SAA7824 [NXP]

CD audio decoder, digital servo and filterless DAC with integrated pre-amp and laser control (PhonIC); CD音频解码器,数字伺服和无滤波器DAC集成前置放大器和激光控制(音)
SAA7824
型号: SAA7824
厂家: NXP    NXP
描述:

CD audio decoder, digital servo and filterless DAC with integrated pre-amp and laser control (PhonIC)
CD音频解码器,数字伺服和无滤波器DAC集成前置放大器和激光控制(音)

解码器 放大器 CD
文件: 总89页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7824  
CD audio decoder, digital servo and  
filterless DAC with integrated  
pre-amp and laser control (PhonIC)  
Product specificationSupersedes data of 2003 Aug 07  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless DAC  
with integrated pre-amp and laser control (PhonIC)  
SAA7824  
CONTENTS  
7.15.3  
7.15.4  
7.16  
Loop characteristics  
FIFO overflow  
Servo part  
1
2
3
4
5
6
7
FEATURES  
7.16.1  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
7.16.6  
7.16.7  
7.16.8  
7.16.9  
7.16.10  
7.16.11  
7.17  
Diode signal processing  
Signal conditioning  
Focus servo system  
Radial servo system  
Off-track counting  
Track counting modes  
Defect detection  
Off-track detection  
High-level features  
Driver interface  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
PINNING  
FUNCTIONAL DESCRIPTION  
7.1  
7.2  
Data acquisition and HF data path  
Decoder part  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.3  
Principle operating modes of the decoder  
Decoder speed and crystal frequency  
Lock-to-disc mode  
Standby modes  
Crystal oscillator  
Laser interface  
Microcontroller interface  
7.17.1  
7.17.2  
7.17.3  
7.17.4  
Microcontroller interface (4-wire bus mode)  
Microcontroller interface (I2C-bus mode)  
Decoder and shadow registers  
Summary of functions controlled by decoder  
registers 0 to F  
Summary of functions controlled by shadow  
registers  
Summary of servo commands  
Summary of servo command parameters  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
Data slicer and bit clock regenerator  
DC offset cancellation  
Offset cancellation  
Reading back the DC offset value  
Demodulator  
7.17.5  
7.17.6  
7.17.7  
7.6.1  
7.6.2  
7.7  
7.7.1  
7.7.2  
Frame sync protection  
EFM demodulation  
Subcode data processing  
Q-channel processing  
EIAJ 3 and 4-wire subcode (CD graphics)  
interface  
8
SUMMARY OF SERVO COMMAND  
PARAMETERS VALUES  
9
LIMITING VALUES  
10  
11  
CHARACTERISTICS  
7.7.3  
7.7.4  
7.8  
7.8.1  
7.9  
V4 subcode interface  
CD text interface  
FIFO and error correction  
Flags output (CFLG)  
Audio functions  
OPERATING CHARACTERISTICS  
(SUBCODE INTERFACE TIMING)  
OPERATING CHARACTERISTICS (I2S-BUS  
TIMING)  
12  
13  
OPERATING CHARACTERISTICS  
(MICROCONTROLLER INTERFACE TIMING)  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.10  
7.10.1  
De-emphasis and phase linearity  
Digital oversampling filter  
Concealment  
Mute, full-scale, attenuation and fade  
Peak detector  
14  
APPLICATION INFORMATION  
PACKAGE OUTLINE  
SOLDERING  
15  
16  
Audio DAC interface  
Internal dynamic element matching  
digital-to-analog converter  
External DAC interface  
EBU interface  
16.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
7.10.2  
7.11  
16.2  
16.3  
16.4  
16.5  
7.11.1  
7.12  
Format  
KILL features  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
7.12.1  
7.12.2  
7.13  
The KILL circuit  
Silence injection  
Audio features off  
17  
18  
19  
20  
DATA SHEET STATUS  
DEFINITIONS  
7.14  
7.15  
7.15.1  
7.15.2  
The versatile pins interface  
Spindle motor control  
Motor output modes  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
Spindle motor operating modes  
2003 Oct 01  
2
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
1
FEATURES  
Decoder and servo parts are based upon the SAA732X  
design (the original features are maintained)  
Software compatibility is maintained with the SAA732X  
by using a similar register structure (new features are  
controlled from new shadow registers)  
1×, 2× and 4× speed  
Dedicated 4 MHz or 12 MHz clock output for  
LF (servo) signals converted to digital representations  
microcontroller (configurable)  
by 6 oversampling bitstream ADCs  
Configured for N-sub monitor diode  
HF part summed from signals D1 to D4 and converted  
into a digital signal by a data slicer  
On-chip clock multiplier allows the use of an  
8.4672 MHz crystal or ceramic resonator  
On-chip buffering and filtering of the diode signals from  
the mechanism for signal optimization  
The M1 version has an EBU mute function which allows  
independent muting of data being transmitted over the  
EBU interface whilst maintaining the SPDIF frame  
structure.  
Selectable DC offset cancellation of quiescent  
mechanism voltages and dark currents  
On-chip laser power control (up to 120 mA)  
Laser on/off control, including ‘soft’ start control (zero to  
nominal power in 1 ms)  
2
GENERAL DESCRIPTION  
Monitor control and feedback circuit to maintain nominal  
output power throughout laser life  
This document covers versions M0 and M1 of the CD  
audio decoder IC.  
Dynamic element matching DAC with minimum external  
components  
The SAA7824 is a CD audio decoder IC which combines  
the function of the SAA732X IC with the pre-amplifier and  
laser control functions previously found in the TZA102X  
IC. The design is intended to reduce the external  
DAC performance of 80 dB Total Harmonic  
Distortion + Noise (THD + N) and 90 dB Signal-to-Noise  
Ratio (S/N) A-weighted  
component count and hence the Bill Of Material (BOM).  
Separate left and right channel digital silence detection  
available on the KILL pins  
Supply of this Compact Disc IC does not convey an  
implied license under any patent right to use this IC in any  
Compact Disc application.  
Digital silence detection on internal data and loopback  
(external) data  
5 versatile pins, 2 inputs and 3 outputs  
Integrated CD text decoder with separate  
microcontroller interface  
2003 Oct 01  
3
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7824HL  
LQFP80  
plastic low profile quad flat package; 80 leads;  
SOT315-1  
body 12 × 12 × 1.4 mm  
4
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
1.8  
MAX.  
1.95  
UNIT  
VDDD  
VDDA  
digital supply voltage  
analog supply voltage  
total supply current  
1.65  
3.0  
V
V
3.3  
38  
3.6  
IDD(tot)  
n = 1 mode  
mA  
mA  
mA  
MHz  
°C  
n = 2 mode  
n = 4 mode  
39  
40  
fxtal  
crystal frequency  
8.4672  
Tamb  
Tstg  
ambient temperature  
0
70  
+125  
storage temperature  
55  
°C  
S/NDAC  
onboard DAC signal-to-noise ratio  
90  
dB  
2003 Oct 01  
4
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
5
BLOCK DIAGRAM  
V
SSA2  
V
V
SENSE  
SSA1  
SSA3  
D1 D2 D3 D4 R1 R2  
MONITOR  
EXFILTER  
2
LPOWER  
1
9
10 11 12 13 14  
5
17 20  
3
4
DC OFFSET COMPENSATION  
LASER POWER  
CONTROL LOGIC  
MONITOR  
ADC  
80  
LASER  
LASER  
7
V
DDA1  
16  
V
DDA2  
VOLTAGE  
BUFFER  
ANTI ALIAS  
HF AND LF CAPTURE  
64  
6
8
RA  
I
REF  
BIAS  
GENERATOR  
D1 TO D4  
SUM  
DISC ADC  
65  
OUTPUT  
STAGES  
V
REFO  
FO  
66  
SL  
CONTROL  
PART  
HIGH-PASS FILTER  
CONTROL FUNCTION  
53  
52  
54  
55  
15  
SCL  
SDA  
RAB  
SILD  
CSLICE  
MICROCONTROLLER  
INTERFACE  
67  
DATA SLICER AND  
THRESHOLD  
CONTROL  
MOTO1  
MOTOR  
CONTROL  
68  
MOTO2  
76  
77  
78  
79  
TEST1  
TEST2  
TEST3  
TEST4  
ERROR  
CORRECTOR  
DIGITAL  
PLL  
TEST  
39  
CFLAG  
FLAGS  
19  
18  
49  
50  
EFM  
DEMODULATOR  
OSCIN  
OSCOUT  
CLK16  
AUDIO  
PROCESSOR  
TIMING  
CLK4/12  
SRAM  
62  
EBU  
INTERFACE  
DOBM  
36  
37  
38  
CDTRDY  
CDTDATA  
CDTCLK  
CD TEXT  
INTERFACE  
45  
48  
RAM  
ADDRESSER  
EF  
SCLK  
SERIAL  
DATA  
47  
WCLK  
46  
INTERFACE  
59  
58  
57  
SFSY  
SUB  
RCK  
DATA  
INTERFACE  
CONTROL  
44  
SERIAL  
DATA  
(LOOPBACK)  
INTERFACE  
SCLI  
43  
WCLI  
SUBCODE  
PROCESSOR  
60  
42  
SBSY  
SDI  
PEAK  
DETECT  
27  
22  
23  
26  
25  
24  
21  
DACV  
pos  
DACRP  
DACRN  
DACLP  
DACLN  
DACV  
SAA7824  
DEM  
DAC  
ref  
DECODER  
MICRO-  
DACGND  
56  
51  
STATUS  
RESET  
CONTROLLER  
INTERFACE  
29  
32  
30  
31  
VERSATILE PINS  
INTERFACE  
BUFINR  
BUFINL  
BUFOUTR  
BUFOUTL  
KILL  
HEADPHONE  
BUFFERS  
40 61 69 41 63 70  
71 72 73 74 75  
V1 V2 V3 V4 V5  
34  
35  
33  
28  
MBL436  
V
V
V
LKILL RKILL  
BUFV  
SSD1  
V
SSD3  
V
DDD2  
V
DDD3  
pos  
BUFGND  
SSD2  
DDD1  
Fig.1 Block diagram.  
5
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
6
PINNING  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
LFPOWER  
EXFILTER  
MONITOR  
SENSE  
VSSA1  
1
I
laser power supply  
2
O
10 nF capacitor for laser start-up control  
laser monitor diode  
3
I
4
I
OPU ground reference point for MONITOR measurement  
analog ground 1  
5
SUP  
IREF  
6
O
reference current output (24 kresistor connected to analog ground)  
analog supply voltage 1  
VDDA1  
7
SUP  
VREFO  
8
I/O  
servo reference voltage  
D1  
9
I
diode voltage/current input (central diode signal input)  
diode voltage/current input (central diode signal input)  
diode voltage/current input (central diode signal input)  
diode voltage/current input (central diode signal input)  
diode voltage/current input (satellite diode signal input)  
diode voltage/current input (satellite diode signal input)  
10 nF capacitor for adaptive HF data slicer  
analog supply voltage 2  
D2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I
D3  
I
D4  
I
R1  
I
R2  
I
CSLICE  
VDDA2  
I/O  
SUP  
VSSA2  
SUP  
analog ground 2  
OSCOUT  
OSCIN  
VSSA3  
O
crystal/resonator output  
I
SUP  
I
crystal/resonator input  
analog ground 3  
DACGND  
DACRP  
DACRN  
DACVref  
DACLN  
DACLP  
DACVpos  
BUFVpos  
BUFINR  
BUFOUTR  
BUFOUTL  
BUFINL  
BUFGND  
LKILL  
audio DAC ground  
O
O
I/O  
O
O
I
audio DAC right channel differential positive output  
audio DAC right channel differential negative output  
audio DAC decoupling point (10 µF or 100 nF to ground  
audio DAC left channel differential negative output  
audio DAC left channel differential positive output  
audio DAC positive supply voltage  
I
audio buffer positive supply voltage  
audio buffer right input  
I
O
O
I
audio buffer right output  
audio buffer left output  
audio buffer left input  
I
audio buffer ground  
O
O
O
O
I
KILL output for left channel (configurable as open-drain)  
KILL output for right channel (configurable as open-drain)  
CD text output to microcontroller ready flag  
CD text output data to microcontroller  
CD text microcontroller clock input  
correction flag output (open-drain)  
RKILL  
CDTRDY  
CDTDATA  
CDTCLK  
CFLAG  
VSSD1  
O
SUP  
digital ground 1  
2003 Oct 01  
6
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
VDDD1  
SDI  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
SUP  
digital supply voltage 1  
I
I
serial data input (loopback)  
word clock input (loopback)  
WCLI  
SCLI  
I
serial bit clock input (loopback)  
C2 error flag output  
EF  
O
O
O
O
O
O
I
DATA  
WCLK  
SCLK  
CLK16  
CLK4/12  
RESET  
SDA  
serial data output  
word clock output  
serial clock output  
16 MHz clock output  
configurable 4 MHz or 12 MHz clock output  
power-on reset input (active LOW)  
microcontroller interface data input/output (open-drain)  
microcontroller interface clock input  
I/O  
I
SCL  
RAB  
I
microcontroller interface R/W and load control input (4-wire)  
microcontroller interface R/W and load control input (4-wire)  
SILD  
I
STATUS  
O
servo interrupt request line/decoder status register/DC offset value  
readback output  
RCK  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
I
subcode clock input  
P to W subcode output  
subcode frame sync output  
subcode block sync output  
digital ground 2  
SUB  
O
SFSY  
SBSY  
VSSD2  
DOBM  
VDDD2  
RA  
O
O
SUP  
O
bi-phase mark output (externally buffered)  
digital supply voltage 2  
radial actuator output  
focus actuator output  
sledge actuator output  
motor output 1 output  
motor output 2 output  
digital ground 3  
SUP  
O
FO  
O
SL  
O
MOTO1  
MOTO2  
VSSD3  
VDDD3  
V1  
O
O
SUP  
SUP  
digital supply voltage 3  
versatile pin 1 input  
versatile pin 2 input  
versatile pin 3 output  
versatile pin 4 output  
versatile pin 5 output  
test pin 1 input  
I
I
V2  
V3  
O
O
O
I
V4  
V5  
TEST1  
TEST2  
TEST3  
TEST4  
LASER  
I
test pin 2 input  
I
test pin 3 input  
I
test pin 4 input  
O
laser drive output  
2003 Oct 01  
7
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
LFPOWER  
EXFILTER  
MONITOR  
SENSE  
1
2
3
4
5
6
7
8
9
60 SBSY  
59 SFSY  
58 SUB  
57 RCK  
V
56 STATUS  
55 SILD  
54 RAB  
SSA1  
I
REF  
V
DDA1  
V
53 SCL  
REFO  
D1  
52 SDA  
D2 10  
D3 11  
51 RESET  
50 CLK4/12  
49 CLK16  
48 SCLK  
47 WCLK  
46 DATA  
45 EF  
SAA7824HL  
D4 12  
R1 13  
R2 14  
CSLICE 15  
V
16  
17  
DDA2  
V
44 SCLI  
43 WCLI  
42 SDI  
SSA2  
OSCOUT 18  
OSCIN 19  
V
20  
41 V  
DDD1  
SSA3  
MBL437  
Fig.2 Pin configuration.  
2003 Oct 01  
8
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7
FUNCTIONAL DESCRIPTION  
7.1  
Data acquisition and HF data path  
The SAA7824 removes the need for an external diode signal pre-amplifier.  
A simplified diagram of the HF data path is illustrated in Fig.3. The high-pass filter, equalizing filter HF gain and adaptive  
slicer are all register programmable, thus enabling the SAA7824 to be optimized for the intended application.  
hf_gain 5:0  
adaptive slicer  
67.7 MHz  
summing amplifier  
d1_hf  
d2_hf  
bypass  
d3_hf  
d4_hf  
sliced  
data  
comp  
op-amp  
V
ref  
THRESHOLD  
CONTROL  
op-amp  
V
op-amp  
ana  
equalising  
filter  
high-pass filter  
MBL438  
Fig.3 Simplified block diagram of the HF data path and adaptive slicer.  
7.2  
Decoder part  
7.2.3  
LOCK-TO-DISC MODE  
7.2.1  
PRINCIPLE OPERATING MODES OF THE DECODER  
For electronic shock absorption applications, the SAA7824  
can be put into lock-to-disc mode. This allows Constant  
Angular Velocity (CAV) disc playback with varying input  
data rates from the inside-to-outside of the disc.  
The decoding part supports a full audio specification and  
can operate at single-speed (n = 1), double-speed (n = 2)  
and quad-speed (n = 4). The factor ‘n’ is called the  
overspeed factor. A simplified data flow through the  
decoder part is illustrated in Fig.7 for the M0 version and  
Fig.8 for the M1 version.  
In the lock-to-disc mode, the FIFO is blocked and the  
decoder will adjust its output data rate to the disc speed.  
Hence, the frequency of the I2S-bus (WCLK and SCLK)  
clocks are dependent on the disc speed. In the lock-to-disc  
mode there is a limit on the maximum variation in disc  
speed that the SAA7824 will follow. Disc speeds must  
always be within 25% to 100% range of their nominal  
value. The lock-to-disc mode is enabled or disabled by  
decoder register E.  
7.2.2  
DECODER SPEED AND CRYSTAL FREQUENCY  
The SAA7824 is a 1×, 2× and 4× (three-speed) decoding  
device, with an internal Phase-Locked Loop (PLL) clock  
multiplier. Table 1 gives the playback speeds that are  
achievable in conjunction with crystal frequency,  
mechanism, and internal clock settings (selectable via  
decoder register B).  
2003 Oct 01  
9
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.2.4  
STANDBY MODES  
Table 1 Playback speeds  
The SAA7824 may be placed in two standby modes,  
selected by decoder register B (it should be noted that the  
device core is still active):  
REGISTER B  
REGISTER E  
f
xtal = 8.4672 MHz  
0XXX  
1XXX  
0XXX  
0XXX  
n = 1  
n = 2; voltage mode  
only  
Standby 1: CD STOP mode; most I/O functions are  
switched off  
0XXX  
1XXX  
n = 4; voltage mode  
only  
Standby 2: CD PAUSE mode; audio output features are  
switched off, but the motor loop, the motor output and  
the subcode interfaces remain active; this is also called  
a ‘Hot Pause’.  
7.3  
Crystal oscillator  
The crystal oscillator is a conventional 2-pin design which  
can also operate with ceramic resonators. The external  
components used around the crystal are illustrated in Fig.4  
together with component values (C1 and C2) for a given  
crystal type given in Table 2. Oscillator frequencies that is  
used with the SAA7824 is 8.4672 MHz.  
In the standby modes the various pins will have the  
following values:  
MOTO1 and MOTO2: put in to high-impedance, PWM  
mode (Standby 1 and RESET: operating in Standby 2);  
put in high-impedance, PDM mode (Standby 1 and  
RESET: operating in Standby 2)  
Pins SCL and SDA: no interaction; normal operation  
continues  
handbook, halfpage SAA7824  
Pins SCLK, WCLK, DATA, EF and DOBM: 3-state in  
both standby modes; normal operation continues after  
reset  
OSCILLATOR  
Pins OSCIN, OSCOUT, CLK16 and CLK4/12: no  
interaction; normal operation continues  
OSCIN  
C1  
OSCOUT  
C2  
XTAL  
Pins V1 to V5 and CFLAG: no interaction; normal  
operation continues.  
MBL439  
Fig.4 Crystal configuration.  
Table 2 External capacitor selection based upon the crystal type  
MAXIMUM SERIES  
CRYSTAL RESISTANCE  
EXTERNAL LOAD CAPACITORS  
CRYSTAL LOAD  
CAPACITANCE (CL)  
(RS)  
8 MHz  
C1  
C2  
10 pF  
20 pF  
30 pF  
<300 Ω  
<300 Ω  
<300 Ω  
8 pF  
27 pF  
47 pF  
8 pF  
27 pF  
47 pF  
2003 Oct 01  
10  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.4  
Data slicer and bit clock regenerator  
7.5  
DC offset cancellation  
The SAA7824 has an integrated adaptive data slicer which  
is clocked at 67 MHz. The slice level is controlled by  
internal current sources which are switched onto and  
integrated by the external capacitor connected to the  
CSLICE pin. The currents are switched under the control  
of a Digital Phase-Locked loop (DPLL).  
Unwanted DC offsets can exist within the photo-diode  
signals and are defined as the DC present in the system  
when the laser diode is switched off. They arise from  
various sources of imperfection within the system such as  
leakage in the photo diodes and offsets in the Optical  
Pick-Up (OPU) circuitry. The SAA7824 is capable of  
measuring these offsets and minimizing them.  
Regeneration of the bit clock is achieved with an internal  
fully digital PLL. No external components are required and  
the bit clock is not output. The PLL has two registers  
(8 and 9) for selecting bandwidth and equalization. The  
PLL loop response is illustrated in Fig.5.  
7.5.1  
OFFSET CANCELLATION  
A number of registers are associated with the DC offset  
cancellation function; these registers are given in Table 3.  
For certain applications an off-track input is necessary.  
This is internally connected from the servo part (its polarity  
can be changed by the foc_parm1 parameter), but may be  
input via pin V1 if selected by register C. If this flag is  
HIGH, the SAA7824 will assume that its servo part is  
following the wrong track, and will flag all incoming HF data  
as incorrect.  
The measurement time of the DC offset is regulated by  
new shadow register C (bank 2). A longer time will yield  
more accurate results but will result in greater  
measurement durations.  
New shadow register 3 (bank 3) is used to select which  
diode is to be measured.  
7.5.2  
READING BACK THE DC OFFSET VALUE  
The microcontroller needs to be able to read the DC offset  
measurements in order to calculate the correct  
cancellation value [for writing back to new shadow  
register 7 (bank 3)].  
handbook, halfpage  
This is achieved by using the STATUS pin and setting  
decoder register 7 to XX10. Shadow register C (bank 3)  
can then be used to control the STATUS pin output; the  
register settings are given in Table 20.  
PLL  
loop  
response  
Once the measurement time has been set and the diode  
selected, the STATUS pin should be set to read the DC  
offset ready flag [new shadow register C  
3. PLL, LPF  
f
(bank 3) = X01X]. This signal will toggle HIGH after the  
prescribed measurement time. Changing the diode  
selection will result in the measurement timer being  
automatically reset.  
2. PLL bandwidth  
1. PLL integrator  
MGS178  
The microcontroller can read back the measurement by  
setting the STATUS pin to output the DC offset value [new  
shadow register C (bank 3) = X10X].  
Points 1, 2 and 3 are all programmable via decoder register 8.  
The offset value is repeatedly streamed out through the  
STATUS pin and is UART compatible. It should be noted  
that the MSB is inverted and will require re-inverting after  
the offset value has been captured. Timing information for  
this signal is illustrated in Fig.6.  
Fig.5 Digital PLL loop response.  
The final DC cancellation value (as calculated by the  
microcontroller) can then be written to new shadow  
register 7 (bank 3). This is a multiple write register  
containing the cancellation values for all six diodes.  
2003 Oct 01  
11  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 3 Registers relating to the DC offset cancellation  
SHADOW  
REGISTER  
SHADEN BITS  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
10  
(bank 2)  
C
1100  
XX00  
XX01  
XX10  
XX11  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
X00X  
settling time = 354 µs  
settling time = 1 ms  
settling time = 2 ms  
settling time = 10 ms  
select D1  
reset  
DC offset  
measurement  
times  
11  
(bank 3)  
3
0011  
reset  
diode selection  
for DC offset  
measurement  
select D1  
select D2  
select D3  
select D4  
select R1  
select R2  
select D1  
C
1100  
0111  
STATUS pin outputs  
decoder status register  
information  
reset  
STATUS pin  
control  
X01X  
X10X  
STATUS pin outputs DC  
offset ready flag  
STATUS pin outputs DC  
offset value  
7
multi-write  
(9 × 4 bits)  
DC cancellation values for  
diodes D1 to D4 and R1  
and R2; see Table 20  
DC cancellation  
levels  
2.19/n µs  
D1 D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MBL440  
272.1/n µs  
Fig.6 Serial data format for DC offset data.  
2003 Oct 01  
12  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
new shadow register 7 bank 2:  
0XXX = pass all data  
1XXX = pass correct data only  
CDTRDY  
CDTCLK  
CDTDATA  
CD TEXT  
INTERFACE  
1
0
V4  
RCK  
0: register D = XX01  
SBSY  
SFSY  
SUB  
CD GRAPHICS  
INTERFACE  
MICROCONTROLLER  
INTERFACE  
V4 SUBCODE  
INTERFACE  
SDA  
register F  
SUBCODE  
PROCESSOR  
EBU  
INTERFACE  
DOBM  
1: shadow register 7 = XX1X  
0: shadow register 7 = XX0X  
1: decoder register A = XX0X  
0: decoder register A XX1X  
decoder register A  
DIGITAL PLL  
AND  
DEMODULATOR  
output from  
data slicer  
SCLK  
WCLK  
1
1
0
DATA  
EF  
1: decoder register 3 = XX10  
0
(1f mode)  
s
1: no pre-emphasis detected  
OR register D = 01XX  
(de-emphasis signal at V5)  
0: pre-emphasis detected  
AND register D 01XX  
0: decoder register 3 XX10  
FIFO  
DACRP  
DACLP  
DACRN  
DACLN  
ONBOARD  
DAC  
1
0
1
0
PHASE  
COMPENSATION  
1
ERROR  
CORRECTOR  
FADE/MUTE/  
INTERPOLATE  
DIGITAL  
FILTER  
2
1
0
I S/EIAJ BUS  
0
1
0
INTERFACE  
decoder register 3  
DE-EMPHASIS  
FILTER  
1: shadow register 7 = XX1X  
0: shadow register 7 = XX0X  
decoder  
register 3  
INTERNAL  
KILL  
0
2
LKILL  
RKILL  
I S/EIAJ  
loopback  
KILL  
LOOPBACK  
INTERFACE  
1
decoder register C  
WCLI  
SCLI  
SDI  
0: new shadow register A bank 2 = 0XXX  
1: new shadow register A bank 2 = 1XXX  
1: decoder register 3 101X  
0: decoder register 3 = 101X  
(CD-ROM modes)  
MGS180  
Fig.7 Simplified data flow of decoder functions for the M0 version.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
new shadow register 7 bank 2:  
0XXX = pass all data  
1XXX = pass correct data only  
CDTRDY  
CDTCLK  
CDTDATA  
CD TEXT  
INTERFACE  
1
0
V4  
RCK  
0: register D = XX01  
SBSY  
SFSY  
SUB  
CD GRAPHICS  
INTERFACE  
MICROCONTROLLER  
INTERFACE  
V4 SUBCODE  
INTERFACE  
SDA  
register F  
SUBCODE  
PROCESSOR  
EBU  
INTERFACE  
DOBM  
Mute Bypass (Shadow Register 7 Bank 1)  
Activate Mute (Decoder Reg 0)  
Hard Mute (Decoder Reg C)  
1: shadow register 7 = XX1X  
0: shadow register 7 = XX0X  
EBU  
MUTE  
1: decoder register A = XX0X  
0: decoder register A = XX1X  
decoder register A  
DIGITAL PLL  
AND  
DEMODULATOR  
output from  
data slicer  
SCLK  
WCLK  
DATA  
EF  
1
1
0
1: decoder register 3 = XX10  
0
(1f mode)  
s
1: no pre-emphasis detected  
OR register D = 01XX  
0: decoder register 3 XX10  
FIFO  
(de-emphasis signal at V5)  
0: pre-emphasis detected  
AND register D 01XX  
DACRP  
DACLP  
DACRN  
DACLN  
ONBOARD  
DAC  
1
0
1
0
PHASE  
COMPENSATION  
1
ERROR  
CORRECTOR  
FADE/MUTE/  
INTERPOLATE  
DIGITAL  
FILTER  
2
1
0
I S/EIAJ BUS  
0
1
0
INTERFACE  
decoder register 3  
DE-EMPHASIS  
FILTER  
1: shadow register 7 = XX1X  
0: shadow register 7 = XX0X  
decoder  
register 3  
INTERNAL  
KILL  
1
2
LKILL  
RKILL  
I S/EIAJ  
loopback  
KILL  
LOOPBACK  
INTERFACE  
0
decoder register C  
WCLI  
SCLI  
SDI  
0: new shadow register A bank 2 = 0XX  
1: new shadow register A bank 2 = 1XXX  
1: decoder register 3 101X  
0: decoder register 3 = 101X  
(CD-ROM modes)  
MDB501  
Fig.8 Simplified data flow of decoder functions for the M1 version.  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.6  
Demodulator  
7.7.3  
V4 SUBCODE INTERFACE  
7.6.1  
FRAME SYNC PROTECTION  
Data of subcode channels, Q-to-W, may be read via pin V4  
if selected via decoder register D. The format is similar to  
RS232 and is illustrated in Fig.10. The subcode sync word  
is formed by a pause of (200/n) µs minimum. Each  
subcode byte starts with a logic 1 followed by 7 bits  
(Q-to-W). The gap between bytes is variable between  
(11.3/n) µs and (90/n) µs.  
A double timing system is used to protect the demodulator  
from erroneous sync patterns in the serial data. The  
master counter is only reset if:  
A sync coincidence is detected; sync pattern occurs  
588 ±1 EFM clocks after the previous sync pattern  
A new sync pattern is detected within ±6 EFM clocks of  
its expected position.  
The subcode data is also available in the EBU output  
(DOBM) in a similar format.  
The sync coincidence signal is also used to generate the  
PLL lock signal, which is active HIGH after 1 sync  
coincidence is found, and reset LOW if during 61  
consecutive frames no sync coincidence is found. The PLL  
lock signal can be accessed via the SDA or STATUS pins  
selected by decoder registers 2, 7 and new shadow  
register C (bank 3).  
7.7.4  
CD TEXT INTERFACE  
R-to-W subcode data is captured and stored until a  
complete CD text PACK is formed. The least significant  
16 bits of the PACK are used for a CRC.  
The behaviour of the CD text interface is controlled by new  
shadow register 7 (bank 2). The interface can either flag  
all data (i.e. passed or failed CRC) or it can flag good data  
only.  
Also incorporated in the demodulator is a Run Length 2  
(RL2) correction circuit. Every symbol detected as RL2 will  
be pushed back to RL3. To do this, the phase error of both  
edges of the RL2 symbol are compared and the correction  
is executed at the side with the highest error probability.  
The data ready flag is monitored via pin CDTRDY and is  
active LOW. The pulse width varies from 73/n µs, for the  
first three packs, to 317/n µs for the fourth pack.  
7.6.2  
EFM DEMODULATION  
When a PACK becomes available, the initial value of the  
CDTDATA pin indicates the CRC result (HIGH = passed;  
LOW = failed). The microcontroller can fetch the data by  
applying a clock signal (maximum frequency = 5 MHz) to  
pin CDTCLK and reading the subsequent bitstream on pin  
CDTDATA.  
The 14-bit EFM data and subcode words are decoded into  
8-bit symbols.  
7.7  
Subcode data processing  
7.7.1  
Q-CHANNEL PROCESSING  
The 128 data bits are streamed out LSB first. A complete  
CD text PACK consists of 4 header bytes, 12 data bytes,  
and 2 CRC bytes although the latter 2 bytes are dropped  
internally once the CRC calculation is complete. Please  
refer to the “Red Book” for further details relating to the  
format of a CD text PACK  
The 96-bit Q-channel word is accumulated in an internal  
buffer. The last 16 bits are used internally to perform a  
Cyclic Redundancy Check (CRC). If the data is good, the  
SUBQREADY-I signal will go LOW. SUBQREADY-I can  
be read via the SDA or STATUS pins, selected via decoder  
registers 2, 7 and new shadow register C (bank 3). Good  
Q-channel data may be read from pin SDA.  
The timing diagram for the CD text interface is illustrated in  
Fig.11.  
7.7.2  
EIAJ 3 AND 4-WIRE SUBCODE (CD GRAPHICS)  
INTERFACE  
Data from all the subcode channels (P-to-W) may be read  
via the subcode interface, which conforms to  
EIAJ CP-2401. The interface is enabled and configured as  
either a 3 or 4-wire interface via decoder register F.  
The subcode interface output formats are illustrated in  
Fig.9, where the RCK signal is supplied by another device  
such as a CD graphics decoder.  
2003 Oct 01  
15  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SF0  
SF1  
SF2  
SF3  
SF97  
SF0  
SF1  
SBSY  
SFSY  
RCK  
P-W  
P-W  
P-W  
SUB  
EIAJ 4-wire subcode interface  
SF0  
SF1  
SF2  
SF3  
SF97  
P-W  
SF0  
SF1  
SFSY  
RCK  
P-W  
P-W  
SUB  
EIAJ 3-wire subcode interface  
SFSY  
RCK  
SUB  
P
Q
R
S
T
U
V
W
MBG410  
Fig.9 EIAJ subcode (CD graphics) interface format.  
2003 Oct 01  
16  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
11.3/n  
µs  
200/n µs  
min  
11.3/n µs min  
90/n µs max  
W96  
1
Q
R
S
T
U
V
W
1
Q
MBG401  
Where n = disc speed.  
Fig.10 Subcode format and timing on pin V4.  
73/n µs to 317/n µs  
CDTRDY  
CDTCLK  
CRC flag  
D0  
D1  
D2  
D3  
D126 D127  
CDTDATA  
MBL441  
~1/n ns  
200 ns (min)  
Where n = disc speed.  
Fig.11 CD text interface format and timing.  
7.8  
FIFO and error correction  
7.8.1  
FLAGS OUTPUT (CFLG)  
The SAA7824 has a ±8 frame FIFO. The error corrector is  
a t = 2, e = 4 type, with error corrections on both C1  
(32 symbol) and C2 (28 symbol) frames. Four symbols are  
used from each frame as parity symbols. This error  
corrector can correct up to two errors on the C1 level and  
up to four errors on the C2 level.  
The flags output pin CFLG shows the status of the error  
corrector and interpolator and is updated every frame  
(7.35 × n kHz). In the SAA7824, 8 × 1-bit flags are present  
on the CFLG pin as illustrated in Fig.12. This signal shows  
the status of the error corrector and interpolator.  
The first flag bit, F1, is the absolute time sync signal, the  
FIFO-passed subcode sync and relates the position of the  
subcode sync to the audio data (DAC output). This flag  
may also be used in a super FIFO or in the synchronization  
of different players. The output flags can be made  
available at bit 4 of the EBU data format (LSB of the 24-bit  
data word), if selected by decoder register A.  
The error corrector also contains a flag processor. Flags  
are assigned to symbols when the error corrector cannot  
ascertain if the symbols are definitely good. C1 generates  
output flags which are read after de-interleaving by C2, to  
help in the generation of C2 output flags.  
The C2 output flags are used by the interpolator for  
concealment of uncorrectable errors. They are also output  
via the EBU signal (DOBM). The EF output will flag bytes  
in error in both audio and CD-ROM modes.  
2003 Oct 01  
17  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
11.3/n  
µs  
33.9/n µs  
33.9/n µs  
F8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F1  
MBG425  
Where n = disc speed.  
Fig.12 Flag output timing diagram.  
Table 4 Output flags  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
DESCRIPTION  
no absolute time sync  
0
1
X
X
0
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
0
absolute time sync  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
C1 frame contained no errors  
C1 frame contained 1 error  
C1 frame contained 2 errors  
C1 frame uncorrectable  
0
1
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
C2 frame contained no errors  
C2 frame contained 1 error  
C2 frame contained 2 errors  
C2 frame contained 3 errors  
C2 frame contained 4 errors  
C2 frame uncorrectable  
0
0
1
0
1
0
0
1
1
1
0
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
no interpolations  
0
1
at least one 1-sample interpolation  
at least one hold and no interpolations  
at least one hold and one 1-sample interpolation  
1
0
1
1
2003 Oct 01  
18  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.9  
Audio functions  
7.9.3  
CONCEALMENT  
7.9.1  
DE-EMPHASIS AND PHASE LINEARITY  
A 1-sample linear interpolator becomes active if a single  
sample is flagged as erroneous but cannot be corrected.  
The erroneous sample is replaced by a level midway  
between the preceding and following samples. Left and  
right channels have independent interpolators. If more  
than one consecutive non-correctable sample is found, the  
last good sample is held. A 1-sample linear interpolation is  
then performed before the next good sample; see Fig.13.  
When pre-emphasis is detected in the Q-channel  
subcode, the digital filter automatically includes a  
de-emphasis filter section. When de-emphasis is not  
required, a phase compensation filter section controls the  
phase of the digital oversampling filter to ≤ ±1° within the  
band 0 to 16 kHz. With de-emphasis the filter is not phase  
linear.  
In CD-ROM modes (i.e. the external DAC interface is  
selected to be in a CD-ROM format) concealment is not  
executed.  
If the de-emphasis signal is set to be available at pin V5,  
selected via decoder register D, then the de-emphasis  
filter is bypassed.  
7.9.4  
MUTE, FULL-SCALE, ATTENUATION AND FADE  
7.9.2  
DIGITAL OVERSAMPLING FILTER  
A digital level controller is present on the SAA7824 which  
performs the functions of soft mute, full-scale, attenuation  
and fade; these are selected via decoder register 0:  
For optimizing performance with an external DAC, the  
SAA7824 contains a 2 to 4 times oversampling IIR filter.  
The filter specification of the 4 times oversampling filter is  
given in Table 5.  
Mute: signal reduced to 0 in a maximum of 128 steps;  
3/n ms  
These attenuations do not include the sample-and-hold at  
the external DAC output or the DAC post filter. When using  
the oversampling filter, the output level is scaled 0.5 dB  
down to avoid overflow on full-scale sine wave inputs  
(0 to 20 kHz).  
Attenuation: signal scaled by 12 dB  
Full-scale: ramp signal back to 0 dB level; from mute it  
takes 3/n ms  
Fade: activates a 128 stage counter which allows the  
signal to be scaled up or down in 0.07 dB steps  
Table 5 Filter specification  
– 128 = full-scale  
PASS BAND  
STOP BAND  
ATTENUATION  
– 120 = 0.5 dB (i.e. full-scale if oversampling filter is  
used)  
0 to 9 kHz  
0.001 dB  
0.03 dB  
25 dB  
38 dB  
40 dB  
50 dB  
31 dB  
35 dB  
40 dB  
– 32 = 12 dB  
19 to 20 kHz  
– 0 = mute.  
24 kHz  
24 to 27 kHz  
27 to 35 kHz  
35 to 64 kHz  
64 to 68 kHz  
68 kHz  
7.9.5  
PEAK DETECTOR  
The peak detector measures the highest audio level  
(absolute value) on positive peaks for left and right  
channels. The 8 most significant bits are output in the  
Q-channel data in place of the CRC bits. Bits 81 to 88  
contain the left peak value (bit 88 = MSB) and bits 89 to 96  
contain the right peak value (bit 96 = MSB). The values  
are reset after reading Q-channel data via pin SDA.  
69 to 88 kHz  
2003 Oct 01  
19  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Interpolation  
Hold  
Interpolation  
OK  
Error  
OK  
Error  
Error  
Error  
OK  
OK  
MGA372  
Fig.13 Concealment mechanism.  
7.10 Audio DAC interface  
7.10.1 INTERNAL DYNAMIC ELEMENT MATCHING DIGITAL-TO-ANALOG CONVERTER  
The onboard audio DEM DAC operates at an oversampling rate of 96fs and is designed for operation with an audio input  
at 1fs. The DAC is equipped with two pairs of stereo outputs for driving medium impedance line outputs and for directly  
driving low impedance headphones. A pair of analog inputs are provided to enable external audio sources to make use  
of the headphone output buffers.  
Audio data from the decoder part of the SAA7824 can be routed as described in Sections 7.10.1.1 and 7.10.1.2.  
Table 6 Shadow register  
SHADOW  
REGISTER  
SHADEN BITS  
ADDRESS  
DATA  
FUNCTION  
RESET  
01  
(bank 1)  
7
0111  
0000  
use external DAC or route audio data  
back into onboard DAC (loopback  
mode)  
reset  
control of  
onboard DAC  
0010  
route audio data directly into onboard  
DAC (non-loopback mode)  
7.10.1.1 Use of internal DAC  
Setting shadow register 7 to 0010 will route audio data from the decoder into the internal DAC. To enable the on-board  
DAC, the DAC interface format (set by register 3) must be set to 16-bit 1fs mode, either I2S-bus or EIAJ format. CD-ROM  
mode can also be used if interpolation is not required. The serial data output pins for interfacing with an external DAC  
(SCLK, WCLK, DATA and EF) are set to high-impedance.  
2003 Oct 01  
20  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.10.1.2 Loopback external data into onboard DAC  
The SAA7824 is compatible with a wide range of external  
DACs. Eleven formats are supported and are given in  
Table 7. Figures 14 and 15 show the Philips I2S-bus and  
the EIAJ data formats respectively. When the decoder is  
operated in lock-to-disc mode, the SCLK frequency is  
dependent on the disc speed factor ‘d’.  
The onboard DAC can also be set to accept serial data  
inputs from an external source, e.g. an Electronic Shock  
Absorption (ESA) IC. This is known as loopback mode and  
is enabled by setting shadow register 7 to 0000. This  
enables the serial data output pins (SCLK, WCLK, DATA  
and EF) so that data can be routed from the SAA7824 to  
an external ESA system (or external DAC).  
All formats are MSB first and 1fs is 44.1 kHz. The polarity  
of the WCLK and the data can be inverted; selectable by  
decoder register 7. It should be noted that EF is only a  
defined output in CD-ROM and 1fs modes.  
The serial data from an external ESA IC can then also be  
input to the onboard DAC on the SAA7824 by utilising the  
serial data input interface (SCLI, SDI and WCLI).  
When using an external DAC (or when using the onboard  
DAC in non-loopback mode), the serial data inputs to the  
onboard DAC (SCLI, SDI and WCLI) should be tied to  
ground.  
In this mode, a wide range of data formats to the external  
ESA IC can be programmed as shown in Table 7.  
However, the serial input on the SAA7824 will always  
expect the input data from the ESA IC to be 16-bit 1fs and  
the same data format, either I2S-bus or EIAJ, as the serial  
output format (set by decoder register 3).  
7.10.2 EXTERNAL DAC INTERFACE  
Audio data from the SAA7824 can be sent to an external  
DAC, identical to the SAA732x series, in ‘loopback’ mode  
(i.e. shadow register 7 is set to 0000).  
Table 7 DAC interface formats  
SAMPLE  
FREQUENCY  
NUMBER OF  
BITS  
REGISTER 3  
SCLK (MHz)  
FORMAT  
INTERPOLATION  
1010  
fs  
16  
2.1168 × n  
CD-ROM  
(I2S-bus)  
no  
1011  
1110  
fs  
fs  
16  
16/18(1)  
2.1168 × n  
2.1168 × n  
CD-ROM (EIAJ)  
Philips I2S-bus  
16/18 bits(1)  
no  
yes  
0010  
0110  
0000  
0100  
1100  
fs  
16  
18  
16  
18  
18  
2.1168 × n  
2.1168 × n  
8.4672 × n  
8.4672 × n  
8.4672 × n  
EIAJ 16 bits  
EIAJ 18 bits  
EIAJ 16 bits  
EIAJ 18 bits  
Philips I2S-bus  
18 bits  
yes  
yes  
yes  
yes  
yes  
fs  
4fs  
4fs  
4fs  
0011  
0111  
1111  
2fs  
2fs  
2fs  
16  
18  
18  
4.2336 × n  
4.2336 × n  
4.2336 × n  
EIAJ 16 bits  
EIAJ 18 bits  
Philips I2S-bus  
18 bits  
yes  
yes  
yes  
Note  
1. In this mode the first 16 bits contain data, but if any of the fade, attenuate or de-emphasis filter functions are activated  
then the first 18 bits contain data.  
2003 Oct 01  
21  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SCLK  
DATA  
WCLK  
1
0
15 14  
1
0
15 14  
LEFT CHANNEL DATA (WCLK NORMAL POLARITY)  
EF  
(CD-ROM  
LSB error flag  
MSB error flag  
LSB error flag  
MSB error flag  
AND 1f MODES ONLY)  
s
MBG424  
Fig.14 Philips I2S-bus data format (16-bit word length).  
SCLK  
DATA  
WCLK  
0
17  
0
17  
LEFT CHANNEL DATA  
EF  
(CD-ROM  
MSB error flag  
LSB error flag  
MSB error flag  
AND 1f MODES ONLY)  
s
MBG423  
Fig.15 EIAJ data format (18-bit word length).  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.11 EBU interface  
Soft mute: 3 ms ramp up or ramp down of the audio  
samples in the 1× audio mode  
The bi-phase mark digital output signal at pin DOBM is in  
accordance with the format defined by the IEC 60958  
specification. Three different modes can be selected via  
decoder register A:  
Bypass: switches the EBU mute function out of the EBU  
signal path.  
7.11.1 FORMAT  
DOBM pin held LOW  
The digital audio output consists of 32-bit words  
(‘subframes’) transmitted in bi-phase mark code (two  
transitions for a logic 1 and one transition for a logic 0).  
Words are transmitted in blocks of 384. The EBU frame  
format is given in Table 8.  
Data taken before concealment, mute and fade (must  
always be used for CD-ROM modes)  
Data taken after concealment, mute and fade.  
An additional mute function is available via shadow  
register 7 (bank 1) and decoder register 0 and C. They  
provide the following:  
Hard mute: immediate mute of the audio sample in the  
ROM mode at 1×, 2× or 4×  
Table 8 EBU frame format; see also Table 9  
FUNCTION  
Sync  
BITS  
DESCRIPTION  
0 to 3  
4 to 7  
4
Auxiliary  
not used; normally zero  
Error flags  
CFLG error and interpolation flags when selected by register A  
first 4 bits not used (always zero); twos complement; LSB = bit 12, MSB = bit 27  
valid = logic 0  
Audio sample  
Validity flag  
User data  
8 to 27  
28  
29  
used for subcode data (Q-to-W)  
Channel status  
30  
control bits and category code  
Table 9 Description of EBU frame function  
FUNCTION  
DESCRIPTION  
Sync  
The sync word is formed by violation of the bi-phase rule and therefore does not contain any data.  
Its length is equivalent to 4 data bits. The 3 different sync patterns indicate the following situations:  
sync B; start of a block (384 words), word contains left sample; sync M; word contains left sample  
(no block start) and sync W; word contains right sample.  
Audio sample  
Validity flag  
Left and right samples are transmitted alternately.  
Audio samples are flagged (bit 28 = 1) if an error has been detected but was uncorrectable. This  
flag remains the same even if data is taken after concealment.  
User data  
Subcode bits Q-to-W from the subcode section are transmitted via the user data bit. This data is  
asynchronous with the block rate.  
Channel status The channel status bit is the same for left and right words. Therefore a block of 384 words contains  
192 channel status bits. The category code is always CD. The bit assignment is given in Table 10.  
2003 Oct 01  
23  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 10 Bit assignment  
FUNCTION  
Control  
BITS  
DESCRIPTION  
0 to 3  
copy of CRC checked Q-channel control bits 0 to 3; bit 2 is logic 1 when copy  
permitted; bit 3 is logic 1 when recording has pre-emphasis  
Reserved mode  
Category code  
Clock accuracy  
Remaining  
4 to 7  
8 to 15  
28 to 29  
always zero  
CD: bit 8 = logic 1, all other bits = logic 0  
set by register A; 10 = level I; 00 = level II; 01 = level III  
always zero  
6 to 27 and  
30 to 191  
7.12 KILL features  
7.13 Audio features off  
7.12.1 THE KILL CIRCUIT  
The audio features can be turned off (selected by decoder  
register E) and will affect the following functions:  
The KILL circuit detects digital silence by testing for an  
all-zero or all-ones data word in the left and right channels.  
This occurs in two places; prior to the digital filter (internal  
KILL), and in the digital DAC (loopback/external KILL).  
Programming bit 3 of new shadow register A (bank 2)  
determines whether internal or external data is used. The  
output is switched to active HIGH when silence has been  
detected for at least 270 ms, or if mute is active, or in  
CD-ROM mode. Two KILL modes are available which can  
be selected by decoder register C:  
Digital filter, fade, peak detector, internal KILL circuit  
(although RKILL and LKILL outputs still active) are  
disabled  
V5 (if selected to be the de-emphasis flag output) and  
the EBU outputs become undefined.  
The EBU output should be set LOW prior to switching the  
audio features off and after switching the audio features  
back on, a full-scale command should be given.  
Mono KILL: LKILL and RKILL are both active HIGH  
when silence is detected on left and right channels  
simultaneously  
7.14 The versatile pins interface  
The SAA7824 has five pins that can be reconfigured for  
different applications.  
Stereo KILL: LKILL and RKILL are active HIGH  
independently of each other when silence is detected on  
either channel.  
The functions of these versatile pins are identical to the  
SAA732x series and can be programmed by decoder  
registers C, D and shadow register 3 (bank 1) as shown in  
Table 11.  
7.12.2 SILENCE INJECTION  
The silence inject function monitors the left and right KILL  
signals and forces the analog DAC into silence when KILL  
is asserted. This improves the internal Signal-to-Noise  
Ratio (SNR) by preventing any spurious noise from  
reaching the DAC. The silence inject function can be  
enabled or disabled by programming bit 2 of the new  
shadow register A (bank 2).  
2003 Oct 01  
24  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 11 Pin applications  
PIN  
NAME  
PIN  
NUMBER  
REGISTER REGISTER  
TYPE  
FUNCTION  
ADDRESS  
DATA  
V1  
71  
input  
1100  
XXX1  
XXX0  
external off-track signal input  
internal off-track signal used input may be read  
via decoder status bit; selected via register 2  
V2  
V3  
72  
73  
input  
input may be read via decoder status bit;  
selected via register 2  
output  
1100  
00XX  
01XX  
0000  
XX01  
XX10  
XX11  
01XX  
10XX  
11XX  
output = 0  
output = 1  
V4  
74  
output  
output  
1101  
4-line motor drive (using V4 and V5)  
Q-to-W subcode output  
output = 0  
output = 1  
V5  
75  
1101  
de-emphasis output (active HIGH)  
output = 0  
output = 1  
7.15 Spindle motor control  
7.15.1.1 Pulse density output mode  
7.15.1 MOTOR OUTPUT MODES  
In the pulse density mode the motor output pin (MOTO1)  
is the pulse density modulated motor output signal.  
The spindle motor speed is controlled by a fully integrated  
digital servo. Address information from the internal ±8  
frame FIFO and disc speed information are used to  
calculate the motor control output signals. Several output  
modes, selected by decoder register 6, are supported:  
A 50% duty factor corresponds with the motor not  
actuated, higher duty factors mean acceleration, lower  
duty factors means braking. In this mode, the MOTO2  
signal is the inverse of the MOTO1 signal. Both signals  
change state only on the edges of a (1 × n) MHz internal  
clock signal.  
Pulse density, 2-line (true complement output),  
(1 × n) MHz sample frequency  
PWM output, 2-line, (22.05 × n) kHz modulation  
frequency  
7.15.1.2 PWM output mode (2-line)  
In the PWM mode the motor acceleration signal is put in  
pulse-width modulation form on the MOTO1 output. The  
motor braking signal is pulse-width modulated on the  
MOTO2 output. The timing is illustrated in Fig 16. A typical  
application diagram is illustrated in Fig 17.  
PWM output, 4-line, (22.05 × n) kHz modulation  
frequency  
CDV motor mode.  
t
240 ns  
t
= 45 µs  
dead  
rep  
MOTO1  
MOTO2  
MGA366  
Accelerate  
Brake  
Fig.16 2-line PWM mode timing.  
25  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
+
M
10 Ω  
100 nF  
MOTO1  
MOTO2  
V
MGA365 - 2  
SS  
Fig.17 Motor 2-line PWM mode application diagram.  
7.15.1.3 PWM output mode (4-line)  
Using two extra outputs from the versatile pins interface, it is possible to use the SAA7824 with a 4-input motor bridge.  
The timing is illustrated in Fig 18. A typical application diagram is illustrated in Fig 19.  
t
= 45 µs  
t
240 ns  
rep  
dead  
MOTO1  
MOTO2  
V4  
V5  
MGA367 - 1  
t
= 240 ns  
ovl  
Accelerate  
Brake  
Fig.18 4-line PWM mode timing.  
26  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
+
V4  
V5  
M
10 Ω  
100 nF  
MOTO1  
MOTO2  
V
SS  
MGA364 - 2  
Fig.19 Motor 4-line PWM mode application diagram.  
7.15.2.1 Motor OV flag  
7.15.1.4 CDV/CAV output mode  
In the CDV motor mode, the FIFO position will be put in  
pulse-width modulated form on the MOTO1 pin [carrier  
frequency (300 × d) Hz], where ‘d’ is the disc speed factor.  
The PLL frequency signal will be put in pulse-density  
modulated form (carrier frequency 4.23 × n MHz) on the  
MOTO2 pin. The integrated motor servo is disabled in this  
mode.  
The SAA7824 contains a servo loop that is used to  
regulate the spindle speed. The motor OV flag is provided  
to indicate when the motor output has overloaded. During  
a large change in disc speed i.e. by a long jump or x-factor  
change, the motor OV flag will be asserted due to the full  
and longer duration required to attain the new desired  
speed.  
The PWM signal on MOTO1 corresponds to a total  
memory space of 20 frames, therefore the nominal FIFO  
position (half full) will result in a PWM output of 60%.  
The OV flag indicates when the internal processes of the  
modulator have overflowed and not necessarily when the  
output power has reached 100%. Similarly, the flag does  
not fall at a specific output power level but at a specific  
speed error level. The error level at which the flag falls is  
determined by the selected servo gain, and will be  
internally equivalent to +3 × gain or 3 × gain.  
In the lock-to-disc (CAV) mode the CDV motor mode is the  
only mode that can be used to control the motor.  
7.15.2 SPINDLE MOTOR OPERATING MODES  
The operating modes of the motor servo are controlled by  
decoder register 1; see Table 12.  
7.15.2.2 Power limit  
In start mode 1, start mode 2, stop mode 1 and stop  
mode 2, a fixed positive or negative voltage is applied to  
the motor.  
In the SAA7824 decoder there is an anti-windup mode for  
the motor servo, selected via decoder register 1. When the  
anti-windup mode is activated the motor servo integrator  
will hold if the motor output saturates.  
This voltage can be programmed as a percentage of the  
maximum possible voltage, via register 6, to limit current  
drain during start and stop.  
The following power limits are possible:  
100% (no power limit), 75%, 50% or 37% of maximum.  
2003 Oct 01  
27  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.15.3 LOOP CHARACTERISTICS  
It should be noted that the crossover frequencies f3 and f4  
are scaled with the overspeed factor ‘n’ whereas the gains  
are not.  
The gain and crossover frequencies of the motor control  
loop can be programmed via decoder registers 4 and 5.  
The following parameter values are possible:  
7.15.4 FIFO OVERFLOW  
Gains: 3.2, 4.0, 6.4, 8.0, 12.8, 16, 25.6 and 32  
If FIFO overflow occurs during Play mode (e.g. as a result  
of motor rotational shock), the FIFO will be automatically  
reset to 50% and the audio interpolator will conceal as  
much as possible to minimize the effect of data loss.  
Crossover frequency f4: 0.5 × n Hz, 0.7 × n Hz,  
1.4 × n Hz and 2.8 × n Hz  
Crossover frequency f3: 0.85 × n Hz, 1.71 × n Hz and  
3.42 × n Hz.  
Table 12 Operating modes  
MODE  
DESCRIPTION  
Start mode 1  
The disc is accelerated by applying a positive voltage to the spindle motor. No decisions are  
involved and the PLL is reset. No disc speed information is available for the microcontroller.  
Start mode 2  
The disc is accelerated as in start mode 1, however the PLL will monitor the disc speed. When the  
disc reaches 75% of its nominal speed, the controller will switch to jump mode. The motor status  
signals selectable via register 2 are valid.  
Jump mode  
Motor servo enabled but FIFO kept reset at 50%, integrator is held. The audio is muted but it is  
possible to read the subcode. It should be noted that in the CD-ROM modes the data, on EBU and  
the I2S-bus, is not muted.  
Jump mode 1  
Similar to jump mode but motor integrator is kept at zero. It is used for long jumps where there is a  
large change in disc speed.  
Play mode  
FIFO released after resetting to 50% and the audio mute is released.  
Stop mode 1  
Stop mode 2  
Disc is braked by applying a negative voltage to the motor; no decisions are involved.  
The disc is braked as in stop mode 1 but the PLL will monitor the disc speed. As soon as the disc  
reaches 12% (or 6%, depending on the programmed brake percentage, via register E) of its  
nominal speed, the MOTSTOP status signal will go HIGH and switch the motor servo to off mode.  
Off mode  
Motor not steered.  
MGA362 - 2  
G
f
f
BW  
f
4
3
Fig.20 Motor servo mode diagram.  
2003 Oct 01  
28  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.16 Servo part  
The low frequency content of the six (five if single  
Foucault) photo diode inputs are converted to digital Pulse  
Density Modulated (PDM) bitstreams by six Sigma-delta  
ADCs. These support a range of OPUs by interfacing to  
Voltage mode mechanisms and by having 16 selectable  
gain ranges in two sets, one set for D1-to-D4 and the other  
for R1 and R2.  
7.16.1 DIODE SIGNAL PROCESSING  
The photo detector in conventional two-stage three-beam  
Compact Disc systems normally contains six discrete  
diodes. Four of these diodes (three for single foucault  
systems) carry the Central Aperture signal (CA) while the  
other two diodes (satellite diodes) carry the radial tracking  
information. The CA signals are summed into an HF signal  
for the decoder function and are also differentiated (after  
analog-to-digital conversion) to produce the low frequency  
focus control signals.  
Table 13 Shadow register settings to control diode voltage ranges  
SHADOW  
REGISTER  
SHADEN BITS  
01  
ADDRESS  
DATA  
VOLTAGE (mV)  
INITIAL  
A
1010  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
20  
25  
(bank 1)  
signal magnitude  
control for diodes  
D1 to D4  
30  
40  
(LF only)  
60  
75  
100  
120  
150  
200  
270  
350  
450  
600  
720  
960  
reset  
2003 Oct 01  
29  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SHADOW  
REGISTER  
SHADEN BITS  
ADDRESS  
DATA  
VOLTAGE (mV)  
INITIAL  
01  
(bank 1)  
C
1100  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
20  
25  
signal magnitude  
control for diodes  
R1 and R2 (LF  
only)  
30  
40  
60  
75  
100  
120  
150  
200  
270  
350  
450  
600  
720  
960  
reset  
7.16.2 SIGNAL CONDITIONING  
The radial or tracking error signal is generated by the  
satellite detector signals R1 and R2. The radial error  
signal can be formulated as follows:  
The digital codes retrieved from the ADCs are applied to  
logic circuitry to obtain the various control signals. The  
signals from the central aperture diodes are processed to  
obtain a normalised focus error signal:  
REs = (R1 R2) × re_gain + (R1 + R2) × re_offset.  
Where the index ‘s’ indicates the automatic scaling  
operation which is performed on the radial error signal.  
This scaling is necessary to avoid non-optimum dynamic  
range usage in the digital representation and reduces the  
radial bandwidth spread. Furthermore, the radial error  
signal will be made free from offset during start-up of the  
disc.  
D1 D2 D3 D4  
D1 + D2 D3 + D4  
FEn  
=
---------------------- ----------------------  
Where the detector set-up is assumed to be as shown in  
Fig.21.  
In the event of single Foucault focusing method, the signal  
conditioning can be switched under software control such  
that the signal processing is as follows:  
The four signals from the central aperture detectors,  
together with the satellite detector signals generate a  
Track Position signal (TPI) which can be formulated as  
follows:  
D1 D2  
D1 + D2  
FEn = 2 ×  
----------------------  
TPI = sign [(D1 + D2 + D3 + D4) (R1 + R2) × sum_gain]  
The error signal, FEn, is further processed by a  
Where the weighting factor sum_gain is generated  
internally by the SAA7824 during initialization.  
Proportional Integral and Differential (PID) filter section.  
A Focus OK (FOK) flag is generated by the central  
aperture signal and an adjustable reference level. This  
signal is used to provide extra protection for the  
Track-Loss (TL) generation, the focus start-up procedure  
and the dropout detection.  
2003 Oct 01  
30  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SATELLITE  
DIODE R1  
SATELLITE  
DIODE R1  
SATELLITE  
DIODE R1  
D1  
D2  
D3  
D4  
D1  
D3  
D2  
D4  
D1  
D3  
D2  
SATELLITE  
DIODE R2  
SATELLITE  
DIODE R2  
SATELLITE  
DIODE R2  
single Foucault  
astigmatic focus  
double Foucault  
MBG422  
Fig.21 Detector arrangement.  
7.16.3 FOCUS SERVO SYSTEM  
7.16.3.1 Focus start-up  
These coefficients influence the integrating (foc_int),  
proportional (foc_lead_length, part of foc_parm3) and  
differentiating (foc_pole_lead, part of foc_parm1) action of  
the PID and a digital low-pass filter (foc_pole_noise, part  
of foc_parm2) following the PID. The fifth coefficient  
foc_gain influences the loop gain.  
Five initially loaded coefficients influence the start-up  
behaviour of the focus controller. The automatically  
generated triangular voltage can be influenced by  
3 parameters; for height (ramp_height) and DC offset  
(ramp_offset) of the triangle and its steepness  
(ramp_incr).  
7.16.3.3 Dropout detection  
This detector can be influenced by one parameter  
(CA_drop). The FOK signal will become false and the  
integrator of the PID will hold if the CA signal drops below  
this programmable absolute CA level. When the FOK  
signal becomes false it is assumed, initially, to be caused  
by a black dot.  
For protection against false focus point detections two  
parameters are available which are an absolute level on  
the CA signal (CA_start) and a level on the FEn signal  
(FE_start). When this CA level is reached the FOK signal  
becomes true.  
If the FOK signal is true and the level on the FEn signal is  
reached, the focus PID is enabled to switch-on when the  
next zero crossing is detected in the FEn signal.  
7.16.3.4 Focus loss detection and fast restart  
Whenever FOK is false for longer than approximately  
3 ms, it is assumed that the focus point is lost. A fast  
restart procedure is initiated which is capable of restarting  
the focus loop within 200 to 300 ms depending on the  
programmed coefficients of the microcontroller.  
7.16.3.2 Focus position control loop  
The focus control loop contains a digital PID controller  
which has 5 parameters that are available to the user.  
2003 Oct 01  
31  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.16.3.5 Focus loop gain switching  
Both modes of S-curve extension make use of a  
track-count mechanism. In this mode, track counting  
The gain of the focus control loop (foc_gain) can be  
multiplied by a factor of 2 or divided by a factor of 2 during  
normal operation. The integrator value of the PID is  
corrected accordingly. The differentiating (foc_pole_lead)  
action of the PID can be switched at the same time as the  
gain switching is performed.  
results in an ‘automatic return-to-zero track’, to avoid  
major disturbances in the audio output and providing  
improved shock resistance. The sledge is continuously  
controlled, or provided with step pulses to reduce power  
consumption using the filtered value of the radial PID  
output. Alternatively, the microcontroller can read the  
average voltage on the radial actuator and provide the  
sledge with step pulses to reduce power consumption.  
Filter coefficients of the continuous sledge control can be  
preset by the user.  
7.16.3.6 Focus automatic gain control loop  
The loop gain of the focus control loop can be corrected  
automatically to eliminate tolerances in the focus loop.  
This gain control injects a signal into the loop which is used  
to correct the loop gain. Since this decreases the optimum  
performance, the gain control should only be activated for  
a short time (for example, when starting a new disc).  
7.16.4.4 Access  
The access procedure is divided into two different modes  
(see Table 14), depending on the requested jump size.  
7.16.4 RADIAL SERVO SYSTEM  
7.16.4.1 Level initialization  
Table 14 Access modes  
ACCESS  
TYPE  
ACCESS  
SPEED  
JUMP SIZE(1)  
During start-up an automatic adjustment procedure is  
activated to set the values of the radial error gain (re_gain),  
offset (re_offset) and satellite sum gain (sum_gain) for TPI  
level generation. The initialization procedure runs in a  
radial open loop situation and is 300 ms. This start-up  
time period may coincide with the last part of the motor  
start-up time period:  
Actuator jump 1 brake_distance  
decreasing  
velocity  
Sledge jump brake_distance 32768 maximum  
power to  
sledge(1)  
Automatic gain adjustment: as a result of this  
initialization the amplitude of the RE signal is adjusted to  
within ±10% around the nominal RE amplitude  
Note  
1. The microcontroller can be preset.  
Offset adjustment: the additional offset in RE due to the  
limited accuracy of the start-up procedure is less than  
±50 nm  
The access procedure makes use of a track counting  
mechanism, a velocity signal based on a fixed number of  
tracks passed within a fixed time interval, a velocity set  
point calculated from the number of tracks to go and a user  
programmable parameter indicating the maximum sledge  
performance.  
TPI level generation: the accuracy of the initialization  
procedure is such that the duty factor range of TPI  
becomes 0.4 < duty factor < 0.6 (default duty  
factor = TPI HIGH/TPI period).  
If the number of tracks remaining is greater than the  
brake_distance then the sledge jump mode should be  
activated or, the actuator jump should be performed. The  
requested jump size together with the required sledge  
breaking distance at maximum access speed defines the  
brake_distance value.  
7.16.4.2 Sledge control  
The microcontroller can move the sledge in both directions  
via the steer sledge command.  
7.16.4.3 Tracking control  
During the actuator jump mode, velocity control with a PI  
controller is used for the actuator. The sledge is then  
continuously controlled using the filtered value of the radial  
PID output. All filter parameters (for actuator and sledge)  
are user programmable.  
The actuator is controlled using a PID loop filter with user  
defined coefficients and gain. For stable operation  
between the tracks, the S-curve is extended over 75% of  
the track. On request from the microcontroller, S-curve  
extension over 2.25 tracks is used, automatically changing  
to access control when exceeding those 2.25 tracks.  
2003 Oct 01  
32  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
In the sledge jump mode maximum power (user  
3. Fast counting state: used in high velocity track jump  
situations. Highest obtainable velocity is the most  
important feature in this state.  
programmable) is applied to the sledge in the correct  
direction while the actuator becomes idle (the content of  
the actuator integrator leaks to zero just after the sledge  
jump mode is initiated). The actuator can be electronically  
damped during sledge jump. The gain of the damping loop  
is controlled via the hold_mult parameter.  
7.16.6 TRACK COUNTING MODES  
Fast counting mode is auto-selected for a track crossing  
speed above 1200 tracks/s. In this case the off-track  
counting decrements occur only for effect of the RP signal,  
and the direction of the jump is already known because the  
Slow counting mode occurs before going into Fast  
counting mode.  
The fast track jumping circuitry can be enabled or disabled  
via the xtra_preset parameter.  
7.16.4.5 Radial automatic gain control loop  
The loop gain of the radial control loop can be corrected  
automatically to eliminate tolerances in the radial loop.  
This gain control injects a signal into the loop which is used  
to correct the loop gain. Since this decreases the optimum  
performance, the gain control should only be activated for  
a short time (for example, when starting a new disc).  
When the Slow counting mode is selected, the maximum  
track crossing speed that can be reached is 12 kHz  
(providing that the maximum value for rad_pole_lead is  
used). In this case the direction of the jump is given by the  
phase shift between RP and TL (+90 degrees for outward  
jumps, 90 degrees for inward jumps). The number of  
pulses in the TL signal gives the number of tracks crossed.  
This gain control differs from the level initialization. The  
level initialization should be performed first. The  
disadvantage of using the level initialization without the  
gain control is that only tolerances from the front-end are  
reduced.  
When the Fast counting mode is enabled, whenever the  
track crossing speed goes below 12 kHz, the counting  
mode is automatically changed to Slow.  
7.16.7 DEFECT DETECTION  
7.16.5 OFF-TRACK COUNTING  
A defect detection circuit is incorporated into the  
SAA7824. If a defect is detected, the radial and focus error  
signals may be zeroed, resulting in better playability. The  
defect detector can be switched off, applied only to focus  
control or applied to both focus and radial controls under  
software control (part of foc_parm1).  
The Track Position signal (TPI) is a flag which is used to  
indicate whether the radial spot is positioned on the track,  
with a margin of ±0.25 of the track pitch. In combination  
with the Radial Polarity flag (RP) the relative spot position  
over the tracks can be determined.  
These signals can have uncertainties caused by:  
The defect detector (see Fig 22) has programmable set  
points selectable by the parameter defect_parm.  
Disc defects such as scratches and fingerprints  
The HF information on the disc, which is considered as  
noise by the detector signals.  
7.16.8 OFF-TRACK DETECTION  
During active radial tracking, off-track detection has been  
realised by continuously monitoring the off-track counter  
value. The off-track flag becomes valid whenever the  
off-track counter value is not equal to zero. Depending on  
the type of extended S-curve, the off-track counter is reset  
after 0.75 extend or at the original track in the 2.25 track  
extend mode.  
In order to determine the spot position with sufficient  
accuracy, extra conditions are necessary to generate a  
Track Loss signal (TL) and an off-track counter value.  
These extra conditions influence the maximum speed and  
this implies that, internally, one of the following three  
counting states is selected:  
1. Protected state: used in normal play situations. A good  
protection against false detection caused by disc  
defects is important in this state.  
2. Slow counting state: used in low velocity track jump  
situations. In this state a fast response is important  
rather than the protection against disc defects (if the  
phase relationship between TL and RP of 0.5π radians  
is affected too much, the direction cannot then be  
determined accurately).  
2003 Oct 01  
33  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
+
defect  
output  
DECIMATION  
FILTER  
FAST  
FILTER  
SLOW  
FILTER  
DEFECT  
GENERATION  
PROGRAMMABLE  
HOLD-OFF  
sat1  
sat2  
MBG421  
Fig.22 Block diagram of the defect detector.  
7.16.9 HIGH-LEVEL FEATURES  
It should be noted that if the STATUS pin is configured to  
output decoder status information [decoder register  
7 = XX10 and new shadow register C (bank 3) = X00X]  
and either the microcontroller writes a different value to  
decoder register 2 or the decoder interface is enabled then  
the STATUS output will change.  
7.16.9.1 Interrupt mechanism and STATUS pin  
The STATUS pin is an output which can be configured by  
decoder register 7 and new shadow register C (bank 3) for  
one of three different modes of operation. These are:  
Output the interrupt signal generated by the servo part  
(it should be noted that the selection of this mode will  
override all other modes)  
7.16.9.2 Decoder interface  
The decoder interface allows decoder and shadow  
registers to be programmed and subcode Q-channel data  
to be read via servo commands. The interface is enabled  
or disabled by the preset latch command (and the  
xtra_preset parameter).  
Output the decoder status bit (active LOW) selected by  
decoder register 2 (only available in 4-wire bus mode)  
Output DC offset information (it should be noted that this  
mode is used in conjunction with the decoder status  
mode; see Section 7.5).  
7.16.9.3 Automatic error handling  
Three Watchdogs are present:  
Eight signals from the interrupt status register are  
selectable from the servo part via the interrupt_mask  
parameter. The interrupt is reset by sending the read  
high-level status command. The 8 signals are as follows:  
Focus: detects focus dropout of longer than 3 ms, sets  
focus lost interrupt, switches off radial and sledge  
servos and disables the drive-to-disc motor  
Focus lost: dropout of longer than 3 ms  
Subcode ready  
Radial play: started when radial servo is in on-track  
mode and a first subcode frame is found; detects when  
the maximum time between two subcode frames  
exceeds the time set by the playwatchtime parameter; it  
then sets the radial error interrupt, switches radial and  
sledge servos off and puts the disc motor into jump  
mode  
Subcode absolute seconds changed  
Subcode discontinuity detected: new subcode time  
before previous subcode time, or more than 10 frames  
later than previous subcode time  
Radial error: during radial on-track, no new subcode  
frame occurs within the time defined by the  
‘playwatchtime’ parameter; during radial jump, less than  
4 tracks have been crossed during the time defined by  
the ‘jumpwatchtime’ parameter  
Radial jump: active when radial servo is in long jump or  
short jump modes; detects when the off-track counter  
value decreases by less than 4 tracks between two  
readings (the time interval is set by the jumpwatchtime  
parameter); it then sets the radial jump error, switches  
radial and sledge servos off to cancel jump.  
Autosequencer state change  
Autosequencer error  
The focus Watchdog is always active, the radial  
Watchdogs are selectable via the radcontrol parameter.  
Subcode interface blocked: the internal decoder  
interface is being used.  
2003 Oct 01  
34  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.16.9.4 Automatic sequencers and timer interrupts  
During reset (i.e. RESET pin is held LOW) the RA, FO and  
SL pins are high-impedance. At all other times, when the  
laser is switched off, the RA and FO pins output a 2 MHz  
50% duty factor signal.  
Two automatic sequencers are implemented (and must be  
initialized after Power-on):  
Auto-start sequencer: controls the start-up of focus,  
radial and motor  
7.16.11 LASER INTERFACE  
Auto-stop sequencer: brakes the disc and shuts down  
the servos.  
The laser diode pre-amplifier function is built into the  
SAA7824 and is illustrated in Fig.24. The current can be  
regulated, up to 120 mA in four steps ranging from 58% up  
to full power. New shadow register A (bank 2) and new  
shadow register 3 (bank 3) are used to select the step  
values.  
When the automatic sequencers are not used it is possible  
to generate timer interrupts, defined by the  
time_parameter coefficient.  
7.16.9.5 High-level status  
The voltage derived from the monitor diode is maintained  
at a steady state by the laser drive circuitry, regulating the  
current through the laser diode. The type of monitor diode  
being used (150 mV or 180 mV) must be selected by new  
shadow register 7 (bank 2) (reset state = 150 mV).  
The read high-level status command can be used to obtain  
the interrupt, decoder, autosequencer status registers and  
the motor start time. Use of the read high-level status  
command clears the interrupt status register, and  
re-enables the subcode read via a servo command.  
The laser can be switched on or off by the xtra_preset  
parameter; it is automatically driven if the focus control  
loop is active.  
7.16.10 DRIVER INTERFACE  
The control signals (pins RA, FO and SL) for the  
mechanism actuators are pulse density modulated. The  
modulating frequency can be set to either 1.0584 or  
2.1168 MHz; controlled via the xtra_preset parameter.  
An analog representation of the output signals can be  
achieved by connecting a 1st-order low-pass filter to the  
outputs.  
2003 Oct 01  
35  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.17 Microcontroller interface  
I2C-bus mode: I2C-bus protocol where the SAA7824  
behaves as slave device, activated by setting  
RAB = HIGH and SILD = LOW where:  
Communication on the microcontroller interface can be  
set-up in three different modes:  
– I2C-bus slave address (write mode) = 30H  
4-wire bus mode: where:  
– SCL = serial clock  
– SDA = serial data  
I2C-bus slave address (read mode) = 31H  
– Maximum data transfer rate = 400 kbits/s.  
It should be noted that when using the I2C-bus mode, only  
servo commands can be used. Therefore, writing to  
decoder registers 0 to F, reading decoder status and  
reading Q-channel subcode data must be performed by  
servo commands.  
– RAB = R/W control and data strobe (active HIGH) for  
writing to decoder registers 0 to F, reading status bit  
selected via decoder register 2 and reading  
Q-channel subcode  
– SILD = R/W control and data strobe (active LOW) for  
servo commands  
The 3-wire mode is very similar to the 4-wire mode, except  
that all communication to the decoder is via the servo.  
3-wire bus mode: where:  
– SCL = serial clock  
Communication to the servo uses the same hardware  
protocol and timing as the 4-wire mode.  
– SDA = serial data  
Extra servo commands exist for read and write access to  
the decoder via the internal decoder interface. The internal  
interface must be enabled by using the xtra_preset  
command. RAB is not used and must be tied LOW;  
see Fig.23  
– RAB = not used, pulled LOW  
– SILD = R/W control and data strobe (active LOW) for  
servo commands  
handbook, halfpage  
MICROCONTROLLER  
INTERFACE  
MICROCONTROLLER  
INTERFACE  
(DECODER)  
SAA7824  
RAB = LOW  
SDA  
SCL  
SILD  
MDB502  
Fig.23 Microcontroller interface for the 3-wire mode.  
2003 Oct 01  
36  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
floating reference  
V
DDA  
laser power control [register A (bank 2) and register 3 (bank 3)]  
error amplifier  
power amplifier  
mech_sel  
g
g
m
m
power-down or  
laser off  
V
MONITOR  
EXFILTER  
LASER  
SENSE  
laser  
diode  
47 nF  
monitor diode  
MBL442  
Fig.24 Simplified block diagram of the laser driver.  
2003 Oct 01  
37  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.17.1 MICROCONTROLLER INTERFACE (4-WIRE BUS MODE)  
7.17.1.1 Writing data to registers 0 to F  
V1: follows input on pin V1  
V2: follows input on pin V2  
MOTOR-OV: HIGH if the motor servo output stage  
saturates.  
The sixteen 4-bit programmable configuration registers,  
0 to F (see Table 15), can be written to via the  
microcontroller interface using the protocol shown in  
Fig.25. It should be noted that SILD must be held HIGH;  
A3 to A0 identifies the register number and D3 to D0 is the  
data. The data is latched into the register on the  
LOW-to-HIGH transition of RAB.  
The status read protocol is illustrated in Fig.27. It should be  
noted that SILD must be held HIGH.  
7.17.1.5 Reading Q-channel subcode  
To read the Q-channel subcode direct in the 4-wire bus  
mode, the SUBQREADY-I signal should be selected as  
the status signal. The subcode read protocol is illustrated  
in Fig.28.  
7.17.1.2 Writing repeated data to registers 0 to F  
The same data can be repeated several times (e.g. for a  
fade function) by applying extra RAB pulses as shown in  
Fig.26. It should be noted that SCL must stay HIGH  
between RAB pulses.  
It should be noted that SILD must be held HIGH; after  
subcode read starts, the microcontroller may take as long  
as it wants to terminate the read operation. When enough  
subcode has been read (1 to 96 bits), the reading can be  
terminated by pulling RAB LOW.  
7.17.1.3 Multiple writes to the new shadow registers  
Some of the new shadow registers are a multiple of four  
bits in length and require a number of write operations to  
fill them up; see Section 7.17.5. They must be completely  
filled before writing to another register, otherwise  
unpredictable behaviour may result.  
Alternatively, the Q-channel subcode can be read using a  
servo command as follows:  
Use the read high-level status command to monitor the  
subcode ready signal  
Send the read subcode command and read the required  
number of bytes (up to 12)  
The protocol for writing to these registers is exactly the  
same as the decoder registers; see Fig.25. The write  
command must be executed multiple times with the same  
address content. The first four bits of data in a sequence  
of write commands represent the most significant nibble of  
the register, while the last four represent the least  
significant nibble. The data content can change from one  
write to the next without consequence.  
Send the read high-level status command; to re-enable  
the decoder interface.  
7.17.1.6 Behaviour of the SUBQREADY-I signal  
When the CRC of the Q-channel word is good, and no  
subcode is being read, the SUBQREADY-I status signal  
will react as illustrated in Fig.29. When the CRC is good  
and the subcode is being read, the timing in Fig.30 applies.  
7.17.1.4 Reading decoder status information on SDA  
There are several internal status signals, selected via  
register 2, which can be made available on the SDA line:  
If t1 (SUBQREADY-I status LOW to end of subcode read)  
is below 2.6/n ms, then t2 = 13.1/n ms (i.e. the  
microcontroller can read all subcode frames if it completes  
the read operation within 2.6/n ms after the subcode is  
ready). If these criteria are not met, it is only possible to  
guarantee that t3 will be below 26.2/n ms (approximately).  
SUBQREADY-I: LOW if new subcode word is ready in  
Q-channel register  
MOTSTART1: HIGH if motor is turning at 75% or more  
of nominal speed  
MOTSTART2: HIGH if motor is turning at 50% or more  
of nominal speed  
If subcode frames with failed CRCs are present, the t2  
and t3 times will be increased by 13.1/n ms for each  
defective subcode frame.  
MOTSTOP: HIGH if motor is turning at 12% or less of  
nominal speed; can be set to indicate 6% or less  
(instead of 12% or less) via register E  
It should be noted that in the lock-to-disc mode ‘n’ is  
replaced by ‘d’, which is the disc speed factor.  
PLL lock: HIGH if sync coincidence signals are found  
2003 Oct 01  
38  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.17.1.7 Write servo commands  
The sequence for a write data command (that requires  
3 data bytes) is as follows:  
A write data command is used to transfer data (a number  
of bytes) from the microcontroller, using the protocol  
illustrated in Fig.31. The first of these bytes is the  
command byte and the following are data bytes; the  
number (between 1 and 7) depends on the command  
byte.  
1. Send START condition.  
2. Send address 30H (write).  
3. Write command byte.  
4. Write data byte 1.  
5. Write data byte 2.  
It should be noted that RAB must be held LOW; the  
command or data is interpreted by the SAA7824 after the  
HIGH-to-LOW transition of SILD; there must be a  
minimum time of 70 µs between SILD pulses.  
6. Write data byte 3.  
7. Send STOP condition.  
It should be noted that more than one command can be  
sent in one write sequence.  
7.17.1.8 Writing repeated data in servo commands  
The sequence for a read data command (that reads 2 data  
bytes) is as follows:  
The same data byte can be repeated by applying extra  
SILD pulses as illustrated in Fig.32. SCL must be HIGH  
between the SILD pulses.  
1. Send START condition.  
2. Send address 30H (write).  
3. Write command byte.  
4. Send STOP condition.  
5. Send START condition.  
6. Send address 31H (read).  
7. Read data byte 1.  
7.17.1.9 Read servo commands  
A read data command is used to transfer data (status  
information) to the microcontroller, using the protocol  
shown in Fig.33. The first byte written determines the type  
of command. After this byte a variable number of bytes can  
be read. It should be noted that RAB must be held LOW;  
after the end of the command byte (LOW-to-HIGH  
transition on SILD) there must be a delay of 70 µs before  
data can be read (i.e. the next HIGH-to-LOW transition on  
SILD) and there must be a minimum time of 70 µs between  
SILD pulses.  
8. Read data byte 2.  
9. Send STOP condition.  
It should be noted that the timing constraints specified for  
the read and write servo commands must still be adhered  
to.  
7.17.2 MICROCONTROLLER INTERFACE (I2C-BUS MODE)  
Bytes are transferred over the interface in groups (i.e.  
servo commands) of which there are two types: write data  
commands and read data commands.  
RAB  
(microcontroller)  
SCL  
(microcontroller)  
SDA  
(microcontroller)  
A3  
A2  
A1  
A0  
D3  
D2  
D1  
D0  
SDA  
(SAA782X)  
high-impedance  
MBL445  
Fig.25 Microcontroller write protocol for registers 0 to F.  
39  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
RAB  
(microcontroller)  
SCL  
(microcontroller)  
SDA  
(microcontroller)  
A3  
A2  
A1  
A0  
D3  
D2  
D1  
D0  
SDA  
(SAA782X)  
high-impedance  
MBL446  
Fig.26 Microcontroller write protocol for registers 0 to F (repeat mode).  
RAB  
(microcontroller)  
SCL  
(microcontroller)  
SDA  
(microcontroller)  
high-impedance  
STATUS  
SDA  
(SAA782X)  
MBL443  
Fig.27 Microcontroller read protocol for decoder status on SDA.  
RAB  
(microcontroller)  
SCL  
(microcontroller)  
CRC  
OK  
SDA  
(SAA782X)  
Q1  
Q2  
Q3  
Qn–2 Qn–1 Qn  
MBL444  
STATUS  
Fig.28 Microcontroller protocol for reading Q-channel subcode.  
40  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
RAB  
(microcontroller)  
SCL  
(microcontroller)  
high  
CRC OK  
CRC OK  
SDA  
(SAA782X)  
impedance  
MBL447  
10.8/n ms  
15.4/n ms  
2.3/n  
ms  
READ start allowed  
Fig.29 SUBQREADY-I status timing when no subcode is read.  
t
2
t
t
3
1
RAB  
(microcontroller)  
SCL  
(microcontroller)  
SDA  
(SAA782X)  
Q1  
Q2  
Q3  
Qn  
MBL448  
Fig.30 SUBQREADY-I status timing when subcode is read.  
41  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SILD  
(microcontroller)  
SCL  
(microcontroller)  
SDA  
(microcontroller)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
command or data byte  
SDA  
(SAA782X)  
high-impedance  
microcontroller write (one byte: command or data)  
SILD  
(microcontroller)  
SDA  
(microcontroller)  
COMMAND  
DATA1  
DATA2  
DATA3  
MBL449  
microcontroller write (full command)  
Fig.31 Microcontroller protocol for write servo commands.  
SILD  
(microcontroller)  
SDA  
(microcontroller)  
COMMAND  
DATA1  
MBG413  
microcontroller write (full command)  
Fig.32 Microcontroller protocol for repeated data in write servo commands.  
42  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SILD  
(microcontroller)  
SCL  
(microcontroller)  
SD  
(SAA782X)  
D7  
D6  
D5  
D1  
D0  
D4  
D3  
D2  
data byte  
microcontroller read (one data byte)  
SILD  
(microcontroller)  
SD  
(SAA782X)  
DATA1  
DATA2  
DATA3  
SDA  
(microcontroller)  
COMMAND  
MBL450  
microcontroller read (full command)  
Fig.33 Microcontroller protocol for read servo commands.  
7.17.3 DECODER AND SHADOW REGISTERS  
When SHADEN1 and SHADEN2 are both set to logic 0  
(decoder register F set to XX00) all subsequent addresses  
are decoded by the main decoder registers again.  
To maintain compatibility with the SAA732x series,  
decoder registers 0 to F and the shadow registers are  
largely unchanged. However, to control the extra  
functionality of SAA7824, the shadow registers have been  
extended to include new shadow registers.  
Access to decoder register F is always enabled so that  
SHADEN1 and SHADEN2 can be set or reset as required.  
The SHADEN bits and subsequent shadow registers are  
programmed identically to the main decoder registers,  
i.e. they can be directly programmed when using the  
SAA7824 in 4-wire mode or programmed via the servo  
interface when using 3-wire or I2C-bus modes. The main  
decoder registers are given in Table 16 and the shadow  
registers in Table 18. Details of the new shadow registers  
can be found in Tables 19 to 22.  
All shadow registers are accessed by using the two LSBs  
(bits 0 and 1) of decoder register F. These bits are called  
SHADEN1 and SHADEN2 respectively. These bits are  
decoded according to Table 15.  
This two bit encoding allows the use of three shadow  
register banks; bank 1 (SAA732X shadow registers), and  
banks 2 and 3 (new shadow registers). Only the four  
addresses 3, 7, A and C are implemented in any one  
bank. Any other addresses sent while accessing any of the  
shadow register banks are invalid and have no effect.  
2003 Oct 01  
43  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 15 Shadow register accessibility  
SHADEN2  
SHADEN1  
FUNCTION  
access decoder registers 0 to F  
INITIAL  
0
0
1
1
0
1
0
1
reset  
access SAA732X shadow registers (bank 1)  
access new shadow registers (bank 2)  
access new shadow registers (bank 3)  
7.17.4 SUMMARY OF FUNCTIONS CONTROLLED BY DECODER REGISTERS 0 TO F  
Table 16 Registers 0 to F  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL(1)  
0
0000  
X000  
X010  
X001  
X100  
X101  
0XXX  
1XXX  
mute  
reset  
(Fade and  
attenuation)  
attenuate  
full-scale  
step-down  
step-up  
0
EBU mute inactive  
EBU mute active  
reset  
EBU mute (for  
M1 version  
only)  
1
0001  
X000  
X001  
X010  
X011  
X100  
X101  
X111  
X110  
1XXX  
0XXX  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
motor off mode  
reset  
(Motor mode)  
motor stop mode 1  
motor stop mode 2  
motor start mode 1  
motor start mode 2  
motor jump mode  
motor play mode  
motor jump mode 1  
anti-windup active  
anti-windup off  
reset  
2
0010  
status = SUBQREADY-I  
status = MOTSTART1  
status = MOTSTART2  
status = MOTSTOP  
status = PLL lock  
reset  
(Status control)  
status = V1  
status = V2  
status = MOTOR-OV  
status = FIFO overflow  
status = shock detect  
status = latched shock detect  
status = latched shock detect reset  
unavailable via  
the I2C-bus or  
3-wire mode  
2003 Oct 01  
44  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
I2S-bus; CD-ROM mode  
INITIAL(1)  
3
0011  
1010  
1011  
1100  
1111  
1110  
0000  
0011  
0010  
0100  
0111  
0110  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
XX00  
XX01  
XX10  
XX11  
00XX  
01XX  
10XX  
XX00  
XX01  
XX10  
XX11  
00XX  
01XX  
10XX  
11XX  
(DAC output)  
EIAJ; CD-ROM mode  
I2S-bus; 18-bit; 4fs mode  
I2S-bus; 18-bit; 2fs mode  
I2S-bus; 16-bit; fs mode  
EIAJ; 16-bit; 4fs  
reset  
EIAJ; 16-bit; 2fs  
EIAJ; 16-bit; fs  
EIAJ; 18-bit; 4fs  
EIAJ; 18-bit; 2fs  
EIAJ; 18-bit; fs  
4
0100  
motor gain G = 3.2  
reset  
(Motor gain)  
motor gain G = 4.0  
motor gain G = 6.4  
motor gain G = 8.0  
motor gain G = 12.8  
motor gain G = 16.0  
motor gain G = 25.6  
motor gain G = 32.0  
motor f4 = 0.5 × n Hz  
motor f4 = 0.7 × n Hz  
motor f4 = 1.4 × n Hz  
motor f4 = 2.8 × n Hz  
motor f3 = 0.85 × n Hz  
motor f3 = 1.71 × n Hz  
motor f3 = 3.42 × n Hz  
motor power maximum 37%  
motor power maximum 50%  
motor power maximum 75%  
motor power maximum 100%  
MOTO1, MOTO2 pins 3-state  
motor PWM mode  
5
0101  
reset  
(Motor  
bandwidth)  
reset  
6
0110  
reset  
(Motor output  
configuration)  
reset  
motor PDM mode  
motor CDV mode  
2003 Oct 01  
45  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL(1)  
7
0111  
XX00  
interrupt signal from servo only at STATUS  
pin  
reset  
(DAC output  
and STATUS pin  
control)  
XX10  
status bit from decoder status register or DC  
offset information at STATUS pin [see also  
new shadow register C (bank 3)]  
X0XX  
X1XX  
0XXX  
1XXX  
DAC data normal value  
reset  
DAC data inverted value  
reset  
left channel first at DAC (WCLK normal)  
right channel first at DAC (WCLK inverted)  
see Table 16  
8
(PLL loop filter  
bandwidth)  
9
(PLL  
equalization)  
1001  
1010  
0011  
0001  
0010  
0100  
0101  
XX0X  
XX1X  
X0X0  
X0X1  
X1X0  
X1X1  
0XXX  
1XXX  
X000  
X010  
X011  
00XX  
10XX  
XXX1  
XXX0  
PLL loop filter equalization  
PLL 30 ns over-equalization  
PLL 15 ns over-equalization  
PLL 15 ns under-equalization  
PLL 30 ns under-equalization  
EBU data before concealment  
EBU data after concealment and fade  
Level II clock accuracy (<1000 ppm)  
Level I clock accuracy (<50 ppm)  
Level III clock accuracy (>1000 ppm)  
EBU off - output LOW  
reset  
A
(EBU output)  
reset  
reset  
flags in EBU off  
reset  
flags in EBU on  
B
1011  
1100  
standby 1: ‘CD-STOP’ mode  
standby 2: ‘CD-PAUSE’ mode  
operating mode  
reset  
(speed control)  
single-speed mode  
reset  
double-speed mode  
C
external off-track signal input at V1  
(versatile pins  
interface and  
KILL function)  
internal off-track signal used (V1 may be  
read via status)  
reset  
XX0X  
XX1X  
00XX  
01XX  
0XXX  
stereo KILL  
mono KILL  
V3 = 0  
reset  
reset  
V3 = 1  
EBU mute  
mute type = soft mute audio; only available  
reset  
mode (for M1  
version only)  
at 1× speed  
1XXX  
mute type = ROM hard mute; available at 1×,  
2× and 4× speed  
2003 Oct 01  
46  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL(1)  
D
1101  
0000  
XX01  
XX10  
XX11  
01XX  
4-line motor (using V4 and V5)  
Q-to-W subcode at V4  
V4 = 0  
(versatile pins  
interface)  
V4 = 1  
reset  
de-emphasis signal at V5, no internal  
de-emphasis filter  
10XX  
11XX  
XXX0  
XXX1  
XX0X  
XX1X  
X0XX  
X1XX  
0XXX  
1XXX  
X0XX  
X1XX  
0XXX  
1XXX  
XX00  
V5 = 0  
reset  
reset  
V5 = 1  
E
1110  
motor brakes to 12%  
motor brakes to 6%  
lock-to-disc mode disabled  
lock-to-disc mode enabled  
audio features disabled  
audio features enabled  
quad-speed mode disabled  
quad-speed mode enabled  
subcode interface off  
subcode interface on  
4-wire subcode  
reset  
reset  
reset  
F
1111  
reset  
(subcode  
interface and  
shadow register  
enable)  
reset  
3-wire subcode  
SHADEN bits = 00; shadow registers not  
reset  
enabled; addresses will be decoded by main  
decoder registers  
XX01  
SHADEN bits = 01; SAA732X shadow  
registers (bank 1) enabled; all subsequent  
addresses will be decoded by shadow  
register (bank 1), not decoder registers  
XX10  
XX11  
SHADEN bits = 10; new shadow registers  
(bank 2) enabled; all subsequent addresses  
will be decoded by shadow register (bank 2)  
SHADEN bits = 11; new shadow registers  
(bank 3) enabled; all subsequent addresses  
will be decoded by shadow register (bank 3)  
Note  
1. The initial column shows the Power-on reset state.  
2003 Oct 01  
47  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 17 Loop filter bandwidth  
FUNCTION  
LOOP  
BANDWIDTH  
(Hz)  
INTERNAL  
BANDWIDTH  
(Hz)  
LOW-PASS  
BANDWIDTH  
(Hz)  
REGISTER ADDRESS  
DATA  
INITIAL(1)  
8
1000  
0000  
0001  
0010  
0100  
0101  
0110  
1000  
1001  
1010  
1100  
1101  
1110  
1640 × n  
3279 × n  
6560 × n  
1640 × n  
3279 × n  
6560 × n  
1640 × n  
3279 × n  
6560 × n  
1640 × n  
3279 × n  
6560 × n  
525 × n  
263 × n  
8400 × n  
16800 × n  
33600 × n  
8400 × n  
16800 × n  
33600 × n  
8400 × n  
16800 × n  
33600 × n  
8400 × n  
16800 × n  
33600 × n  
(PLL loop  
filter  
bandwidth)  
131 × n  
1050 × n  
525 × n  
263 × n  
2101 × n  
1050 × n  
525 × n  
reset  
4200 × n  
2101 × n  
1050 × n  
Note  
1. The initial column shows the Power-on reset state.  
7.17.5 SUMMARY OF FUNCTIONS CONTROLLED BY SHADOW REGISTERS  
Table 18 Bank 1 shadow register settings (single write)  
SHADEN  
BITS  
SHADOW  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
01  
(bank 1)  
3
0011  
XX00  
XX01  
X0XX  
X1XX  
select CLK4 on CLK4/12 output  
select CLK12 on CLK4/12 output  
enable CLK16 output pin  
reset  
control of  
versatile and  
clock pins  
reset  
set CLK16 output pin to  
high-impedance  
0XXX  
1XXX  
0000  
set V3 output pin to high-impedance  
enable V3 output pin  
reset  
7
0111  
use external DAC or route audio data  
back into onboard DAC  
(loopback mode)  
reset  
control of  
onboard  
DAC  
0010  
route audio data directly into onboard  
DAC (non-loopback mode)  
7
XXX0  
XXX1  
EBU mute function not bypassed  
EBU mute function bypassed  
reset  
EBU mute  
bypass  
control (for  
M1 version  
only)  
2003 Oct 01  
48  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SHADEN  
BITS  
SHADOW  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
voltage mode: 20 mV  
INITIAL  
01  
(bank 1)  
A
signal  
magnitude  
control for  
diodes D1  
to D4  
1010  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
voltage mode: 25 mV  
voltage mode: 30 mV  
voltage mode: 40 mV  
voltage mode: 60 mV  
voltage mode: 75 mV  
voltage mode: 100 mV  
voltage mode: 120 mV  
voltage mode: 150 mV  
voltage mode: 200 mV  
voltage mode: 270 mV  
voltage mode: 350 mV  
voltage mode: 450 mV  
voltage mode: 600 mV  
voltage mode: 720 mV  
voltage mode: 960 mV  
voltage mode: 20 mV  
voltage mode: 25 mV  
voltage mode: 30 mV  
voltage mode: 40 mV  
voltage mode: 60 mV  
voltage mode: 75 mV  
voltage mode: 100 mV  
voltage mode: 120 mV  
voltage mode: 150 mV  
voltage mode: 200 mV  
voltage mode: 270 mV  
voltage mode: 350 mV  
voltage mode: 450 mV  
voltage mode: 600 mV  
voltage mode: 720 mV  
voltage mode: 960 mV  
(LF only)  
reset  
01  
(bank 1)  
C
signal  
magnitude  
control for  
diodes  
1100  
R1 and R2  
(LF only)  
reset  
2003 Oct 01  
49  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 19 Bank 2 new shadow register settings (single write)  
SHADEN  
BITS  
SHADOW  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
10  
(bank 2)  
3
0011  
XXX0  
XXX1  
analog front-end active  
reset  
Power-down  
control  
analog front-end powered  
down  
XX0X  
XX1X  
buffer amplifier on  
reset  
buffer amplifier off (power  
saving)  
X0XX  
X1XX  
0XXX  
1XXX  
DAC active  
reset  
DAC powered down  
normal mode  
3
reset  
DAC output  
mode  
current mode (bypass  
internal I-to-V converters)  
7
0111  
XX10  
voltage mechanism:  
reset  
mechanism and  
voltage  
reference  
selection  
1.65 × VDDA  
-------------------------------  
3.3 V  
XX11  
Voltage mechanism:  
2.5 × VDDA  
----------------------------  
3.3 V  
X0XX  
X1XX  
0XXX  
150 mV mechanism  
180 mV mechanism  
reset  
7
flag all data (CRC pass and  
fail)  
reset  
CD-text control  
1XXX  
flag only data that passes  
the CRC  
2003 Oct 01  
50  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SHADEN  
BITS  
SHADOW  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
INITIAL  
10  
(bank 2)  
A
1010  
XXX0  
approximately 58% (laser  
power control 2 = 0)  
reset  
laser power  
control 1  
approximately 72% (laser  
power control 2 = 1)  
see shadow register 3  
(bank 3)  
XXX1  
XX0X  
approximately 86% (laser  
power control 2 = 0)  
approximately 100% (laser  
power control 2 = 1)  
see shadow register 3  
(bank 3)  
A
bypass PLL (external clock  
source)  
clock source  
XX1X  
X0XX  
X1XX  
0XXX  
1XXX  
XX00  
XX01  
XX10  
XX11  
00XX  
01XX  
10XX  
11XX  
select and enable PLL  
disable silence injection  
enable silence injection  
internal KILL  
reset  
A
reset  
KILL control  
reset  
loop-back KILL  
C
1100  
settling time = 354 µs  
settling time = 1 ms  
settling time = 2 ms  
settling time = 10 ms  
no dither selected  
AC dither only  
reset  
DC offset  
measurement  
times  
C
upsampler  
dither selection  
DC dither only  
AC and DC dither selected  
reset  
2003 Oct 01  
51  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 20 Bank 3 new shadow register settings (single write)  
SHADEN  
BITS  
SHADOW  
REGISTER  
ADDRESS  
DATA  
FUNCTION  
select D1  
INITIAL  
11  
(bank 3)  
3
0011  
X000  
X001  
X010  
X011  
X100  
X101  
X110  
X111  
0XXX  
reset  
diode selection  
for DC offset  
measurement  
select D1  
select D2  
select D3  
select D4  
select R1  
select R2  
select D1  
3
60% (laser power control  
1 = 0)  
reset  
laser power  
control 2  
87% (laser power control  
1 = 1)  
see shadow register A  
(bank 2)  
1XXX  
73% (laser power control  
1 = 0)  
100% (laser power control  
1 = 1)  
see shadow register A  
(bank 2)  
C
1100  
XXX0  
equalizer disabled and  
powered-down  
reset  
enable  
equalizer  
XXX1  
000X  
equalizer enabled  
C
STATUS pin outputs  
decoder status register  
information  
reset  
STATUS pin  
control  
001X  
010X  
STATUS pin outputs DC  
offset ready flag  
STATUS pin outputs DC  
offset value  
Table 21 Bank 3 new shadow register settings (multiple write)  
SHADOW  
REGISTER  
SIZE (DATA  
NIBBLES)  
SHADEN BITS  
ADDRESS  
REGISTER ELEMENTS(1)  
11  
(bank 3)  
7
0111  
9
<r2_off> <r1_off> <d4_off> <d3_off>  
<d2_off> <d1_off>  
DC cancellation  
levels  
A
1010  
4
<hp_filter_sel> <eq_speed_sel>  
<slicer_slew> <hf_gain>  
analog FE  
control  
Note  
1. Register elements are described in Tables 26 and 27.  
2003 Oct 01  
52  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 22 Multiple write register element description  
SHADOW  
ELEMENT NAME BIT NUMBERS  
REGISTER  
DESCRIPTION  
7
<d1_off>  
<d2_off>  
<5:0>  
<11:6>  
<17:12>  
<23:18>  
<29:24>  
<35:30>  
<3:0>  
DC offset level for D1 (reset value = 000000)  
DC offset level for D2 (reset value = 000000)  
DC offset level for D3 (reset value = 000000)  
DC offset level for D4 (reset value = 000000)  
DC offset level for R1 (reset value = 000000)  
DC offset level for R2 (reset value = 000000)  
see Table 23  
(bank 3)  
<d3_off>  
<d4_off>  
<r1_off>  
<r2_off>  
A
<hf_gain>  
(bank 3)  
<slicer_slew>  
<eq_speed_sel>  
<hp_filter_sel>  
<7:4>  
see Table 24  
<9:8>  
equaliser operating speed: 00 = 1× (reset); 01 = 2×; 10 = 4×  
see Table 25  
<15:10>  
Table 23 HF gain  
Table 24 Slicer threshold tracking slew rate (ISlice code  
to current conversion)  
DATA  
DESCRIPTION  
DATA  
CURRENT (µA)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
voltage mode = 1.11 V  
voltage mode = 952 mV  
voltage mode = 588 mV  
voltage mode = 392 mV  
voltage mode = 1.11 V  
voltage mode = 952 mV  
voltage mode = 588 mV  
voltage mode = 392 mV  
voltage mode = 303 mV  
voltage mode = 200 mV  
voltage mode = 157 mV  
voltage mode = 107 mV  
voltage mode = 79 mV  
voltage mode = 54 mV  
voltage mode = 39 mV  
voltage mode = 27 mV  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
10 (reset)  
10  
20  
30  
50  
60  
70  
80  
100  
110  
120  
130  
150  
160  
170  
180  
2003 Oct 01  
53  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 25 High-pass filter frequency cut-off level (lowest roll-off)  
NOMINAL FREQUENCY  
(kHz)  
PERCENTAGE  
DEVIATION  
ACTUAL FREQUENCY  
(kHz)  
DATA  
000000  
010000  
001000  
011000  
000100  
010100  
001100  
000010  
010010  
001010  
011010  
000110  
010110  
001110  
000001  
010001  
001001  
011001  
000101  
010101  
001101  
000011  
010011  
001011  
011011  
000111  
010111  
001111  
10  
20  
30  
40  
37.5%  
28.2%  
17.6%  
9.2%  
0%  
6.367 (reset)  
7.31  
8.395  
9.247  
10.186  
11.066  
12.023  
12.706  
14.588  
16.520  
18.45  
+8.6%  
+18%  
37.5%  
28.2%  
17.6%  
9.2%  
0%  
20.324  
22.080  
23.988  
18.967  
21.777  
24.660  
27.542  
30.339  
32.961  
35.318  
25.003  
29.107  
32.961  
36.307  
39.994  
43.451  
47.206  
+8.6%  
+18%  
37.5%  
28.2%  
17.6%  
9.2%  
0%  
+8.6%  
+18%  
37.5%  
28.2%  
17.6%  
9.2%  
0%  
+8.6%  
+18%  
2003 Oct 01  
54  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.17.6 SUMMARY OF SERVO COMMANDS  
A list of the servo commands is given in Table 26. These are fully compatible with the SAA732X.  
Table 26 Servo commands  
COMMANDS  
CODE  
BYTES  
PARAMETERS  
Write commands  
Write_focus_coefs1  
17H  
27H  
7
7
<foc_parm3> <foc_int> <ramp_incr> <ramp_height>  
<ramp_offset> <FE_start> <foc_gain>  
Write_focus_coefs2  
<defect_parm> <rad_parm_jump> <vel_parm2>  
<vel_parm1> <foc_parm1> <foc_parm2> <CA_drop>  
Write_focus_command  
Focus_gain_up  
33H  
42H  
62H  
57H  
3
2
2
7
<foc_mask> <foc_stat> <FFH>  
<foc_gain> <foc_parm1>  
<foc_gain> <foc_parm1>  
Focus_gain_down  
Write_radial coefs  
<rad_length_lead> <rad_int> <rad_parm_play>  
<rad_pole_noise> <rad_gain> <sledge_parm2>  
<sledge_parm_1>  
Preset_Latch  
Radial_off  
81H  
C1H  
C1H  
C3H  
C5H  
1
1
1
3
5
<chip_init>  
‘1CH’  
Radial_init  
Short_jump  
Long_jump  
‘3CH’  
<tracks_hi> <tracks_lo> <rad_stat>  
<brake_dist> <sledge_U_max> <tracks_hi>  
<tracks_lo> <rad_stat>  
Steer_sledge  
B1H  
93H  
D1H  
A2H  
1
3
1
2
<sledge_level>  
Preset_init  
Write_decoder_reg(1)  
<re_offset> <re_gain> <sum_gain>  
<decoder_reg_data>  
Write_parameter  
<param_ram_addr> <param_data>  
Read commands  
Read_Q_subcode(1)(2)  
Read_status  
0H  
up to 12  
up to 5  
<Q_sub1 to 10> <peak_l> <peak_r>  
70H  
<foc_stat> <rad_stat> <rad_int_lpf> <tracks_hi>  
<tracks_lo>  
Read_hilevel_status(3)  
Read_aux_status  
E0H  
F0H  
up to 4  
up to 3  
<intreq> <dec_stat> <seq_stat> <motor_start_time>  
<re_offset> <re_gain> <sum_gain>  
Notes  
1. These commands are only available when the decoder interface is enabled.  
2. <peak_I> and <peak_r> bytes are clocked out LSB first.  
3. Decoder status flag information in, <dec_stat> is only valid when the internal decoder interface is enabled.  
2003 Oct 01  
55  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
7.17.7 SUMMARY OF SERVO COMMAND PARAMETERS  
Table 27 Servo command parameters  
RAM  
PARAMETER  
AFFECTS  
POR VALUE  
DETERMINES  
end of focus lead  
ADDRESS  
foc_parm_1  
focus PID  
defect detector enabling  
focus low-pass  
foc_parm_2  
foc_parm_3  
focus PID  
focus PID  
focus error normalizing  
focus lead length  
minimum light level  
foc_int  
14H  
15H  
12H  
16H  
18H  
focus PID  
focus PID  
focus PID  
focus ramp  
focus ramp  
focus ramp  
focus ramp  
radial PID  
radial PID  
radial PID  
radial PID  
radial PID  
radial jump  
radial jump  
radial jump  
radial jump  
radial jump  
70H  
focus integrator crossover frequency  
focus PID loop gain  
foc_gain  
CA_drop  
sensitivity of dropout detector  
asymmetry of focus ramp  
peak-to-peak value of ramp voltage  
slope of ramp voltage  
ramp_offset  
ramp_height  
ramp_incr  
FE_start  
19H  
28H  
29H  
1CH  
1EH  
2AH  
27H  
1FH  
32H  
48H  
49H  
minimum value of focus error  
end of radial lead  
rad_parm_play  
rad_pole_noise  
rad_length_lead  
rad_int  
radial low-pass  
length of radial lead  
radial integrator crossover frequency  
radial loop gain  
rad_gain  
70H  
rad_parm_jump  
vel_parm1  
vel_parm2  
speed_threshold  
hold_mult  
filter during jump  
PI controller crossover frequencies  
jump pre-defined profile  
maximum speed in fastrad mode  
electronic damping  
00H  
sledge bandwidth during jump  
brake_dist_max  
21H  
radial jump  
maximum sledge distance allowed in  
fast actuator steered mode  
sledge_long_brake  
sledge_Umax  
58H  
radial jump  
sledge  
FFH  
brake distance of sledge  
voltage on sledge during long jump  
voltage on sledge when steered  
sledge integrator crossover frequency  
sledge low-pass frequencies  
sledge gain  
sledge_level  
sledge  
sledge_parm_1  
sledge_parm_2  
36H  
17H  
sledge  
sledge  
sledge operation mode  
pulse width  
sledge_pulse1  
sledge_pulse2  
defect_parm  
46H  
64H  
pulsed sledge  
pulsed sledge  
defect detector  
Watchdog  
pulse height  
defect detector setting  
playwatchtime  
jumpwatchtime  
54H  
57H  
radial on-track Watchdog time  
radial jump Watchdog time-out  
Watchdog  
2003 Oct 01  
56  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
RAM  
ADDRESS  
PARAMETER  
radcontrol  
AFFECTS  
POR VALUE  
DETERMINES  
59H  
Watchdog  
enable/disable automatic radial off  
feature  
chip_init  
set-up  
set-up  
enable/disable decoder interface  
laser on/off  
xtra_preset  
4AH  
38H  
RA, FO and SL PDM modulating  
frequency  
fast jumping circuit on/off  
decoder part commands  
cd6cmd  
4DH  
decoder  
interface  
interrupt_mask  
seq_control  
53H  
42H  
5EH  
5FH  
60H  
61H  
62H  
63H  
68H  
STATUS pin  
autosequencer  
autosequencer  
autosequencer  
autosequencer  
autosequencer  
autosequencer  
autosequencer  
enabled interrupts  
autosequencer control  
focus start time  
focus_start_time  
motor_start_time1  
motor_start_time2  
radial_init_time  
brake_time  
motor start 1 time  
motor start 2 time  
radial initialization time  
brake time  
RadCmdByte  
osc_inc  
radial command byte  
AGC control  
focus/radial  
AGC  
frequency of injected signal  
phase shift of injected signal  
phase_shift  
level1  
67H  
69H  
6AH  
6CH  
focus/radial  
AGC  
focus/radial  
AGC  
amplitude of signal injected  
amplitude of signal injected  
focus/radial gain  
level2  
focus/radial  
AGC  
agc_gain  
focus/radial  
AGC  
2003 Oct 01  
57  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
8
SUMMARY OF SERVO COMMAND PARAMETERS  
VALUES  
Table 29 foc_parm2 parameter: focus low-pass start  
frequency, focusing system  
Table 28 foc_parm1 parameter: focus end lead  
foc_parm2  
Focus low-pass start  
frequency, defect detector, offtrack detector  
foc_pole_noise value  
frequency f4 kHz  
foc_parm1  
(binary)  
Focus end lead  
xxx1 1100  
xxx1 1000  
xxx0 0000  
xxx0 1000  
xxx0 1100  
xxx1 1101  
xxx1 1001  
xxx0 0001  
xxx0 1001  
xxx0 1101  
xxx1 1110  
xxx1 1010  
xxx0 0010  
xxx0 1010  
xxx0 1110  
xxx1 1111  
xxx1 1011  
xxx0 0011  
xxx0 1011  
detector_arr  
xx1x xxxx  
xx0x xxxx  
3.90  
4.55  
foc_pole_lead value  
frequency f3 kHz  
(binary)  
xxx1 1100  
xxx1 1000  
xxx0 0000  
xxx0 1000  
xxx0 1100  
xxx1 1101  
xxx1 1001  
xxx0 0001  
xxx0 1001  
xxx0 1101  
xxx1 1110  
xxx1 1010  
xxx0 0010  
xxx0 1010  
xxx0 1110  
xxx1 1111  
xxx1 1011  
xxx0 0011  
xxx0 1011  
defect_det_sw  
x11x xxxx  
1.97  
2.29  
5.19  
5.82  
2.61  
6.46  
2.94  
7.72  
3.26  
8.98  
3.90  
10.22  
4.55  
11.46  
5.19  
12.69  
5.82  
15.13  
6.46  
17.54  
7.72  
19.93  
8.98  
22.28  
10.22  
11.46  
12.69  
15.13  
17.54  
19.93  
22.28  
Defect detector  
25.40  
30.26  
35.08  
39.86  
44.56  
Focusing system  
single foucault  
double foucault  
defect detector does not  
influence focus and radial  
x10x xxxx  
x00x xxxx  
focus hold on defect  
detector  
focus and radial hold on  
defect detector  
x01x xxxx  
otd_select  
0xxx xxxx  
1xxx xxxx  
undefined, reserved  
Offtrack detector  
ON track active 1  
ON track active 0  
2003 Oct 01  
58  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 30 foc_parm3 parameter: focus lead length, CA  
Table 32 FE_start parameter: minimum threshold for  
start level for focus acquisition  
focus start  
foc_parm3  
Minimum threshold for  
FE_start value (decimal)  
(d1 d2)/(d1 + d2)  
Focus lead length f3/f2  
foc_lead_length value  
0
always  
1/127  
(binary)  
1
0000 xxx1  
1000 xxx1  
0100 xxx1  
1100 xxx1  
0010 xxx1  
1010 xxx1  
0110 xxx1  
1110 xxx1  
0001 xxx1  
1001 xxx1  
0101 xxx1  
1101 xxx1  
0011 xxx1  
1011 xxx1  
0111 xxx1  
1111 xxx1  
CA_start value (binary)  
xxxx 000x  
64  
32  
2
i
2/127  
i/127  
21.3  
16  
64  
64/127  
65...127  
127  
65 to 127/127  
continuous ramping  
not allowed  
12.8  
10.7  
9.1  
128...255  
8
Table 33 foc_int_strength parameter: focus integrator  
7.1  
strength  
6.4  
foc_int_strength value  
(decimal)  
Focus integrator  
strength f5 Hz  
5.8  
5.3  
0
integrator hold  
4.9  
1
1.2  
2.4  
4.6  
2
4.3  
i
1.2 × i  
25  
4
21  
CAmin  
0.0225  
0.03  
0.045  
0.06  
0.09  
0.125  
0.18  
1.0  
22...255  
undefined  
xxxx 001x  
Table 34 foc_gain parameter: focus gain  
xxxx 010x  
foc_gain value (decimal)  
G
xxxx 011x  
1
2
2048  
1024  
xxxx 100x  
xxxx 101x  
3
i
2048/3  
2048/i  
xxxx 110x  
xxxx 111x  
255  
0
2048/255  
undefined  
Table 31 CA_drop parameter: CA level for dropout  
detection  
CA_drop value (binary)  
CAmin  
xxx0 0000  
xxx0 0100  
xxx0 1000  
xxx0 1100  
xxx1 0000  
xxx1 0100  
xxx1 1000  
xxx1 1100  
0.0225  
0.03  
0.045  
0.06  
0.09  
0.125  
0.18  
1.0  
2003 Oct 01  
59  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 35 rad_pole_noise parameter: radial low-pass start  
Table 36 rad_lead_length parameter: radial lead length  
frequency  
rad_lead_length rad_lead_length  
Radial lead  
length f3/f2  
rad_pole_noise value  
(binary)  
Radial low-pass start  
frequency f4 kHz  
value (binary)  
value (hex)  
0000 xxxx  
1000 xxxx  
0100 xxxx  
1100 xxxx  
0010 xxxx  
1010 xxxx  
0110 xxxx  
1110 xxxx  
0001 xxxx  
1001 xxxx  
0101 xxxx  
1101 xxxx  
0011 xxxx  
1011 xxxx  
0111 xxxx  
1111 xxxx  
0x  
8x  
4x  
Cx  
2x  
Ax  
6x  
Ex  
1x  
9x  
5x  
Dx  
3x  
Bx  
7x  
Fx  
128  
64  
1101 1100  
1011 1000  
1010 0000  
1010 1000  
1000 1100  
1001 1101  
1001 1001  
0100 0001  
0100 1001  
0100 1101  
0101 1110  
0101 1010  
0100 0010  
0100 1010  
xxx0 1110  
xxx1 1111  
xxx1 1011  
xxx0 0011  
xxx0 1011  
3.90  
4.55  
42.7  
32  
5.19  
5.82  
25.6  
21.3  
18.3  
16  
6.46  
7.72  
8.98  
10.22  
11.46  
12.69  
15.13  
17.54  
19.93  
22.28  
25.40  
30.26  
35.08  
39.86  
44.56  
14.2  
12.8  
11.6  
10.7  
9.8  
9.1  
8.5  
8
2003 Oct 01  
60  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 37 rad_parm_play, rad_parm_jump parameters:  
Table 39 rad_int_strength parameter: radial integrator  
radial end lead frequency  
strength  
rad_parm_play rad_parm_play Radial end lead  
rad_int_strength value  
(decimal)  
Radial integrator  
strength f5 Hz  
rad_parm_jump rad_parm_jump  
frequency f3  
kHz  
value (binary)  
value (hex)  
0
1
integrator hold  
0.3  
1101 1100  
1101 1000  
1100 0000  
1100 1000  
1100 1100  
1101 1101  
1001 1001  
1010 0001  
1010 1001  
1010 1101  
1001 1110  
0101 1010  
0100 0010  
0100 1010  
1000 1110  
0101 1111  
0101 1011  
0100 0011  
0100 1011  
DC  
D8  
C0  
C8  
CC  
DD  
99  
1.97  
2.29  
2
0.6  
2.61  
i
0.31 × i  
79.05  
2.94  
255  
3.26  
Table 40 Sledge_parm1 parameter: sledge integrator  
bandwidth, shock filter (low-pass, high-pass  
selection); RAM address 36H  
3.90  
4.55  
A1  
A9  
AD  
9E  
5A  
42  
5.19  
sledge_parm1  
Sledge integrator f1 Hz  
sledge_int  
5.82  
6.46  
x00x xxxx  
x10x xxxx  
x01x xxxx  
x11x xxxx  
integrator disabled  
7.72  
0.15  
0.31  
0.45  
8.98  
10.22  
11.46  
12.69  
15.13  
17.54  
19.93  
22.28  
4A  
8E  
5F  
5B  
43  
4B  
Table 38 rad_gain parameter: radial PID gain  
Radial PID gain  
rad_gain value (decimal)  
G
1
2
256  
256/2  
3
256/3  
i
256/i  
255  
0
256/255  
undefined  
2003 Oct 01  
61  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 41 sledge_parm2 parameter: sledge gain,  
low-pass frequencies, operation mode; RAM  
address 17H  
Table 42 sledge_pulse1 parameter: sledge pulse high  
time, low time; RAM address 46H  
sledge_pulse1  
Hex  
Time low ms  
sledge_parm2  
Sledge gain GS  
sledge_gain  
time_lo  
0000 xxxx  
0001 xxxx  
0010 xxxx  
0011 xxxx  
0100 xxxx  
0101 xxxx  
0110 xxxx  
0111 xxxx  
1000 xxxx  
1001 xxxx  
1010 xxxx  
1011 xxxx  
1100 xxxx  
1101 xxxx  
1110 xxxx  
1111 xxxx  
time_hi  
0x  
1x  
2x  
3x  
4x  
5x  
6x  
7x  
8x  
9x  
Ax  
Bx  
Cx  
Dx  
Ex  
Fx  
0
0xxx x000  
0xxx x001  
0xxx x010  
0xxx x011  
0xxx x100  
0xxx x101  
0xxx x110  
0xxx x111  
1xxx x000  
1xxx x001  
1xxx x010  
1xxx x011  
1xxx x100  
1xxx x101  
1xxx x110  
1xxx x111  
sledge_low_pass  
0.218  
0.281  
0.436  
0.562  
0.875  
1.125  
1.750  
2.250  
3.500  
4.500  
7.000  
9.000  
14.00  
18.00  
28.00  
36.00  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
Time high ms  
Sledge low-pass  
frequency f2 Hz  
xxxx 0000  
xxxx 0001  
xxxx 0010  
xxxx 0011  
xxxx 0100  
xxxx 0101  
xxxx 0110  
xxxx 0111  
xxxx 1000  
xxxx 1001  
xxxx 1010  
xxxx 1011  
xxxx 1100  
xxxx 1101  
xxxx 1110  
xxxx 1111  
x0  
x1  
x2  
x3  
x4  
x5  
x6  
x7  
x8  
x9  
xA  
xB  
xC  
xD  
xE  
xF  
0
2
x00x 0xxx  
x10x 0xxx  
5.0  
4
10.1  
6
x01x 0xxx  
15.3  
8
x11x 0xxx  
20.5  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
x00x 1xxx  
0.3  
x10x 1xxx  
0.6  
x01x 1xxx  
0.9  
1.2  
x11x 1xxx  
sledge_op_mode  
xxx0 0xxx  
Sledge operation mode  
PI mode operation  
xxx0 1xxx  
pulsed mode operation,  
microcontroller controlled  
xxx1 1xxx  
pulsed mode operation,  
automatic mode  
2003 Oct 01  
62  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 43 sledge_pulse2 parameter: sledge pulse height;  
vel_parm1  
Gain constant  
for short jump  
Kv  
RAM address 64H  
Hex  
vel_prop  
sledge_pulse2  
Hex  
Pulse height  
xxxx 0011  
x3  
30.0/Kv  
i × 10.0/Kv  
150.0/Kv  
0111 1111  
78  
full-scale,  
positive  
i
....  
....  
40  
xxxx 1111  
xF  
0100 0000  
half-scale,  
positive  
Table 45 vel_parm2 parameter: time constant during  
sledge access/actuator access, minimum jump  
speed during short jump; RAM address 32H  
a
level = a/7F,  
positive  
vel_parm2  
Deceleration  
time fast  
actuator  
0000 0000  
....  
00  
....  
80  
zero  
Deceleration  
time sledge  
steered ms  
Hex  
vel_setp  
(binary)  
1000 0000  
full-scale,  
negative  
steered ms  
0000 xxxx  
1000 xxxx  
0100 xxxx  
1100 xxxx  
0010 xxxx  
1010 xxxx  
0110 xxxx  
1110 xxxx  
0001 xxxx  
1001 xxxx  
0101 xxxx  
1101 xxxx  
0011 xxxx  
1011 xxxx  
0111 xxxx  
1111 xxxx  
vel_min  
0x  
8x  
4x  
Cx  
2x  
Ax  
6x  
Ex  
1x  
9x  
5x  
Dx  
3x  
Bx  
7x  
Fx  
7.5  
8.2  
7.5  
8.2  
Table 44 vel_parm1 parameter: gain constant for short  
jump, integrator cross-over frequency during  
jump; RAM address 1FH  
9
9
9.7  
9.7  
vel_parm1  
vel_prop  
Gain constant  
for short jump  
Kv  
10.5  
11.2  
12.5  
14  
10.5  
11.2  
12.5  
14  
Hex  
0000 xxxx  
1000 xxxx  
0100 xxxx  
1100 xxxx  
0010 xxxx  
1010 xxxx  
0110 xxxx  
1110 xxxx  
0001 xxxx  
1001 xxxx  
0101 xxxx  
1101 xxxx  
0011 xxxx  
1011 xxxx  
0111 xxxx  
1111 xxxx  
vel_int  
0x  
8x  
4x  
Cx  
2x  
Ax  
6x  
Ex  
1x  
9x  
5x  
Dx  
3x  
Bx  
7x  
Fx  
0.1875  
0.4375  
0.6875  
0.9375  
1.1875  
1.4375  
1.6875  
1.9375  
2.1875  
2.4375  
2.6875  
2.9375  
3.1875  
3.4375  
3.6875  
3.9375  
15.5  
16.5  
20.7  
25  
15.5  
16.5  
20.7  
25  
31.2  
41  
31.2  
41  
63  
63  
128  
128  
V1 minimum jump speed  
kHz  
xxxx 0000  
xxxx 0001  
xxxx 0010  
xxxx 0011  
xxxx 0100  
xxxx 0101  
xxxx 0110  
xxxx 0111  
xxxx 1xxx  
x0  
x1  
x2  
x3  
x4  
x5  
x6  
x7  
0.0  
1.0  
2.0  
3.0  
4.0  
Integrator  
cross-over  
frequency  
5.0  
6.0  
7.0  
during jump f0  
undefined  
xxxx 0000  
xxxx 0001  
xxxx 0010  
x0  
x1  
x2  
integrator hold  
10.0/Kv  
20.0/Kv  
2003 Oct 01  
63  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 46 brake_dist_max parameter: maximum sledge  
distance allowed in fast actuator steered mode;  
RAM address 21H  
Table 49 jumpwatchtime parameter: radial jump  
watchdog readout time difference; RAM  
address 57H  
Maximum sledge  
Radial jump watchdog  
readout time difference  
ms  
brake_dist_max value  
(decimal)  
distance allowed in fast  
actuator steered mode,  
number of tracks  
jumpwatchtime  
80H to FFH  
none  
0
0...127  
1  
not allowed  
1 × 16  
2 × 16  
....  
0H  
1H  
i
0.25  
i × 0.25  
32  
2  
....  
7FH  
i  
i × 16  
Table 50 playwatchtime parameter: radial play watchdog  
....  
....  
maximum time-out; RAM address 54H  
127  
128  
127 × 16  
128 × 16  
Radial play watchdog  
playwatchtime  
maximum time-out ms  
Table 47 sledge_Umax parameter: voltage on sledge  
80H  
81H  
82H  
i
0
during long jump  
0.5  
sledge_Umax (decimal)  
voltage on sledge  
1
(i 80H) × 0.5  
64  
127  
i
255/256 × VDD  
(i + 128)/256 × VDD  
0.5 × VDD  
00H  
j
0
(j + 80H) × 0.5  
128  
1  
i  
(128 1)/256 × VDD  
(i + 128)/256 × VDD  
0
7fH  
Table 51 radcontrol parameter: automatic radial servo  
128  
switch-off control; RAM address 59H  
Table 48 sledge_level parameter: voltage on sledge  
Automatic  
when steered  
radial servo  
switch-off  
control  
radcontrol  
Hex  
sledge_level (decimal)  
voltage on sledge  
127/256 × VDD  
i/256 × VDD  
127  
i
0000 0000  
00  
radial servo not  
influenced by  
watchdog  
0
0
1  
i  
1/256 × VDD  
i/256 × VDD  
128/256 × VDD  
0100 0000  
0010 0000  
0110 0000  
40  
20  
60  
switch-off radial  
servo on jump  
error; no action  
on play error  
128  
switch-off radial  
servo on play  
error; no action  
on jump error  
switch-off radial  
servo on play or  
jump error  
2003 Oct 01  
64  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 52 hold_mult parameter: velocity proportional part  
during long jump, sledge gain in steered sledge  
mode; RAM address 49H  
Table 53 speed_threshold parameter: maximum sledge  
speed allowed in fast actuator steered mode;  
RAM address 48H  
hold_mult  
Velocity  
proportional  
part during long  
jump Kp  
Maximum sledge speed  
speed_threshold value  
(decimal)  
allowed in fast actuator  
steered mode, number of  
tracks (x 1000 tracks/sec)  
Hex  
vel_prop1  
(binary)  
0000 xxxx  
1000 xxxx  
0100 xxxx  
1100 xxxx  
0010 xxxx  
1010 xxxx  
0110 xxxx  
1110 xxxx  
0001 xxxx  
1001 xxxx  
0101 xxxx  
1101 xxxx  
0011 xxxx  
1011 xxxx  
0111 xxxx  
1111 xxxx  
vel_prop2  
0x  
8x  
4x  
Cx  
2x  
Ax  
6x  
Ex  
1x  
9x  
5x  
Dx  
3x  
Bx  
7x  
Fx  
0
0...127  
1  
not allowed  
0.015625  
0.031250  
0.046875  
0.062500  
0.078125  
0.093750  
0.109375  
0.125000  
0.140625  
0.156250  
0.171875  
0.187500  
0.203125  
0.218750  
0.234375  
1
2
2  
3...127  
128  
64  
3...127  
128  
reset value  
Table 54 sledge_long_brake parameter: maximum  
sledge distance allowed in sledge steered  
mode; RAM address 58H  
Maximum sledge  
sledge_long_brake  
(decimal)  
distance allowed in  
sledge steered mode,  
number of tracks  
1...128  
test always true  
1 × 128  
1
2
2 × 128  
Sledge gain in  
steered mode  
GS  
3...62  
63  
3 × 128...62 × 128  
63 × 128  
1  
reset value  
xxxx x000  
xxxx x001  
xxxx x010  
xxxx x011  
xxxx x100  
xxxx x101  
xxxx x110  
xxxx x111  
x0  
x1  
x2  
x3  
x4  
x5  
x6  
x7  
2
3
4
6
8
12  
16  
24  
2003 Oct 01  
65  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 55 defect_parm parameter: defect detector control  
Table 57 time_parameter: timer interrupt values  
defect_parm  
Fast filter bandwidth  
time_parameter value  
(decimal)(1)  
Timer interrupt values  
wait time (ms)  
xxxx xx00  
xxxx xx01  
3500 Hz  
7000 Hz  
129 i 143  
144 i 159  
160 i 175  
176 i 191  
192 i 207  
208 i 223  
224 i 239  
2402 i 55  
0 i 15  
4.26 × (i 128)  
68.2 + 4.57 × (i 144)  
141.4 + 4.92 × (i 160)  
224.1 + 5.33 × (i 176  
305.4 + 5.82 × (i 192  
398.5 + 6.40 × (i 208)  
500.8 + 7.11 × (i 224  
614.6 + 8.00 × (i 240)  
742.6 + 9.11 × i  
xxxx xx10  
14000 Hz  
xxxx xx11  
reserved for future use  
defect_parm  
Slow filter time  
Alpha value  
constant  
16 ms  
8 ms  
xxxx 10xx  
xxxx 11xx  
xxxx 00xx  
xxxx 01xx  
0.00006  
0.00012  
0.00024  
0.00048  
4 ms  
2 ms  
Coefficient β value  
16 i 31  
32 i 47  
48 i 63  
64 i 79  
80 i 95  
96 i 111  
111  
888.9 + 10.6 × (i 16)  
1059 + 12.8 × (i 32)  
1263 + 16.0 × (i 48)  
1519 + 21.2 × (i 64)  
1860 + 32.0 × (i 80)  
2372 + 64.0 × (i 96)  
3398.0  
defect_parm  
xx00 xxxx  
xx01 xxxx  
xx10 xxxx  
xx11 xxxx  
defect_parm  
00xx xxxx  
01xx xxxx  
10xx xxxx  
11xx xxxx  
0.25  
0.125  
0.0625  
reserved for future use  
Defect detector maximum ON time  
1.0 ms  
1.5 ms  
2.0 ms  
2.5 ms  
112...127  
infinite  
Note  
1. The time_parameter values are also used for  
focus_start_time, motor_start_time1,  
Table 56 interrupt_mask parameter: mask to enable  
interrupt in interrupt status register; RAM  
address 53H  
motor_start_time2, radial_init_time and brake_time.  
Table 58 phase_shift parameter: focus/radial AGC  
detection phase shift; RAM address 67H  
interrupt_mask  
0000 0000  
xxxx xxx1  
Interrupt enabled  
no interrupt  
Focus/radial AGC detection phase  
phase_shift  
shift  
focus lost  
(decimal)  
(µs)  
(deg)  
xxxx xx1x  
subcode ready  
0
0
0
xxxx x1xx  
subcode absolute seconds  
changed  
1 × a(1)  
2 × a  
i × a  
60.47  
180 × (a/128)  
180 × (2 × a/128)  
180 × (i × a/128)  
180  
xxxx 1xxx  
xxx1 xxxx  
xx1x xxxx  
subcode discontinuity  
radial error  
120.94  
i × 60.47  
autosequencer state  
changes  
128  
1 × a  
2 × a  
i × a  
128  
60.47  
120.94  
i × 60.47  
180 × (a/128)  
180 × (2 × a/128)  
180 × (i × a/128)  
180  
x1xx xxxx  
autosequencer error  
Note  
1. The value a is the value programmed in Table 60 as  
the 6 LSBs of osc_inc.  
2003 Oct 01  
66  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
Table 59 level1, level2 parameter: amplitude of signal  
injected into focus/radial AGC; RAM address  
level1 = 69H, level2 = 6AH  
Table 62 re_gain parameter: initial value setting  
re_gain  
Value  
128  
127  
i  
not allowed  
1/256  
Amplitude of injected  
level1, level2 (decimal)  
signal  
(i + 128)/256  
127/256  
0
0
1  
0
1 to 126  
127  
higher  
128/256  
highest  
not allowed  
1
129/256  
128 to 255  
i
(i + 128)/256  
255/256  
127  
Table 60 osc_inc parameter: focus/radial AGC system  
control, oscillator frequency; RAM address 68H  
Table 63 sum_gain parameter: initial value setting  
osc_inc  
Oscillator frequency Hz  
sum_gain  
Value  
xx00 0000  
xx00 0001  
xx00 0010  
xx00 0011  
a
0
128  
127  
i  
not allowed  
1/256  
64.6  
129.2  
(i + 128)/256  
127/256  
193.8  
1  
0
a × 64.6  
128/256  
xx11 1111  
4069.8  
1
129/256  
AGC control  
AGC system off  
focus AGC active  
radial AGC active  
i
(i + 128)/256  
255/256  
00xx xxxx  
11xx xxxx  
01xx xxxx  
127  
Table 61 re_offset parameter: initial value setting  
re_offset  
Value  
127  
128/256  
i/256  
i
0
0
i  
i/256  
128/256  
128  
2003 Oct 01  
67  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VDDD  
PARAMETER  
CONDITIONS  
internal rail  
MIN.  
0.5  
MAX.  
UNIT  
digital supply voltage  
+2.5  
+4.6  
V
V
external rail  
0.5  
VI(max)  
maximum input voltage  
any input  
notes 1, 2 and 3  
0.5  
0.5  
0.5  
V
DDD + 0.5  
V
5 V tolerant pins  
any output voltage  
+6.0  
VDDD  
20  
V
VO  
V
IDDD  
digital supply current per  
supply pin  
note 4  
note 4  
mA  
ISSD  
Ves  
digital ground current per  
supply pin  
20  
mA  
electrostatic handling  
voltage  
note 5  
note 6  
2000  
200  
0
+2000  
+200  
70  
V
V
Tamb  
Tstg  
ambient temperature  
storage temperature  
°C  
°C  
55  
+125  
Notes  
1. Must not exceed 4.2 V.  
2. Including voltage on outputs in 3-state mode.  
3. Only valid when both supply voltages are present.  
4. The peak current is limited to 25 times the corresponding maximum current.  
5. Human body model.  
6. Machine model.  
2003 Oct 01  
68  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
10 CHARACTERISTICS  
VDDD = 1.65 to 1.95 V; VDDA = 3.0 to 3.6 V; VSS = 0 V; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
Supplies  
VDDD  
IDDD  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
digital supply voltage  
digital supply current  
1.65  
1.8  
1.95  
V
n = 1 mode  
4.0  
5.0  
6.0  
3.3  
34  
mA  
mA  
mA  
V
n = 2 mode  
n = 4 mode  
VDDA  
IDDA  
analog supply voltage  
analog supply current  
3.0  
3.6  
n = 1 mode  
n = 2 mode  
n = 4 mode  
mA  
mA  
mA  
34  
34  
DEM DAC output (Vpos = 3.3 V, VSS = 0 V, Vneg = 0 V and Tamb = 25 °C)  
DIFFERENTIAL OUTPUTS: PINS DACLN, DACLP, DACRN AND DACRP  
S/N  
signal-to-noise ratio  
note 1  
note 2  
90  
dB  
dB  
(THD + N)/S  
total harmonic distortion  
plus noise-to-signal ratio  
80  
Headphone buffer (Vpos = 3.3 V, VSS = 0 V, Vneg = 0 V and Tamb = 25 °C)  
OUTPUTS: PINS BUFOUTR AND BUFOUTL  
S/N  
signal-to-noise ratio  
85  
dB  
dB  
(THD + N)/S  
total harmonic distortion  
plus noise-to-signal ratio  
note 3  
80  
INPUTS: PINS BUFINR AND BUFINL  
Zi input impedance  
47  
kΩ  
Servo and decoder analog functions (VDDA = 3.3 V, VSSA = 0 V and Tamb = 25 °C)  
REFERENCE GENERATOR: PIN IREF  
VIREF  
reference voltage level  
input reference current  
external resistance  
1.16  
1.26  
50  
1.36  
V
IREF  
µA  
kΩ  
RIREF(ext)  
24  
DIODE VOLTAGE INPUT: PINS D1 TO D4, R1 AND R2  
Vi(D)(max)  
Vi(R)(max)  
Vref(int)  
maximum input voltage for voltage mode  
central diode input signal  
0
0
960  
960  
mV  
mV  
maximum input voltage for voltage mode  
satellite diode input signal  
internally generated  
reference voltage  
Vref_sel = 10  
Vref_sel = 11  
5
note 4  
note 5  
V
V
BHF  
high frequency bandwidth at 0 dB  
(D1 to D4)  
MHz  
Gtol(HF)  
high frequency gain  
tolerance  
20  
+20  
%
2003 Oct 01  
69  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SYMBOL  
BLF  
PARAMETER  
CONDITIONS  
at 0 dB  
MIN.  
TYP.  
MAX.  
UNIT  
kHz  
low frequency bandwidth  
(D1 to D4, R1 and R2)  
20  
(THD + N)/SLF  
low frequency total  
at 0 dB  
50  
40  
dB  
harmonic distortion plus  
noise-to-signal ratio  
S/NLF  
low frequency  
signal-to-noise ratio  
55  
dB  
%
Gtol(LF)  
Gv(LF)  
αcs(LF)  
low frequency gain  
tolerance  
20  
3  
+20  
+3  
low frequency variation of  
gain between channels  
%
low frequency channel  
separation  
60  
dB  
Laser drive circuit (VDDA = 3.3 V; VSSA = 0 V; Tamb = 25 °C; RIREF = 30 k)  
Io(LASER)  
output current  
VLASER = 1 V −  
(VDDA 0.6 V)  
10  
50  
120  
mA  
SNR  
signal-to-noise ratio  
Io = 50 mA; B = 20 MHz  
Io = 120 mA  
40  
dB  
ILFPOWER(max)  
maximum laser supply  
current  
140  
mA  
VMONITOR1  
VMONITOR2  
monitor diode voltage 1  
maximum power;  
sel180 = 0  
140  
170  
150  
180  
160  
190  
mV  
mV  
monitor diode voltage 2  
maximum power;  
sel180 = 1  
Ri  
input resistance  
10  
100  
43  
MΩ  
mV  
%
Vsense  
Pstep  
Ipd  
sense voltage  
+100  
100  
10  
laser output power range  
power-down supply current  
laser off current  
µA  
mA  
ILASER(off)  
30  
Digital inputs  
PIN RESET (5 V TOLERANT; TTL INPUTS WITH PULL-UP RESISTOR AND HYSTERESIS)  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
V
0.8  
V
Vhys  
IPU  
0.3  
31  
V
pull-up current  
Vi = 0 to VDDD  
;
68  
µA  
notes 6 and 7  
tW(L)  
pulse width (active LOW)  
RESET only  
1
µs  
PINS V1 AND V2 (CMOS INPUTS)  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
2.0  
V
V
0.8  
2003 Oct 01  
70  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
PINS TEST1 TO TEST4 (5 V TOLERANT; TTL INPUTS WITH PULL-DOWN RESISTORS)  
VIH  
VIL  
IPD  
HIGH-level input voltage  
LOW-level input voltage  
pull-down current  
2.0  
V
V
0.8  
75  
Vi = 0 to VDDD  
;
20  
50  
µA  
notes 6 and 7 (Vi = 5 V;  
note 8)  
PINS RCK, WCLI, SDI AND SCLI (5 V TOLERANT; TTL INPUTS)  
VIH  
VIL  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current  
HIGH-level input current  
2.0  
V
0.8  
1
V
Vi = 0; no pull-up  
µA  
µA  
IIH  
Vi = VDDD; no pull-down  
1
PINS SCL, SILD, RAB AND CDTCLK (5 V TOLERANT TTL INPUTS WITH HYSTERESIS)  
VIH  
VIL  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current  
HIGH-level input current  
hysteresis voltage  
2.0  
V
0.8  
1
V
Vi = 0; no pull-up  
µA  
µA  
V
IIH  
Vi = VDDE; no pull-down  
1
Vhys  
0.3  
3-state outputs  
PINS SCLK, WCLK, DATA, CLK16, RA, FO, SL, SBSY, SFSY, CLK4/12, STATUS, MOTO1 AND MOTO2 (5 V TOLERANT  
CMOS OUTPUTS; 10 ns SLEW RATE LIMITED)  
VOL  
VOH  
IOL  
LOW-level output voltage  
IOL = 4 mA  
V
4
0.4  
V
HIGH-level output voltage IOH = 4 mA  
DDD 0.4  
V
LOW-level output current  
VOL = 0.4 V; note 9  
mA  
mA  
IOH  
HIGH-level output current VOL = VDDD 0.4 V;  
4  
10.2  
note 9  
ttran(L-H)  
IOZ  
LOW-to-HIGH transition  
time  
CL = 30 pF  
14.5  
1
ns  
3-state leakage current  
Vi = 0; no pull-up or  
pull-down  
µA  
PINS DOBM, V4 AND V5 (5 V TOLERANT CMOS OUTPUTS; 5 ns SLEW RATE LIMITED)  
VOL  
VOH  
IOL  
LOW-level output voltage  
IOL = 4 mA  
V
4
0.4  
V
HIGH-level output voltage IOH = 4 mA  
DDD 0.4  
V
LOW-level output current  
VOL = 0.4 V; note 9  
mA  
mA  
IOH  
HIGH-level output current VOL = VDDD 0.4 V;  
4  
note 9  
ttran(L-H)  
IOZ  
LOW-to-HIGH transition  
time  
CL = 30 pF  
10  
13.8  
1
ns  
3-state leakage current  
Vi = 0; no pull-up or  
pull-down  
µA  
2003 Oct 01  
71  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Digital inputs and outputs  
PIN V3 (5 V TOLERANT; TTL INPUT; 3-STATE OUTPUT)  
VIH  
VIL  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current  
HIGH-level input current  
LOW-level output voltage  
2.0  
V
V
0.8  
1
Vi = 0; no pull-up  
Vi = VDDD; no pull-down  
IOL = 4 mA  
µA  
µA  
V
IIH  
1
VOL  
VOH  
IOL  
IOH  
0.4  
HIGH-level output voltage IOH = 4 mA  
VDDD 0.4  
V
LOW-level output current  
VOL = 0.4 V; note 9  
4
mA  
mA  
HIGH-level output current VOL = VDDD 0.4 V;  
4  
2.6  
note 9  
ttran(L-H)  
LOW-to-HIGH transition  
time  
CL = 30 pF  
6.3  
1
ns  
IOZ  
3-state leakage current  
Vi = 0  
µA  
PINS LKILL, RKILL AND CFLAG (5 V TOLERANT; TTL INPUT WITH PULL-UP; 3-STATE OPEN-DRAIN OUTPUT; 10 ns SLEW RATE  
LIMITED)  
VIH  
VIL  
IPU  
HIGH-level input voltage  
LOW-level input voltage  
pull-up current  
2.0  
V
0.8  
36  
V
Vi = 0 to VDDD  
;
13  
µA  
notes 6 and 7  
VOL  
VOH  
IOL  
LOW-level output voltage  
IOL = 4 mA  
0.4  
V
HIGH-level output voltage IOH = 4 mA  
LOW-level output current VOL = 0.4 V; note 9  
V
DDD 0.4  
V
4
mA  
mA  
IOH  
HIGH-level output current VOL = VDDD 0.4 V;  
4  
note 9  
ttran(L-H)  
IOZ  
LOW-to-HIGH transition  
time  
CL = 30 pF  
8.6  
10  
13.8  
1
ns  
3-state leakage current  
Vi = 0  
µA  
PINS CDTRDY, CDTDATA, EF AND SUB (5 V TOLERANT; TTL INPUT; 3-STATE OUTPUT; 10 ns SLEW RATE LIMITED)  
VIH  
VIL  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current  
HIGH-level input current  
LOW-level output voltage  
2.0  
V
0.8  
1
V
Vi = 0  
µA  
µA  
V
IIH  
Vi = VDDD  
IOL = 4 mA  
1
VOL  
VOH  
IOL  
IOH  
0.4  
HIGH-level output voltage IOH = 4 mA  
VDDD 0.4  
V
LOW-level output current  
VOL = 0.4 V; note 9  
4
mA  
mA  
HIGH-level output current VOL = VDDD 0.4 V;  
4  
note 9  
ttran(L-H)  
IOZ  
LOW-to-HIGH transition  
time  
CL = 30 pF  
Vi = 0  
8.6  
10  
13.8  
1
ns  
3-state leakage current  
µA  
2003 Oct 01  
72  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
PIN SDA (5 V TOLERANT; 400 kHZ I2C-BUS PAD)  
VIH  
VIL  
Vhys  
VOL  
tf  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
0.7VTOL  
V
V
V
V
VTOL = 5 V; note 10  
IOL = 3 mA  
0.3VTOL  
0.05VTOL  
LOW-level output voltage  
0.4  
output fall time from VIH to bus capacitance, Cb,  
VIL from 10 pF to 400 pF)  
20 + 0.1Cb  
250  
ns  
Iikg  
steady-state current input Vi = VDDD; note 11  
2
4
µA  
µA  
signal  
Vi = 5 V; note 11  
10  
22  
Crystal oscillator  
INPUT: PIN OSCIN (EXTERNAL CLOCK)  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
0.2VDDD  
V
V
0.8VDDD  
OUTPUT: PIN OSCOUT; see Fig.4  
VOL  
VOH  
fxtal  
gm  
LOW-level output voltage  
0.4  
V
HIGH-level output voltage  
crystal frequency  
0.85VDDD  
V
±100 ppm  
8.4672  
MHz  
mA/V  
mutual conductance at  
start-up  
19.1  
23.0  
Notes  
1. Assumes use of external components as shown in the application diagram; see Fig.38.  
2. RL = 10 k.  
3. RL = 1 k.  
1.65 × 3.3  
4. The typical value is as follows:  
5. The typical value is as follows:  
-------------------------  
VDDA  
2.5 × 3.3  
----------------------  
VDDA  
6. Pull-up/down devices are protected by a pass-gate and do not behave as a normal resistor for external applications  
7. Pull-up/down resistors are connected to external power supply (VDDE/GND).  
8. Minimum condition for Vi = 4.5 V, maximum condition for Vi = 5.5 V.  
9. Accounts for 100 mV voltage drop in both supply lines.  
10. Minimum condition for VTOL = 4.5 V, maximum condition for VTOL = 5.5 V.  
11. Leakage path from pad to ground.  
2003 Oct 01  
73  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
11 OPERATING CHARACTERISTICS (SUBCODE INTERFACE TIMING)  
VDDD = 1.65 to 1.95 V; VSS = 0 V; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Subcode interface timing (single speed × n); see Fig.34; note 1  
INPUT: PIN RCK  
tCLKH  
input clock HIGH time  
input clock LOW time  
input clock rise time  
input clock fall time  
2/n  
4/n  
6/n  
µs  
tCLKL  
2/n  
4/n  
6/n  
µs  
ns  
ns  
µs  
tr  
80/n  
80/n  
20/n  
tf  
td(SFSY-RCK)  
delay time SFSY to RCK  
10/n  
OUTPUTS: PINS SBSY, SFSY AND SUB (CL = 20 pF)  
Tcy(block)  
tW(SBSY)  
Tcy(frame)  
tW(SFSY)  
tSFSYH  
block cycle time  
SBSY pulse width  
frame cycle time  
SFSY pulse width  
SFSY HIGH time  
SFSY LOW time  
12.0/n  
13.3/n  
14.7/n  
300/n  
150/n  
366/n  
66/n  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
122/n  
136/n  
3-wire mode  
tSFSYL  
84/n  
td(SFSY-SUB)  
delay time SFSY to SUB  
(P data) valid  
1/n  
td(RCK-SUB)  
delay time RCK falling to  
SUB  
0
µs  
µs  
th(RCK-SUB)  
hold time RCK to SUB  
0.7/n  
Note  
1. In the normal operating mode the subcode timing is directly related to the overspeed factor ‘n’. In the lock-to-disc  
mode ‘n’ is replaced by the disc speed factor ‘d’,  
2003 Oct 01  
74  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
t
T
cy(block)  
W(SBSY)  
SBSY  
t
SFSYH  
SFSY  
(4-wire mode)  
t
T
W(SFSY)  
cy(frame)  
SFSY  
(3-wire mode)  
t
SFSYL  
SFSY  
0.8 V  
t
d(SFSYRCK)  
t
t
f
r
V
– 0.8 V  
DD  
RCK  
0.8 V  
t
t
d(SFSYSUB)  
h(RCKSUB)  
t
d(RCKSUB)  
V
– 0.8 V  
DD  
SUB  
0.8 V  
MGL718  
Fig.34 Subcode interface timing diagram.  
75  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
12 OPERATING CHARACTERISTICS (I2S-BUS TIMING)  
VDDD = 1.65 to 1.95 V; VSS = 0 V; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
I2S-bus timing (single speed × n); see Fig.35; note 1  
CLOCK OUTPUT: PIN SCLK (CL = 20 pF)  
Tcy  
tCH  
tCL  
output clock period  
clock HIGH time  
clock LOW time  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
472.4/n  
ns  
236.2/n  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
118.1/n  
166/n  
83/n  
42/n  
166/n  
83/n  
42/n  
OUTPUTS: PINS WCLK, DATA AND EF (CL = 20 pF)  
tsu  
set-up time  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
sample rate = fs  
sample rate = 2fs  
sample rate = 4fs  
95/n  
48/n  
24/n  
95/n  
48/n  
24/n  
ns  
ns  
ns  
ns  
ns  
ns  
th  
hold time  
Note  
1. In the normal operating mode the I2S-bus timing is directly related to the overspeed factor ‘n’. In the lock-to-disc mode  
‘n’ is replaced by the disc speed factor ‘d’.  
clock period T  
cy  
t
t
CH  
CL  
V
– 0.8 V  
DD  
SCLK  
0.8 V  
t
su  
t
h
V
– 0.8 V  
DD  
WCLK  
DATA  
EF  
0.8 V  
MBG407  
Fig.35 I2S-bus timing diagram.  
76  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
13 OPERATING CHARACTERISTICS (MICROCONTROLLER INTERFACE TIMING)  
VDD = 1.65 to 1.95 V; VSS = 0 V; Tamb = 0 to 70 °C; unless otherwise specified.  
NORMAL MODE  
MIN. MAX.  
LOCK-TO-DISC MODE  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
MAX.  
MIN.  
Microcontroller interface timing (4-wire bus mode; writing to decoder registers 0 to F; reading Q-channel  
subcode and decoder status); see Figs.36 and 37; note 1  
INPUTS SCL AND RAB  
tCL  
tCH  
tr  
input clock LOW time  
input clock HIGH time  
input rise time  
480/n + 20  
2400/n + 20  
ns  
ns  
ns  
ns  
480/n + 20  
2400/n + 20  
480/n  
480/n  
480/n  
480/n  
tf  
input fall time  
READ MODE (CL = 20 pF)  
tdRD delay time RAB to  
50  
50  
ns  
SDA valid  
tPD  
propagation delay  
SCL to SDA  
720/n 20 960/n + 20 720/n + 20  
4800/n + 20  
50  
tdRZ  
delay time RAB to  
50  
ns  
ns  
SDA high-impedance  
WRITE MODE (CL = 20 pF)  
tsuD  
set-up time SDA to  
note 2  
20 720/n  
20 720/n  
SCL  
thD  
hold time SCL to SDA  
960/n + 20 −  
4800/n + 20 ns  
tsuCR  
set-up time SCL to  
RAB  
240/n + 20  
1200/n + 20  
ns  
tdWZ  
delay time SDA to  
0
0
ns  
RAB high-impedance  
Microcontroller interface timing (4-wire bus mode; servo commands); see Figs.36 and 38; note 2  
INPUTS SCL AND SILD  
tL  
tH  
tr  
input LOW time  
input HIGH time  
input rise time  
input fall time  
710  
710  
710  
710  
ns  
ns  
ns  
ns  
240  
240  
240  
240  
tf  
READ MODE (CL = 20 pF)  
tdLD delay time SILD to  
25  
950  
50  
25  
950  
50  
ns  
ns  
ns  
ns  
SDA valid  
tPD  
propagation delay  
SCL to SDA  
tdLZ  
delay time SILD to  
SDA high-impedance  
tsuCLR  
set-up time SCL to  
SILD  
480  
480  
2003 Oct 01  
77  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
NORMAL MODE  
MIN. MAX.  
830  
LOCK-TO-DISC MODE  
MIN. MAX.  
SYMBOL  
thCLR  
PARAMETER  
CONDITIONS  
UNIT  
hold time SILD to  
SCL  
830  
ns  
WRITE MODE (CL = 20 pF)  
tsD  
set-up time SDA to  
0
0
ns  
SCL  
thD  
hold time SCL to SDA  
950  
480  
950  
480  
ns  
ns  
tsCL  
set-up time SCL to  
SILD  
thCL  
hold time SILD to  
SCL  
120  
70  
0
120  
70  
0
ns  
ns  
ns  
tdPLP  
tdWZ  
delay between two  
SILD pulses  
delay time SDA to  
SILD high-impedance  
Notes  
1. The 4-wire bus mode microcontroller interface timing for writing to decoder registers 0 to F, and reading Q-channel  
subcode and decoder status, is a function of the overspeed factor ‘n’. In the lock-to-disc mode the maximum data  
rate is lower.  
2. Negative set-up time means that the data may change after clock transition.  
t
t
r
f
V
– 0.8 V  
DD  
RAB  
SCL  
t
t
r
f
0.8 V  
t
CH  
V
– 0.8 V  
DD  
t
dRD  
0.8 V  
t
dRZ  
t
CL  
t
PD  
V
– 0.8 V  
DD  
SDA (SAA782X)  
high-impedance  
0.8 V  
MBL451  
Fig.36 4-wire microcontroller timing; read mode (Q-channel subcode and decoder status information).  
2003 Oct 01  
78  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
t
t
t
f
CH  
r
V
– 0.8 V  
t
DD  
suCR  
RAB  
0.8 V  
t
t
CL  
t
t
r
CH  
f
V
– 0.8 V  
DD  
0.8 V  
SCL  
t
t
t
dWZ  
CL  
hD  
t
suD  
V
– 0.8 V  
DD  
SDA  
(microcontroller)  
high-impedance  
0.8 V  
MBG405  
Fig.37 4-wire bus microcontroller timing; write mode (decoder registers 0 to F).  
2003 Oct 01  
79  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
V
– 0.8 V  
SILD  
DD  
0.8 V  
t
hCLR  
t
suCLR  
V
– 0.8 V  
DD  
SCL  
SDA  
0.8 V  
t
t
t
PD  
dLD  
dLZ  
V
– 0.8 V  
0.8 V  
DD  
(SAA782X)  
MBL452  
Fig.38 4-wire bus microcontroller timing; read mode (servo commands).  
2003 Oct 01  
80  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
V
- 0.8 V  
DD  
SILD  
0.8 V  
sCL  
t
t
L
t
t
H
dPLP  
– 0.8 V  
V
DD  
SCL  
SDA  
0.8 V  
t
hCL  
t
t
L
sD  
t
dWZ  
t
hD  
V
– 0.8 V  
0.8 V  
DD  
(microcontroller)  
MBG416  
Fig.39 4-wire bus microcontroller timing; write mode (servo commands).  
2003 Oct 01  
81  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
14 APPLICATION INFORMATION  
C30 220 µF (50 V)  
A
V
3.3 V  
3.3 V  
1.8 V  
1.8 V  
CC  
out  
FB  
out  
FB  
1
28  
27  
26  
25  
24  
23  
22  
30  
21  
20  
19  
18  
17  
16  
15  
B
C
D
E
F
RAD−  
FOC+  
RADO−  
FOCO+  
GND  
2
X1  
X1  
1
2
3
TZA1048  
4
FOC-  
FOCO-  
RADO+  
MUTE  
RA1  
5
X1  
X1  
3
4
RAD+  
6
G
H
V
FO1  
CC  
7
29  
8
EARTH  
V
CC  
SL1  
J
B SLEDGE+  
SLO+  
VB  
out  
X2  
X2  
5
6
9
SLO−  
GND  
WH SLEDGE−  
10  
11  
12  
13  
14  
GND  
1.65 V  
out  
G MOTOR+  
Y MOTOR−  
MOTO−  
MOTO+  
mute  
X2  
X2  
3
4
MOTO1  
MOTO2  
K
V
CC  
L
C32  
C33  
C28  
C27  
C26  
C25  
HOME_SW  
BL  
0.47 µF  
(50 V)  
470 pF  
(50 V)  
470 pF  
(50 V)  
470 pF  
(50 V)  
470 pF  
(50 V)  
470 pF  
(50 V)  
X2  
X2  
2
1
V
SSD  
M
N
O
to  
TRAY_SW  
X3  
X3  
1
2
CD mechanism  
(VAM220X)  
3.3 V  
C6  
10 µF  
(15 V)  
DD  
V
SSD  
LD  
LFPOWER  
EXFILTER  
MONITOR  
SENSE  
C7 10 nF  
(50 V)  
X1 10  
1
2
MON  
X1  
X1 15  
X1  
9
3
4
V
SSA1  
5
5
R8  
I
3.3 V  
REF  
C8 10 µF  
(50 V)  
DD  
6
V
V
SSD  
SSD  
DD  
V
V
24 k(0.5 W)  
DDA1  
3.0 V  
7
REFO  
D1  
X1 12  
X1  
X1 14  
X1  
8
D1  
D2  
6
9
D2  
D3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SAA7824HL  
8
D4  
X1 11  
X1 13  
R1  
R1  
R2  
R2  
X1  
7
CSLICE  
C24  
100 nF  
(50 V)  
V
3.0 V  
DDA2  
DD  
V
SSA2  
8.4672 MHz  
OSCOUT  
OSCIN  
V
SSD  
V
SSA3  
C23  
1 nF  
(50 V)  
C22  
C21  
33 pF  
(100 V)  
C20  
33 pF  
(100 V)  
10 µF  
(50 V)  
V
SSD  
33 µF  
(16 V)  
C17  
P
22 µF (35 V)  
3.3 V  
C18  
DD  
audio in R  
audio in L  
C18  
C19  
88 µF  
C17 (16 V)  
3.3 nF  
22 µF (38 V)  
C15  
3.3 nF  
R
S
R9  
47 kΩ  
(0.6 W)  
R15  
R7  
47 kΩ  
(0.6 W)  
R10  
(100 V)  
(100 V)  
100 kΩ  
(0.4 W)  
100 kΩ  
(0.4 W)  
V
V
SSD  
SSD  
R6  
R8  
TR4  
TR3  
BC337  
BC337  
47 kΩ  
(0.4 W)  
47 kΩ  
(0.4 W)  
V
V
V
V
SSD  
SSD  
SSD  
SSD  
MBL453  
Fig.40 Typical application diagram incorporating a voltage mechanism (continued in Fig.41).  
82  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
A
X4  
X4  
X4  
X4  
X4  
X4  
1
2
3
4
5
6
V
V
IN (12 V)  
IN (5 V)  
CC  
5 V  
B
C
CC  
C1  
100 nF  
(50 V)  
TR1  
BC337  
D
E
F
V
SSD  
V
SSD  
audio out (R)  
audio out (L)  
audio_R  
V
G
H
SSD  
3.3 V  
DD  
audio_L  
J
C2  
33 µF  
(16 V)  
TR2  
BC337  
V
SSD  
1.8 V  
DD  
K
L
C8  
33 µF  
(16 V)  
3.3 V  
DD  
R11  
10 Ω  
(0.6 W)  
R16  
24 kΩ  
(0.6 W)  
R4  
24 kΩ  
R3  
24 kΩ  
R2  
24 kΩ  
R1  
24 kΩ  
V
SSD  
(0.6 W) (0.6 W) (0.6 W) (0.6 W)  
C5  
100 nF  
(50 V)  
R13  
10 kΩ  
(0.6 W)  
R14  
10 kΩ  
(0.6 W)  
1.8 V  
DD  
V
SSD  
M
N
O
C4  
100 nF  
(50 V)  
V
SSD  
SBSY  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SFSY  
SUB  
RCK  
to mini micro  
MUTE  
3.3 V  
DD  
X5  
X5  
X5  
X5  
X5  
X5  
X5  
X5  
X5  
1
2
3
4
5
6
7
8
9
STATUS  
SILD  
STATUS  
TRAY 5 W  
RAB  
V
SSD  
SCL  
SCL  
SDA  
SDA  
RESET  
CLK4/12  
CLK16  
SCLK  
WCLK  
DATA  
EF  
RESET  
SAA7824HL  
CDTCLK  
CDTDATA  
CDTRDY  
X5 10  
X5 11  
X5 12  
V
SSD  
3.3 V  
for playability test  
WCLK  
SCLI  
DD  
WCLI  
SDI  
R12  
10 Ω  
(0.6 W)  
X6  
X6  
X6  
X6  
X6  
X6  
1
2
3
4
5
6
SCLK  
V
CFLAG  
DDD1  
5 V  
C9  
100 nF  
(50 V)  
DATA  
V
SSD  
V
SSD  
P
to headphone  
O BMD  
V
SSD  
33 µF  
(16 V)  
10 Ω  
(0.6 W)  
D
F
B
B
C11  
C10  
R
S
R23  
R22  
C36  
10 nF  
(50 V)  
C37  
10 nF  
(50 V)  
10 Ω  
(0.6 W)  
B POLB stereo  
3.5 µs  
33 µF  
(16 V)  
audio R  
audio L  
2
1
C14  
R10  
10 kΩ  
C16  
3
4
V
V
V
SSD  
SSD  
SSD  
MBL454  
10 µF (50 V)  
5
10 µF (50 V)  
V
SSD  
Fig.41 Typical application diagram incorporating a voltage mechanism (continued from Fig.40).  
83  
2003 Oct 01  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
15 PACKAGE OUTLINE  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
D
E
p
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
2003 Oct 01  
84  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
16 SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
16.1 Introduction to soldering surface mount  
packages  
For packages with leads on two sides and a pitch (e):  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
16.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2003 Oct 01  
85  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
16.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
suitable  
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, not suitable(3)  
HVSON, SMS  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 Oct 01  
86  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
17 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
18 DEFINITIONS  
19 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Oct 01  
87  
Philips Semiconductors  
Product specification  
CD audio decoder, digital servo and filterless  
DAC with integrated pre-amp and laser control  
SAA7824  
20 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2003 Oct 01  
88  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R04/03/pp89  
Date of release: 2003 Oct 01  
Document order number: 9397 750 12009  

相关型号:

SAA7824HL

CD audio decoder, digital servo and filterless DAC with integrated pre-amp and laser control (PhonIC)
NXP

SAA7826

CD audio decoder, digital servo and filterless DAC with integrated pre-amp and laser control
NXP

SAA7826HL

CD audio decoder, digital servo and filterless DAC with integrated pre-amp and laser control
NXP

SAA7838H

One Chip QFP100 package MP3/WMA Decoder with Digital Servo and ARM-7 MCU with 96KB-RAM and 64KB-Flash with 130KB-ROM
NXP

SAA7893

Super audio media player
NXP

SAA7893HL

Super audio media player
NXP

SAA8103HL

Consumer Circuit, PQFP64,
PHILIPS

SAA8103HL

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 X 1.40 MM, PLASTIC, LQFP-64, Consumer IC:Other
NXP

SAA8110G

Digital Signal Processor DSP for cameras
NXP

SAA8110G/C1

IC 0-BIT, 28.6 MHz, OTHER DSP, PQFP80, 12 X 12 X 1.40 MM, PLASTIC, LQFP-80, Digital Signal Processor
NXP

SAA8110GBE

IC 0-BIT, 28.6 MHz, OTHER DSP, PQFP80, 12 X 12 X 1.40 MM, PLASTIC, LQFP-80, Digital Signal Processor
NXP

SAA8112HL

Digital camera signal processor and microcontroller
NXP