  
SA57001-50GW  
2.5 V  
2.8 V  
3.0 V  
ADGx  
ADFx  
ADEx  
ADHx  
ADDx  
ADLx  
ADCx  
3.1 V  
3.3 V  
3.6 V  
4.5 V  
4.8 V  
5.0 V  
PIN CONFIGURATION  
PIN DESCRIPTION  
PIN  
1
SYMBOL  
ON/OFF  
GND  
DESCRIPTION  
Output ON/OFF control pin.  
Circuit ground pin.  
ON/OFF  
GND  
1
2
3
5
V
V
IN  
2
3
NOISE  
Provides option of externally bypassing the  
internal voltage reference node for  
enhanced noise reduction.  
NOISE  
4
OUT  
4
5
V
V
Voltage regulator output.  
OUT  
SA00617  
Input supply voltage to regulator.  
IN  
Figure 2. Pin configuration.  
MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
MIN.  
–0.3  
–20  
MAX.  
12  
UNIT  
V
V
Input supply voltage  
IN  
T
Operating ambient temperature range  
Operating junction temperature  
+75  
140  
+125  
150  
140  
2000  
200  
230  
°C  
oper  
T
j
°C  
T
stg  
Storage temperature  
–40  
°C  
P
D
Power dissipation  
mW  
°C/W  
V
R
Thermal resistance from junction to ambient  
ESD damage threshold (Human Body Model); Note 1  
ESD damage threshold (Machine Model); Note 2  
Soldering temperature; Note 3  
th(j-a)  
ESD1  
ESD2  
V
V
V
T
°C  
solder  
NOTES:  
1. Performed in accordance with Human Body Model (CZap = 100 pF, RZap = 1500 ).  
2. Performed in accordance with Machine Model (CZap = 100 pF, RZap = 0 ).  
3. 60 second maximum exposure for SMD Reflow temperatures above 183 °C.  
3
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 25 °C, unless otherwise specified.  
SYMBOL  
PARAMETER  
Output voltage  
CONDITIONS  
+ 1.0 V; I  
MIN.  
– 2.0%  
TYP.  
MAX.  
V + 2.0%  
OUT  
UNIT  
V
V
V
IN  
= V  
= 30 mA  
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
I
Output current limit  
200  
240  
95  
mA  
µA  
LIM  
I
Q1  
Quiescent current (circuit ON)  
V
IN  
= V  
+ 1.0 V; ON/OFF = V  
IN;  
190  
OUT  
I
= 0 mA  
OUT  
I
Quiescent current (circuit OFF)  
Dropout voltage (Note 1)  
Line regulation  
V
= V  
+ 1.0 V; ON/OFF = 0 V  
OUT  
0.1  
0.2  
20  
µA  
V
Q2  
IN  
V
– V  
V
= V  
+ 0.2 V; I = 50 mA  
OUT  
0.1  
10  
IN  
OUT  
IN  
OUT  
Reg  
V
OUT  
+ 1.0 V V V + 10 V;  
OUT  
mV  
line  
IN  
I
= 50 mA  
OUT  
Reg  
Load regulation  
V
= V  
+ 1.0 V;  
100 mA  
30  
100  
70  
60  
mV  
µV/°C  
dB  
load  
IN  
OUT  
OUT  
0 mA I  
TCV  
Temperature coefficient of output  
voltage  
–20 °C T 75 °C;  
j
o
V
= V  
+ 1.0 V; I  
= 30 mA  
IN  
OUT  
OUT  
RR  
Ripple rejection ratio  
V
IN  
= V  
+ 1.0 V; I  
= 1.0 V ; f = 120 Hz  
= 30 mA;  
50  
OUT  
IN(Ripple)  
OUT  
V
P-P  
V
n
Output noise voltage  
V
IN  
= V  
+ 1.0 V; I  
= 30 mA;  
35  
µV  
rms  
OUT  
OUT  
20 Hz f 80 kHz;  
C = 0.01 µF  
n
I
ON/OFF input current  
V
= 1.6 V  
1.6  
–0.3  
5.0  
10  
µA  
ON/OFF  
ON/OFF  
V
V
ON/OFF threshold (logic HIGH)  
ON/OFF threshold (logic LOW)  
Thermal shutdown  
V
IN  
– 0.3 V  
0.4  
V
V
ON/OFF(H)  
ON/OFF(L)  
LIM  
T
125  
°C  
NOTE:  
1. Dropout voltage is a measure of the minimum input/output differential voltage at the specified output current.  
4
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
TYPICAL PERFORMANCE CURVES  
10  
400  
300  
200  
100  
0
I
– 30 mA  
PCB MOUNTED DEVICE  
(60 × 40 1.6 mm)  
OUT  
ON/OFF = V = V  
T
+ 1.0 V  
IN  
OUT  
= 25 °C  
amb  
5.0  
V
OUT  
UNMOUNTED DEVICE  
–5.0  
–10  
4.0  
6.0  
8.0  
, INPUT VOLTAGE (V)  
10  
12  
–50  
–25  
0
25  
50  
75  
100  
125  
V
T , TEMPERATURE (°C)  
amb  
IN  
SL01399  
SL01400  
Figure 3. Normalized line regulation versus input voltage.  
Figure 4. Power dissipation versus temperature.  
2.0  
9.0  
No output load  
V
= V  
OUT  
+ 1.0 V  
IN  
ON/OFF = V  
IN  
ON/OFF = V  
IN  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
T
amb  
= 25 °C  
T
amb  
= 25 °C  
1.5  
1.0  
0.5  
0
Typical 5.0 V Device  
Typical 3.0 V Device  
Typical 2.0 V Device  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
0
20  
40  
60  
80  
100  
120  
140  
160  
V
, INPUT VOLTAGE (V)  
I , OUTPUT CURRENT (mA)  
OUT  
IN  
SL01401  
SL01402  
Figure 5. Quiescent current versus input voltage.  
Figure 6. Ground current versus output current.  
300  
3.5  
3.0  
ON/OFF = V = V  
+ 1.0 V  
IN  
OUT  
T
= 25 °C  
amb  
250  
200  
150  
100  
50  
Shown for V  
ON/OFF = V = V  
= 3.0 V device  
OUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+ 1.0 V  
IN  
OUT  
T
amb  
= 25 °C  
0
0
40  
80  
120  
160  
200  
0
50  
100  
I , OUTPUT CURRENT (mA)  
OUT  
150  
200  
250  
300  
I
, OUTPUT CURRENT (mA)  
OUT  
SL01403  
SL01404  
Figure 7. Dropout voltage versus output current.  
Figure 8. Typical output current limit.  
5
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
1000  
–10  
–20  
0 V V 12 V  
V
V
C
= V  
OUT  
+ 1.0 V  
= 1.0 V  
IN  
IN  
UNSTABLE REGION  
STABLE REGION  
C
= 47 µF  
= 25 °C  
OUT  
OUT(ripple)  
= 47 µF  
OUT  
– 30 mA  
= 25 °C  
P-P  
T
amb  
I
–30  
–40  
–50  
–60  
–70  
–80  
–90  
OUT  
100  
10  
T
amb  
1.0  
UNSTABLE REGION  
0.1  
0.01  
0.1  
1.0  
, OUTPUT CURRENT (mA)  
10  
100  
10  
100  
1.0k  
10k  
100k  
1.0M  
I
f
(ripple)  
, RIPPLE FREQUENCY (Hz)  
OUT  
SL01411  
SL01408  
Figure 9. ESR stability versus output current.  
Figure 10. Ripple rejection ratio versus frequency.  
