SA58671UK-G [NXP]

IC,AUDIO AMPLIFIER,DUAL,BGA,16PIN,PLASTIC;
SA58671UK-G
型号: SA58671UK-G
厂家: NXP    NXP
描述:

IC,AUDIO AMPLIFIER,DUAL,BGA,16PIN,PLASTIC

音频放大器
文件: 总24页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SA58671  
1.2 W/channel stereo class-D audio amplifier  
Rev. 02 — 24 October 2008  
Product data sheet  
1. General description  
The SA58671 is a stereo, filter-free class-D audio amplifier which is available in a  
16 bump WLCSP (Wafer Level Chip-Size Package).  
The SA58671 features independent shutdown controls for each channel. The gain can be  
set at 6 dB, 12 dB, 18 dB or 24 dB using G0 and G1 gain select pins. Improved immunity  
to noise and RF rectification is increased by high PSRR and differential circuit topology.  
Fast start-up time and very small WLCSP package makes it an ideal choice for both  
cellular handsets and PDAs.  
The SA58671 delivers 1.3 W/channel at 5 V and 720 mW/channel at 3.6 V into 8 . It  
delivers 1.2 W/channel at 5 V into 4 . The maximum power efficiency is excellent at  
70 % to 74 % into 4 and 84 % to 88 % into 8 . The SA58671 provides thermal and  
short-circuit shutdown protection.  
2. Features  
I Output power:  
N 1.2 W/channel into 4 at 5 V  
N 1.3 W/channel into 8 at 5 V  
N 720 mW/channel into 8 at 3.6 V  
I Supply voltage: 2.5 V to 5.5 V  
I Independent shutdown control for each channel  
I Selectable gain: 6 dB, 12 dB, 18 dB and 24 dB  
I High SVRR: 77 dB at 217 Hz  
I Fast start-up time: 3.5 ms  
I Low supply current  
I Low shutdown current  
I Short-circuit and thermal protection  
I Space savings with 2.06 mm × 2.11 mm 16 bump WLCSP package  
I Low junction to ambient thermal resistance of 110 K/W with adequate heat sinking of  
WLCSP  
3. Applications  
I Wireless and cellular handsets and PDA  
I Portable DVD player  
I USB speaker  
I Notebook PC  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
I Portable radio and gaming  
I Educational toy  
4. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
SA58671UK  
WLCSP16 wafer level chip-size package; 16 bumps;  
SA58671UK  
2.06 × 2.11 × 0.6 mm  
5. Block diagram  
PVDD  
A2  
SA58671  
PGND  
C4  
D3  
OUTRP  
INRP D1  
GAIN  
ADJUST  
H-  
BRIDGE  
right input  
PWM  
INRN C1  
OUTRN  
D4  
INTERNAL  
OSCILLATOR  
OUTLP  
OUTLN  
A3  
A4  
INLP A1  
INLN B1  
GAIN  
ADJUST  
H-  
BRIDGE  
left input  
PWM  
G0 C2  
G1 B2  
SDR B3  
AVDD  
AGND  
D2  
C3  
300 kΩ  
300 kΩ  
BIAS  
CIRCUITRY  
SHORT-CIRCUIT  
PROTECTION  
SDL B4  
001aah390  
Refer to Table 6 for gain selection.  
Fig 1. Block diagram  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
2 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
6. Pinning information  
6.1 Pinning  
bump A1  
index area  
SA58671UK  
1
2
3
4
A
B
C
D
1
2
3
4
A
B
C
D
INLP  
PVDD OUTLP OUTLN  
INLN  
INRN  
INRP  
G1  
G0  
SDR  
SDL  
AGND PGND  
AVDD OUTRP OUTRN  
002aac868  
Transparent top view  
001aah181  
Transparent top view.  
Fig 2. Pin configuration for WLCSP16  
Fig 3. Bump mapping for WLCSP16  
6.2 Pin description  
Table 2.  
Symbol  
Pin description  
Pin Description  
INLP  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
left channel positive input  
INLN  
left channel negative input  
right channel negative input  
right channel positive input  
power supply voltage (level same as AVDD)  
gain select input 1  
INRN  
INRP  
PVDD  
G1  
G0  
gain select input 0  
AVDD  
OUTLP  
SDR  
analog supply voltage (level same as PVDD)  
left channel positive output  
right channel shutdown input (active LOW)  
analog ground  
AGND  
OUTRP  
OUTLN  
SDL  
right channel positive output  
left channel negative output  
left channel shutdown input (active LOW)  
power ground  
PGND  
OUTRN  
right channel negative output  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
3 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
7. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
Unit  
V
[1]  
VDD  
supply voltage  
active mode  
shutdown mode  
+6.0  
+7.0  
V
VI  
P
input voltage  
VDD + 0.3  
V
power dissipation  
derating factor  
9.12 mW/K  
Tamb = 25 °C  
Tamb = 75 °C  
Tamb = 85 °C  
operating in free air  
operating  
-
1.2  
W
-
690  
600  
+85  
+150  
+85  
mW  
mW  
°C  
-
Tamb  
Tj  
ambient temperature  
junction temperature  
storage temperature  
40  
40  
65  
°C  
Tstg  
°C  
[1] VDD is the supply voltage on pin PVDD and pin AVDD.  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
4 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
8. Static characteristics  
Table 4.  
Static characteristics  
Tamb = 25 °C; unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Typ  
-
Max  
5.5  
9
Unit  
V
supply voltage  
supply current  
operating  
2.5  
IDD  
VDD = 5.5 V; no load  
VDD = 3.6 V; no load  
VDD = 2.5 V; no load  
no input signal;  
-
-
-
-
6
mA  
mA  
mA  
nA  
5
7.5  
6
4
IDD(sd)  
shutdown mode supply current  
output offset voltage  
10  
1000  
VSDR = VSDL = GND  
|VO(offset)  
|
measured differentially;  
inputs AC grounded;  
-
5
25  
mV  
Gv(cl) = 6 dB;  
VDD = 2.5 V to 5.5 V  
PSRR  
Vi(cm)  
power supply rejection ratio  
common-mode input voltage  
common mode rejection ratio  
V
DD = 2.5 V to 5.5 V  
-
75  
-
55  
dB  
V
0.5  
-
V
DD 0.8  
CMRR  
inputs are shorted together;  
VDD = 2.5 V to 5.5 V  
69  
50  
dB  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
VDD = 2.5 V to 5.5 V;  
pins SDL, SDR, G0, G1  
1.3  
0
-
-
VDD  
V
V
VDD = 2.5 V to 5.5 V;  
0.35  
pins SDL, SDR, G0, G1  
IIH  
HIGH-level input current  
VDD = 5.5 V; VI = VDD  
VDD = 5.5 V; VI = 0 V  
VDD = 5.5 V  
-
-
50  
5
µA  
IIL  
LOW-level input current  
-
-
µA  
RDSon  
drain-source on-state resistance  
-
500  
570  
700  
2
-
mΩ  
mΩ  
mΩ  
kΩ  
kHz  
dB  
VDD = 3.6 V  
-
-
VDD = 2.5 V  
-
-
Zo(sd)  
fsw  
shutdown mode output impedance VSDR = VSDL = 0.35 V  
-
-
switching frequency  
VDD = 2.5 V to 5.5 V  
VG0 = VG1 = 0.35 V  
VG0 = VDD; VG1 = 0.35 V  
VG0 = 0.35 V; VG1 = VDD  
VG0 = VG1 = VDD  
250  
5.5  
11.5  
17.5  
23.5  
300  
6
350  
6.5  
12.5  
18.5  
24.5  
Gv(cl)  
closed-loop voltage gain  
12  
18  
24  
dB  
dB  
dB  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
5 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
9. Dynamic characteristics  
Table 5.  
Dynamic characteristics  
Tamb = 25 °C; RL = 8 ; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Po  
output power  
per channel; f = 1 kHz; THD+N = 10 %  
RL = 8 ; VDD = 5.0 V  
RL = 8 ; VDD = 3.6 V  
RL = 4 ; VDD = 5.0 V  
VDD = 5.0 V; Gv(cl) = 6 dB; f = 1 kHz  
Po = 1 W  
-
-
-
1.3  
-
-
-
W
W
W
0.72  
1.2  
THD+N  
SVRR  
total harmonic  
distortion-plus-noise  
-
-
0.14  
0.11  
-
-
%
%
Po = 0.5 W  
supply voltage ripple  
rejection  
Gv(cl) = 6 dB; f = 217 Hz  
VDD = 5.0 V  
-
-
-
77  
73  
69  
-
-
-
dB  
dB  
dB  
VDD = 3.6 V  
CMRR  
Zi  
common mode rejection VDD = 5.0 V; Gv(cl) = 6 dB; f = 217 Hz  
ratio  
input impedance  
Gv(cl) = 6 dB  
Gv(cl) = 12 dB  
Gv(cl) = 18 dB  
Gv(cl) = 24 dB  
VDD = 3.6 V  
-
-
-
-
-
28.1  
17.3  
9.8  
-
-
-
-
-
kΩ  
kΩ  
kΩ  
kΩ  
ms  
5.2  
td(sd-startup)  
Vn(o)  
delay time from  
shutdown to start-up  
3.5  
output noise voltage  
VDD = 3.6 V; f = 20 Hz to 20 kHz;  
inputs are AC grounded  
no weighting  
A weighting  
-
-
35  
27  
-
-
µV  
µV  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
6 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
10. Typical performance curves  
001aah165  
60  
α
ct  
(dB)  
80  
(1)  
(2)  
100  
(3)  
(4)  
120  
3
4
5
10  
10  
10  
f (Hz)  
(1) VDD = 3.6 V; L channel to R channel  
(2) VDD = 3.6 V; R channel to L channel  
(3) VDD = 5.0 V; L channel to R channel  
(4) VDD = 5.0 V; R channel to L channel  
Fig 4. Crosstalk (stepped all-to-one) as a function of frequency  
001aah164  
3  
10  
V
n(o)  
(V)  
4  
5  
-6  
10  
(1)  
(2)  
10  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
(1) Left channel  
(2) Right channel  
Fig 5. RMS output noise voltage as a function of frequency  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
7 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah167  
2
10  
THD+N  
(%)  
(1) (2) (3)  
10  
1
1  
10  
2  
10  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
10  
P
(W)  
o
a. RL = 8 Ω  
001aah168  
2
10  
THD+N  
(%)  
(1)  
(2) (3)  
10  
1
1  
10  
2  
10  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
10  
P
(W)  
o
b. RL = 4 Ω  
(1) VDD = 2.5 V  
(2) VDD = 3.6 V  
(3) VDD = 5.0 V  
Fig 6. Total harmonic distortion-plus-noise as a function of output power; Gv(cl) = 6 dB  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
8 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah170  
10  
THD+N  
(%)  
(1)  
(2)  
(3)  
1
1  
10  
10  
2  
5  
4  
4  
4  
3  
3  
3  
2  
2  
2  
1  
1  
1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1
1
1
10  
P
P
P
(W)  
o
a. VDD = 3.0 V  
001aah169  
10  
THD+N  
(%)  
(1)  
(2)  
(3)  
1
1  
10  
2  
10  
5  
10  
10  
(W)  
o
b. VDD = 3.6 V  
001aah171  
10  
THD+N  
(%)  
(1)  
(2)  
(3)  
1
1  
10  
2  
10  
5  
10  
10  
(W)  
o
c. VDD = 4.2 V  
(1) fi = 1 kHz  
(2) fi = 3 kHz  
(3) fi = 5 kHz  
Fig 7. Total harmonic distortion-plus-noise as a function of output power; RL = 8 ;  
v(cl) = 6 dB  
G
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
9 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah172  
10  
THD+N  
(%)  
1
(1)  
(2)  
(3)  
1  
10  
2  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
a. RL = 8 Ω  
001aah173  
10  
THD+N  
(%)  
(1)  
1
1  
10  
(2)  
(3)  
2  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
b. RL = 4 Ω  
(1) VI = 900 mV  
(2) VI = 725 mV  
(3) VI = 525 mV  
Fig 8. Total harmonic distortion-plus-noise as a function of frequency; VDD = 3.6 V  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
10 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah174  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
a. channel 1  
001aah556  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
b. channel 2  
Fig 9. FFT spectrum as a function of frequency; fi = 1 kHz; VI = 0 dB; VDD = 3.6 V;  
RL = 8 Ω  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
11 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah175  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
a. channel 1  
001aah557  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
b. channel 2  
Fig 10. FFT spectrum as a function of frequency; fi = 1 kHz; VI = 10 dB; VDD = 3.6 V;  
RL = 8 Ω  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
12 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah176  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
a. channel 1  
001aah558  
20  
FFT  
(dB)  
20  
60  
100  
140  
0
4
8
12  
16  
20  
f (kHz)  
b. channel 2  
Fig 11. FFT spectrum as a function of frequency; fi = 1 kHz; VI = 20 dB; VDD = 3.6 V;  
RL = 8 Ω  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
13 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah391  
001aah392  
+20  
+20  
FFT  
(dB)  
FFT  
(dB)  
20  
20  
60  
60  
100  
140  
100  
140  
0
8
16  
24  
0
8
16  
24  
f (kHz)  
f (kHz)  
a. VI = 0 dB  
b. VI = 10 dB  
001aah393  
+20  
FFT  
(dB)  
20  
60  
100  
140  
0
8
16  
24  
f (kHz)  
c. VI = 20 dB  
Fig 12. FFT spectrum as a function of frequency; fi = 3 kHz; VDD = 3.6 V; RL = 8 Ω  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
14 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
001aah177  
(2)  
001aah179  
80  
100  
po  
(%)  
80  
η
η
po  
(%)  
(1)  
(1)  
(2)  
60  
60  
40  
20  
0
40  
20  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.4  
0.8  
1.2  
1.6  
P
o
(W)  
P (W)  
o
a. RL = 4 Ω  
b. RL = 8 Ω  
(1) VDD = 3.6 V  
(2) VDD = 5.0 V  
Fig 13. Output power efficiency as a function of output power  
001aah178  
001aah573  
1.0  
0.4  
P
(W)  
(2)  
P
(W)  
0.8  
0.6  
0.4  
0.2  
0
0.3  
(1)  
(2)  
(1)  
0.2  
0.1  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.4  
0.8  
1.2  
1.6  
P
(W)  
P (W)  
o
o
a. RL = 4 Ω  
b. RL = 8 Ω  
(1) VDD = 3.6 V  
(2) VDD = 5.0 V  
Fig 14. Power dissipation as a function of output power  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
15 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
11. Application information  
differential inputs  
left channel  
differential inputs  
right channel  
1 µF  
1 µF  
1 µF  
1 µF  
V
V
DD  
DD  
INLP INLN AGND  
INRN INRP  
G1  
G0  
FB  
FB  
FB  
FB  
OUTLP  
OUTLN  
OUTRP  
1 nF  
1 nF  
1 nF  
1 nF  
SA58671  
OUTRN  
V
PVDD  
PGND  
DD  
10 µF  
1 µF  
SDL  
SDR AVDD  
V
DD  
10 µF  
1 µF  
001aah394  
Fig 15. SA58671 application schematic  
11.1 Power supply decoupling considerations  
The SA58671 is a stereo class-D audio amplifier that requires proper power supply  
decoupling to ensure the rated performance for THD+N and power efficiency. To decouple  
high frequency transients, power supply spikes and digital noise on the power bus line, a  
low Equivalent Series Resistance (ESR) capacitor of typically 1 µF is placed as close as  
possible to the PVDD pins of the device. It is important to place the decoupling capacitor  
at the power pins of the device because any resistance or inductance in the PCB trace  
between the device and the capacitor can cause a loss in efficiency. Additional decoupling  
using a larger capacitor, 4.7 µF or greater, may be done on the power supply connection  
on the PCB to filter low frequency signals. Usually this is not required due to high PSRR of  
the device.  
11.2 Input capacitor selection  
The SA58671 does not require input coupling capacitors when used with a differential  
audio source that is biased from 0.5 V to VDD 0.8 V. In other words, the input signal must  
be biased within the common-mode input voltage range. If high pass filtering is required or  
if it is driven using a single-ended source, input coupling capacitors are required.  
The 3 dB cut-off frequency created by the input coupling capacitor and the input resistors  
(see Table 6) is calculated by Equation 1:  
1
f 3dB  
=
(1)  
-----------------------------  
2π × Ri × Ci  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
16 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
Table 6.  
Gain selection  
G1  
G0  
Gain (V/V)  
Gain (dB)  
Input impedance (k)  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
2
6
28.1  
17.3  
9.8  
4
12  
18  
24  
8
16  
5.2  
Since the value of the input decoupling capacitor and the input resistance determined by  
the gain setting affects the low frequency performance of the audio amplifier, it is  
important to consider this during the system design. Small speakers in wireless and  
cellular phones usually do not respond well to low frequency signals, so the 3 dB cut-off  
frequency may be increased to block the low frequency signals to the speakers. Not using  
input coupling capacitors may increase the output offset voltage.  
Equation 1 is solved for Ci:  
1
Ci =  
(2)  
-------------------------------------  
2π × Ri × f 3dB  
11.3 PCB layout considerations  
Component location is very important for performance of the SA58671. Place all external  
components very close to the device. Placing decoupling capacitors directly at the power  
supply pins increases efficiency because the resistance and inductance in the trace  
between the device power supply pins and the decoupling capacitor causes a loss in  
power efficiency.  
The trace width and routing are also very important for power output and noise  
considerations.  
For high current terminals (PVDD, PGND and audio output), the trace widths should be  
maximized to ensure proper performance and output power. Use at least 500 µm wide  
traces.  
For the input pins (INRP, INRN, INLP and INLN), the traces must be symmetrical and run  
side-by-side to maximize common-mode cancellation.  
11.4 Filter-free operation and ferrite bead filters  
A ferrite bead low-pass filter can be used to reduce radio frequency emissions in  
applications that have circuits sensitive to frequencies greater than 1 MHz. A ferrite bead  
low-pass filter functions well for amplifiers that must pass FCC unintentional radiation  
requirements for frequencies greater than 30 MHz. Choose a bead with high-impedance  
at high frequencies and very low-impedance at low frequencies. In order to prevent  
distortion of the output signal, select a ferrite bead with adequate current rating.  
For applications in which there are circuits that are EMI sensitive to low frequency  
(< 1 MHz) and there are long leads from amplifier to speaker, it is necessary to use an LC  
output filter.  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
17 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
11.5 Efficiency and thermal considerations  
The maximum ambient temperature depends on the heat transferring ability of the heat  
spreader on the PCB layout. In Table 3 “Limiting values”, power dissipation, the power  
derating factor is given as 9.12 mW/K. The device thermal resistance, Rth(j-a) is the  
reciprocal of the power derating factor. Convert the power derating factor to Rth(j-a) by  
Equation 3:  
1
1
Rth( j-a)  
=
=
= 110 K/W  
(3)  
-----------------------------------------  
derating factor  
------------------  
0.00912  
For a maximum allowable junction temperature, Tj = 150 °C and Rth(j-a) = 110 K/W and a  
maximum device dissipation of 0.6 W (300 mW per channel) and for 1.2 W per channel  
output power, 4 load, 5 V supply, the maximum ambient temperature is calculated using  
Equation 4:  
Tamb(max) = T j(max) (Rth( j-a) × Pmax) = 150 (110 × 0.60) = 84 °C  
(4)  
The maximum ambient temperature is 84 °C at maximum power dissipation for 5 V supply  
and 4 load. If the junction temperature of the SA58671 rises above 150 °C, the thermal  
protection circuitry turns the device off; this prevents damage to IC. Using speakers  
greater than 4 further enhances thermal performance and battery lifetime by reducing  
the output load current and increasing amplifier efficiency.  
11.6 Additional thermal information  
The SA58671 16 bump WLCSP package ground bumps are soldered directly to the PCB  
heat spreader. By the use of thermal vias, the bumps may be soldered directly to a ground  
plane or special heat sinking layer designed into the PCB. The thickness and area of the  
heat spreader may be maximized to optimize heat transfer and achieve lowest package  
thermal resistance.  
12. Test information  
15 µH  
15 µH  
INxP  
INxN  
OUTxP  
DUT  
AP585  
AUDIO  
ANALYZER  
AUX0025  
30 kHz  
LOW-PASS FILTER  
R
L
OUTxN  
+
AP585  
MEASUREMENT  
INPUTS  
POWER  
SUPPLY  
002aad417  
Fig 16. Test circuit  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
18 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
13. Package outline  
WLCSP16: wafer level chip-size package; 16 bumps; 2.06 x 2.11 x 0.6 mm  
SA58671UK  
D
B
A
E
bump A1  
index area  
A
2
A
A
1
detail X  
e
1
1/2 e  
C
M
M
v
C A  
C
B
b
e
y
w
D
e
C
B
A
e
2
1/2 e  
1
2
3
4
X
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
max  
0.26 0.38 0.34 2.08 2.13  
0.22 0.34 2.04 2.09  
mm  
0.64  
0.5  
1.5  
1.5  
0.01 0.04 0.02  
0.30  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-10-11  
07-10-17  
SA58671UK  
Fig 17. Package outline WLCSP16  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
19 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
14. Soldering of WLCSP packages  
14.1 Introduction to soldering WLCSP packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering WLCSP (Wafer Level Chip-Size Packages) can be found in application note  
AN10439 “Wafer Level Chip Scale Package” and in application note AN10365 “Surface  
mount reflow soldering description”.  
Wave soldering is not suitable for this package.  
All NXP WLCSP packages are lead-free.  
14.2 Board mounting  
Board mounting of a WLCSP requires several steps:  
1. Solder paste printing on the PCB  
2. Component placement with a pick and place machine  
3. The reflow soldering itself  
14.3 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 18) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues, such as smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature), and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic) while being low enough that the packages and/or boards are not  
damaged. The peak temperature of the package depends on package thickness and  
volume and is classified in accordance with Table 7  
Table 7.  
Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
260  
> 2000  
260  
< 1.6  
1.6 to 2.5  
> 2.5  
260  
250  
245  
250  
245  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 18.  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
20 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 18. Temperature profiles for large and small components  
For further information on temperature profiles, refer to application note AN10365  
“Surface mount reflow soldering description”.  
14.3.1 Stand off  
The stand off between the substrate and the chip is determined by:  
The amount of printed solder on the substrate  
The size of the solder land on the substrate  
The bump height on the chip  
The higher the stand off, the better the stresses are released due to TEC (Thermal  
Expansion Coefficient) differences between substrate and chip.  
14.3.2 Quality of solder joint  
A flip-chip joint is considered to be a good joint when the entire solder land has been  
wetted by the solder from the bump. The surface of the joint should be smooth and the  
shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps  
after reflow can occur during the reflow process in bumps with high ratio of bump diameter  
to bump height, i.e. low bumps with large diameter. No failures have been found to be  
related to these voids. Solder joint inspection after reflow can be done with X-ray to  
monitor defects such as bridging, open circuits and voids.  
14.3.3 Rework  
In general, rework is not recommended. By rework we mean the process of removing the  
chip from the substrate and replacing it with a new chip. If a chip is removed from the  
substrate, most solder balls of the chip will be damaged. In that case it is recommended  
not to re-use the chip again.  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
21 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
Device removal can be done when the substrate is heated until it is certain that all solder  
joints are molten. The chip can then be carefully removed from the substrate without  
damaging the tracks and solder lands on the substrate. Removing the device must be  
done using plastic tweezers, because metal tweezers can damage the silicon. The  
surface of the substrate should be carefully cleaned and all solder and flux residues  
and/or underfill removed. When a new chip is placed on the substrate, use the flux  
process instead of solder on the solder lands. Apply flux on the bumps at the chip side as  
well as on the solder pads on the substrate. Place and align the new chip while viewing  
with a microscope. To reflow the solder, use the solder profile shown in application note  
AN10365 “Surface mount reflow soldering description”.  
14.3.4 Cleaning  
Cleaning can be done after reflow soldering.  
15. Abbreviations  
Table 8.  
Abbreviations  
Description  
Acronym  
DUT  
DVD  
Device Under Test  
Digital Video Disc  
EMI  
ElectroMagnetic Interference  
Equivalent Series Resistance  
Fast Fourier Transform  
inductor-capacitor filter  
Personal Computer  
ESR  
FFT  
LC  
PC  
PCB  
PDA  
Printed-Circuit Board  
Personal Digital Assistant  
Power Supply Rejection Ratio  
Pulse Width Modulator  
Universal Serial Bus  
PSRR  
PWM  
USB  
WLCSP  
Wafer Level Chip-Size Package  
16. Revision history  
Table 9.  
Revision history  
Document ID  
SA58671_2  
Release date  
Data sheet status  
Change notice  
Supersedes  
20081024  
Product data sheet  
-
SA58671_1  
Modifications:  
Table 4 “Static characteristics”:  
added “IDD(sd), shutdown mode supply current” specification  
Updated soldering information  
SA58671_1  
20071221  
Product data sheet  
-
-
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
22 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
SA58671_2  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 02 — 24 October 2008  
23 of 24  
SA58671  
NXP Semiconductors  
1.2 W/channel stereo class-D audio amplifier  
19. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 6  
Typical performance curves . . . . . . . . . . . . . . . 7  
8
9
10  
11  
Application information. . . . . . . . . . . . . . . . . . 16  
Power supply decoupling considerations . . . . 16  
Input capacitor selection. . . . . . . . . . . . . . . . . 16  
PCB layout considerations . . . . . . . . . . . . . . . 17  
Filter-free operation and ferrite bead filters. . . 17  
Efficiency and thermal considerations . . . . . . 18  
Additional thermal information . . . . . . . . . . . . 18  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
12  
13  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 19  
14  
14.1  
14.2  
14.3  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
Soldering of WLCSP packages. . . . . . . . . . . . 20  
Introduction to soldering WLCSP packages . . 20  
Board mounting . . . . . . . . . . . . . . . . . . . . . . . 20  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 20  
Stand off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Quality of solder joint . . . . . . . . . . . . . . . . . . . 21  
Rework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 22  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 23  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 23  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 23  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 24 October 2008  
Document identifier: SA58671_2  

相关型号:

SA58672

3.0 W mono class-D audio amplifier
NXP

SA58672TK

3.0 W mono class-D audio amplifier
NXP

SA58672UK

3.0 W mono class-D audio amplifier
NXP

SA58672UK-G

IC,AUDIO AMPLIFIER,SINGLE,BGA,9PIN,PLASTIC
NXP

SA58780

Sense current amplifier with selectable gain
NXP

SA5888

5CH BRL DRIVER FOR DVD PLAYER WITH DISC BIDIRECTIONAL DRIVER AND TWO VARIABLE REGULATORS
SILAN

SA5888G

5CH BRL DRIVER FOR DVD PLAYER WITH DISC BIDIRECTIONAL DRIVER AND TWO VARIABLE REGULATORS
SILAN

SA5888GTR

5CH BRL DRIVER FOR DVD PLAYER WITH DISC BIDIRECTIONAL DRIVER AND TWO VARIABLE REGULATORS
SILAN

SA5888TR

5CH BRL DRIVER FOR DVD PLAYER WITH DISC BIDIRECTIONAL DRIVER AND TWO VARIABLE REGULATORS
SILAN

SA589

LD/DTMF SWITCHABLE DIALLERS WITH DEDICATED KEYS FOR 20 MEMORIES
SAMES

SA58A

5.0 thru 170 volts 500 Watts Transient Voltage Suppressors
MICROSEMI

SA58A

MOSORB ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS
MOTOROLA