SAA7712 [NXP]

Sound effects DSP; 音效DSP
SAA7712
型号: SAA7712
厂家: NXP    NXP
描述:

Sound effects DSP
音效DSP

文件: 总44页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7712H  
Sound effects DSP  
Preliminary specification  
1999 Aug 05  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
CONTENTS  
9
I2C-BUS FORMAT  
Addressing  
Slave address (pin A0)  
Write cycles  
Read cycles  
I2C-bus memory map summary  
I2C-bus memory map details  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
1
FEATURES  
1.1  
1.2  
Hardware features  
Software features  
2
3
4
5
6
7
8
APPLICATIONS  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
19.1  
LIMITING VALUES  
THERMAL CHARACTERISTICS  
DC CHARACTERISTICS  
ANALOG OUTPUTS CHARACTERISTICS  
OSCILLATOR CHARACTERISTICS  
I2S-BUS TIMING CHARACTERISTICS  
I2C-BUS TIMING CHARACTERISTICS  
APPLICATION INFORMATION  
PACKAGE OUTLINE  
PINNING INFORMATION  
FUNCTIONAL DESCRIPTION  
8.1  
Analog outputs  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.1.8  
8.1.9  
8.1.10  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
Analog output circuit  
DAC frequency  
DACs  
Upsample filter  
Performance  
Power-On Mute (POM)  
Power-off plop suppression  
Pin VREFDA  
Internal DAC current reference  
Supply of the analog outputs  
I2S-bus inputs and outputs  
Digital data stream formats  
Slave I2S-bus inputs  
Master I2S-bus inputs and outputs  
Equalizer accelerator  
Introduction  
Configuration of equalizer sections  
Overflow detection  
Clock circuit and oscillator  
General description  
SOLDERING  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
19.2  
19.3  
19.4  
19.5  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
20  
21  
22  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
8.4.1  
8.4.2  
8.5  
Supply of the crystal oscillator  
Programmable phase-locked loop circuit  
I2C-bus control  
8.6  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.6.6  
8.6.7  
Introduction  
Characteristics of the I2C-bus  
Bit transfer  
Start and stop conditions  
Data transfer  
Acknowledge  
State of the I2C-bus interface during and after  
Power-on reset  
8.7  
8.8  
8.9  
8.10  
External control pins  
Reset pin  
Power supply connection and EMC  
Test mode connections  
1999 Aug 05  
2
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
1
FEATURES  
1.1  
Hardware features  
Digital Signal Processor (DSP) core:  
– 18 bits data width, 12 bits coefficient width  
– Separate X, Y and P memories (both 384 bytes word  
XRAM and YRAM, 3 kbytes word PROM)  
1.2  
Software features  
– 1 kbytes delay line memory suited for Dolby Pro  
Logic Surround.  
Dolby Pro Logic Surround/Dolby 3 stereo:  
Trademark of Dolby Laboratories Licensing Corporation  
Inputs:  
Noise generation: A pink noise generator is included  
for installation of the Dolby Pro Logic/Dolby 3 stereo  
mode  
– 2 slave 18-bit digital stereo inputs: I2S-bus and  
LSB-justified serial formats  
Hall/Matrix Surround: When no Dolby Pro Logic  
Surround source material is available then this mode  
can be used to produce a signal in the surround channel  
– 2 master 18-bit digital stereo inputs: I2S-bus and  
LSB-justified serial formats.  
Outputs:  
Incredible Surround (222-IS): This algorithm expands  
the stereo width (stereo expander). This is intended to  
be used when the 2 speakers are placed close together  
(TV set and Midi set).  
– 4 DACs with 4-times oversampling and noise  
shaping, fed to 4 output pins and configurable from  
the DSP program, as left, right, front and surround  
channels of a Dolby Pro Logic Surround system  
– 2 master 18-bit digital stereo outputs: I2S-bus and  
LSB-justified serial formats.  
Robust Incredible Surround (222-RIS): Same as  
incredible surround only an alternative algorithm  
3D Surround (422) or Incredible Virtual Surround:  
Dolby Pro Logic Surround reproduced by 2 speakers  
(L and R)  
4-channel 5-band or 2-channel 10-band  
I2C-bus controlled parametric equalizer  
I2C-bus microcontroller interface for:  
IS-3D Surround (422-IS): Same as 3D Surround (422)  
– Access to full X and Y memory space  
only with extra stereo width expander on left and right  
– Control of hardware settings: selectors,  
programmable clock generations, etc.  
RIS-3D Surround (422-RIS): Same as IS-3D Surround  
(422) with alternative algorithm  
Controllable Phase-Locked Loop (PLL) to generate the  
high frequency DSP clock from common fundamental  
oscillator crystal  
3D Surround (423) or Incredible Virtual Surround:  
Dolby Pro Logic Surround reproduced by 3 speakers  
(L, C and R)  
3.3 V process with 3.3 or 5 V digital periphery:  
IS-3D Surround (423-IS): Same as 3D Surround (423)  
– 3.3 or 5 V I2S-bus and I2C-bus microcontroller  
interfacing.  
only with extra stereo width expander on left and right  
RIS-3D Surround (423-RIS): Same as IS-3D Surround  
(423-IS) with alternative algorithm  
Operating temperature range from 0 to 70 °C.  
1999 Aug 05  
3
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
Voice cancelling (karaoke): Rejects voice out of  
source material, mainly intended to be used with  
karaoke. Several karaoke modes available in stereo  
mode and in Dolby Pro Logic mode, such as (auto) voice  
cancel, (auto) centre voice cancel, (auto) multi left and  
(auto) multi right.  
3
GENERAL DESCRIPTION  
The SAA7712H provides for digital signal processing  
power in TV systems and home theatre systems.  
A DSP core is equipped with digital inputs and outputs, a  
5-band parametric equalizer accelerator, a digital  
co-processor interface and a delay line memory. This  
architecture accommodates on-chip standard sound  
processing, incredible surround, Dolby Pro Logic Surround  
and other surround sound processing algorithms.  
The architecture also supports co-processing, e.g. to add  
to the processing power of the internal DSP core or for  
multi-channel surround decoding.  
Microphone mix modes (karaoke): Mono microphone  
mixed to left, right and centre channel  
Spectrum analysis: 3-band spectrum analyser is  
provided  
Dolby B: Both a Dolby B encoder as well as a Dolby B  
decoder is implemented  
2 Room solution: In all modes not requiring more than  
2 output channels (stereo and karaoke incredible  
surround) it is also possible to feed the source signal to  
the other 2 output channels (with same processed or  
not processed signal)  
All settings and parameters are controlled by an I2C-bus  
interface. The available interfaces support a high  
application flexibility.  
The DSP core communicates over 32 dedicated registers.  
The selected digital input is master for the data rate of the  
DSP core. This input can be selected among 2 slave  
I2S-bus inputs. The 4 outputs from the core are passed  
through 4 DACs and then routed to 4 output pins.  
Dynamic Bass Enhancement (DBE): Dynamic bass  
enhancement generates a sub-woofer channel, which is  
either a separate output or is added to the front channels  
Volume processing: Independent volume processing  
of all 4 output channels  
Two master I2S-bus outputs and two master I2S-bus  
inputs can serve as an I2S-bus co-processor interface.  
AC-3/MPEG-2: Inputs available intended to be used  
with an AC-3/MPEG-2 co-processor. In this mode the  
SAA7712H can be used as post-processor.  
Eight of the remaining registers are used for  
communication with the hardware equalizer, and eight for  
communication with the delay line memory.  
Output redirection: Several output configurations are  
possible (normal 4 channel, special 4 + 2 channel,  
record 2 + 2 channel, 6 or 6 + 2 channel).  
All I2S-bus inputs and outputs support the Philips I2S-bus  
format as well as 16, 18 and 20-bit LSB-justified formats.  
Depending on the sample frequency several combinations  
of the above mentioned features are possible.  
2
APPLICATIONS  
The SAA7712H can be used in TV sets with:  
Dolby Pro Logic Surround, incredible surround,  
3D Surround and advanced acoustics processing  
Multi-channel sound decoding (AC-3 and MPEG-2) on a  
co-processor. The SAA7712H can be used for  
post-processing.  
1999 Aug 05  
4
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
4
QUICK REFERENCE DATA  
SYMBOL  
VDD3V  
PARAMETER  
CONDITION  
MIN.  
TYP.  
3.3  
MAX.  
3.6  
UNIT  
supply voltage 3.3 V analog  
and digital  
with respect to VSS  
3
V
V
VDD5V  
IDDD3V  
supply voltage 5 V periphery  
with respect to VSS  
3
3.3 or 5 5.5  
DC supply current of the 3.3 V at fDSP18; maximum activity  
digital core part  
80  
mA  
mA  
mA  
mA  
W
of the DSP  
IDDD5V  
DC supply current of the 5 V  
digital periphery part  
at fDSP18; maximum activity  
of the DSP; VDD5 = 5 V  
5
at fDSP18; maximum activity  
of the DSP; VDD5 = 3.3 V  
5
IDDA  
Ptot  
DC supply current of the  
analog part  
at zero input and output  
signal  
10  
0.4  
60  
total power dissipation  
at fDSP18; maximum activity  
of the DSP  
(THD + N)/S DAC total harmonic  
RL > 5 kΩ; f = 1 kHz;  
75  
dBA  
distortion-plus-noise to output A-weighted  
signal  
DRDAC  
DSDAC  
DAC dynamic range  
f = 1 kHz; 60 dB;  
A-weighted  
90  
96  
dBA  
dBA  
DAC digital silence  
f = 20 Hz to 17 kHz;  
A-weighted  
107  
102  
fxtal  
crystal frequency  
10.000  
19.456 MHz  
32.256 MHz  
32.544 MHz  
fDSP16  
fDSP18  
DSP clock frequency  
DSP clock frequency  
fxtal = 16.384 MHz  
fxtal = 18.432 MHz  
5
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7712H  
QFP80  
plastic quad flat package; 80 leads (lead length 1.95 mm);  
SOT318-1  
body 14 × 20 × 2.7 mm; high stand-off height  
1999 Aug 05  
5
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
VREFDA POM  
15  
8
SAA7712H  
SURROUND  
CHANNEL  
DELAY  
18  
19  
OUT0_I  
3D  
2-CHANNEL  
10-BAND  
EQUALIZER  
OUT0_V  
27  
29  
28  
2
I S_IN1_WS  
SURROUND  
from  
audio  
source 1  
INCREDIBLE  
SURROUND  
(IS, RIS)  
17  
16  
2
I S_IN1_BCK  
OUT1_I  
2
I S_IN1_DATA  
2
OUT1_V  
I S-BUS  
VOLUME  
PROCESSING  
QUAD  
DAC  
IS-3D  
SURROUND  
INPUT  
SWITCH  
DOLBY PRO LOGIC  
11  
12  
24  
26  
25  
or  
DOLBY 3 STEREO  
or  
2
OUT2_I  
I S_IN2_WS  
from  
audio  
source 2  
2
OUT2_V  
I S_IN2_BCK  
4-CHANNEL  
5-BAND  
EQUALIZER  
HALL/MATRIX  
2
RIS-3D  
SURROUND  
I S_IN2_DATA  
10  
9
OUT3_I  
CENTRE  
VOICE  
OUT3_V  
21  
CANCELLING  
SYS_CLK  
2
44  
I C-BUS  
OSCILLATOR  
AND PLL  
HOST I/O  
TEST  
A0  
INTERFACE  
62  
63 47 48 31 32 30 33 36 37  
60 59 58 20 40 41 38 39 57  
76 77  
46  
45  
SDA SCL  
MGS206  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
7
PINNING INFORMATION  
SYMBOL  
n.c.  
PIN  
DESCRIPTION  
PIN TYPE  
1
2
3
4
5
6
7
8
9
not connected  
not connected  
not connected  
not connected  
not connected  
not connected  
not connected  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
POM  
power-on mute; timing determined by external capacitor  
analog voltage output 3  
AP2D  
AP2D  
AP2D  
AP2D  
AP2D  
APVSS  
APVDD  
AP2D  
AP2D  
AP2D  
AP2D  
AP2D  
B4CR  
BT4CR  
VDD5  
VSS5  
OUT3_V  
OUT3_I  
OUT2_I  
OUT2_V  
VSSA2  
10 analog current output 3  
11 analog current output 2  
12 analog voltage output 2  
13 analog ground supply 2  
VDDA2  
14 analog supply voltage 2 (3 V)  
15 voltage reference of the analog part  
16 analog voltage output 1  
VREFDA  
OUT1_V  
OUT1_I  
OUT0_I  
OUT0_V  
EQOV  
SYS_CLK  
VDDD5V1  
VSSD5V1  
I2S_IN2_WS  
17 analog current output 1  
18 analog current output 0  
19 analog voltage output 0  
20 equalizer overflow line output  
21 test pin output  
22 digital supply voltage 1; peripheral cells only (3 or 5 V)  
23 digital ground supply 1; peripheral cells only (3 or 5 V)  
24 I2S-bus or LSB-justified format word select input from a digital audio source 2 IBUFD  
I2S_IN2_DATA 25 I2S-bus or LSB-justified format left-right data input from a digital audio  
source 2  
IBUFD  
I2S_IN2_BCK  
I2S_IN1_WS  
26 I2S-bus clock or LSB-justified format input from a digital audio source 2  
27 I2S-bus or LSB-justified format word select input from a digital audio source 1 IBUFD  
IBUFD  
I2S_IN1_DATA 28 I2S-bus or LSB-justified format left-right data input from a digital audio  
source 1  
IBUFD  
I2S_IN1_BCK  
I2S_IO_BCK  
I2S_IO_IN1  
I2S_IO_IN2  
I2S_IO_WS  
VDDD5V2  
29 I2S-bus clock or LSB-justified format input from a digital audio source 1  
30 I2S-bus bit clock output for interface with DSP co-processor chip  
31 I2S-bus input data channel 1 from DSP co-processor chip  
32 I2S-bus input data channel 2 from DSP co-processor chip  
33 I2S-bus word select output for interface with DSP co-processor chip  
34 digital supply voltage 2; peripheral cells only (3 or 5 V)  
35 digital ground supply 2; peripheral cells only (3 or 5 V)  
36 I2S-bus output data channel 1 to DSP co-processor chip  
37 I2S-bus output data channel 2 to DSP co-processor chip  
38 digital input 1 of the DSP core (F0 of the status register)  
IBUFD  
BT4CR  
IBUFD  
IBUFD  
BT4CR  
VDD5  
VSSD5V2  
VSS5  
I2S_IO_OUT1  
I2S_IO_OUT2  
DSP_IN1  
BT4CR  
BT4CR  
IBUFD  
1999 Aug 05  
7
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
SYMBOL  
DSP_IN2  
PIN  
DESCRIPTION  
PIN TYPE  
39 digital input 2 of the DSP-core (F1 of the status register)  
40 digital output 1 of the DSP-core (F2 of the status register)  
41 digital output 2 of the DSP-core (F3 of the status register)  
42 digital supply voltage 3; peripheral cells only (3 or 5 V)  
43 digital ground supply 3; peripheral cells only (3 or 5 V)  
44 I2C-bus slave subaddress selection input  
45 I2C-bus serial clock input  
IBUFD  
B4CR  
DSP_OUT1  
DSP_OUT2  
VDDD5V3  
VSSD5V3  
A0  
B4CR  
VDD5  
VSS5  
IBUFD  
SCHMITCD  
BD4SCI4  
BD4CR  
BT4CR  
VSS3S  
VSS3S  
VSS3S  
VDD3  
SCL  
SDA  
46 I2C-bus serial data input/output  
TEST1  
47 test pin 1  
TEST2  
48 test pin 2  
VSSD3V1  
VSSD3V2  
VSSD3V3  
VDDD3V1  
VDDD3V2  
VSSD3V4  
VSSD3V5  
VSSD3V6  
DSP_RESET  
RTCB  
49 digital ground supply 1 of 3 V core only  
50 digital ground supply 2 of 3 V core only  
51 digital ground supply 3 of 3 V core only  
52 digital supply voltage 1 of 3 V core only  
53 digital supply voltage 2 of 3 V core only  
54 digital ground supply 4 of 3 V core only  
55 digital ground supply 5 of 3 V core only  
56 digital ground supply 6 of 3 V core only  
57 reset (active LOW)  
VDD3  
VSS3S  
VSS3S  
VSS3S  
IBUFU  
IBUFD  
IBUFD  
IBUFD  
VSS3S  
58 asynchronous reset test control block (active LOW)  
59 shift clock test control block  
SHTCB  
TSCAN  
VSS_OSC  
OSC_IN  
60 scan control  
61 ground supply crystal oscillator circuit  
62 crystal oscillator input; crystal oscillator sense for gain control or forced input OSC  
in slave mode  
OSC_OUT  
VDD_OSC  
n.c.  
63 crystal oscillator output; drive output to 11.2896 MHz crystal  
64 3 V supply voltage crystal oscillator circuit  
65 not connected  
OSC  
VDD3  
n.c.  
66 not connected  
n.c.  
67 not connected  
n.c.  
68 not connected  
n.c.  
69 not connected  
n.c.  
70 not connected  
n.c.  
71 not connected  
n.c.  
72 not connected  
n.c.  
73 not connected  
n.c.  
74 not connected  
n.c.  
75 not connected  
VDACP1  
VDACN1  
76 not used  
77 not used  
1999 Aug 05  
8
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
SYMBOL  
n.c.  
PIN  
DESCRIPTION  
PIN TYPE  
78 not connected  
79 not connected  
80 not connected  
n.c.  
n.c.  
Table 1 Pin types  
PIN NAME  
PIN DESCRIPTION  
4 mA slew rate controlled digital output  
B4CR  
BD4CR  
BD4CRD  
BT4CR  
IBUF  
4 mA slew rate controlled digital I/O  
4 mA slew rate controlled digital I/O with pull-down resistor  
4 mA slew rate controlled 3-state digital output  
digital input  
IBUFU  
IBUFD  
BD4SCI4  
SCHMITCD  
AP2D  
digital input with pull-up resistor  
digital input with pull-down resistor  
I2C-bus input/output with open-drain NMOS 4 mA output  
Schmitt trigger input  
analog input/output  
OSC  
analog input/output  
VDD5  
5 V VDD internal  
VDD3  
3 V VDD internal  
VSS3S  
VSS5  
3 or 5 V VSS internal substrate  
5 V VSS external  
APVDD  
APVSS  
analog VDD  
analog VSS  
1999 Aug 05  
9
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
V
64  
n.c.  
n.c.  
1
2
3
4
5
6
7
8
9
DD_OSC  
63 OSC_OUT  
62 OSC_IN  
n.c.  
V
n.c.  
61  
SS_OSC  
n.c.  
60 TSCAN  
n.c.  
SHTCB  
RTCB  
59  
58  
n.c.  
POM  
OUT3_V  
57 DSP_RESET  
V
56  
55  
54  
53  
52  
51  
50  
49  
SSD3V6  
SSD3V5  
SSD3V4  
DDD3V2  
DDD3V1  
V
V
V
V
OUT3_I 10  
OUT2_I 11  
OUT2_V 12  
SAA7712H  
V
V
13  
14  
SSA2  
V
V
V
DDA2  
SSD3V3  
SSD3V2  
SSD3V1  
VREFDA 15  
OUT1_V 16  
OUT1_I 17  
OUT0_I 18  
OUT0_V 19  
EQOV 20  
48 TEST2  
TEST1  
47  
46 SDA  
45 SCL  
44 A0  
V
SYS_CLK 21  
V
22  
23  
43  
42  
DDD5V1  
SSD5V3  
DDD5V3  
V
V
SSD5V1  
2
I S_IN2_WS 24  
41 DSP_OUT2  
MGS207  
Fig.2 Pin configuration.  
10  
1999 Aug 05  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8
FUNCTIONAL DESCRIPTION  
Analog outputs  
8.1.3  
DACS  
8.1  
Each of the four low noise high dynamic range DACs  
consists of a signed-magnitude DAC with current output,  
followed by a buffer operational amplifier.  
8.1.1  
ANALOG OUTPUT CIRCUIT  
Depending on the configuration of the equalizer sections,  
the SAA7712H has 2 or 4 analog outputs which are  
supplied by the same power supply. Each of these outputs  
has a voltage and a current pin (see Fig.3). The signals are  
available on 2 outputs (OUT0 and OUT1), or 4 outputs  
(OUT0, OUT1, OUT2 and OUT3).  
8.1.4  
UPSAMPLE FILTER  
To reduce spectral components above the audio band, a  
fixed 4 times oversampling and interpolating digital filter is  
used. The filters give an out-of-audio-band attenuation of  
at least 29 dB. The filter is followed by a first-order noise  
shaper to expand the dynamic range to more than 105 dB.  
The band around multiples of the sample frequency of the  
DAC (4fs) is not affected by the digital filter. A capacitor  
must be added in parallel with the DAC output amplifier to  
attenuate this out-of-band noise further to an acceptable  
level.  
handbook, halfpage  
OUT0_I  
(OUT1_I)  
OUT0_V  
(OUT1_V)  
In Fig.4 the overall frequency spectrum at the DAC audio  
output without external capacitor or low-pass filter for the  
audio sampling frequencies of 38 kHz is shown. In Fig.5  
the detailed spectrum around fs is shown for an fs of  
38, 44.1 and 48 kHz. The pass band bandwidth (3 dB) is  
12fs.  
MSB  
V
ref  
BIT 0 to 13  
DAC  
MGS208  
Fig.3 Analog output circuit.  
8.1.2  
DAC FREQUENCY  
The sample rate (fs) of the selected source is the frame  
rate of the DSP. The word clock for the upsample filter and  
the clock for the DACs, at 4fs, are derived internally from  
the word select of the selected audio source.  
1999 Aug 05  
11  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
MGS209  
0
α
(dB)  
10  
20  
30  
40  
50  
60  
0
100  
200  
300  
400  
500  
f
= 38000 Hz  
f (kHz)  
s
Fig.4 Overall frequency spectrum audio output.  
MGS210  
0
α
(dB)  
10  
20  
30  
40  
50  
0
10000  
20000  
23211  
25263  
30000  
f
f
f
= 38000 Hz  
= 44100 Hz  
= 48000 Hz  
s
s
s
0
0
11605  
12632  
34816  
37895  
f (Hz)  
Fig.5 Detailed frequency spectrum audio output.  
12  
1999 Aug 05  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.1.5  
PERFORMANCE  
8.1.6  
POWER-ON MUTE (POM)  
The signed-magnitude noise-shaped DAC has a dynamic  
range in excess of 100 dB. The signal-to-noise ratio of the  
audio output at full-scale is determined by the word length  
of the converter. The noise at low outputs is fully  
determined by the noise performance of the DAC. Since it  
is a signed-magnitude type, the noise at digital silence is  
also low. As a disadvantage, the total THD is higher than  
conventional DACs. The typical total harmonic  
To avoid any uncontrolled noise at the audio outputs after  
power-on of the IC, the reference current source of the  
DAC is switched off. The capacitor on pin POM  
determines the time after which this current has a soft  
switch-on. So at power-on the current audio signal outputs  
are always muted. The loading of the external capacitor is  
done in two stages via two different current sources.  
The loading starts at a current level that is 9 times lower  
than the current loading after the voltage on pin POM has  
passed the 1 V level. This results in an almost dB linear  
behaviour.  
distortion-plus-noise to signal ratio as a function of the  
output level is shown in Fig.6.  
8.1.7  
POWER-OFF PLOP SUPPRESSION  
Power should still be provided to the analog part of the  
DAC, while the digital part is switching off. As a result, the  
output voltage will decrease gradually allowing the power  
amplifier some extra time to switch-off without audible  
plops. If a 5 V power supply is present, the supply voltage  
of the analog part of the DAC can be fed from the 5 V  
power supply via a 1.8 V zener diode. A capacitor,  
connected to the 3.3 V power supply, provides power to  
the analog part when the 5 V power supply is switching off  
fast.  
MGS211  
20  
handbook, halfpage  
(THD  
+ N)/S  
(dB)  
40  
60  
80  
80  
60  
40  
20  
0
output level (dB)  
Fig.6 Typical (THD + N)/S curve as a function of  
the output level.  
1999 Aug 05  
13  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
I2S-bus inputs and outputs  
8.1.8  
PIN VREFDA  
8.2  
With two internal resistors half the supply voltage (VDDA2  
is obtained and coupled to an internal buffer. This  
reference voltage is used as DC voltage for the output  
operational amplifiers and as reference for the DAC.  
In order to obtain the lowest noise and to have the best  
)
8.2.1  
DIGITAL DATA STREAM FORMATS  
For communication with external digital sources a serial  
3-line bus is used. This I2S-bus has one line for data, one  
line for clock and one line for the word select.  
ripple rejection, a filter capacitor has to be added between  
this pin and ground.  
See Fig.7 for the general waveform formats of the four  
possible formats.  
The serial digital inputs (and outputs) of the SAA7712H are  
capable of handling multiple formats: Philips I2S-bus and  
LSB-justified formats of 16, 18 and 20 bits word sizes.  
8.1.9  
INTERNAL DAC CURRENT REFERENCE  
As a reference for the internal DAC current and for the  
DAC current source output, a current is drawn from the  
level on pin VREFDA to pin VSSA2 (ground) via an internal  
resistor. The absolute value of this resistor also  
determines the absolute current of the DAC. This means  
that the absolute value of the current is not that fixed due  
to the spread of the current reference resistor value. This,  
however, does not influence the absolute output voltages  
because these voltages are also derived from a  
conversion of the DAC current to the actual output voltage  
via internal resistors.  
In Philips I2S-bus format, the number of bit clock (BCK)  
pulses may vary in the application. When the transmitter  
word length is smaller than the receiver word length, the  
receiver will fill in zeroes at the LSB side. When the  
transmitter word length exceeds the receiver word length,  
the LSBs are skipped. For correct operation of the DACs,  
there should be a minimum of 16 bit clocks per word  
select.  
In the LSB-justified formats, the transmitter and receiver  
must be set to the same format. Be aware that a format  
switch between 20, 18 and 16 bits LSB-justified formats is  
done by changing the relative timing of the word select  
edges. The data bits remain unchanged. In the 20 bits  
format, the 2 LSBs are zeroes. In the 16 bits format, the  
2 data bits following the word select edge are not zero, but  
undefined. In fact, these are the LSBs of the 18-bit word.  
8.1.10 SUPPLY OF THE ANALOG OUTPUTS  
All the analog circuitry of the DACs and the operational  
amplifiers are fed by 2 supply pins, VDDA2 and VSSA2  
Pin VDDA2 must have sufficient decoupling to prevent THD  
degradation and to ensure a good power supply rejection  
ratio.  
.
The timing specification for the waveforms of the serial  
digital inputs and outputs are given in Fig.17.  
The digital part of the DAC is fully supplied from the chip  
core supply.  
1999 Aug 05  
14  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
WS  
BCK  
LEFT  
3
RIGHT  
3
1
2
1
2
DATA  
MSB B2  
MSB B2  
MSB  
2
INPUT FORMAT I S-BUS  
WS  
RIGHT  
16  
LEFT  
16  
15  
2
1
15  
2
1
BCK  
DATA  
MSB B2  
B15 LSB  
MSB B2  
B15 LSB  
LSB-JUSTIFIED FORMAT 16 BITS  
WS  
RIGHT  
LEFT  
18  
17  
16  
B3  
15  
2
1
18  
17  
16  
15  
2
1
BCK  
DATA  
LSB  
LSB  
MSB B2  
B4  
B17  
MSB B2  
B3  
B4  
B17  
LSB-JUSTIFIED FORMAT 18 BITS  
WS  
LEFT  
RIGHT  
20  
19  
18  
17  
B4  
16  
B5  
15  
B6  
2
1
20  
19  
18  
B3  
17  
16  
15  
B6  
2
1
BCK  
LSB  
LSB  
DATA  
MSB B2  
B3  
B19  
MSB B2  
B4  
B5  
B19  
MGS212  
LSB-JUSTIFIED FORMAT 20 BITS  
Fig.7 All serial data I/O formats.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.2.2  
SLAVE I2S-BUS INPUTS  
Table 3 I2C-bus audio_source mode bit (0FF9H,  
see Table 13)  
The SAA7712H has two slave I2S-bus inputs, I2S_IN1 and  
I2S_IN2 with respective data lines I2S_IN1_DATA and  
I2S_IN2_DATA, word select lines I2S_IN1_WS and  
I2S_IN2_WS and bit clock lines I2S_IN1_BCK and  
I2S_IN2_BCK. The external source is master and supplies  
the bit clock and word select. The I2C-bus bits  
AUDIO_SOURCE  
OUTPUT  
Bit 5  
0
1
I2S_IN1 (default)  
I2S_IN2  
audio_format(2 to 0) allow for selection of the desired  
I2S-bus format (see Table 13). The bits, needed for  
selecting a certain format, are explained in Table 2.  
8.2.3  
MASTER I2S-BUS INPUTS AND OUTPUTS  
For the co-processor I/O interface, the SAA7712H acts as  
a master. The SAA7712H supplies both the bit clock and  
word select. The I2C-bus bits host_io_format(1 and 0)  
allow for selection of the desired I2S-bus format (see  
Table 13).  
The input circuitry is limited in handling the number of BCK  
pulses per WS period. If the word rate of the selected  
digital input source is fs, the bit clock must be a continuous  
clock in the range of 16fs fbit(CLK) 256fs. The minimum  
limit of the audio sample frequency is determined by  
118fSCL. The maximum limit of the audio sample frequency  
is determined by DSP_clock/481 Hz.  
The bits needed for selecting a certain format are given in  
Table 4.  
All I2S-bus output lines, I2S_IO_WS, I2S_IO_BCK,  
I2S_IO_OUT1 and I2S_IO_OUT2, can be 3-stated with  
I2C-bus bit en_host_io (see Table 13).  
Table 2 I2C-bus audio_format mode bits (0FF9H,  
see Table 13)  
The word select and bit clock of the co-processor I/O  
interface are derived from the word select and bit clock of  
the audio source selected according to Table 3.  
The incoming bit clock can be divided by 1, 2, 4 or 8  
depending on the needs of an external connected  
co-processor. These selections can be done with I2C-bus  
bits cloop_mode(2 to 0) (see Table 13). The meaning of  
these bits is shown in Table 5.  
AUDIO_FORMAT  
OUTPUT  
BIT 9 BIT 8 BIT 7  
0
0
0
internal format (for test  
purposes only)  
1
0
1
1
0
1
0
1
0
LSB-justified, 16 bits  
LSB-justified, 18 bits  
LSB-justified, 20 bits  
standard I2S-bus (default)  
The selection of the DSP input among the decimated  
analog input and the I2S-bus inputs I2S_IN1 and I2S_IN2  
is controlled with I2C-bus bit audio_source (see Table 13).  
The meaning of this bit can be found in Table 3.  
1999 Aug 05  
16  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
Table 4 I2C-bus host_io_format bits (0FF9H, see Table 13)  
HOST_IO_FORMAT  
OUTPUT  
standard I2S-bus (default)  
BIT 11  
BIT 10  
0
0
1
1
0
1
0
1
LSB-justified format, 16 bits  
LSB-justified format, 18 bits  
LSB-justified format, 20 bits  
Table 5 I2C-bus cloop_mode bits (0FF9H, see Table 13)  
CLOOP_MODE  
OUTPUT  
BIT 15  
BIT 14  
BIT 13  
0
1
0
0
1
1
0
1
0
1
bypass WS (default)  
WS 50% duty factor  
bypass BCLK (default)  
divide BCLK by 2  
divide BCLK by 4  
divide BCLK by 8  
8.3  
Equalizer accelerator  
If the gain setting causes the audio signal to exceed the  
maximum level in one of the filter sections, the signal will  
be clipped and the equalizer overflow output (pin EQOV)  
will be set HIGH until the end of the next audio sample  
period.  
8.3.1  
INTRODUCTION  
The equalizer accelerator is a hardware accelerator to the  
DSP core. Both its inputs and outputs are stored in  
registers of the DSP core.  
8.3.2  
CONFIGURATION OF EQUALIZER SECTIONS  
The equalizer cannot be used and cannot be programmed  
if no word select and bit clock signal are present on a  
selected digital source input; see audio_source bit in  
Table 3 (I2S_IN1 or I2S_IN2). The minimum required  
DSP_clock is 481fs.  
The equalizer accelerator can make a 2-channel equalizer  
of 10 second-order sections per channel or a 4-channel  
equalizer of 5 second-order sections per channel.  
The sections of one channel can be chained one after the  
other. Depending on the I2C-bus control bit two_four  
(see Table 11), the 20 filter sections are combined for the  
appropriate configuration, as illustrated in Fig.8.  
The equalizer accelerator contains one second-order filter  
data path that is 20 times multiplexed. With this circuit, a  
2-channel equalizer of 10 second-order sections per  
channel or a 4-channel equalizer of 5 second-order  
sections per channel can be realised. The centre  
frequency, gain and Q-factor of all 20 second-order  
sections can be set independently from each other. Every  
section is followed by a selectable attenuation of 0 or 6 dB.  
Per section, 4 bytes of the I2C-bus register are needed to  
store the settings. The equalizer settings can be updated  
during normal operation. An application program supports  
the programming of the equalizer.  
1999 Aug 05  
17  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
1
2
3
4
5
A
B
C
D
IN0  
IN1  
IN2  
IN3  
OUT0  
2 channel  
OUT1  
OUT2  
OUT3  
2 channel  
MGS213  
Fig.8 Configurations of the equalizer sections.  
8.3.3  
OVERFLOW DETECTION  
The gain of the oscillator is internally controlled by the  
AGC block. A sine wave with a peak-to-peak voltage close  
to the oscillator power supply voltage is generated.  
The AGC block prevents clipping of the sine wave and  
therefore the higher harmonics are as low as possible.  
At the same time, the voltage of the sine wave is as high  
as possible so reducing the jitter going from sine wave to  
clock signal. The sinusoidal output is converted into a  
CMOS compatible clock by the comparator.  
The equalizer has an overflow flag. This flag is fed to  
output pin EQOV. If an overflow is detected in one of the  
filter sections, the signal is clipped to the maximum  
allowed level. The overflow flag is immediately set.  
It remains at a HIGH-level during the remaining part of the  
current audio sample period and for the whole next sample  
period. If no overflow is detected during this next sample  
period, the overflow flag goes to a LOW-level at the  
beginning of the sample period after that. Otherwise, the  
overflow flag remains at a HIGH-level for at least one other  
audio sample period.  
The second mode of operation shown in Fig.10, is the  
slave mode which is driven by a master clock directly.  
The signal to pin OSC_IN can be driven to the power  
supply voltages VDD_OSC and VSS_OSC  
.
8.4  
Clock circuit and oscillator  
8.4.2  
SUPPLY OF THE CRYSTAL OSCILLATOR  
8.4.1  
GENERAL DESCRIPTION  
The power supply connections of the oscillator are  
separate from the other supply lines. This is to minimize  
the feedback from the ground bounce of the chip to the  
oscillator circuit. Pin VSS_OSC is used as the ground supply  
and pin VDD_OSC as the positive supply.  
The chip has a crystal clock oscillator. It can use a crystal  
at either fxtal = 16.384 MHz = 512 × 32 kHz or  
fxtal = 18.432 MHz = 576 × 32 kHz in fundamental mode.  
The block diagram of this Pierce oscillator is shown in  
Fig.9. The active element needed to compensate for the  
loss resistance of the crystal is the block Gm. This block is  
placed between the external pins OSC_IN  
and OSC_OUT.  
1999 Aug 05  
18  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
0.5V  
DD_OSC  
Gm  
AGC  
clock out  
100 kΩ  
R
bias  
on chip  
off chip  
62  
63  
OSC_OUT  
64  
V
61  
V
OSC_IN  
DD_OSC  
SS_OSC  
MGS214  
C1  
10 pF  
C2  
10 pF  
Fig.9 Block diagram of the crystal oscillator circuit.  
0.5V  
DD_OSC  
Gm  
AGC  
clock out  
100 kΩ  
R
bias  
on chip  
off chip  
62  
63  
64  
V
61  
V
OSC_IN  
OSC_OUT  
DD_OSC  
SS_OSC  
MGS215  
C3  
5 pF  
C1  
10 pF  
C2  
10 pF  
slave input  
Fig.10 Block diagram of the oscillator in slave mode.  
19  
1999 Aug 05  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.5  
Programmable phase-locked loop circuit  
The clock of the DSP is generated with a programmable PLL.  
To select the required DSP clock see Table 6. The N factor (ranging from 93 to 181) can be selected with I2C-bus bits  
PLL_div(14 to 11), see Table 10. Depending on the crystal and the required DSP clock the I2C-bus bits pll_fs_sel and  
bits dsp_turbo must be set. The maximum limit of the audio sample frequency is determined by DSP_clock/481 Hz.  
Table 6 I2C-bus bits PLL_div and dividing factors N of the programmable DSP clock  
DSP CLOCK FREQUENCY (MHz)  
PLL_DIV(14 to 11)  
0000  
N
TDA9875(1)  
MSP3410D(2)  
93 (default)  
99  
23.808(3)  
25.344(3)  
27.136  
26.784  
28.512  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
106  
30.528  
113  
28.928  
32.544  
121  
30.976  
34.848(3)  
36.288(3)  
38.016(3)  
39.456(3)  
41.184(3)  
42.624(3)  
44.352(3)  
45.792(3)  
47.520(3)  
48.960(3)  
50.688(3)  
52.128(3)  
126  
32.256  
132  
33.792(3)  
35.072(3)  
36.608(3)  
37.888(3)  
39.424(3)  
40.704(3)  
42.240(3)  
43.520(3)  
45.056(3)  
46.336(3)  
137  
143  
148  
154  
159  
165  
170  
176  
181  
Notes  
1. fxtal = 16.384 MHz; pll_fs_sel = 1 and dsp_turbo = 1, see Table 11.  
2. fxtal = 18.432 MHz; pll_fs_sel = 1 and dsp_turbo = 1, see Table 11.  
3. Usable frequency.  
1999 Aug 05  
20  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.6  
I2C-bus control  
8.6.2  
CHARACTERISTICS OF THE I2C-BUS  
8.6.1  
INTRODUCTION  
The I2C-bus is for 2-way, 2-line communication between  
different ICs or modules. The two lines are a serial data  
line (SDA) and a serial clock line (SCL). Both lines must  
be connected to VDD via a pull-up resistor when  
connected to the output stages of a microcontroller. For a  
400 kHz I2C-bus the recommendation from Philips  
Semiconductors must be followed (e.g. up to loads of  
200 pF on the bus a pull-up resistor can be used, between  
200 to 400 pF a current source or switched resistor must  
be used). Data transfer can only be initiated when the bus  
is not busy.  
A general description of the I2C-bus format can be  
obtained from Philips Semiconductors, International  
Marketing and Sales Communications (IMSC).  
For the external control of the SAA7712H a fast I2C-bus  
is implemented. This is a 400 kHz bus which is downward  
compatible with the standard 100 kHz bus.  
There are different types of control instructions:  
Instructions to control the DSP program, program the  
coefficient RAM and read the values of parameters  
8.6.3  
BIT TRANSFER  
Instructions to control the equalizer, program the  
equalizer coefficient RAM to be able to change the  
centre frequency, gain and Q-factor of the equalizer  
sections  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as control signals  
Instructions to control the source selection and  
programmable parts, e.g. PLL clock speed.  
(see Fig.11). The maximum clock frequency is 400 kHz.  
To be able to run on this high frequency all the inputs and  
outputs connected to this bus must be designed for this  
high speed I2C-bus according to the Philips specification.  
The detailed description of the I2C-bus and commands is  
given in the following sections. The description of the  
different bits in the memory map is given in Section 9.6.  
The equalizer cannot be used and cannot be  
programmed if there is no word select and bit clock signal  
present on a selected digital source input; see  
audio_source bit in Table 3 (I2S_IN1 and I2S_IN2).  
The minimum limit of the audio sample frequency is  
determined by 118fSCL  
.
SDA  
SCL  
MGS216  
data line  
stable;  
change  
of data  
data valid  
allowed  
Fig.11 Bit transfer on the I2C-bus.  
1999 Aug 05  
21  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.6.4  
START AND STOP CONDITIONS  
Both data and clock lines will remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while  
the clock is HIGH, is defined as a START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH  
is defined as a STOP condition (P) (see Fig.12).  
SDA  
SCL  
S
P
START condition  
STOP condition  
MGS217  
Fig.12 START and STOP conditions.  
8.6.5  
DATA TRANSFER  
A device generating a message is a ‘transmitter’ and a device receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which are controlled by the master are the ‘slaves’.  
SDA  
MSB  
acknowledgement  
signal from receiver  
acknowledgement  
signal from receiver  
byte complete  
interrupt within receiver  
clock line held LOW while  
interrupts are serviced  
SCL  
1
2
7
8
9
1
2
3 to 8  
9
ACK  
ACK  
S
MGS218  
START condition  
Fig.13 Data transfer on the I2C-bus.  
1999 Aug 05  
22  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.6.6  
ACKNOWLEDGE  
Set-up and hold times must be taken into account.  
The number of data bits transferred between the START  
and STOP conditions from the transmitter to the receiver  
is not limited. Each byte of eight bits is followed by one  
acknowledge bit (see Fig.13). The acknowledge bit is a  
HIGH-level left on the bus by the transmitter whereas the  
master generates an extra acknowledge related clock  
pulse.  
A master receiver must signal an end of data to the  
transmitter by not generating an acknowledge on the last  
byte that has been clocked out of the slave. In this event  
the transmitter must leave the data line HIGH to enable the  
master to generate a STOP condition (see Fig.14).  
8.6.7  
STATE OF THE I2C-BUS INTERFACE DURING AND  
AFTER POWER-ON RESET  
A slave receiver which is addressed must generate an  
acknowledge after the reception of each byte. Also a  
master must generate an acknowledge after the reception  
of each byte that has been clocked out of the slave  
transmitter. The device that acknowledges has to pull  
down the SDA line (left HIGH by the transmitter) during the  
acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related  
clock pulse.  
During reset (see Section 8.8), the internal SDA line is kept  
HIGH and pin SDA is therefore high-impedance. The SDA  
line remains HIGH until a master pulls it down to initiate  
communication.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
7
8
9
S
MGS219  
clock pulse for  
acknowledgement  
START condition  
Fig.14 Acknowledge on the I2C-bus.  
1999 Aug 05  
23  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.7  
External control pins  
A more or less fixed relationship between the  
DSP_RESET time constant and the POM time constant is  
obligatory. The voltage on pin POM determines the current  
flowing in the DACs. For 0 V on pin POM, the DAC  
currents are zero and so also the DACs output voltages.  
When a 3 V supply voltage (VDDA2) is supplied to pin POM,  
the DAC currents are at their nominal (maximum) value.  
For external control two input pins are implemented.  
The status of these pins can be changed by applying a  
logic level. The status of these pins is recorded in the  
internal status register. The function of each input pin is  
determined by the DSP software.  
Pin DSP_IN1:  
Long before the DAC outputs get their nominal output  
voltages, the DSP must be in normal operating mode to  
reset the output register. Therefore, the time constant of  
DSP_RESET must be shorter than the time constant of  
POM. For advised capacitors see the application diagram.  
Logic 0 or left open-circuit means volume coefficients  
updates are possible (default)  
Logic 1 means no updates of volume coefficients are  
possible.  
The reset has the following function:  
Pin DSP_IN2:  
All I2C-bus registers are reset to their default values  
If the 3-band spectrum analyser is used:  
The DSP algorithm is re-started  
Logic 1 will reset the band registers of the analyser  
The external control output pins are reset  
(see Section 8.7)  
Logic 0 or left open-circuit means no reset of the  
band registers will be done (default).  
Pin SDA is high-impedance.  
If the 3-band spectrum analyser is not used:  
– The state of pin DSP_IN2 can be read via an I2C-bus  
command.  
When the level on the reset pin is HIGH, the DSP algorithm  
starts to run.  
To control external devices two output pins are  
implemented. The status of these pins is controlled by the  
DSP program. The functions of these pins are determined  
by the DSP software.  
In addition to the reset pin, there is also a software reset;  
bit PC_reset (bit 15, 0FFDH, see Table 11). This reset has  
the following function:  
The DSP algorithm is re-started  
Pin DSP_OUT1:  
The external control output pins are reset  
To drive pin DSP_OUT1 via an I2C-bus command.  
(see Section 8.7).  
Pin DSP_OUT2:  
To drive pin DSP_OUT2 via an I2C-bus command.  
8.8  
Reset pin  
The reset signal on pin DSP_RESET is active LOW and  
has an internal pull-up resistor. Between this pin and  
ground a capacitor should be connected to allow a proper  
switch-on of the supply voltage. The capacitor value is  
such that the chip is in the reset state as long as the power  
supply is not stabilized.  
1999 Aug 05  
24  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
8.9  
Power supply connection and EMC  
9.3  
Write cycles  
The digital part of the chip has in total 5 positive supply line  
connections and 8 ground connections. To minimise  
radiation the chip should be put on a double layer PCB with  
a large ground plane on one side. The ground supply lines  
should have a short connection to this ground plane. A coil  
and capacitor network in the positive supply line can be  
used as high frequency filter.  
The I2C-bus configuration for a write cycle is shown in  
Fig.15. The write cycle is used to write the bytes to control  
the PLL for the DSP clock generation, the format of the  
I2S-bus and some other settings. More details can be  
found in the I2C-bus memory map (see Table 8).  
The data length is 2 or 3 bytes, depending on the  
accessed memory. The slave receiver detects the address  
and adjusts the number of bytes accordingly. For XRAM,  
the data word length is 18 bits and 3 bytes are sent over  
the I2C-bus. The upper 6 bits (i.e. bit 7 to bit 2) of the first  
byte DATA H are don’t care. For YRAM, the data word  
length is 12 bits and 2 bytes are sent over the I2C-bus. The  
left nibble (i.e. bit 7 to bit 4) of the first byte DATA H is don’t  
care.  
8.10 Test mode connections  
Pins TSCAN, RTCB and SHTCB are used to put the chip  
in test mode and to test the internal connections. Each pin  
has an internal pull-down resistor to ground. In the  
application these pins can be left open-circuit or connected  
to ground.  
9.4  
Read cycles  
9
I2C-BUS FORMAT  
Addressing  
The I2C-bus configuration for a read cycle is shown in  
Fig.16. The read cycle is used to read the data values from  
XRAM or YRAM. The master starts with a START  
condition (S), the SAA7712H address ‘0011110’ and a  
logic 0 (write) for the read/write bit. This is followed by an  
acknowledge of the SAA7712H. The master then writes  
the memory high address and memory low address where  
the reading of the memory content of the SAA7712H must  
start. The SAA7712H acknowledges these addresses  
both.  
9.1  
Before any data is transmitted on the I2C-bus, the device  
which should respond is addressed first. The addressing is  
always done with the first byte transmitted after the START  
procedure.  
9.2  
Slave address (pin A0)  
The SAA7712H acts as a slave receiver or a slave  
transmitter. Therefore, the clock signal SCL is only an  
input signal. The data signal SDA is a bidirectional line.  
The slave address is shown in Table 7.  
The master than generates a repeated START and again  
the SAA7712H address ‘0011110’ but this time followed  
by a logic 1 (read) of the read/write bit. From this moment  
on, the SAA7712H will send the memory content in groups  
of 2 (YRAM) or 3 (XRAM) bytes to the I2C-bus, each time  
acknowledged by the master. The master stops this cycle  
by generating a negative acknowledge, then the  
SAA7712H frees the I2C-bus and the master can generate  
a STOP condition (P).  
Table 7 Slave address  
MSB  
LSB  
R/W  
0
0
1
1
1
1
A0  
The subaddress bit A0 corresponds to the hardware  
address pin A0 which allows the device to have two  
addresses. This allows the control of two SAA7712Hs via  
the same I2C-bus.  
1999 Aug 05  
25  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
0
0
1
1
1
0
0
0
ADDR H  
ADDR L  
DATA H  
DATA M  
P
DATA L  
S
auto increment if repeated n-groups of 3 (2) bytes  
address  
MGD568  
R/W  
S = START condition.  
ACK = acknowledge from DSP (SDA LOW).  
ADDR H and ADDR L = address DSP register.  
DATA H, DATA M and DATA L = data of XRAM or registers.  
DATA H and DATA M = data of YRAM.  
P = STOP condition.  
Fig.15 Master transmitter writes to the DSP registers.  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
0
0
1
1
1
0
0
0
ADDR H  
ADDR L  
0
S
0
1
1
1
0
0
1
DATA H  
P
DATA M  
DATA L  
S
auto increment if repeated n-groups of 3 (2) bytes  
address  
MGA808 - 1  
R/W  
R/W  
S = START condition.  
ACK = acknowledge from DSP (SDA LOW).  
ADDR H and ADDR L = address DSP register.  
DATA H, DATA M and DATA L = data of XRAM or registers.  
DATA H and DATA M = data of YRAM.  
P = STOP condition.  
Fig.16 Master transmitter reads from the DSP registers.  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
9.5  
I2C-bus memory map summary  
The I2C-bus memory map contains all defined I2C-bus bits. The map is split into two different sections: hardware memory  
registers and the RAM definitions. The preliminary memory map is given in Table 8.  
Table 8 I2C-bus memory map  
SUBADDRESSES  
FUNCTION  
various settings (see Table 9)  
SIZE  
0FF9H to 0FFFH  
0F80H to 0FA7H  
0800H to 097FH  
0000H to 017FH  
4 × 16 bits  
equalizer  
YRAM  
40 × 16 bits  
384 × 12 bits  
384 × 18 bits  
XRAM  
Table 9 I2C-bus memory map: overview of various settings  
REGISTER NAME  
SUBADDRESS  
0FFFH (see Table 10)  
0FFDH (see Table 11)  
0FFAH (see Table 12)  
0FF9H (see Table 13)  
I2C_DCS_CTR  
I2C_ADDA  
I2C_SEL  
I2C_HOST  
9.6  
I2C-bus memory map details  
Table 10 I2C_DCS_CTR register (0FFFH)  
SIZE  
NAME  
DESCRIPTION  
DEFAULT  
BIT POSITION  
(BITS)  
10  
1
reserved  
pin SYS_CLK output enable: on (logic 1) or off (logic 0) off  
9 to 0  
10  
loopo_on_off  
PLL_div  
4
PLL clock division factor for DSP_clock (see Table 6)  
reserved  
93  
14 to 11  
15  
1
1999 Aug 05  
27  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
Table 11 I2C_ADDA register (0FFDH)  
SIZE  
NAME  
BIT  
POSITION  
DESCRIPTION  
DEFAULT  
(BITS)  
10  
1
reserved  
9 to 0  
10  
pll_fs_sel  
dsp_turbo  
two_four  
divide oscillator by 2 (logic 1)  
double DSP_clock (logic 1)  
division  
1
doubling  
11  
1
2-channel 10-band (logic 1) or 4-channel 5-band (logic 0) 4-channel  
12  
equalizer configuration  
5-band  
2
1
reserved  
14 and 13  
15  
pc_reset  
re-start DSP algorithm (logic 1) or DSP running (logic 0)  
DSP running  
Table 12 I2C_SEL register (0FFAH)  
SIZE  
NAME  
BIT  
POSITION  
DESCRIPTION  
DEFAULT  
(BITS)  
8
1
reserved  
7 to 0  
8
bypass_pll  
bypass PLL used for DSP_clock (logic 1) or use PLL for  
DSP_clock (logic 0)  
use PLL  
4
1
2
reserved  
12 to 9  
13  
inv_host_ws  
inverting (logic 1) or non-inverting (logic 0) word select  
reserved  
non-inverting  
15 and 14  
Table 13 I2C_HOST register (0FF9H)  
SIZE  
NAME  
BIT  
POSITION  
DESCRIPTION  
DEFAULT  
(BITS)  
5
1
1
3
2
1
3
reserved  
4 to 0  
audio_source  
input source is I2S_IN1 or I2S_IN2 (see Table 3)  
I2S_IN1  
5
6
reserved  
audio_format  
host_io_format  
en_host_io  
cloop_mode  
format of selected input source (see Table 2)  
host input/output data format (see Table 4)  
enable (logic 1) or disable (logic 0) co-processor I2S-bus disable  
standard I2S-bus 9 to 7  
standard I2S-bus 11 and 10  
12  
cloop mode (see Table 5) bypass WS  
15 to 13  
1999 Aug 05  
28  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
10 LIMITING VALUES  
In accordance with the Absolute Maximum Ratings system (IEC 134).  
SYMBOL  
VDD3V  
PARAMETER  
CONDITION  
MIN.  
0.5  
MAX.  
+5  
UNIT  
supply voltage 3.3 V analog and  
digital  
V
V
VDD5V  
supply voltage 5 V periphery  
only valid for the voltages in  
connection with the 5 V I/Os  
0.5  
+6.5  
550  
VDD  
voltage difference between two  
VDDx pins  
mV  
IIK  
input clamping diode current  
Vi < 0.5 V or Vi > VDD + 0.5 V  
0.5 V < Vo < VDD + 0.5 V  
10  
20  
mA  
mA  
IO(sink/source)  
output sink or source current,  
output type 4 mA  
IDD,ISS  
VDD or VSS current per supply  
pin  
750  
mA  
Tamb  
Tstg  
Ves  
ambient temperature  
storage temperature  
0
70  
°C  
°C  
V
65  
3000  
300  
100  
+150  
+3000  
+300  
electrostatic handling voltage for note 1  
all pins  
note 2  
V
Ilu(prot)  
P/out  
Ptot  
latch-up protection  
CIC specification/test method  
mA  
mW  
mW  
power dissipation per output  
total power dissipation  
100  
400  
Notes  
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kresistor.  
2. Machine model: equivalent to discharging a 200 pF capacitor through a 2.5 µH inductance and a 0 series resistor.  
11 THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
Note  
1. Printed-circuit board mounting.  
PARAMETER  
CONDITION  
VALUE  
UNIT  
thermal resistance from junction to ambient  
in free air; note 1  
45  
K/W  
1999 Aug 05  
29  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
12 DC CHARACTERISTICS  
Digital I/O at Tamb = 0 to 70 °C; VDD5V = 4.5 to 5.5 V; VDD3V = 3 to 3.6 V; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDD3V  
supply voltage 3.3 V analog  
and digital  
all VDD pins of the type VDD3  
and APVVD referenced to VSS  
3
3.3  
3.6  
V
VDD5V  
supply voltage 5 V periphery all VDD pins of the type VDD5 4.5  
5
5.5  
3.6  
80  
V
referenced to VSS  
3.0  
3.3  
33  
V
IDDD3V  
IDDD5V  
supply current of the 3.3 V  
digital core part  
at fDSP18; maximum activity of  
the DSP  
mA  
supply current of the 5 V  
digital periphery part  
at fDSP18; maximum activity of  
the DSP  
2
5
mA  
IDAC  
supply current of the DACs  
at zero input and output signal  
at fDSP18; functional mode  
4
7
3
mA  
mA  
IDD_OSC  
supply current of the crystal  
oscillator  
3.5  
Ptot  
total power dissipation  
at fDSP18; maximum activity of  
the DSP  
135  
400  
mW  
Logic  
VIH  
HIGH-level input voltage of all  
digital inputs and I/Os on  
pins 24 to 29, 38, 39,  
44 to 47, 57 to 60  
0.7VDDD5V  
V
VIL  
LOW-level input voltage of all  
digital inputs and I/Os on  
pins 24 to 29, 38, 39,  
44 to 47, 57 to 60  
0.3VDDD5V  
V
Vhys  
VOH  
hysteresis voltage on pin 45  
(SCL)  
1
1.3  
V
V
HIGH-level output voltage of IO = 4 mA  
digital outputs on pins 20, 21,  
V
DDD5V 0.4 −  
30, 33, 36, 37, 40, 41, 47, 48  
VOL  
LOW-level output voltage of  
digital outputs on pins 20, 21,  
30, 33, 36, 37, 40, 41, 47, 48  
VDDD5V = 4.5 V; IO = 4 mA  
0.4  
0.4  
V
V
VDDD5V = 3.0 V; IO = 4 mA  
VOL(I2C)  
LOW-level output voltage of  
digital I2C-bus data output on  
pin 46 (SDA)  
IO = 4 mA  
0.4  
V
IO  
output leakage current  
3-state outputs on pins 21,  
30, 33, 36, 37, 46 to 48  
VO = 0 or VDD  
5
µA  
kΩ  
Rpu  
internal pull-up resistance to  
VDDD on pin 57  
23  
50  
80  
(DSP_RESET)  
1999 Aug 05  
30  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
50  
MAX.  
UNIT  
Rpd  
internal pull-down resistance  
to VSSD on pins 24 to 29, 38,  
39, 44, 58 to 60  
23  
80  
kΩ  
ti(r), ti(f)  
input rise and fall times  
VDDD5V = 5.5 V  
5
6
6
200  
200  
ns  
ns  
ns  
VDDD5V = 3.6 V  
VDDD5V = 5.5 V;  
tLH5  
output rise time on pins 20,  
21, 30, 33, 36, 37, 40, 41, 47, VDDD3V = 3.6 V; Tj = 40 °C;  
48  
CL = 60 pF  
VDDD5V = 4.5 V; VDDD3V = 3 V;  
Tj = 125 °C; CL = 60 pF  
25  
ns  
ns  
tLH3  
output rise time on pins 20,  
VDDD5V = 3.6 V;  
7.5  
21, 30, 33, 36, 37, 40, 41, 47, VDDD3V = 3.6 V; Tj = 40 °C;  
48  
CL = 60 pF  
V
DDD5V = 3.0 V; VDDD3V = 3 V;  
5
30  
ns  
ns  
ns  
ns  
Tj = 125 °C; CL = 60 pF  
tLH(I2C5)  
tLH(I2C3)  
tHL5  
output rise time on pin 46  
(SDA)  
CL and Rpu are application  
specific  
output rise time on pin 46  
(SDA)  
CL and Rpu are application  
specific  
output fall time on pins 20,  
21, 30, 33, 36, 37, 40, 41, 47,  
48  
VDDD5V = 5.5 V;  
V
DDD3V = 3.6 V; Tj = 40 °C;  
CL = 60 pF  
DDD5V = 4.5 V; VDDD3V = 3 V;  
V
25  
ns  
ns  
Tj = 125 °C; CL = 60 pF  
tHL3  
output fall time on pins 20,  
VDDD5V = 3.6 V;  
7.5  
21, 30, 33, 36, 37, 40, 41, 47, VDDD3V = 3.6 V; Tj = 40 °C;  
48  
CL = 60 pF  
V
DDD5V = 3.0 V; VDDD3V = 3 V;  
30  
ns  
ns  
Tj = 125 °C; CL = 60 pF  
tHL(I2C5)  
output fall time on pin 46  
(SDA)  
VDDD5V = 5.5 V;  
30  
VDDD3V = 3.6 V; Tj = 40 °C;  
CL = 200 pF  
V
DDD5V = 4.5 V; VDDD3V = 3 V;  
300  
ns  
ns  
Tj = 125 °C; CL = 200 pF  
tHL(I2C3)  
output fall time on pin 46  
(SDA)  
VDDD5V = 3.6 V;  
40  
VDDD3V = 3.6 V; Tj = 40 °C;  
CL = 200 pF  
VDDD5V = 3.0 V; VDDD3V = 3 V;  
400  
ns  
Tj = 125 °C; CL = 200 pF  
1999 Aug 05  
31  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
13 ANALOG OUTPUTS CHARACTERISTICS  
Tamb = 25 °C; VDDA2 = 3.3 V; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
47  
TYP. MAX. UNIT  
VVREFDA  
ZVREFDA  
voltage on pin VREFDA  
with respect to VDDA2 VSSA2  
with respect to VDDA2  
50  
37  
37  
0.7  
53  
%
impedance on pin VREFDA  
kΩ  
kΩ  
V
with respect to VSSA2  
maximum I2S-bus signal;  
RL > 5 kΩ  
Vo(rms)  
AC output voltage of operational  
amplifiers (RMS value)  
0.62  
0.82  
VO(AV)  
average DC output voltage of  
operational amplifiers  
RL > 5 kΩ  
1.5  
3.3  
50  
1.65  
1.8  
5
V
Ipu(POML)  
Ipu(POMH)  
PSRRDAC  
Io(max)  
low pull-up current to VDDA2 on  
pin POM  
voltage on pin POM < 0.6 V  
voltage on pin POM > 0.8 V  
µA  
µA  
dB  
dB  
high pull-up current to VDDA2 on  
pin POM  
75  
power supply ripple rejection DACs fripple = 1 kHz; Vripple = 100 mV 45  
(input via I2S-bus)  
(peak value); CVREFDA = 22 µF  
maximum deviation in output level with respect to the average of  
60  
0.38  
(plus or minus) of the 4 DAC  
current outputs  
the 4 outputs; full-scale output  
αct  
crosstalk between all outputs in  
the audio band  
one output digital silence, other  
three maximum volume  
69  
dB  
Io(sc)  
output short-circuit current  
DAC resolution  
output short-circuited to ground  
20  
mA  
bits  
dBA  
RESDAC  
18  
75  
(THD + N)/S total harmonic  
distortion-plus-noise to signal ratio  
f = 1 kHz;  
60  
Vo(ref) = 0.72 V (RMS);  
A-weighted  
DRDAC  
DSDAC  
dynamic range of DAC  
digital silence of DAC  
Vo(ref) = 0.72 V (RMS);  
f = 1 kHz; 60 dB; A-weighted  
90  
96  
dBA  
f = 20 Hz 17 kHz;  
Vo(ref) = 0.72 V (RMS);  
A-weighted  
107 102 dBA  
Vn(o)(rms)  
d
digital silence noise level at output A-weighted  
(RMS value)  
3
8
µV  
intermodulation  
f = 60 Hz and 7 kHz, ratio 4 : 1  
70  
55  
dB  
distortion/comparator  
fs(max)  
BDAC  
CL(DAC)  
RL(DAC)  
maximum sample frequency  
bandwidth DAC  
48  
12fs  
kHz  
kHz  
nF  
at 3 dB  
load capacitance on DAC outputs  
2.5  
load resistance on DAC voltage  
outputs  
DC decoupled  
5
kΩ  
1999 Aug 05  
32  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
14 OSCILLATOR CHARACTERISTICS  
SYMBOL  
fxtal  
fxtal(adj)  
PARAMETER  
crystal frequency  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
10.000  
19.456 MHz  
crystal frequency variation with  
adjustment  
Tamb = 25 °C  
30  
+30  
+30  
ppm  
ppm  
fxtal(T)  
crystal frequency variation with  
temperature  
30  
αf  
spurious frequency attenuation  
20  
dB  
V
Vxtal(M)  
voltage across the crystal  
(absolute peak value)  
1.6  
2.6  
3.6  
gm(start)  
gm(oper)  
CL  
transconductance at start-up  
transconductance when operating  
capacitive load of clock output  
number of cycles during start-up  
10.5  
3.6  
19  
32  
38  
mS  
mS  
15  
pF  
Ncy(start)  
depends on quality of the  
external crystal  
1000  
cycles  
Ixtal  
supply current  
at start-up  
3
7
15  
mA  
mA  
mA  
mW  
V
at oscillation  
in slave mode  
at oscillation  
in slave mode  
Cp = 5 pF(1); C1 = 10 pF;  
C2 = 10 pF; see Fig.9  
0.6  
0.65  
0.4  
3.3  
20  
2
0.9  
0.5  
3.6  
100  
Pxtal  
Vi(clk)  
Rxtal  
drive level  
external clock input voltage  
allowed loss resistance of the  
crystal  
Ro  
output resistance  
at start-up;  
750  
1300  
2800  
fxtal = 18.432 MHz;  
VDD_OSC = 3.3 V  
Note  
1. Cp is the parasitic parallel capacitance of the crystal.  
1999 Aug 05  
33  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
15 I2S-BUS TIMING CHARACTERISTICS  
Timing of the serial digital data inputs and outputs (see Fig.17).  
SYMBOL  
Tcy  
tsu(D)  
PARAMETER  
MIN.  
MAX.  
UNIT  
ns  
bit clock cycle time  
70  
32  
10  
5
data set-up time (host)  
data set-up time (I2S-bus)  
data hold time (host)  
data hold time (I2S-bus)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(D)  
10  
10  
10  
tsu(WS)  
th(WS)  
td(D)  
word select set-up time (I2S-bus)  
word select hold time (I2S-bus)  
data delay time (host)  
20  
15  
td(WS)  
word select delay time (host)  
WS OUT  
left  
WS IN  
right  
t
t
d(WS)  
t
h(WS)  
su(WS)  
t
t
BCK(L)  
BCK(H)  
t
t
t
f
d(D)  
r
BCK  
t
h(D)  
t
T
su(D)  
cy  
DATA IN  
LSB  
MSB  
DATA OUT  
MGS220  
Fig.17 Timing definitions of the serial digital inputs and outputs.  
1999 Aug 05  
34  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
16 I2C-BUS TIMING CHARACTERISTICS  
Timing of the I2C-bus (see Fig.18); all values referred to VIH and VIL (see Section 12).  
SYMBOL  
fSCL  
PARAMETER  
SCL clock frequency  
CONDITIONS  
MIN.  
MAX.  
400  
UNIT  
kHz  
0
tBUF  
bus free time between a STOP and  
START condition  
1.3  
µs  
tHD;STA  
hold time (repeated) START  
condition; after this period, the first  
clock pulse is generated  
0.6  
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
0.6  
µs  
µs  
µs  
tHIGH  
tSU;STA  
set-up time for a repeated START  
condition  
tHD;DAT  
tSU;DAT  
data hold time  
0
0.9  
µs  
data set-up time  
for standard mode I2C-bus 100  
system tSU;DAT > 250 ns  
ns  
(1)  
(1)  
(1)  
tr  
tf  
rise time of both SDA and SCL  
signals  
fSCL = 400 kHz  
SCL = 100 kHz  
20 + 0.1Cb  
20 + 0.1Cb  
20 + 0.1Cb  
300  
ns  
ns  
ns  
f
1000  
300  
fall time of both SDA and SCL  
signals  
tSU;STO  
Cb  
set-up time for STOP condition  
capacitive load for each bus line  
0.6  
µs  
pF  
ns  
400  
50  
tSP  
maximum pulse width for spike  
suppression  
Note  
1. Cb is the bus line capacitance in pF.  
1999 Aug 05  
35  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SDA  
t
t
t
t
t
t
SP  
r
BUF  
LOW  
HD;STA  
f
SCL  
t
t
SU;STO  
HD;STA  
t
t
t
t
SU;DAT  
SU;STA  
HD;DAT  
HIGH  
P
S
P
Sr  
MBC611  
Fig.18 Timing definition of the I2C-bus.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
17 APPLICATION INFORMATION  
The application diagram (see Fig.19) must be considered as one of the examples of a (limited) application of the chip  
e.g. in this case the I2S-bus inputs are not used. For the real application set-up the information of the application report  
and application support by Philips are necessary on issues such as EMC, kappa reduction of the package,  
DSP programming, etc.  
+3 V  
+5 V +5 V  
BLM32A07  
+3 V  
22  
nF  
22  
nF  
22  
nF  
27 29 28 24 26 25  
37 36 30  
31  
32 33  
14 53 52 34 42  
22  
V
DDD5V1  
+5 V  
HOST I/O  
22 nF  
100 Ω  
19 OUT0_V  
18 OUT0_I  
16 OUT1_V  
17 OUT1_I  
OUT0  
OUT1  
1.8 nF  
1.8 nF  
100 Ω  
2
I S-BUS  
INPUT  
10 nF  
10 nF  
SWITCH  
100 Ω  
12 OUT2_V  
11 OUT2_I  
DSP  
QUAD DAC  
OUT2  
1.8 nF  
100 Ω  
9
OUT3_V  
OUT3  
SYS_CLK 21  
10 OUT3_I  
10 nF  
10 nF  
1.8 nF  
8
POM  
15 VREFDA  
2
BLM32A07  
100 nF  
V
DD_OSC 64  
22 µF  
4.7 µF  
+3 V  
PLL  
OSCILLATOR  
V
SS_OSC 61  
38 DSP_IN1  
39 DSP_IN2  
40 DSP_OUT1  
41 DSP_OUT2  
20 EQOV  
2
I C-BUS  
EQUALIZER  
RTCB 58  
SHTCB 59  
TSCAN 60  
INTERFACE  
SAA7712H  
62  
63  
47 48 55 54 51 50 49 43  
57  
56 35 23 13  
46 45 44  
4.7 kΩ  
4.7 kΩ  
11.2896 MHz  
10 pF  
1 µF  
10 pF  
MGS222  
+5 V  
Fig.19 Application diagram.  
37  
1999 Aug 05  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
18 PACKAGE OUTLINE  
QFP80: plastic quad flat package;  
80 leads (lead length 1.95 mm); body 14 x 20 x 2.7 mm; high stand-off height  
SOT318-1  
y
X
A
64  
65  
41  
40  
Z
E
e
A
2
H
A
E
(A )  
3
E
A
1
w M  
p
θ
pin 1 index  
L
p
b
L
25  
80  
detail X  
1
24  
w M  
Z
D
v
M
A
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.36 2.87  
0.10 2.57  
0.45 0.25 20.1 14.1  
0.30 0.13 19.9 13.9  
24.2 18.2  
23.6 17.6  
1.0  
0.6  
1.0  
0.6  
1.2  
0.8  
mm  
3.3  
0.25  
0.8  
1.95  
0.2  
0.2  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT318-1  
1999 Aug 05  
38  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
19 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
19.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
19.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
19.4 Manual soldering  
19.3 Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Aug 05  
39  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
19.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Aug 05  
40  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
20 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
21 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
22 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1999 Aug 05  
41  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
NOTES  
1999 Aug 05  
42  
Philips Semiconductors  
Preliminary specification  
Sound effects DSP  
SAA7712H  
NOTES  
1999 Aug 05  
43  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA67  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545004/25/01/pp44  
Date of release: 1999 Aug 05  
Document order number: 9397 750 04868  

相关型号:

SAA7712H

Sound effects DSP
NXP

SAA7715

Digital Signal Processor
NXP

SAA7715AH

IC 0-BIT, 24.576 MHz, OTHER DSP, PQFP44, 10 X 10 MM, 1.75 MM HEIGHT, PLASTIC, SOT-307-2, QFP-44, Digital Signal Processor
NXP

SAA7715AH

Digital Signal Processor, 24-Bit Size, CMOS, PQFP44,
PHILIPS

SAA7715AH/N103,518

SAA7715AH - Digital Signal Processor QFP 44-Pin
NXP

SAA7715H

Digital Signal Processor
NXP

SAA7724H

Car radio digital signal processor
NXP

SAA7724H

Digital Signal Processor
PHILIPS

SAA7724H/N105,518

暂无描述
NXP

SAA7724H/N105,557

SAA7724H - Car radio digital signal processor QFP 100-Pin
NXP

SAA7740

Digital Audio Processing IC DAPIC
NXP