100  
20  
V
= V  
OUT  
+ 1.0 V  
V
= V  
OUT  
+ 1.0 V  
IN  
IN  
I
C
T
= 30 mA  
ON/OFF = V  
IN  
OUT  
10  
= 47 µF  
= 25 °C  
C
= 47 µF  
OUT  
OUT  
80  
60  
40  
20  
0
T
amb  
= 25 °C  
amb  
V
OUT  
–10  
–20  
–30  
–40  
–50  
0.001  
0.01  
C , NOISE BYPASS CAPACITANCE (µF)  
0.1  
0
40  
80  
, OUTPUT CURRENT (mA)  
OUT  
120  
160  
200  
I
n
SL01410  
SL01406  
Figure 11. Output noise versus noise capacitance.  
Figure 12. Normalized load regulation.  
0.6  
0.4  
0.2  
0
5.075  
ON/OFF = V  
IN  
Typical for 2.0 V V  
5.0 V devices  
OUT  
5.050  
5.025  
5.000  
4.975  
4.950  
I
= 30 mA  
OUT  
V
= V  
OUT  
+ 1.0 V  
IN  
ON/OFF = 0 V (Output OFF)  
= 0 mA  
I
OUT  
V
= 6.0 V  
IN  
Typical 5.0 V V  
device  
device  
OUT  
2.050  
V
= 3.0 V  
IN  
2.025  
2.000  
1.075  
Typical 2.0 V V  
OUT  
75  
–0.2  
–50  
–25  
0
25  
50  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01409  
SL01405  
Figure 13. Output voltage versus temperature.  
Figure 14. Quiescent current versus temperature.  
6
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
250  
200  
200  
Typical for 2.0 V V  
5.0 V devices  
Typical for 2.0 V V  
5.0 V devices  
OUT  
OUT  
V
= V  
OUT  
+ 1.0 V  
V
= V  
OUT  
+ 0.2 V  
IN  
IN  
180  
160  
ON/OFF = V (Output ON)  
ON/OFF = V (Output ON)  
IN  
IN  
I
= 0 mA  
I
= 60 mA  
OUT  
OUT  
150  
100  
140  
120  
100  
50  
0
80  
60  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01413  
SL01412  
Figure 15. Quiescent current versus temperature.  
Figure 16. Dropout voltage versus temperature.  
40  
1.6  
Typical for 2.0 V V  
5.0 V devices  
Typical for 2.0 V V  
5.0 V devices  
OUT  
OUT  
V
+ 1.0 V V V  
+ 10 V  
V
= V  
+ 1.0 V  
OUT  
IN  
OUT  
IN  
OUT  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
30  
20  
ON/OFF = V (Output ON)  
ON/OFF = 0.4 V  
IN  
I
= 30 mA  
OUT  
10  
0
–10  
–20  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01407  
SL01414  
Figure 17. Line regulation versus temperature.  
Figure 18. ON/OFF current versus temperature.  
5.5  
10  
V
= V  
+ 1.0 V  
IN  
OUT  
Typical for 2.0 V V  
5.0 V devices  
OUT  
ON/OFF = V (Output ON)  
0 mA I  
C
IN  
V
= V  
OUT  
+ 1.0 V  
IN  
100 mA  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
OUT  
ON/OFF = 1.6 V  
= 47 µF  
OUT  
0
V
OUT  
Typical 2.0 V device  
–10  
–20  
–30  
Typical 5.0 V device  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01416  
SL01415  
Figure 19. Load regulation variance versus temperature.  
Figure 20. ON/OFF pin current versus temperature.  
7
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
2.0  
Typical for 2.0 V V  
5.0 V devices  
OUT  
V
= V  
OUT  
+ 1.0 V  
1.8  
1.6  
1.4  
1.2  
IN  
HYSTERESIS  
V
(V  
(HIGH)  
ON/OFF  
OUT  
V  
– 2%  
OUT  
1.0  
0.8  
V
(LOW)  
ON/OFF  
(I 0.1 µA)  
IN  
0.6  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
SL01417  
Figure 21. ON/OFF threshold versus temperature.  
8
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
capacitors are smaller than electrolytic capacitors of the same  
TECHNICAL DESCRIPTION  
capacitance value. Tantalum capacitors also are not prone to  
dry-out. The electrolyte used in electrolytic capacitors tends to dry  
out with time, degrading the performance. Avoid using extremely low  
ESR film or ceramic capacitors to avoid instability problems. See  
Figure 9, ‘ESR stability versus output current’.  
The SA57001 is a family of series regulators incorporating a  
bandgap reference, two feedback amplifiers, a thermal shutdown  
circuit, and an output current limiting circuit. Both feedback  
amplifiers are referenced to the bandgap reference. See the device  
diagram shown in Figure 22.  
Keep in mind that the output capacitor tries to supply any  
instantaneous increase in load current from its stored energy. Using  
higher values of capacitance will enhance transient load performance  
as well as stability. Lowering the ESR of the capacitors will also  
improve the transient response to load current changes, but it will  
decrease stability.  
A PNP transistor in the device’s output serves as the series pass  
element. The output PNP pass transistor incorporates a dual  
collector.  
The first feedback amplifier monitors the first collector’s output  
voltage through the use of a voltage divider network fed directly from  
the output. The second collector produces a small current that is  
proportional to the output current. The proportional current flows  
through a resistor, generating a second feedback voltage that is  
proportional to the output current. This voltage is fed to the second  
feedback amplifier to limit the output current to a safe operating  
level.  
Noise reduction  
The noise reduction pin of the device is connected to the internal  
reference voltage node. Bypassing this pin to ground with a  
capacitor (0.01 µF typical) will reduce the output voltage noise for  
demanding applications. This also improves the AC performance by  
increasing ripple rejection.  
Both feedback amplifiers act on the same control node, to control  
the PNP pass transistor’s conduction. This dual path output  
monitoring maintains a constant output voltage while also limiting  
the output current.  
In addition, bypassing the input pin to ground with a capacitor  
(0.1 µF typical) will suppress input ripple form the power source.  
Thermal overload protection  
Stability factors: Capacitance and ESR  
The operating stability of linear regulators is determined by start-up  
delay, transient response to load currents, and stability of the  
feedback loop. The SA57001 has a fast transient loop response,  
with no built-in delay.  
When the junction temperature reaches approximately 150 °C, the  
thermal sensor signals the shutdown logic to turn off the pass  
transistor. After the junction temperature has cooled to below the  
thermal threshold, plus the hysteresis, the sensor signals the  
shutdown logic to turn the pass transistor on again. This will create a  
pulsed output during lengthy thermal overloads.  
Capacitors play an important part in compensating the regulator’s  
output. A 4.7 µF aluminum electrolytic capacitor is recommended for  
most applications, because they provide good performance with  
minimal cost. A tantalum capacitor can also be used. Tantalum  
NOTE: Thermal overload protection is to protect the device during  
fault conditions. Do not exceed the maximum junction-temperature  
rating of T = +150 °C during continuous operation.  
j
V
V
IN  
5
4
OUT  
THERMAL  
SHUTDOWN  
3
1
NOISE  
ON/OFF  
300 kΩ  
400 kΩ  
2
GND  
SL01419  
Figure 22. Functional diagram.  
9
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
APPLICATION INFORMATION  
Heat dissipation factors  
Heat generated within the device is removed to the surrounding  
environment by radiation or conduction along several paths. In  
general, radiated heat is dissipated directly into the surrounding  
ambient from the chip package and leads. Conducted heat flows  
through an intermediate material, such as the leads or thermal  
grease, to circuit board traces and heat sinks in direct contact with  
the device’s package or leads. The circuit board then radiates this  
heat to the ambient. For this reason, adequate airflow over the  
device and the circuit board is important.  
Power dissipation factors  
The thermal performance of linear regulators depends on the  
following parameters:  
Maximum junction temperature (T ) in °C  
j
Maximum ambient temperature (T ) in °C  
amb  
Power dissipation capability of the package in Watts (P )  
Junction-to-ambient thermal resistance in °C/W  
D
The Maximum Junction Temperature and Maximum Power  
Dissipation are both determined by the manufacturer’s process and  
device’s design. For the most part the ambient temperature is under  
the control of the user. The Maximum Ambient Temperature  
depends on the process used by the manufacturer. The package  
type and manufacturer’s process determines Junction-to-Ambient  
Thermal Resistance.  
The SOT23-5 package is too small to easily use external heat sinks  
to increase the surface area and enhance the dissipation of  
generated heat. Heat dissipation must depend primarily on radiated  
heat into the surrounding environment and the heat flow through the  
leads into the printed circuit board. Some improvement can be  
realized by allowing additional exposed copper on the circuit board  
near the device to serve as heat absorbers and dissipaters for the  
device.  
These parameters are related to each other as shown in the  
following equation:  
The overall thermal resistance from junction to the surrounding  
T = T  
+ (P × R  
)
th(j-a)  
ambient of the package (R  
) is made up of three series elements  
j
amb  
D
th(j-a)  
and can be thought of as the total resistance of a series electrical  
circuit. These elements are:  
The term (P × R  
ambient to the internal junction of the device.  
) represents the temperature rise from the  
th(j-a)  
D
R
R
R
= Thermal resistance from Junction-to-Case  
= Thermal resistance from Case-to-heat Sink  
= Thermal resistance from heat Sink-to-Ambient  
th(j-c)  
th(c-s)  
th(s-a)  
Power dissipation calculations  
A regulator’s maximum power dissipation can be determined by  
using the following equation:  
R
is based primarily on the package type and the size of the  
th(j-a)  
P
= V  
I
+ [V  
– V ] I  
OUT(min) OUT(max)  
D(max)  
IN(max) G  
IN(max)  
silicon chip used in the device. The composition of package  
materials plays an important part. High heat conductivity materials  
produce reduced Junction-to-Case resistances.  
where:  
V
is the maximum input voltage  
IN(max)  
R
value is based on the package type, heat sink interface, and  
th(c-s)  
I
G
is the maximum Ground Current at maximum output current  
contact area of the device to the heat sink. The use of thermal  
grease or an insulator will increase the transfer of heat from the  
case to the heat sink.  
V
I
is the minimum output voltage  
is the maximum output current  
OUT(min)  
OUT(max)  
(V I ) represents heat generated in the device due to internal  
IN(max) G  
R
, which is thermal resistance from heat sink to the ambient, is  
th(s-a)  
circuit biasing, leakage, etc. [V  
– V  
] is the  
OUT(min)  
IN(max)  
based on heat sink emissivity and airflow over the heat sink to carry  
the heat away. The heat sink to ambient heat flow is dependent on  
the ability of the surrounding ambient media to absorb the heat.  
input-to-output voltage drop across the device due to the I  
OUT(max)  
current. When multiplied by I  
, this represents heat  
OUT(max)  
generated in the device due to the output load current. Heat  
generated by the device represents lost energy (an inefficiency).  
The total R  
thermal resistance is expressed as:  
th(j-a)  
The SA57001 device should not be operated under conditions that  
would cause a junction temperature of 150 °C to be generated  
because the thermal shutdown protection circuit will shut down the  
device at or near this temperature.  
R
= R  
+ R  
+ R  
th(c-s) th(s-a)  
th(j-a)  
th(j-c)  
The maximum power that a given package can handle is given by:  
Tj(max) * Tamb  
PD  
+
Rth(j*a)  
10  
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
DEFINITIONS  
Line regulation is the change in output voltage caused by a change  
in input line voltage. This parameter is measured using pulse  
measurement techniques or under conditions of low power  
dissipation so as to not significantly upset the thermal dynamics of  
the device during test.  
Output noise is the integrated output noise voltage specified over a  
frequency range and expressed in nV/kHz or V . It is measured  
rms  
with the input voltage and output load current held constant during  
test.  
Current limiting is internal device circuitry incorporated to limit the  
output current of the device. This feature is incorporated in the  
device to protect the device against output over current conditions or  
output shorts to ground.  
Load regulation is the change in output voltage caused by a  
change in output load current and is measured in a manner which  
will not cause significant heating of the device during test.  
Quiescent current is that current which flows to the ground pin of  
the device when the device is operated with no output current  
flowing.  
Thermal shutdown is internal device circuitry incorporated in the  
device to shut down the device when the chip temperature reaches  
a specified temperature. This feature protects the device from  
excessive operating temperatures that would otherwise be  
catastrophic to the device. Over heating can be created by  
accidental output shorts.  
Ground current is that current which flows to the ground pin of the  
device when the device is operated with output current flowing due  
to an applied load. It is the measurement difference of input current  
minus the output current.  
Dropout voltage is the input/output differential voltage at which the  
regulator ceases to maintain specified output regulation if the input  
voltage is reduced. It is highly influenced by device junction  
temperature and load current.  
TEST CIRCUITS AND TEST SET-UP TABLES  
V
V
OUT  
IN  
5
4
C
C
OUT  
4.7 µF  
(ALUMINUM,  
IN  
0.01 µF  
(CERAMIC)  
SA57001-XX  
1.8 V  
to  
12 V  
ELECTROLYTIC)  
NOISE  
1
3
ON/OFF  
C
N
2
GND  
0.01 µF  
SL01420  
Figure 23. Test circuit 1.  
11  
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
PACKING METHOD  
The SA57001-XX is packed in reels, as shown in Figure 24.  
GUARD  
BAND  
TAPE  
TAPE DETAIL  
REEL  
ASSEMBLY  
COVER TAPE  
CARRIER TAPE  
BARCODE  
LABEL  
BOX  
SL01305  
Figure 24. Tape and reel packing method  
12  
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
Plastic small outline package; 5 leads; body width 1.6 mm  
SOP003  
13  
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
REVISION HISTORY  
Rev  
Date  
Description  
_3  
20031016  
Product data (9397 750 11881); ECN 853-2274 30176 of 01 August 2003.  
Supersedes data of 2003 Mar 20 (9397 750 11127).  
Modifications:  
Add ‘Marking code’ table to Ordering Information section on page 3.  
Change package outline to SOP003.  
_2  
_1  
20030320  
20010801  
Product data (9397 750 11127); ECN 853-2274 29154 of 06 November 2002.  
Supersedes data of 2001 Aug 01 (9397 750 08717).  
Product data (9397 750 08717); ECN 853-2274 26807 of 01 August 2001.  
14  
2003 Oct 16  
Philips Semiconductors  
Product data  
Microminiature, low power consumption,  
low dropout regulator  
SA57001-XX  
Data sheet status  
Product  
status  
Definitions  
[1]  
Level  
Data sheet status  
[2] [3]  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
LimitingvaluesdefinitionLimiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given  
in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no  
representation or warranty that such applications will be suitable for the specified use without further testing or modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be  
expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree  
to fully indemnify Philips Semiconductors for any damages resulting from such application.  
Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described  
or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated  
viaaCustomerProduct/ProcessChangeNotification(CPCN).PhilipsSemiconductorsassumesnoresponsibilityorliabilityfortheuseofanyoftheseproducts,conveys  
nolicenseortitleunderanypatent, copyright, ormaskworkrighttotheseproducts, andmakesnorepresentationsorwarrantiesthattheseproductsarefreefrompatent,  
copyright, or mask work right infringement, unless otherwise specified.  
Koninklijke Philips Electronics N.V. 2003  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 10-03  
9397 750 11881  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY