SA575D [NXP]

Low voltage compandor; 低压扩
SA575D
型号: SA575D
厂家: NXP    NXP
描述:

Low voltage compandor
低压扩

模拟计算功能 信号电路 光电二极管
文件: 总14页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF COMMUNICATIONS PRODUCTS  
SA575  
Low voltage compandor  
Product specification  
Replaces data of 1997 June 28  
1997 Nov 07  
IC17  
Philip s Se m ic ond uc tors  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
DESCRIPTION  
PIN CONFIGURATION  
The SA575 is a precision dual gain control circuit designed for low  
voltage applications. The SA575’s channel 1 is an expandor, while  
channel 2 can be configured either for expandor, compressor, or  
automatic level controller (ALC) application.  
1
D and DK Packages  
1
2
3
4
5
6
7
8
+V  
-V  
V
20 V  
IN1  
IN1  
CC  
19 +V  
18 -V  
IN2  
IN2  
OUT  
FEATURES  
1
17 V  
RECT. IN1  
OUT2  
Operating voltage range from 3V to 7V  
16 RECT.IN2  
C
RECT1  
Reference voltage of 100mV  
= 0dB  
RMS  
SUM OUT 1  
COMP. IN1  
15 C  
RECT2  
One dedicated summing op amp per channel and two extra  
14 SUM OUT2  
uncommitted op amps  
13 COMP.IN2  
V
REF  
600drive capability  
12 SUM NODE 2  
9
GAIN CELL IN1  
GND  
Single or split supply operation  
Wide input/output swing capability  
3000V ESD protection  
10  
11 GAIN CELL IN2  
NOTE:  
1. Available in large SOL package only.  
SR00703  
Figure 1. Pin Configuration  
APPLICATIONS  
Portable broadcast mixers  
Wireless microphones  
Modems  
Portable communications  
Cellular radio  
Cordless telephone  
Consumer audio  
Electric organs  
Hearing aids  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
-40 to +85°C  
ORDER CODE  
DWG  
20-Pin Plastic Small Outline Large  
20-Pin Plastic Shrink Small Outline Package (SSOP)  
SA575D  
SOT163-1  
SOT266-1  
-40 to +85°C  
SA575DK  
ABSOLUTE MAXIMUM RATINGS  
RATING  
SA575  
SYMBOL  
PARAMETER  
UNITS  
V
Single supply voltage  
–0.3 to 8  
V
V
CC  
V
Voltage applied to any other pin  
Operating ambient temperature range  
Storage temperature range  
–0.3 to (V +0.3)  
IN  
CC  
T
-40 to +85  
-65 to +150  
112  
°C  
A
T
STG  
°C  
θ
Thermal impedance  
SOL  
°C/W  
°C/W  
JA  
SSOP  
117  
2
1997 Nov 07  
853-1665 18666  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
BLOCK DIAGRAM and TEST CIRCUIT  
0.1µF  
V
+5V  
CC  
C15  
GND  
10µF  
+
1
20  
575  
V
CC  
V
IN  
+
+
2
19  
18  
17  
16  
15  
14  
13  
12  
11  
C14  
R13  
10k  
OP AMP  
V
REF  
C3  
V
3
4
OUT  
+
10µF  
OP AMP  
3.8k  
C11  
+
5
4.7µF  
+
3.8k  
C
RECT  
2.2µF  
C10  
C
RECT  
Σ
+
6
V
OUT  
+
2.2µF  
GND  
10µF  
Σ
C6  
7
10k  
V
V
IN  
+
10µF  
R8  
V
8
REF  
REF  
30k  
10k  
10k  
+
R7  
9
G  
10µF  
+
10k  
30k  
1µF  
C8  
G  
10  
GND  
GND  
GND  
GND  
SR00704  
Figure 2. Block Diagram and Test Circuit  
DC ELECTRICAL CHARACTERISTICS  
Typical values are at T = 25°C. Minimum and Maximum values are for the full operating temperature range: -40 to +85°C for SA575, except  
A
SSOP package is tested at +25°C only. V = 5V, unless otherwise stated. Both channels are tested in the Expandor mode (see Test Circuit)  
CC  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
SA575  
TYP  
UNITS  
MIN  
MAX  
For compandor, including summing amplifier  
1
V
Supply voltage  
Supply current  
Reference voltage  
3
3
5
7
V
CC  
CC  
I
No signal  
4.2  
2.5  
5.5  
2.6  
mA  
V
2
V
REF  
V
CC  
= 5V  
2.4  
10  
R
Summing amp output load  
Total harmonic distortion  
Output voltage noise  
Unity gain level  
kΩ  
%
L
THD  
1kHz, 0dB BW = 3.5kHz  
0.12  
6
1.5  
30  
E
NO  
BW = 20kHz, R = 0Ω  
µV  
dB  
mV  
mV  
S
0dB  
1kHz  
-1.5  
-150  
-100  
1.5  
150  
100  
V
OS  
Output voltage offset  
Output DC shift  
No signal  
No signal to 0dB  
Gain cell input = 0dB, 1kHz  
Rectifier input = 6dB, 1kHz  
-1.0  
-1.0  
1.0  
1.0  
dB  
dB  
Gain cell input = 0dB, 1kHz  
Rectifier input = -30dB, 1kHz  
Tracking error relative to 0dB  
3
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
DC ELECTRICAL CHARACTERISTICS (cont.)  
LIMITS  
SA575  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MAX  
MIN  
Crosstalk  
For operational amplifier  
Output swing  
1kHz, 0dB, C  
= 220µF  
-80  
-65  
dB  
REF  
V
O
R = 10kΩ  
L
V
-0.4  
V
CC  
V
CC  
R
Output load  
1kHz  
600  
L
CMR  
Input common-mode range  
Common-mode rejection ratio  
Input bias current  
Input offset voltage  
Open-loop gain  
0
V
V
CC  
CMRR  
60  
-1  
80  
dB  
µA  
mV  
dB  
V/µs  
MHz  
µV  
dB  
I
B
V
IN  
= 0.5V to 4.5V  
1
V
OS  
3
A
VOL  
R = 10kΩ  
L
80  
1
SR  
Slew rate  
Unity gain  
Unity gain  
GBW  
Bandwidth  
3
E
NI  
Input voltage noise  
Power supply rejection ratio  
BW = 20kHz  
1kHz, 250mV  
2.5  
60  
PSRR  
NOTES:  
1. Operation down to V = 2V is possible, but performance is reduced. See curves in Figure 7a and 7b.  
CC  
2. Reference voltage, V  
, is typically at 1/2V  
.
REF  
CC  
better filtered the power supply, the smaller this capacitor can be.  
R12 provides DC reference voltage to the amplifier of channel B.  
R6 and R7 provide a DC feedback path for the summing amp of  
channel B, while C7 is a short-circuit to ground for signals. C14 and  
C15 are for power supply decoupling. C14 can also be eliminated if  
the power supply is well regulated with very low noise and ripple.  
FUNCTIONAL DESCRIPTION  
This section describes the basic subsystems and applications of the  
SA575 Compandor. More theory of operation on compandors can  
be found in AN174 and AN176. The typical applications of the  
SA575 low voltage compandor in an Expandor (1:2), Compressor  
(2:1) and Automatic Level Control (ALC) function are explained.  
These three circuit configurations are shown in Figures 3, 4, 5  
respectively.  
DEMONSTRATED PERFORMANCE  
The applications demo board was built and tested for a frequency  
range of 20Hz to 20kHz with the component values as shown in  
The SA575 has two channels for a complete companding system.  
The left channel, A, can be configured as a 1:2 Expandor while the  
right channel, B, can be configured as either a 2:1 Compressor, a  
1:2 Expandor or an ALC. Each channel consists of the basic  
companding building blocks of rectifier cell, variable gain cell,  
Figure 6 and V = 5V. In the expandor mode, the typical input  
CC  
dynamic range was from -34dB to +12dB where 0dB is equal to  
100mV  
. The typical unity gain level measured at 0dB @ 1kHz  
RMS  
input was +0.5dB and the typical tracking error was +0.1dB for input  
range of -30 to +10dB.  
summing amplifier and V  
cell. In addition, the SA575 has two  
REF  
additional high performance uncommitted op amps which can be  
utilized for application such as filtering, pre-emphasis/de-emphasis  
or buffering.  
In the compressor mode, the typical input dynamic range was from  
-42dB to +18dB with a tracking error +0.1dB and the typical unity  
gain level was +0.5dB.  
In the ALC mode, the typical input dynamic range was from -42dB to  
+8dB with typical output deviation of +0.2dB about the nominal  
output of 0dB. For input greater than +9dB in ALC configuration, the  
summing amplifier sometimes exhibits high frequency oscillations.  
There are several solutions to this problem. The first is to lower the  
values of R6 and R7 to 20keach. The second is to add a current  
limiting resistor in series with C12 at Pin 13. The third is to add a  
compensating capacitor of about 22 to 30pF between the input and  
output of summing amplifier (Pins 12 and 14). With any one of the  
above recommendations, the typical ALC mode input range  
increased to +18dB yielding a dynamic range of over 60dB.  
Figure 6 shows the complete schematic for the applications demo  
board. Channel A is configured as an expandor while channel B is  
configured so that it can be used either as a compressor or as an  
ALC circuit. The switch, S1, toggles the circuit between compressor  
and ALC mode. Jumpers J1 and J2 can be used to either include  
the additional op amps for signal conditioning or exclude them from  
the signal path. Bread boarding space is provided for R1, R2, C1,  
C2, R10, R11, C10 and C11 so that the response can be tailored for  
each individual need. The components as specified are suitable for  
the complete audio spectrum from 20Hz to 20kHz.  
The most common configuration is as a unity gain non-inverting  
buffer where R1, C1, C2, R10, C10 and C11 are eliminated and R2  
and R11 are shorted. Capacitors C3, C5, C8, and C12 are for DC  
blocking. In systems where the inputs and outputs are AC coupled,  
these capacitors and resistors can be eliminated. Capacitors C4  
and C9 are for setting the attack and release time constant.  
EXPANDOR  
The typical expandor configuration is shown in Figure 3. The  
variable gain cell and the rectifier cell are in the signal input path.  
The V  
is always 1/2 V to provide the maximum headroom  
CC  
REF  
without clipping. The 0dB ref is 100mV  
. The input is AC  
RMS  
coupled through C5, and the output is AC coupled through C3. If in  
a system the inputs and outputs are AC coupled, then C3 and C5  
can be eliminated, thus requiring only one external component, C4.  
The variable gain cell and rectifier cell are DC coupled so any offset  
C6 is for decoupling and stabilizing the voltage reference circuit.  
The value of C6 should be such that it will offer a very low  
impedance to the lowest frequencies of interest. Too small a  
capacitor will allow supply ripple to modulate the audio path. The  
4
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
voltage between Pins 4 and 9 will cause small offset error current in  
the rectifier cell. This will affect the accuracy of the gain cell. This  
can be improved by using an extra capacitor from the input to Pin 4  
and eliminating the DC connection between Pins 4 and 9.  
The expandor gain expression and the attack and release time  
constant is given by Equation 1 and Equation 2, respectively.  
Equation 3.  
1/2  
3.8k x 100µA  
Compressor gain =  
4V (avg)  
IN  
where V (avg) = 0.95V  
IN  
IN(RMS)  
Equation 1.  
Equation 4.  
4V (avg)  
IN  
τ
= τ = 10k x C  
= 10k x C4  
R
A
RECT  
Expandor gain =  
3.8k x 100µA  
AUTOMATIC LEVEL CONTROL  
where V (avg) = 0.95V  
IN  
IN(RMS)  
The typical Automatic Level Control circuit configuration is shown in  
Figure 5. It can be seen that it is quite similar to the compressor  
schematic except that the input to the rectifier cell is from the input  
path and not from the feedback path. The input is AC coupled  
through C12 and C13 and the output is AC coupled through C8.  
Once again, as in the previous cases, if the system input and output  
signals are already AC coupled, then C12, C13 and C8 could be  
eliminated. Concerning the compressor, removing R6, R7 and C7  
Equation 2.  
τ
= τ = 10k x C  
= 10k x C4  
R
A
RECT  
COMPRESSOR  
The typical compressor configuration is shown in Figure 4. In this  
mode, the rectifier cell and variable gain cell are in the feedback  
path. R6 and R7 provide the DC feedback to the summing amplifier.  
The input is AC coupled through C12 and output is AC coupled  
through C8. In a system with inputs and outputs AC coupled, C8  
and C12 could be eliminated and only R6, R7, C7, and C13 would  
be required. If the external components R6, R7 and C7 are  
eliminated, then the output of the summing amplifier will motor-boat  
in absence of signals or at extremely low signals. This is because  
there is no DC feedback path from the output to input. In the  
presence of an AC signal this phenomenon is not observed and the  
circuit will appear to function properly.  
will cause motor-boating in absence of signals. C  
is necessary  
COMP  
to stabilize the summing amplifier at higher input levels. This circuit  
provides an input dynamic range greater than 60dB with the output  
within +0.5dB typical. The necessary design expressions are given  
by Equation 5 and Equation 6, respectively.  
Equation 5.  
3.8k x 100µA  
ALC gain =  
4V (avg)  
IN  
Equation 6.  
The compressor gain expression and the attack and release time  
constant is given by Equation 3 and Equation 4, respectively.  
τ
= τ = 10k x C  
= 10k x C9  
R
A
RECT  
7
6
10k  
C5  
9
EXP IN  
C3  
G  
Σ
10µF  
10k  
EXP OUT  
10µF  
4
3.8k  
5
8
2.2µF  
C4  
V
REF  
SR00705  
Figure 3. Typical Expandor Configuration  
5
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
R6  
R7  
30k  
30k  
1µF  
C7  
V
REF  
8
12  
C8  
Σ
14  
11  
C12  
13  
COMP OUT  
10µF  
COMP IN  
10k  
10µF  
G  
10k  
C13  
16  
3.8k  
4.7µF  
15  
2.2µF  
C9  
SR00706  
Figure 4. Typical Compressor Configuration  
R7  
R6  
30k  
30k  
1µF  
C7  
C COMP  
V
22pF  
REF  
8
12  
C8  
Σ
14  
C12  
ALC OUT  
13  
10µF  
ALC IN  
10µF  
10k  
11  
G  
10k  
C13  
16  
4.7µF  
3.8k  
16  
2.2µF  
C9  
SR00707  
Figure 5. Typical ALC Configuration  
6
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
V
-5V  
CC  
C15  
V
REF  
0.1µF  
C14  
+
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
575  
V
R12  
47µF  
CC  
10k  
C12  
COMP/  
R1  
+
ALC  
IN  
OP AMP  
10µF  
C1  
C2  
R2  
R10  
3
C10  
R11  
OP AMP  
C3  
C11  
J2  
J1  
EXP  
OUT  
4
10µF  
3.8k  
C13  
ALC  
5
S1  
4.7µF  
3.8k  
COMP  
C4  
2.2µF  
C9  
Σ
6
2.2µF  
Σ
C5  
10µF  
7
EXP  
IN  
10k  
V
C8  
COMP/  
ALC  
OUT  
8
REF  
R7  
30k  
10µF  
10k  
10k  
V
REF  
R6  
C6  
10µF  
9
G  
C7  
1µF  
30k  
10k  
G  
10  
GND  
SR00708  
Figure 6. SA575 Low Voltage Expandor/Compressor/ALC Demo Board  
7
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
V
V
7V  
5V  
CC  
CC  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
V
V
3V  
2V  
CC  
CC  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
a. Unity Gain Error vs Temperature and V  
CC  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
V
V
7V  
CC  
5V  
CC  
V
V
3V  
2V  
CC  
CC  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
b. I vs Temperature and V  
CC  
CC  
SR00709  
Figure 7. Temperature and V Curves  
CC  
8
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
TYPICAL PERFORMANCE CHARACTERISTICS  
GENERAL DIAGRAM  
4.7µF  
8
10µF  
6
4
2
0
10dB IN  
REC  
SUM  
G  
INPUT  
(20–20kHz)  
OUTPUT  
V
= 5V  
0dB IN  
CC  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
-40dB IN  
–22  
10  
100  
1000  
10000  
30000  
FREQUENCY (Hz)  
SR00710  
Figure 8. Compressor Output Frequency Response  
9
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
8
INPUT  
(20–20kHz)  
GENERAL DIAGRAM  
6
4
2
0
2.5dB IN  
4.7µF  
REC  
OUTPUT  
SUM  
G  
0dB IN  
10µF  
V
= 5V  
CC  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
-10dB IN  
–22  
10  
100  
1000  
10000  
30000  
FREQUENCY (Hz)  
SR00711  
Figure 9. Expandor Output Frequency Response  
10  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
COMPRESSOR IN  
+10dB  
EXPANDOR OUT  
+10dB  
+5dB  
0dB  
100mV  
0dB  
100mV  
0dB  
–5dB  
–10dB  
–10dB  
–20dB  
–10dB  
–20dB  
–15dB  
–20dB  
–25dB  
–30dB  
–40dB  
–50dB  
–30dB  
–40dB  
–50dB  
COMPRESSION  
EXPANSION  
SR00712  
Figure 10. The Companding Function  
11  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
12  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
13  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Low voltage compandor  
SA575  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
Preproduction Product  
Full Production  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1997  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Philips  
Semiconductors  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY