SAA1101P [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PDIP28, PLASTIC, DIP-28, Consumer IC:Other;
SAA1101P
型号: SAA1101P
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PDIP28, PLASTIC, DIP-28, Consumer IC:Other

电机
文件: 总18页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA1101  
Universal sync generator (USG)  
January 1990  
Product specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
FEATURES  
Programmable to seven standards  
Additional outputs to simplify signal processing  
Can be synchronized to an external sync. signal  
Option to select the 524/624 line mode instead of the 525/625 line mode  
Lock from subcarrier to line frequency  
GENERAL DESCRIPTION  
The SAA1101 is a Universal Sync Generator (USG) and is designed for application in video sources such as cameras,  
film scanners, video generators and associated apparatus. The circuit can be considered as a successor to the SAA1043  
sync generator and the SAA1044 subcarrier coupling IC.  
QUICK REFERENCE DATA  
SYMBOL  
VDD  
PARAMETER  
supply voltage range (pin 28)  
MIN. MAX.  
UNIT  
4.5  
5.5  
10  
24  
V
IDD  
quiescent supply current  
clock oscillator frequency  
µA  
fOSC  
MHz  
ORDERING AND PACKAGE INFORMATION  
EXTENDED  
PACKAGE  
PIN POSITION MATERIAL  
TYPE NUMBER  
PINS  
CODE  
SOT117 (1)  
SOT136A (2)  
SAA1101P  
SAA1101T  
28  
28  
DIL  
SO28  
plastic  
plastic  
Notes  
1. SOT117-1; 1996 December 02.  
2. SOT136-1; 1996 December 02.  
January 1990  
2
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
GM9H1  
,
January 1990  
3
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
PINNING  
SYMBOL PIN  
DESCRIPTION  
page  
FSI  
1
subcarrier oscillator input, where fmax = 5 MHz  
subcarrier oscillator output  
FSI  
FSO  
CS1  
CS0  
OSCI  
OSCO  
VLE  
V
Z
Y
X
1
2
28  
27  
26  
25  
24  
DD  
FSO  
CS1  
CS0  
OSCI  
OSCO  
VLE  
PH  
2
3
clock frequency selection - CMOS input  
clock frequency selection - CMOS input  
clock oscillator input, where fmax = 24 MHz  
clock oscillator output  
3
4
4
5
CLO  
5
6
23 NORM  
HD  
6
7
vertical in-lock enable - CMOS input  
phase detector output - 3-state output  
lock mode selection - CMOS input  
lock mode selection - CMOS input  
22  
21 VD  
7
8
SAA1101  
LM1  
LM0  
ECS  
9
PH  
8
10  
11  
LM1  
LM0  
ECS  
WMP  
9
20  
19  
18  
17  
16  
external composite sync. signal - CMOS Schmitt-trigger  
input  
CLP  
CS  
CB  
BK  
10  
11  
RR  
SI  
12  
13  
frame reset - CMOS Schmitt-trigger input  
RR 12  
set identification, used to set the correct field sequence in  
PAL-mode. The correction (inversion of fH2) is done at the  
left-hand slope of the SI-pulse. Minimum pulse width is  
800 ns. CMOS Schmitt-trigger input.  
SI  
13  
14  
V
15 ID  
SS  
MGH190  
VSS  
ID  
14  
15  
16  
ground  
identification - push-pull output  
Fig.2 Pinning configuration;  
SOT117.  
BK  
burst key (PAL/NTSC), chroma-blanking (SECAM) -  
push-pull output  
CB  
17  
18  
19  
20  
21  
22  
23  
composite blanking - push-pull output  
composite sync. - push-pull output  
clamp pulse - push-pull output  
FUNCTIONAL DESCRIPTION  
Generation of pulses  
CS  
CLP  
WMP  
VD  
white measurement pulse-3-state output  
vertical drive pulse - push-pull output  
horizontal drive pulse - push-pull output  
Generation of standard pulses such  
as sync, blanking and burst for TV  
systems: PAL B/G, PALN, PALM,  
SECAM and NTSC. In addition a  
number of non-standard pulses have  
been supplied to simplify signal  
processing. These signals include -  
horizontal drive, vertical drive, clamp  
pulse, identification etc. It is possible  
to select the 524/624 line mode  
instead of the 525/625 line mode for  
all the above TV systems for  
HD  
NORM  
used with X, Y and Z to select TV system; NORM = 0,  
625/525 line mode (standard);  
NORM = 1, 624/524 line mode - CMOS input  
CLO  
X
24  
25  
26  
27  
28  
clock output - push-pull output  
TV system selection input - CMOS input  
TV system selection input - CMOS input  
TV system selection input - CMOS input  
voltage supply  
Y
Z
VDD  
applications such as robotics, games  
and computers.  
January 1990  
4
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
subcarrier input is, in this case, used as an external  
input for the horizontal reference, see Fig.3(d).  
Lock modes  
The USG offers four lock modes:  
Lock from the subcarrier  
SELECTION OF LOCK MODE  
Slow sync. lock, external Href  
Slow sync. lock, internal Href  
Fast sync. lock, internal Href  
Lock mode is selected using the inputs LM0 and LM1 as  
illustrated in the Table below.  
LOCK FROM SUBCARRIER  
LM0  
LM1  
SELECTION  
lock to subcarrier  
Lock from subcarrier to the line frequency for the above  
mentioned TV systems is given below; the horizontal  
frequency (fH) = 15.625 kHz for 625 line systems and  
15.734264 kHz for 525 line systems.  
0
0
1
1
0
1
0
1
slow sync. lock external Href  
slow sync. lock internal Href  
fast sync. lock internal Href  
SECAM (1 and 2)  
PALN  
282fH  
229.2516fH  
227.5fH  
NTSC (1 and 2)  
PALM  
227.25fH  
283.7516fH  
PAL B/G  
These relationships are obtained by the use of a phase  
locked loop and the internal programmed divider chain,  
see Fig.3(a).  
LOCK TO AN EXTERNAL SIGNAL SOURCE  
The following methods can be used to lock to an external  
signal source:  
1. Sync. lock slow; the line frequency is locked to an  
external signal. The line and frame information are  
extracted from the external sync. signal and used  
separately in the lock system. The line information is  
used in a phase-locked loop where external and  
internal line frequencies are compared by the same  
phase detector as is used for the subcarrier lock. The  
external frame information is compared with the  
internal frame in a slow lock system; mismatch of  
internal and external frames will result in the addition  
or suppression of one line depending on the direction  
of the fault. The maximum lock time for frame lock is  
6.25 s, see Fig.3(b).  
2. Sync. lock fast. A fast lock of frames is possible with a  
frame reset which is extracted out of the incoming  
external sync. signal, see Fig.3(c).  
3. Sync. lock with external reference. Lock of an external  
sync. signal to the line frequency with an external line  
reference to make possible a shifted lock. The  
January 1990  
5
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
The different lock modes are illustrated by the following figures:  
handbook, halfpage  
n × f  
H
handbook, halfpage  
n × f  
H
LINE  
OSCILLATOR  
LINE  
OSCILLATOR  
OSCO  
OSCI  
8
OSCO  
OSCI  
6
5
6
5
FSI  
ECS  
PH  
PH  
8
1
11  
SUB-  
CARRIER  
SAA1101  
SAA1101  
OSCILLATOR  
FSO  
2
10  
9
10  
9
LM0  
LM1  
LM0  
LM1  
logic 1  
logic 1  
MGH195  
logic 0  
logic 1  
MGH193  
Fig.3 (a) Lock to subcarrier.  
Fig.3 (c) Fast sync lock, internal H ref  
handbook, halfpage  
handbook, halfpage  
n × f  
n × f  
H
H
LINE  
OSCILLATOR  
LINE  
OSCILLATOR  
H
D
OSCO OSCI  
5
OSCO  
OSCI  
τ
22 6  
6
5
FSI  
PH  
ECS  
PH  
8
1
8
11  
H
ref  
SAA1101  
SAA1101  
ECS  
11  
10  
9
10  
9
LM0  
LM1  
LM0  
LM1  
logic 0  
logic 1  
MGH192  
logic 0  
logic 1  
MGH194  
Fig.3 (b) Slow sync lock, internal Href  
Fig.3 (d) Slow sync lock, external H ref  
January 1990  
6
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
LOCK WITH HORIZONTAL AND VERTICAL SIGNALS  
(slow lock modes only)  
It is possible to use horizontal and vertical signals instead of composite sync signals. The connections in this situation  
are: the external horizontal signal is connected to the ECS input (pin 11) and the vertical signal to the RR input (pin 12).  
The HIGH time of the horizontal pulse must be less than 14.4 µs, otherwise it will be detected as being a vertical pulse  
and will corrupt the vertical slow lock system.  
Selection of Clock Frequency  
The clock frequency is selected using the CS0 and CS1 inputs as illustrated below.  
CS0  
CS1  
FREQUENCY  
160fH  
625 LINES  
2.5  
525 LINES  
2.517482  
UNITS  
MHz  
0
0
1
1
0
1
0
1
160fH  
960fH  
1440fH  
5
5.034964  
MHz  
15  
22.5  
15.104893  
22.657340  
MHz  
MHz  
Where the horizontal frequency, fH = 15.625 kHz for 625 lines and 15.734264 kHz for 525 lines.  
Oscillators  
The subcarrier oscillator has FSI as its input and FSO as its output. It is always used as a crystal oscillator with a series  
resonance crystal with parallel load capacitor. The maximum frequency, fmax = 5 MHz and the load capacitor,  
CL = 10 < CL < 35 pF.  
The clock oscillator has OSCI as its input and OSCO as its output. It can be used with an LC oscillator or a series  
resonance crystal with parallel load capacitor (Fig.4). The maximum frequency, fmax = 24 MHz and the load capacitor,  
CL = 10 < CL < 35 pF.  
Selection of 625/525 (standard; interlaced mode) or 624/524 lines (non-interlaced mode)  
Selection is achieved using the NORM input. When NORM = 0, 625/525 (standard) lines are selected;  
when NORM = 1, 624/524 line are selected.  
Output Dimensions  
All push-pull outputs: standard output 2 mA.  
White measurement pulse, WMP: 3-state output 2 mA.  
Phase detector, PH: 3-state output 2 mA.  
January 1990  
7
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
handbook, halfpage  
39 pF  
OSCI  
5
6
500 kΩ  
SAA1101  
15 MHz  
39 pF  
OSCO  
1 kΩ  
MGH196  
Fig.4 Crystal oscillator circuit.  
Selection of TV System  
Selection of the required TV system is achieved by the X, Y and Z inputs as illustrated by the following Table.  
SYSTEM  
X
Y
Z
SECAM1  
PALN  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
NTSC1  
PALM  
SECAM2  
PAL B/G  
NTSC2  
0 (with identifier)  
1
0 (short blanking)  
LIMITING VALUES  
Limiting values in accordance with the Absolute Maximum System (IEC 134)  
SYMBOL PARAMETER MIN.  
supply voltage  
MAX.  
UNIT  
VDD  
VI  
0.5  
0.5  
+7  
DD + 0.5 (1)  
V
input voltage  
V
V
II  
maximum input current  
maximum output current  
maximum supply current in VDD  
maximum power dissipation  
storage temperature range  
±10  
±10  
25  
mA  
mA  
mA  
mW  
°C  
IO  
IDD  
Ptot  
Tstg  
400  
+150  
55  
Note  
1. Input voltage should not exceed 7 V.  
January 1990  
8
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
CHARACTERISTICS  
V
DD = 4.5 to 5.5 V; Tamb = 25 to +70 °C unless otherwise specified  
SYMBOL PARAMETER CONDITIONS  
Supplies  
MIN.  
TYP.  
MAX. UNIT  
VDD  
IDD  
supply voltage  
4.5  
5.5  
V
supply current (quiescent)  
input leakage current  
Tamb = 25 °C  
10  
µA  
Inputs  
±II  
Tamb = 25 °C  
100  
nA  
CMOS COMPATIBLE; X, Y, Z, NORM, CS0, CS1, LM0, LM1 AND VLE  
VIH  
VIL  
input voltage HIGH  
input voltage LOW  
0.7VDD  
V
V
0.3VDD  
SCHMITT TRIGGER INPUTS; ECS, RR AND SI  
VT+  
VT−  
VH  
positive-going threshold  
negative-going threshold  
hysteresis  
2.5  
1.5  
1
4
V
V
V
1
0.4  
OSCILLATOR INPUTS; OSCI AND FSI  
VIH  
VIL  
input voltage HIGH  
input voltage LOW  
0.7VDD  
V
V
0.3VDD  
Outputs  
PUSH-PULL OUTPUTS; CB, CS, BK, ID, HD, VD, CLP AND CLO  
VOH  
VOL  
output voltage HIGH  
output voltage LOW  
IO = 2 mA; VDD = 5 V  
4.5  
V
V
IO = 2 mA; VDD = 5 V  
0.5  
OSCILLATOR OUTPUTS; OSCO AND FSO  
VOH  
VOL  
output voltage HIGH  
output voltage LOW  
IO = 0.75 mA; VDD = 5 V 4.5  
V
V
IO = 0.75 mA; VDD = 5 V  
0.5  
3-STATE OUTPUTS; WMP AND PH  
VOH  
VOL  
±IOZ  
output voltage HIGH  
IO = 2 mA; VDD = 5V  
IO = 2 mA; V DD = 5V  
Tamb = 25 °C  
4.5  
V
output voltage LOW  
OFF-state current  
0.5  
50  
V
nA  
January 1990  
9
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
OUTPUT WAVEFORMS  
The output waveforms for the different modes of operation are illustrated by Figs 5 and 6.  
GM1H98  
f
January 1990  
10  
 i
start half picture  
1st half  
picture  
CS  
CS  
CB  
2nd half  
picture  
t
WCB  
1st half  
picture  
21H + t  
WCB  
NTSC 1  
(2)  
2nd half  
picture  
CB  
VD  
BK  
BK  
BK  
BK  
BK  
BK  
CB  
CB  
6H  
1st half  
picture  
NTSC 1 + 2  
(2)  
2nd half  
picture  
9H  
1st half  
picture  
(1)  
11H  
2nd half  
picture  
PALM  
3rd half  
picture  
4th half  
picture  
1st half  
picture  
19H + t  
WCB  
NTSC 2  
(2)  
2nd half  
picture  
MGH197  
(1) H = 1 horizontal scan.  
(2) NTSC mode reset; the fourth half picture is identical to the second half picture for NTSC.  
Fig.6 Typical output waveforms for NTSC and PAL-M. In the 524-line mode the output waveforms are identical to the first half picture of NTSC  
and are not interlaced.  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
WAVEFORM TIMING  
The waveform timing depends on the frequency of the oscillator input (fOSCI). This is illustrated in the table below as the  
number (N) of oscillations at OSCI. The timings are derived from N × tOSCI ± 100 ns.  
One horizontal scan (H) = 320 × tOSCI =1/fH.  
Where tOSCI = 200 ns for PAL/SECAM and 198.6 ns for NTSC/PAL-M  
SYMBOL  
PARAMETER  
PAL  
NTSC  
PAL-M  
SECAM  
UNIT  
N
Composite sync (CS)  
tWSC1  
horizontal sync pulse 4.8  
4.77  
4.77  
4.8  
µs  
24  
width  
tWSC2  
tWSC3  
equalizing pulse width 2.4  
serration pulse width 4.8  
2.38  
4.77  
3
2.38  
4.77  
3
2.4  
4.8  
2.5  
µs  
µs  
H
12  
24  
duration of  
2.5  
pre-equalizing pulses  
duration of  
post-equalizing  
pulses  
2.5  
3
3
3
2.5  
2.5  
H
H
duration of serration  
pulses  
2.5  
3.5  
Composite blanking (CB)  
HORIZONTAL BLANKING PULSE WIDTH  
tWCB  
tWCB  
tWCB  
PAL/SECAM/PAL-M  
NTSC1  
12  
11.12  
12  
µs  
µs  
µs  
60  
56  
53  
11.12  
NTSC2  
10.53 (note1)  
FRONT PORCH  
tPCBCS front porch  
1.6  
1.59  
1.59  
1.6  
µs  
8
DURATION OF VERTICAL BLANKING  
PAL/SECAM/PAL-M  
NTSC1  
25H + tWCB  
21H + tWCB  
25H + tWCB  
21H + tWCB  
19H + tWCB  
NTSC2  
Burst key (BK) (not SECAM)  
tWBK  
tPCSBK  
burst key pulse width 2.4  
CS to burst key delay 5.6  
burst suppression  
2.38  
5.56  
9
2.38  
5.76  
11  
µs  
µs  
H
12  
28  
9
POSITION OF BURST SUPPRESSION  
first half picture  
H623 to H6  
H523 to H6  
H523 to H8  
second half picture  
third half picture  
fourth half picture  
H310 to H318 H261 to H269 H260 to H270  
H622 to H5 H523 to H6 H522 to H7  
H311 to H319 H261 to H269 H259 to H269  
January 1990  
12  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
SYMBOL  
PARAMETER  
PAL  
NTSC  
PAL-M  
SECAM  
UNIT  
N
Burst key (BK) (SECAM)  
tWBK  
chroma pulse width  
CS to chroma delay  
7.2  
1.6  
µs  
36  
tPBKCS  
µs  
8
DURATION OF VERTICAL BLANKING  
SECAM1  
SECAM2  
note 2  
note 3  
Clamp pulse (CLP)  
tWCLP  
clamp pulse width  
CS to CLP delay  
2.4  
1.6  
2.38  
1.59  
2.38  
1.59  
2.4  
1.6  
µs  
µs  
12  
8
tPCSCLP  
Horizontal drive (HD)  
tWHD  
tPHDCS  
pulse width  
7.2  
0.8  
64  
7.15  
0.79  
7.15  
0.79  
63.56  
7.2  
0.8  
64  
µs  
µs  
µs  
36  
4
CS to HD delay  
repetition period  
63.56  
Vertical drive (VD)  
VD duration  
CS to VD delay  
10  
6
6
10  
H
tPVDCS  
1.6  
1.59  
1.59  
1.6  
µs  
8
White measurement pulse (WMP)  
pulse width  
2.4  
34.4  
10  
2.38  
34.16  
9
2.38  
34.16  
9
2.4  
34.4  
10  
µs  
µs  
H
12  
172  
CS to WMP delay  
duration of WMP  
POSITION OF WMP  
first half picture  
second half picture  
H163 to H173 H134 to H143 H134 to H143 H163 to H173  
H475 to H485 H396 to H405 H396 to H405 H475 to H485  
Identification (ID)  
tWID  
pulse width  
CS to ID delay  
12  
11.12  
1.59  
11.12  
1.59  
12  
µs  
µs  
60  
8
tPIDCS  
1.6  
1.6  
POSITION OF ID  
first half picture  
second half picture  
H7 to H15  
H8 to H22  
H8 to H22  
H7 to H15  
H320 to H328 H271 to H285 H271 to H285 H320 to H328  
Notes to the characteristics  
1. Horizontal blanking pulse width for NTSC2 can be 11.12 µs maximum  
2. SECAM1, first half picture: 25H + tWBK except H320 to H328. Second half picture: 24.5H + tWBK except H7 to H15.  
3. SECAM2, first half picture: 25H + tWBK. Second half picture: 24.5H + tWBK  
.
January 1990  
13  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
horizontal  
t
WSC1  
sync pulse  
composite  
sync  
t
WSC2  
equalizing pulse  
serration pulse  
CS  
CB  
t
WSC3  
horizontal  
blanking pulse  
composite  
blanking  
t
WCB  
t
PCBS2  
t
t
WBK  
PCBSK  
burst key (PAL)  
burst key/  
chrominance  
blanking  
BK  
HD  
(SECAM)  
chrominance  
blanking  
t
WBK  
t
PBKCS  
t
horizontal drive  
t
WHD  
PHDCS  
t
WCPL  
CLP clamp pulse  
t
PCSCLP  
t
SECAM  
ID  
WID  
identification  
t
PIDCS  
start, stop  
vertical drives  
VD  
t
PVDCS  
MLA029  
Fig.7 Waveform timing.  
January 1990  
14  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
PACKAGE OUTLINES  
handbook, full pagewidth  
DIP28: plastic dual in-line package; 28 leads (600 mil)  
SOT117-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
28  
15  
pin 1 index  
E
1
14  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
max.  
A
A
Z
(1)  
(1)  
1
2
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
w
1
1
E
H
min.  
max.  
max.  
1.7  
1.3  
0.53  
0.38  
0.32  
0.23  
36.0  
35.0  
14.1  
13.7  
3.9  
3.4  
15.80  
15.24  
17.15  
15.90  
5.1  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.25  
0.01  
1.7  
0.013  
0.009  
0.066  
0.051  
0.020  
0.014  
1.41  
1.34  
0.56  
0.54  
0.15  
0.13  
0.62  
0.60  
0.68  
0.63  
inches  
0.20  
0.020  
0.16  
0.067  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT117-1  
051G05  
MO-015AH  
January 1990  
15  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT136-1  
075E06  
MS-013AE  
January 1990  
16  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
January 1990  
17  
Philips Semiconductors  
Product specification  
Universal sync generator (USG)  
SAA1101  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
January 1990  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY