SCIMX6X4AVK10AB [NXP]

i.MX 6SoloX Applications Processors for Industrial Products;
SCIMX6X4AVK10AB
型号: SCIMX6X4AVK10AB
厂家: NXP    NXP
描述:

i.MX 6SoloX Applications Processors for Industrial Products

文件: 总205页 (文件大小:4401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX6SXIEC  
Rev. 4, 11/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
MCIMX6XxCxxxxxB  
MCIMX6XxCxxxxxC  
i.MX 6SoloX Applications  
Processors for Industrial  
Products  
Package Information  
Plastic Package  
BGA 19 x 19 mm, 0.8 mm pitch  
BGA 17 x 17 mm, 0.8 mm pitch  
BGA 14 x 14 mm, 0.65 mm pitch  
Ordering Information  
See Table 1 on page 3  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 18  
3.2 Recommended Connections for Unused Analog  
Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 20  
4.2 Power Supplies Requirements and Restrictions . . 32  
4.3 Integrated LDO Voltage Regulator Parameters . . 33  
4.4 PLL Electrical Characteristics . . . . . . . . . . . . . . . . 35  
4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.8 Output Buffer Impedance Parameters. . . . . . . . . . 45  
4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48  
4.10 Multi-mode DDR Controller (MMDC). . . . . . . . . . . 60  
4.11 General-Purpose Media Interface (GPMI) Timing. 61  
4.12 External Peripheral Interface Parameters . . . . . . . 69  
4.13 A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 116  
5.1 Boot Mode Configuration Pins. . . . . . . . . . . . . . . 116  
5.2 Boot Device Interface Allocation . . . . . . . . . . . . . 118  
Package Information and Contact Assignments. . . . . . 126  
6.1 i.MX 6SoloX Signal Availability by Package . . . . 126  
6.2 Signals with Different States During Reset and After  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
1 Introduction  
The i.MX 6SoloX processors represent NXP  
Semiconductor's latest achievement in integrated  
multimedia-focused products offering high-performance  
processing with a high degree of functional integration to  
meet the demands of high-end, advanced industrial and  
medical applications requiring graphically rich and  
highly responsive user interfaces.  
2
3
4
The i.MX 6SoloX processor features NXP’s advanced  
®
®
implementation of the single Arm Cortex -A9 core,  
which operates at speeds of up to 800 MHz, in addition  
to the Arm Cortex-M4 core, which operates at speeds of  
up to 227 MHz. This type of heterogeneous multicore  
architecture provides greater levels of system  
integration, smart low-power system awareness, and fast  
real-time responsiveness. The i.MX 6SoloX includes a  
GPU processor capable of supporting 2D and 3D  
operations, a wide range of display and connectivity  
options, and integrated power management. Each  
processor provides a 32-bit  
5
6
6.3 19x19 mm Package Information . . . . . . . . . . . . . 129  
6.4 17x17 mm Package Information . . . . . . . . . . . . . 148  
6.5 14x14 mm Package Information . . . . . . . . . . . . . 183  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
DDR3/DDR3L/LPDDR2-800 memory interface and a  
number of other interfaces for connecting peripherals,  
such as WLAN, Bluetooth™, GPS, displays, and camera  
sensors.  
7
NXP Reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products  
Introduction  
The i.MX 6SoloX processors are specifically useful for applications such as:  
Entry-level infotainment  
Telematics  
Portable medical and health care  
Smart appliances  
Home energy management systems  
Industrial control and automation  
The features of the i.MX 6SoloX processors include:  
Dual-core architecture with one Arm Cortex-A9 processor plus one Arm Cortex-M4 processor—  
Dual-core architecture enables the device to run an open operating system like Linux on the  
Cortex-A9 core and an RTOS like MQX™ or FreeRTOS™ on the Cortex-M4 core. The Cortex-M4  
core is standard on all i.MX 6SoloX processors.  
Multilevel memory system—The multilevel memory system of each processor is based on the L1  
instruction and data caches, L2 cache, and internal and external memory. The processors support  
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR  
Flash, NAND Flash (MLC and SLC), OneNAND, Quad SPI, and managed NAND, including  
eMMC up to rev 4.4/4.41/4.5.  
Smart speed technology—Power management implemented throughout the IC that enables  
multimedia features and peripherals to consume minimum power in both active and various low  
power modes.  
Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices  
by scaling the voltage and frequency to optimize performance.  
Multimedia powerhouse—The multimedia performance of each processor is enhanced by a  
multilevel cache system, NEON™ MPE (Media Processor Engine) co-processor, a programmable  
smart DMA (SDMA) controller, and an asynchronous sample rate converter.  
2x Gigabit Ethernet with AVB—2x 10/100/1000 Mbps Gigabit Ethernet controllers with support  
for Audio Video Bridging (AVB) for reliable, high-quality, low-latency multimedia streaming.  
Human-machine interface—Each processor provides a single integrated graphics processing unit  
that supports an OpenGL ES 2.0 and OpenVG 1.1 3D and 2D graphics accelerator. In addition,  
each processor provides up to two separate display interfaces (parallel display and LVDS display)  
and a CMOS sensor interface (parallel).  
Interface flexibility—Each processor supports connections to a variety of interfaces: High-speed  
USB on-the-go with PHY, high-speed USB host with PHY, High-Speed Inter-Chip USB, multiple  
expansion card ports (high-speed MMC/SDIO host and other), 2 Gigabit Ethernet controllers with  
support for Ethernet AVB, PCIe-II, two 12-bit ADC modules with 4 dedicated single-ended inputs,  
2
two CAN ports, ESAI audio interface, and a variety of other popular interfaces (such as UART, I C,  
2
and I S serial audio).  
Advanced security—The processors deliver hardware-enabled security features that enable secure  
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure  
software downloads. The security features are discussed in detail in the i.MX 6SoloX Security  
Reference Manual (IMX6XSRM).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
2
NXP Semiconductors  
Introduction  
Integrated power management—The processors integrate linear regulators and internally generate  
voltage levels for different domains. This significantly simplifies system power management  
structure.  
For a comprehensive list of the i.MX 6SoloX features, see Section 1.2, “Features”.  
1.1  
Ordering Information  
Table 1 provides examples of orderable sample part numbers covered by this data sheet.  
Table 1. Ordering Information  
Cortex- Cortex-  
Junction  
Temperature  
Range  
Mask  
Set  
Qualification  
Tier  
Part Number  
Options  
A9  
M4  
Package  
Speed1 Speed  
MCIMX6X1CVO08AB Features not 2N19K  
supported: or  
800  
MHz  
227  
MHz  
Industrial  
Industrial  
-40 to  
+105°C  
17x17NP (NP=No PCIe)  
Package code “VO”  
17mm x 17mm  
- 2D&3D GPU 3N19K  
- PCIe  
- LVDS  
- MLB  
0.8pitch Map BGA  
MCIMX6X1CVO08AC Features not 4N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
17x17NP (NP=No PCIe)  
Package code “VO”  
17mm x 17mm  
supported:  
- 2D&3D GPU  
- PCIe  
0.8pitch Map BGA  
- LVDS  
- MLB  
MCIMX6X3CVO08AB Features not 2N19K  
800  
MHz  
227  
MHz  
Industrial  
Industrial  
Industrial  
-40 to  
+105°C  
17x17NP (NP=No PCIe)  
Package code “VO”  
17mm x 17mm  
supported:  
- PCIe  
or  
3N19K  
- LVDS  
- MLB  
0.8pitch Map BGA  
MCIMX6X3CVO08AC Features not 4N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
17x17NP (NP=No PCIe)  
Package code “VO”  
17mm x 17mm  
supported:  
- PCIe  
- LVDS  
- MLB  
0.8pitch Map BGA  
MCIMX6X1CVK08AB Features not 2N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
14x14NP (NP = No PCIe)  
Package code “VK”  
14mm x 14mm  
supported:  
or  
- 2D&3D GPU 3N19K  
- PCIe  
- LVDS  
- MLB  
0.65pitch Map BGA  
MCIMX6X1CVK08AC Features not 4N19K  
800  
MHz  
227  
MHz  
Industrial  
-40 to  
+105°C  
14x14NP (NP = No PCIe)  
Package code “VK”  
14mm x 14mm  
supported:  
- 2D&3D GPU  
- PCIe  
0.65pitch Map BGA  
- LVDS  
- MLB  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
3
Introduction  
Table 1. Ordering Information (continued)  
Cortex- Cortex-  
Junction  
Temperature  
Range  
Mask  
Set  
Qualification  
Tier  
Part Number  
Options  
A9  
M4  
Package  
Speed1 Speed  
MCIMX6X3CVK08AB Features not 2N19K  
800  
MHz  
227  
MHz  
Industrial  
Industrial  
Industrial  
Industrial  
-40 to  
+105°C  
14x14NP (NP = No PCIe)  
Package code “VK”  
14mm x 14mm  
supported:  
- PCIe  
or  
3N19K  
- LVDS  
- MLB  
0.65pitch Map BGA  
MCIMX6X3CVK08AC Features not 4N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
14x14NP (NP = No PCIe)  
Package code “VK”  
14mm x 14mm  
supported:  
- PCIe  
- LVDS  
- MLB  
0.65pitch Map BGA  
MCIMX6X2CVN08AB Features not 2N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
17x17WP (WP=With PCIe)  
Package code “VN”  
17mm x 17mm  
supported:  
or  
- 2D&3D GPU 3N19K  
- LVDS  
- MLB  
0.8pitch Map BGA  
MCIMX6X2CVN08AC Features not 4N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
17x17WP (WP=With PCIe)  
Package code “VN”  
17mm x 17mm  
supported:  
- 2D&3D GPU  
- LVDS  
0.8pitch Map BGA  
- MLB  
MCIMX6X3CVN08AB Features not 2N19K  
800  
MHz  
227  
MHz  
Industrial  
Industrial  
Industrial  
Industrial  
-40 to  
+105°C  
17x17WP (WP=With PCIe)  
Package code “VN”  
17mm x 17mm  
supported:  
- LVDS  
- MLB  
or  
3N19K  
0.8pitch Map BGA  
MCIMX6X3CVN08AC Features not 4N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
17x17WP (WP=With PCIe)  
Package code “VN”  
17mm x 17mm  
supported:  
- LVDS  
- MLB  
0.8pitch Map BGA  
MCIMX6X4CVM08AB Features not 2N19K  
800  
MHz  
227  
MHz  
-40 to  
+105°C  
19x19  
Package code “VM”  
19mm x 19mm  
supported:  
- MLB  
or  
3N19K  
0.8pitch Map BGA  
MCIMX6X4CVM08AC Features not 4N19K  
800  
227  
-40 to  
19x19  
supported:  
- MLB  
MHz  
MHz  
+105°C  
Package code “VM”  
19mm x 19mm  
0.8pitch Map BGA  
1
If a 24 MHz input clock is used (required for USB), the maximum Cortex-A9 speed for 1 GHz speed grade is limited to 996 MHz  
and the maximum Cortex-A9 speed for 800 MHz speed grade is limited to 792 MHz.  
Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the  
specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon  
revision). The primary characteristic which describes which data sheet applies to a specific part is the  
temperature grade (junction) field.  
The i.MX 6SoloX Automotive and Infotainment Applications Processors data sheet  
(IMX6SXAEC) covers parts listed with an “A (Automotive temp)”  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
4
NXP Semiconductors  
Introduction  
The i.MX 6SoloX Applications Processors for Consumer Products data sheet (IMX6SXCEC)  
covers parts listed with a “D (Commercial temp)” or “E (Extended Commercial temp)”  
The i.MX 6SoloX Applications Processors for Industrial Products data sheet (IMX6SXIEC) covers  
parts listed with “C (Industrial temp)”  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there will be any questions, visit see the web page  
nxp.com/imx6series or contact a NXP representative for details.  
MC  
IMX6 X @ + VV $$ % A  
Silicon Revision1  
A
Qualification Level  
MC  
Rev 1.2 Production (Maskset 2N19K)  
Rev 1.3 Production (Maskset 3N19K)  
B
Prototype Samples  
Mass Production  
Special  
PC  
MC  
SC  
Rev 1.4 Production (Maskset 4N19K)  
C
Fusing  
%
i.MX 6 Family  
X
Security Enabled  
A
i.MX 6SoloX  
X
ARM Cortex-A9 Frequency  
$$  
08  
10  
Part Differentiator  
@
4
800 MHz  
1 GHz  
Package  
VM  
GPU  
PCIe  
LVDS  
ADC  
MLB  
Y
Y
Y
Y
Y
-
Y
Y
Y
-
Y
Y
-
2x 4ch  
2x 4ch  
1x 2ch  
2x 4ch  
2x 4ch  
1x 2ch  
1x 2ch  
2x 4ch  
2x 4ch  
2x 4ch  
2x 4ch  
Y
-
Automotive  
Ext. Commercial/ Industrial  
Ext. Commercial/ Industrial  
Ext. Commercial/ Industrial  
Ext. Commercial/ Industrial  
Automotive  
ROHS  
Package Type  
VN  
VO  
VK  
-
14x14NP: MAPBGA 14x14 0.65mm  
NP = No PCIe  
VK  
-
-
3
17x17NP: MAPBGA 17x17 0.8mm  
NP = No PCIe  
-
-
-
VO  
Y
Y
-
-
Y
-
17x17WP: MAPBGA 17x17 0.8mm  
WP = With PCIe  
VN  
VO  
VK  
VN  
VM  
2
-
-
Ext. Commercial/ Industrial  
Automotive  
MAPBGA 19x19 0.8mm  
-
-
Y
-
-
-
-
Ext. Commercial/ Industrial  
Automotive  
1
Junction Temperature (Tj)  
+
-
-
-
Y
-
Extended Commercial: -20 to + 105C  
Industrial: -40 to +105C  
E
C
A
-
-
-
Ext. Commercial/ Industrial  
1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.  
Auto: -40 to + 125C  
Figure 1. Part Number Nomenclature—i.MX 6SoloX  
1.2  
Features  
The i.MX 6SoloX processors are based on the Arm Cortex-A9 MPCore™ platform, which has the  
following features:  
Supports single Arm Cortex-A9 MPCore processor (with TrustZone)  
The core configuration is symmetric, where each core includes:  
— 32 KByte L1 Instruction Cache  
— 32 KByte L1 Data Cache  
— Private Timer and Watchdog  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
5
Introduction  
— Cortex-A9 NEON MPE (Media Processing Engine) coprocessor  
The Arm Cortex-A9 MPCore complex includes:  
General Interrupt Controller (GIC) with 128 interrupt support  
Global Timer  
Snoop Control Unit (SCU)  
256 KB unified I/D L2 cache:  
Two Master AXI bus interfaces output of L2 cache  
Frequency of the core (including NEON coprocessor and L1 cache), as per Table 9, “Operating  
Ranges,” on page 25.  
NEON MPE coprocessor  
— SIMD Media Processing Architecture  
— NEON register file with 32x64-bit general-purpose registers  
— NEON Integer execute pipeline (ALU, Shift, MAC)  
— NEON dual, single-precision floating point execute pipeline (FADD, FMUL)  
— NEON load/store and permute pipeline  
— 32 double-precision VFPv3 floating point registers  
The Arm Cortex-M4 platform:  
Cortex-M4 CPU core  
MPU (Memory Protection Unit)  
FPU (Floating Point Unit)  
16 KByte Instruction Cache  
16 KByte Data Cache  
64 KByte TCM (Tightly-Coupled Memory)  
The SoC-level memory system consists of the following additional components:  
— Boot ROM, including HAB (96 KB)  
— Internal multimedia / shared, fast access RAM (OCRAM, 128 KB)  
— Internal RAM for state retention or general use (OCRAM_S, 16KB)  
— Secure/non-secure RAM (32 KB)  
External memory interfaces: The i.MX 6SoloX processors support latest, high volume, cost  
effective handheld DRAM, NOR, and NAND Flash memory standards.  
— 16/32-bit LPDDR2-800, 16/32-bit DDR3-800 and DDR3L-800  
— 16-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,  
BA-NAND, PBA-NAND, LBA-NAND, OneNAND and others. BCH ECC up to 62 bits. 16-bit  
boot is supported from OneNAND. 8-bit boot is supported from other NAND types.  
— 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
6
NXP Semiconductors  
Introduction  
Each i.MX 6SoloX processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Displays—Total three interfaces available.  
— Two parallel 24-bit display ports, each up to 1080P at 60 Hz  
— LVDS serial port—One port up to 85 MP/sec (for example, WXGA at 60 Hz)  
Camera sensors:  
— Two parallel camera ports (up to 24 bit and up to 133 MHz peak)  
Expansion cards:  
— Four MMC/SD/SDIO card ports all supporting:  
– 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104  
mode (104 MB/s max)  
– 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in HS200  
mode (200 MB/s max)  
USB:  
— Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy  
— One HS-IC USB (High-Speed Inter-Chip USB) host  
Expansion PCI Express port (PCIe) v2.0 one lane  
— PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint  
operations. Uses x1 PHY configuration.  
Miscellaneous IPs and interfaces:  
— Three SSIs and two SAIs supporting up to five I2S or AC97 ports  
— Enhanced Serial Audio Interface (ESAI)  
— Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx  
— Audio MUX (AUDMUX)  
— Medium Quality Sound (MQS) module provides an opportunity for BOM cost reduction if  
high-quality sound is not required  
— Six UARTs, up to 5.0 Mbps each:  
– Providing RS232 interface  
– Supporting 9-bit RS485 multidrop mode  
– One of the six UARTs (UART1) supports 8-wire while others support 4-wire. This is due to  
the SoC IOMUX limitation, since all UART IPs are identical.  
— Five eCSPI (Enhanced CSPI)  
2
— Four I C  
— Two Gigabit Ethernet Controllers (designed to be compatible with IEEE AVB standards and  
®
IEEE Std 1588 ), 10/100/1000 Mbps  
— Eight Pulse Width Modulators (PWM)  
— System JTAG Controller (SJC)  
— GPIO with interrupt capabilities  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
7
Introduction  
— 8x8 Key Pad Port (KPP)  
— Two Quad SPIs  
— Two Flexible Controller Area Network (FlexCAN), 1 Mbps each  
— Three Watchdog timers (WDOG)  
— Up to two 4-channel, 12-bit Analog to Digital Converters (ADC), VM, VO, VK packages  
— One 2-channel, 12-bit Analog to Digital Converter (ADC), VN package  
The i.MX 6SoloX processors integrate advanced power management unit and controllers:  
Provide PMU, including LDO supplies, for on-chip resources  
Use Temperature Sensor for monitoring the die temperature  
Support DVFS techniques for low power modes  
Use software state retention and power gating for Arm Cortex-A9 CPU core, the Arm Cortex-M4  
CPU core, and the Arm NEON MPE coprocessor.  
Support various levels of system power modes  
Use flexible clock gating control scheme  
The i.MX 6SoloX processors use dedicated hardware accelerators to meet the targeted multimedia  
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power  
consumption, while having the CPU core relatively free for performing other tasks.  
The i.MX 6SoloX processors incorporate the following hardware accelerators:  
GPU—2D (BitBlt) and 3D (OpenGL ES) Graphics Processing Unit  
PXP—PiXel Processing Pipeline for imagine resize, rotation, overlay and CSC. Off loading key  
pixel processing operations are required to support the LCD display applications.  
ASRC—Asynchronous Sample Rate Converter  
Security functions are enabled and accelerated by the following hardware:  
Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)  
SJC—SystemJTAGController. ProtectingJTAGfromdebugportattacks by regulating orblocking  
the access to the system debug features.  
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash  
engines, 32 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).  
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock  
CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be  
configured during boot and by eFUSEs and will determine the security level operation mode as  
well as the TZ policy.  
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:  
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.  
NOTE  
The actual feature set depends on the part numbers as described in Table 1.  
Functions, such as display and camera interfaces, connectivity interfaces,  
video hardware acceleration, and 2D and 3D hardware graphics acceleration  
may not be enabled for specific part numbers.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
8
NXP Semiconductors  
Architectural Overview  
2 Architectural Overview  
The following subsections provide an architectural overview of the i.MX 6SoloX processor system.  
2.1  
Block Diagram  
Figure 2 shows the functional modules in the i.MX 6SoloX processor system.  
LP-DDR2  
/ DDR3  
Battery Ctrl  
Device  
JTAG  
(IEEE1149.6)  
Crystal &  
Clock Source  
Sensors  
External Memory  
ARM Cortex A9  
MPCore Platform  
Debug  
Clock& Reset  
MMC/SD  
eMMC/eSD  
NAND FLASH  
MMDC  
DAP  
PLL (7)  
Cortex-A9 Core  
EIM  
TPIU  
CTIs  
SJC  
CCM  
GPC  
SRC  
I$ 32KB  
NEON  
D$ 32KB  
PTM  
GPMI & BCH  
QSPI (2)  
NOR FLASH  
(Parallel)  
MMC/SD  
SDXC  
SCU & Timer  
XTAL OSC  
32K OSC  
L2 Cache 256KB  
Internal Memory  
Timer/Control  
OCRAM144KB  
WDOG(3)  
ARM CortexM4  
NOR FLASH  
(Quad SPI)  
Touch Panel  
Control  
AP Peripherals  
ROM 96KB  
GPT  
Platform  
uSDHC(4)  
EPIT (2)  
Cortex-M4 Core  
AUDMUX  
UART(5)  
Security  
CAAM  
(32KB RAM)  
Temp Monitor  
I$ 16KB  
MPU  
TCM 64KB  
D$ 16KB  
FPU  
Temper  
Detection  
eCSPI (1)  
I2C (4)  
Keypad  
CSU  
Smart DMA  
SDMA  
Fuse Box  
PWM (8)  
OCOTP  
SNVS  
(SRTC)  
Multi-CoreUnit  
RDC MU  
SPBA  
10/100/1000M  
Ethernetx2  
LCD Panel  
IOMUXC  
KPP  
DisplayInterface  
SEMAPHORE  
Shared Peripherals  
LCDIF  
eCSPI (4)  
GPIO  
Graphics  
LVDS (LDB)  
SPDIF Tx/Rx  
MLB/MOST  
Network  
Ethernet(2)  
CAN(2)  
CMOS Sensor  
3D&2D Graphics  
Processing Unit  
(GPU)  
SSI (3)  
ESAI  
Camera Interface  
(
)
UART 1  
ASRC  
USB OTG(2)  
USB Host(HSIC)  
MLB  
CSI (2)  
Image Processing  
CAN x2  
Power Management  
Pixel Processing Pipeline  
(PXP)  
LDOs  
PCIe  
USB OTG  
(dev/host)  
WLAN  
Modem IC  
Digital Audio  
PCIe Bus  
Figure 2. i.MX 6SoloX System Block Diagram  
NOTE  
The numbers in brackets indicate number of module instances. For example,  
PWM (8) indicates eight separate PWM peripherals.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
9
Modules List  
3 Modules List  
The i.MX 6SoloX processors contain a variety of digital and analog modules. Table 2 describes these  
modules in alphabetical order.  
Table 2. i.MX 6SoloX Modules List  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
ADC1  
ADC2  
Analog to Digital  
Converter  
The ADC is a 12-bit general purpose analog to digital  
converter.  
ARM  
ARM Platform  
Arm  
The ARM Core Platform includes 1x Cortex-A9 and 1x  
Cortex-M4 cores. It also includes associated sub-blocks,  
such as the Level 2 Cache Controller, SCU (Snoop Control  
Unit), GIC (General Interrupt Controller), private timers,  
watchdog, and CoreSight debug modules.  
ASRC  
Asynchronous Sample  
Rate Converter  
Multimedia  
Peripherals  
The Asynchronous Sample Rate Converter (ASRC)  
converts the sampling rate of a signal associated to an  
input clock into a signal associated to a different output  
clock. The ASRC supports concurrent sample rate  
conversion of up to 10 channels of about -120dB THD+N.  
The sample rate conversion of each channel is associated  
to a pair of incoming and outgoing sampling rates. The  
ASRC supports up to three sampling rate pairs.  
AUDMUX  
Digital Audio Mux  
Multimedia  
Peripherals  
The AUDMUX is a programmable interconnect for voice,  
audio, and synchronous data routing between host serial  
interfaces (for example, SSI1, SSI2, and SSI3) and  
peripheral serial interfaces (audio and voice codecs). The  
AUDMUX has seven ports with identical functionality and  
programming models. A desired connectivity is achieved  
by configuring two or more AUDMUX ports.  
BCH  
Binary-BCH ECC  
Processor  
System Control  
Peripherals  
The BCH module provides up to 62-bit ECC for NAND  
Flash controller (GPMI).  
CAAM  
Cryptographic  
accelerator and  
assurance module  
Security  
CAAM is a cryptographic accelerator and assurance  
module. CAAM implements several encryption and  
hashing functions, a run-time integrity checker, and a  
Pseudo Random Number Generator (PRNG). The pseudo  
random number generator is certified by Cryptographic  
Algorithm Validation Program (CAVP) of National Institute  
of Standards and Technology (NIST). Its DRBG validation  
number is 94 and its SHS validation number is 1455.  
CAAM also implements a Secure Memory mechanism. In  
i.MX 6SoloX processors, the security memory provided is  
32 KB.  
CCM  
GPC  
SRC  
Clock Control Module,  
Clocks, Resets,  
These modules are responsible for clock and reset  
GeneralPowerController, and Power Control distribution in the system, and also for the system power  
System Reset Controller  
management.  
CSI  
Parallel CSI  
Multimedia  
Peripherals  
The CSI IP provides parallel CSI standard camera  
interface port. The CSI parallel data ports are up to 24 bits.  
It is designed to support 24-bit RGB888/YUV444,  
CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and  
8-bit/10-bit/26-bit Bayer data input.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
10  
NXP Semiconductors  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Name Subsystem Brief Description  
Central Security Unit Security  
Block Mnemonic  
CSU  
The Central Security Unit (CSU) is responsible for setting  
comprehensive security policy within the i.MX 6SoloX  
platform.  
CTI  
Cross Trigger Interfaces Debug/Trace  
Cross Trigger Interfaces allows cross-triggering based on  
inputs from masters attached to CTIs. The CTI module is  
internal to the Cortex-A9 Core Platform.  
DAP  
Debug Access Port  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
System memory and peripheral registers  
All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-A9 Core  
Platform.  
DBGMON  
Debug Monitor  
Debug  
DBGMON is a real-time debug monitor to record last AXI  
transaction before system reset.  
eCSPI1  
eCSPI2  
eCSPI3  
eCSPI4  
eCSPI5  
Configurable SPI  
Connectivity  
Peripherals  
Full-duplex enhanced Synchronous Serial Interface. It is  
configurable to support Master/Slave modes, four chip  
selects to support multiple peripherals.  
EIM  
NOR-Flash /PSRAM  
interface  
Connectivity  
Peripherals  
The EIM NOR-FLASH / PSRAM provides:  
Support 16-bit (in muxed IO mode only) PSRAM memories  
(sync and async operating modes), at slow frequency  
Support 16-bit (in muxed IO mode only) NOR-Flash  
memories, at slow frequency  
Multiple chip selects  
ENET1  
ENET2  
Ethernet Controller  
Connectivity  
Peripherals  
The Ethernet Media Access Controller (MAC) is designed  
to support 10/100/1000 Mbps Ethernet/IEEE 802.3  
networks. An external transceiver interface and transceiver  
function are required to complete the interface to the  
media. The module has dedicated hardware to support the  
IEEE 1588 standard. See the ENET chapter of the i.MX  
6SoloX Applications Processor Reference Manual  
(IMX6SXRM) for details.  
EPIT1  
EPIT2  
Enhanced Periodic  
Interrupt Timer  
Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts  
counting after the EPIT is enabled by software. It is capable  
of providing precise interrupts at regular intervals with  
minimal processor intervention. It has a 12-bit prescaler for  
division of input clock frequency to get the required time  
setting for the interrupts to occur, and counter value can be  
programmed on the fly.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
11  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Name Subsystem Brief Description  
Connectivity  
Block Mnemonic  
ESAI  
Enhanced Serial Audio  
Interface  
The Enhanced Serial Audio Interface (ESAI) provides a  
full-duplex serial port for serial communication with a  
variety of serial devices, including industry-standard  
codecs, SPDIF transceivers, and other processors.  
The ESAI consists of independent transmitter and receiver  
sections, each section with its own clock generator. All  
serial transfers are synchronized to a clock. Additional  
synchronization signals are used to delineate the word  
frames. The normal mode of operation is used to transfer  
data at a periodic rate, one word per period. The network  
mode is also intended for periodic transfers; however, it  
supports up to 32 words (time slots) per period. This mode  
can be used to build time division multiplexed (TDM)  
networks. In contrast, the on-demand mode is intended for  
non-periodic transfers of data and to transfer data serially  
at high speed when the data becomes available.  
The ESAI has 12 pins for data and clocking connection to  
external devices.  
Peripherals  
FLEXCAN1  
FLEXCAN2  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN protocol was primarily, but not only, designed to  
be used as a vehicle serial data bus, meeting the specific  
requirements of this field: real-time processing, reliable  
operation in the Electromagnetic interference (EMI)  
environment of a vehicle, cost-effectiveness and required  
bandwidth. The FlexCAN module is a full implementation  
of the CAN protocol specification, Version 2.0 B, which  
supports both standard and extended message frames.  
Fuse Box  
GC400T  
GIC  
Electrical Fuse Array  
Graphics Engine  
Security  
Electrical Fuse Array. Enables setup of boot modes,  
security levels, security keys, and many other system  
parameters.The fuses are accessible through  
OCOTP_CTRL interface.  
Multimedia  
Peripherals  
The GC400T is a graphics engine with separate 2D and 3D  
pipelines to provide both 2D and 3D acceleration. It  
supports DirectFB and GAL APIs. It supports OpenGL  
ES1.1/2.0 and OpenVG 1.1 APIs.  
Global Interrupt  
Controller  
Arm/Control  
The Global Interrupt Controller (GIC) collects interrupt  
requests from all i.MX 6SoloX sources and routes them to  
the Arm MPCore(s). Each interrupt can be configured as a  
normal or a secure interrupt. Software Force Registers and  
software Priority Masking are also supported. This IP is  
part of the Arm Core complex.  
GIS  
General Interrupt Service Camera, Display, GIS can be used to automate the flow of data from the  
module  
& Graphics  
camera to the display.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports 32 bits of I/O.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
12  
NXP Semiconductors  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Name Subsystem Brief Description  
Block Mnemonic  
GPMI  
General Purpose  
Memory Interface  
Connectivity  
Peripherals  
The GPMI module supports up to 8x NAND devices and  
60-bit ECC encryption/decryption for NAND Flash  
Controller (GPMI2). GPMI supports separate DMA  
channels for each NAND device.  
GPT  
General Purpose Timer  
Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured to  
trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of providing  
precise interrupts at regular intervals with minimal  
processor intervention. The counter has output compare  
logic to provide the status and interrupt at comparison.  
This timer can be configured to run either with an external  
clock or an internal clock.  
I2C-1  
I2C-2  
I2C-3  
I2C-4  
I2C Interface  
Connectivity  
Peripherals  
I2C provide serial interface for external devices. Data rates  
of up to 400 kbps are supported.  
IOMUXC  
IOMUX Control  
Key Pad Port  
System Control  
Peripherals  
This module enables flexible IO multiplexing. Each IO pad  
has default and several alternate functions. The alternate  
functions are software configurable.  
KPP  
Connectivity  
Peripherals  
KPP Supports 8x8 external key pad matrix. KPP features  
are:  
• Open drain design  
• Glitch suppression circuit design  
• Multiple keys detection  
• Standby key press detection  
LCDIF  
LCD Interface  
Multimedia  
Peripherals  
The LCDIF provides display data for external LCD panels  
from simple text-only displays to WVGA, 16/18/24 bpp  
color TFT panels. The LCDIF supports all of these different  
interfaces by providing fully programmable functionality  
and sharing register space, FIFOs, and ALU resources at  
the same time. The LCDIF supports RGB (DOTCLK)  
modes as well as system mode including both VSYNC and  
WSYNC modes.  
LVDS (LDB)  
LVDS Display Bridge  
MediaLB  
Connectivity  
Peripherals  
LVDS Display Bridge is used to connect an external LVDS  
display interface. LDB supports the following signals:  
• One clock pair  
• Four data pairs  
MLB  
Connectivity/  
Multimedia  
Peripherals  
The MLB interface module provides a link to a MOST®  
data network, using the standardized MediaLB protocol  
(MOST25, MOST 50).  
MMDC  
Multi-Mode DDR  
Controller  
Connectivity  
Peripherals  
DDR Controller supports 16/32-bit LPDDR2-800,  
DDR3-800 and DDR3L-800.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
13  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The MU module supports interprocessor communication  
MU  
Messaging Unit  
OTP Controller  
Interprocessor  
Communication & between the Cortex-A9 and Cortex-M4 cores.  
Synchronization  
OCOTP_CTRL  
Security  
The On-Chip OTP controller (OCOTP_CTRL) provides an  
interface for reading, programming, and/or overriding  
identification and control information stored in on-chip fuse  
elements. The module supports electrically-programmable  
(eFUSE) polyfuses. The OCOTP_CTRL also provides a  
set of volatile software-accessible signals that can be used  
for software control of hardware elements, not requiring  
non-volatility. The OCOTP_CTRL provides the primary  
user-visible mechanism for interfacing with on-chip fuse  
elements. Among the uses for the fuses are unique chip  
identifiers, mask revision numbers, cryptographic keys,  
JTAG secure mode, boot characteristics, and various  
control signals, requiring permanent non-volatility.  
OCRAM  
On-Chip Memory  
Controller  
Data Path  
The On-Chip Memory controller (OCRAM) module is  
designed as an interface between system’s AXI bus and  
internal (on-chip) SRAM memory module.  
OCRAM 128 KB Internal RAM  
Internal Memory  
Internal RAM, which is accessed through OCRAM memory  
controller.  
OCRAM_S 16KB Secure/nonsecure RAM Secured Internal  
Memory  
Secure/nonsecure internal RAM, interfaced through the  
CAAM. OCRAM_S can be used by software for state  
retention of the CPU and other hardware blocks.  
OSC32KHz  
PCIe  
OSC32KHz  
Clocking  
Generates 32.768 KHz clock from external crystal.  
PCI Express 2.0  
Connectivity  
Peripherals  
The PCIe IP provides PCI Express Gen 2.0 functionality.  
PMU  
Power-Management  
functions  
Data Path  
Integrated power management unit. Used to provide power  
to various SoC domains.  
PWM-1  
PWM-2  
PWM-3  
PWM-4  
PWM-5  
PWM-6  
PWM-7  
PWM-8  
Pulse Width Modulation Connectivity  
Peripherals  
The pulse-width modulator (PWM) has a 16-bit counter  
and is optimized to generate sound from stored sample  
audio images and it can also generate tones. It uses 16-bit  
resolution and a 4x16 data FIFO to generate sound.  
PXP  
PiXel Processing Pipeline Display  
Peripherals  
A high-performance pixel processor capable of 1  
pixel/clock performance for combined operations, such as  
color-space conversion, alpha blending, gamma-mapping,  
and rotation. The PXP is enhanced with features  
specifically for gray scale applications.  
QSPI  
Quad Serial Peripheral  
Interface  
Connectivity  
Peripherals  
The Quad Serial Peripheral Interface (QuadSPI) block acts  
as an interface to one or two external serial flash devices,  
each with up to four bidirectional data lines.  
ROM 96KB  
Boot ROM  
Internal Memory  
Supports secure and regular boot modes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
14  
NXP Semiconductors  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Name Subsystem Brief Description  
Block Mnemonic  
RDC  
Resource Domain  
Controller  
Multicore  
Isolation/Sharing  
RDC module supports domain-based access control to  
shared resources.  
SEMA4  
Semaphore  
Multicore/Isolation Supports hardware-enforced semaphores.  
/Sharing  
SEMA42  
Semaphore  
Multicore/Isolation SEMA42 is similar to SEMA4 with the following key  
/Sharing  
differences:  
SEMA42 increases the number of access domains from 2  
to 15  
SEMA42 does not have interrupt to indicate semaphore  
release  
RDC programming model supports the option to require  
hardware semaphore for peripherals shared between  
domains. Signaling between the SEMA42 and RDC binds  
peripherals to semaphore gates within SEMA42.  
SAI1  
SAI2  
The SAI module provides a synchronous audio interface  
(SAI) that supports full duplex serial interfaces with frame  
synchronization, such as I2S, AC97, TDM, and codec/DSP  
interfaces.  
SDMA  
Smart Direct Memory  
Access  
System Control  
Peripherals  
The SDMA is multi-channel flexible DMA engine. It helps in  
maximizing system performance by off-loading the various  
cores in dynamic data routing. It has the following features:  
Powered by a 16-bit Instruction-Set micro-RISC engine  
Multi-channel DMA supporting up to 32 time-division  
multiplexed DMA channels  
48 events with total flexibility to trigger any combination of  
channels  
Memory accesses including linear, FIFO, and 2D  
addressing  
Shared peripherals between ARM and SDMA  
Very fast Context-Switching with 2-level priority based  
preemptive multi-tasking  
DMA units with auto-flush and prefetch capability  
Flexible address management for DMA transfers  
(increment, decrement, and no address changes on  
source and destination address)  
DMA ports can handle unit-directional and bi-directional  
flows (copy mode)  
Up to 8-word buffer for configurable burst transfers for  
EMIv2.5  
Support of byte-swapping and CRC calculations  
Library of Scripts and API is available  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
15  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
SJC  
System JTAG Controller System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX 6SoloX  
processors use JTAG port for production, testing, and  
system debugging. In addition, the SJC provides BSR  
(Boundary Scan Register) standard support, which  
complies with IEEE1149.1 and IEEE1149.6 standards.  
The JTAG port must be accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX 6SoloX SJC incorporates  
three security modes for protecting against unauthorized  
accesses. Modes are selected through eFUSE  
configuration.  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real Time  
Clock, Security State Machine, Master Key Control, and  
Violation/Tamper Detection and reporting.  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly by  
the Sony and Phillips corporations. Has Transmitter and  
Receiver functionality.  
SSI1  
SSI2  
SSI3  
I2S/SSI/AC97 Interface  
Connectivity  
Peripherals  
The SSI is a full-duplex synchronous interface, which is  
used on the AP to provide connectivity with off-chip audio  
peripherals. The SSI supports a wide variety of protocols  
(SSI normal, SSI network, I2S, and AC-97), bit depths (up  
to 24 bits per word), and clock / frame sync options.  
The SSI has two pairs of 8x24 FIFOs and hardware  
support for an external DMA controller in order to minimize  
its impact on system performance. The second pair of  
FIFOs provides hardware interleaving of a second audio  
stream that reduces CPU overhead in use cases where  
two time slots are being used simultaneously.  
TEMPMON  
Temperature Monitor  
System Control  
Peripherals  
The Temperature sensor IP is used for detecting die  
temperature. The temperature read out does not reflect  
case or ambient temperature. It reflects the temperature in  
proximity of the sensor location on the die. Temperature  
distribution may not be uniformly distributed, therefore the  
read out value may not be the reflection of the temperature  
value of the entire die.  
TZASC  
Trust-Zone Address  
Space Controller  
Security  
The TZASC (TZC-380 by Arm) provides security address  
region control functions required for intended application. It  
is used on the path to the DRAM controller.  
UART1  
UART2  
UART3  
UART4  
UART5  
UART6  
UART Interface  
Connectivity  
Peripherals  
Each of the UARTv2 modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx  
supporting auto-baud  
• Option to operate as 8-pins full UART, DCE, or DTE  
• UART1/6 support 8-pin, UART2/3/4/5 support 4-pin  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
16  
NXP Semiconductors  
Modules List  
Table 2. i.MX 6SoloX Modules List (continued)  
Block Name Subsystem Brief Description  
i.MX 6SoloX specific SoC characteristics:  
Block Mnemonic  
uSDHC1  
uSDHC2  
uSDHC3  
uSDHC4  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card/SecureDigital Host  
Controller  
Connectivity  
Peripherals  
All four MMC/SD/SDIO controller IPs are identical and are  
based on the uSDHC IP. They are:  
• Fully compliant with MMC command/response sets and  
Physical Layer as defined in the Multimedia Card  
System Specification, v4.5/4.2/4.3/4.4/4.41/ including  
high-capacity (size > 2 GB) cards HC MMC.  
• Fully compliant with SD command/response sets and  
Physical Layer as defined in the SD Memory Card  
Specifications, v3.0 including high-capacity SDHC  
cards up to 32 GB.  
• Fully compliant with SDIO command/response sets and  
interrupt/read-wait mode as defined in the SDIO Card  
Specification, Part E1, v3.0.  
• Conforms to the SD Host Controller Standard  
Specification version 3.0.  
All four ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC  
cards up to 52 MHz in both SDR and DDR modes (104  
MB/s max)  
• All ports can work with 1.8 V and 3.3 V cards. Each port  
is placed on a separate power domain.  
USB  
Universal Serial Bus 2.0 Connectivity  
Peripherals  
USBOH3 contains:  
• Two high-speed OTG 2.0 modules with integrated HS  
USB PHYs  
• One high-speed Host module connected to HSIC USB  
port  
WDOG1  
WDOG3  
Watch Dog  
Timer Peripherals The Watch Dog Timer supports two comparison points  
during each counting period. Each of the comparison  
points is configurable to evoke an interrupt to the Arm core,  
and a second point evokes an external event on the WDOG  
line.  
WDOG2  
(TZ)  
Watch Dog (TrustZone)  
Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module  
protects against TrustZone starvation by providing a  
method of escaping normal mode and forcing a switch to  
the TZ mode. TZ starvation is a situation where the normal  
OS prevents switching to the TZ mode. Such situation is  
undesirable as it can compromise the system’s security.  
Once the TZ WDOG module is activated, it must be  
serviced by TZ software on a periodic basis. If servicing  
does not take place, the timer times out. Upon a time-out,  
the TZ WDOG asserts a TZ mapped interrupt that forces  
switching to the TZ mode. If it is still not served, the TZ  
WDOG asserts a security violation signal to the CSU. The  
TZ WDOG module cannot be programmed or deactivated  
by a normal mode software.  
XTALOSC  
Crystal Oscillator  
Interface  
Clocks, Resets,  
and Power Control provide system clocks.  
The XTALOSC module connects to an external crystal to  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
17  
Modules List  
3.1  
Special Signal Considerations  
Table 3 lists special signal considerations for the i.MX 6SoloX processors. The signal names are listed in  
alphabetical order.  
The package contact assignments can be found in Section 6, “Package Information and Contact  
Assignments.” Signal descriptions are provided in the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM).  
Table 3. Special Signal Considerations  
Signal Name  
Remarks  
CCM_CLK1_P/  
CCM_CLK1_N  
CCM_CLK2  
Two general purpose differential high speed clock Input/outputs are provided.  
Any or both of them could be used:  
• To feed external reference clock to the PLLs and further to the modules inside SoC, for example  
as alternate reference clock for PCIe, Video/Audio interfaces, etc.  
• To output internal SoC clock to be used outside the SoC as either reference clock or as a  
functional clock for peripherals  
See the i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM) for details on the  
respective clock trees.  
The clock inputs/outputs are LVDS differential pairs compatible with TIA/EIA-644 standard, the  
frequency range supported is 0...600 MHz.  
Alternatively one may use single ended signal to drive CLKx_P input. In this case corresponding  
CLKx_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.  
Termination should be provided in case of high frequency signals.  
See LVDS pad electrical specification for further details.  
After initialization, the CLKx inputs/outputs could be disabled (if not used). If unused any or both of  
the CLKx_N/P pairs may be left unconnected.  
RTC_XTALI/RTC_XTALO If the user needs to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz  
crystal (100 kΩ ESR, 10 pF load), should be connected between RTC_XTALI and RTC_XTALO.  
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal  
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to  
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but  
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO  
to either power or ground (>100 MΩ). This will debias the amplifier and cause a reduction of startup  
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin should  
be left unconnected or driven with a complimentary signal. The logic level of this forcing clock  
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical  
conditions.  
When a high accuracy real time clock is not required, the system can use an internal low frequency  
ring oscillator. It is recommended to connect RTC_XTALI to GND and leave RTC_XTALO  
unconnected.  
XTALI/XTALO  
A 24.0 MHz crystal should be connected between XTALI and XTALO. NXP BSP (board support  
package) software requires 24 MHz on XTALI/XTALO. For details on crystal selection, see the  
“i.MX 6SoloX Design Checklist” chapter of the Hardware Development Guide for i.MX 6SoloX  
Applications Processors (IMX6SXHDG), as well as the engineering bulletin i.MX 6 Series Crystal  
Drive (24 MHz) (EB830).  
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALI must be directly driven by the external oscillator and XTALO is left unconnected.  
If this clock is used as a reference for USB and PCIe, then there are strict frequency tolerance and  
jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
18  
NXP Semiconductors  
Modules List  
Table 3. Special Signal Considerations (continued)  
Remarks  
Signal Name  
DRAM_VREF  
When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the  
NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a  
1 kΩ 0.5% resistor to GND and a 1 kΩ 0.5% resistor to NVCC_DRAM. Shunt the resistor from  
DRAM_VREF to ground with a closely mounted 0.1 μF capacitor.  
To reduce supply current, a pair of 1.5 kΩ 0.1% resistors can be used. Using resistors with  
recommended tolerances ensures the 2% DDR_VREF tolerance (per the DDR3 specification) is  
maintained when four DDR3 ICs plus the i.MX 6SoloX are drawing current on the resistor divider.  
ZQPAD  
DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver  
calibration should be connected between this pad and GND.  
NVCC_LVDS  
On the 19 x 19 package, this ball can be shorted to VDD_HIGH_CAP on the circuit board. On the  
17 x 17 and 14 x 14 packages, NVCC_LVDS is internally connected to VDD_HIGH_CAP.  
GPANAIO  
Analog output for NXP use only. This output must always be left unconnected.  
JTAG_nnnn  
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an  
external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
should be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM). Both names refer to the same signal. JTAG_MOD must be externally  
connected to GND for normal operation. Termination to GND through an external pull-down resistor  
(such as 1 kΩ) is allowed. JTAG_MOD set to high configures the JTAG interface to mode compliant  
with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common  
software debug adding all the system TAPs to the chain.  
NC  
These signals are No Connect (NC) and should be left unconnected by the user.  
This cold reset negative logic input resets all modules and logic in the IC.  
POR_B  
ONOFF  
ONOFF can be configured in debounce, off to on time, and max timeout configurations. The  
debounce and off to on time configurations supports 0, 50, 100 and 500 msecs. Debounce is used  
to generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than  
the debounce time, the power off interrupt is generated. Off to on time supports the time it takes to  
request power on after a configured button press time has been reached. While in the OFF state,  
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.  
Max timeout configuration supports 5, 10, 15 secs and disable. Max timeout configuration supports  
the time it takes to request power down after ONOFF button has been pressed for the defined time.  
TEST_MODE  
PCIE_REXT  
TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.  
The impedance calibration process requires connection of reference resistor 200 Ω 1% precision  
resistor on PCIE_REXT pad to ground.  
Table 4. JTAG Controller Interface Summary  
JTAG  
I/O Type  
On-chip Termination  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
Input  
47 kΩ pull-up  
47 kΩ pull-up  
47 kΩ pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
19  
Electrical Characteristics  
JTAG  
Table 4. JTAG Controller Interface Summary (continued)  
I/O Type  
On-chip Termination  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
Keeper  
47 kΩ pull-up  
100 kΩ pull-up  
Input  
3.2  
Recommended Connections for Unused Analog Interfaces  
The recommended connections for unused analog interfaces can be found in the section, “Unused analog  
interfaces,” of the Hardware Development Guide for i.MX 6SoloX Applications Processors  
(IMX6SXHDG).  
4 Electrical Characteristics  
This section provides the device and module-level electrical characteristics for the i.MX 6SoloX  
processors.  
4.1  
Chip-Level Conditions  
This section provides the device-level electrical characteristics for the IC. See Table 5 for a quick reference  
to the individual tables and sections.  
Table 5. i.MX 6SoloX Chip-Level Conditions  
For these characteristics, …  
Absolute Maximum Ratings  
Topic appears …  
on page 21  
on page 23  
on page 25  
on page 28  
on page 29  
on page 30  
on page 31  
on page 32  
Thermal Resistance  
Operating Ranges  
External Clock Sources  
Maximum Supply Currents  
Low Power Mode Supply Currents  
USB PHY Current Consumption  
PCIe 2.0 Power Consumption  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
20  
NXP Semiconductors  
Electrical Characteristics  
4.1.1  
Absolute Maximum Ratings  
CAUTION  
Stresses beyond those listed under Table 6 may cause permanent damage to  
the device. These are stress ratings only. Functional operation of the device  
at these or any other conditions beyond those indicated under  
“recommended operating conditions” is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
Table 6 shows the absolute maximum operating ratings.  
Table 6. Absolute Maximum Ratings  
Symbol1  
Parameter Description  
Min  
Max  
Unit  
Core Supplies Input Voltage (LDO Enabled)  
VDDSOC_IN  
VDDARM_IN  
-0.3  
1.6  
V
Core Supplies Input Voltage (LDO Bypass)  
VDDSOC_IN  
VDDARM_IN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.4  
3.7  
V
V
V
V
V
V
VDD_HIGH_IN Supply voltage (LDO  
Enabled)  
VDD_HIGH_IN  
VDD_HIGH_IN Supply voltage (LDO  
Bypass)  
VDD_HIGH_IN  
2.85  
1.4  
Core Supplies Output Voltage (LDO  
Enabled)  
VDD_ARM_CAP  
VDD_SOC_CAP  
VDD_HIGH_CAP LDO Output Supply  
voltage  
VDD_HIGH_CAP  
2.6  
Supply Input Voltage to Secure Non-Volatile  
Storage and Real Time Clock  
VDD_SNVS_IN  
3.6  
USB VBUS Supply  
USB_OTG_VBUS  
5.6  
V
V
Input voltage on USB signals (non-VBUS)  
USB_OTG_DP,  
USB_OTG_DN,  
USB_H1_DP,  
-0.3  
3.63  
USB_H1_DN,  
USB_OTG_CHD_B  
Supply for the USB HSIC interface  
IO Supply for DDR Interface  
Supply for DDR pre-drivers  
NVCC_USB_H  
NVCC_DRAM  
2.85  
1.9752  
2.85  
V
V
V
V
-0.4  
-0.3  
-0.5  
NVCC_DRAM_2P5  
NVCC_RGMII  
IO Supply for RGMII Interface  
3.7  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
21  
Electrical Characteristics  
Table 6. Absolute Maximum Ratings (continued)  
Parameter Description  
Symbol1  
Min  
Max  
Unit  
IO Supply for GPIO Type Pins  
NVCC_CSI  
NVCC_ENET  
NVCC_HIGH  
NVCC_KEY  
NVCC_GPIO  
NVCC_LCD  
NVCC_LOW  
NVCC_NAND  
NVCC_QSPI  
NVCC_SD  
-0.5  
3.7  
V
NVCC_JTAG  
IO Supply for LVDS  
NVCC_LVDS  
Supplies denoted as GPIO supplies  
PCIE_VP  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
2.85  
2.9  
V
V
V
V
V
V
V
V
IO Supply for MLB  
VP Supplies for PCIe  
VPH Supplies for PCIe  
Supply for PCIe PHY  
Supply for ADC 3P3V  
3.3V Supply for analog circuitry  
1.4  
PCIE_VPH  
2.85  
PCIE_VPTX  
1.4  
VDDA_ADC_3P3  
VDD_AFE_3P3  
Vin/Vout  
3.7  
3.7  
Input/Output Voltage Range (non-DDR  
pins)  
-0.5  
OVDD+0.33  
Input/Output Voltage Range (DDR pins)  
Vin/Vout  
-0.5  
OVDD3+0.42  
2000  
V
V
ESD damage Immunity: Human Body  
Model (HBM)  
Vesd_HBM  
ESD damage Immunity: Charge Device  
Model (CDM)  
Vesd_CDM  
500  
150  
V
Storage Temperature Range  
TSTORAGE  
-40  
°C  
1
2
3
Not all of the supplies shown exist on all packages. See the package ball maps for details on which supplies are used on each  
package.  
The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the  
allowed signal overshoot must be de-rated if NVCC_DRAM exceeds 1.575V.  
OVDD is the I/O supply voltage.  
4.1.2  
Thermal Resistance  
NOTE  
Per JEDEC JESD51-2, the intent of thermal resistance measurements is  
solely for a thermal performance comparison of one package to another in a  
standardized environment. This methodology is not meant to and will not  
predict the performance of a package in an application-specific  
environment.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
22  
NXP Semiconductors  
Electrical Characteristics  
4.1.2.1  
19x19 mm (VM) Package Thermal Resistance  
Table 7 displays the 19x19 mm (VM) package thermal resistance data.  
Table 7. 19x19 mm (VM) Package Thermal Resistance Data  
Rating  
Test Conditions  
Symbol  
Value  
Unit  
Notes  
Junction to Ambient Natural Single-layer board (1s)  
Convection  
RθJA  
40.6  
oC/W  
1,2  
Junction to Ambient Natural Four-layer board (2s2p)  
Convection  
RθJA  
RθJMA  
RθJMA  
28.0  
32.1  
23.0  
oC/W  
oC/W  
oC/W  
1,2,3  
1,3  
Junction to Ambient (@ 200 Single layer board (1s)  
ft/min)  
1,3  
Junction to Ambient (@ 200 Four layer board (2s2p)  
ft/min)  
Junction to Board  
RθJB  
RθJC  
ΨJT  
17.9  
7.8  
2
oC/W  
oC/W  
oC/W  
oC/W  
4
5
6
7
Junction to Case  
Junction to Package Top  
Natural Convection  
Junction to Package Bottom Natural Convection  
ΨJB  
7.5  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
6
7
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JB.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
23  
Electrical Characteristics  
4.1.2.2  
17x17 mm NP (VO) and 17x17 mm WP (VN) Package Thermal Resistance  
Table 8 displays the 17x17 mm NP (VO) and 17x17 mm WP (VN) package thermal resistance data.  
Table 8. 17x17 mm NP (VO) and 17x17 mm WP (VN) Thermal Resistance Data  
Rating  
Test Conditions  
Symbol  
Value  
Unit  
Notes  
Junction to Ambient Natural Single-layer board (1s)  
Convection  
RθJA  
44.4  
oC/W  
1,2  
Junction to Ambient Natural Four-layer board (2s2p)  
Convection  
RθJA  
RθJMA  
RθJMA  
27.4  
35.2  
22.5  
oC/W  
oC/W  
oC/W  
1,2,3  
1,3  
Junction to Ambient (@ 200 Single layer board (1s)  
ft/min)  
1,3  
Junction to Ambient (@ 200 Four layer board (2s2p)  
ft/min)  
Junction to Board  
RθJB  
RθJC  
ΨJT  
13.2  
8.4  
2
oC/W  
oC/W  
oC/W  
oC/W  
4
5
6
7
Junction to Case  
Junction to Package Top  
Natural Convection  
Junction to Package Bottom Natural Convection  
ΨJB  
8.6  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
6
7
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JB.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
24  
NXP Semiconductors  
Electrical Characteristics  
4.1.3  
Operating Ranges  
Table 9 provides the operating ranges of the i.MX 6SoloX processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6SoloX Applications Processor  
Reference Manual (IMX6SXRM).  
NOTE  
Applying the maximum power supply voltage results in maximum power  
consumption and heat generation. NXP recommends a voltage set point =  
(Vmin + the supply tolerance). This results in an optimized power/speed  
ratio.  
Table 9. Operating Ranges  
Parameter  
Description  
Operating  
Conditions  
Symbol  
Min  
Typ  
Max1 Unit  
Notes  
Power Supply Operating Ranges  
Run Mode:  
LDO enabled  
VDD_ARM_IN  
A9 core at  
792 MHz  
1.275  
1.175  
1.075  
1.15  
1.5  
1.5  
1.5  
1.3  
1.3  
1.3  
1.5  
V
V
V
V
V
V
V
VDDARM_IN must be 125mV higher  
than the LDO Output Set Point  
(VDD_ARM_CAP) for correct supply  
voltage regulation.  
A9 core at  
396 MHz  
A9 core at  
198 MHz  
VDD_ARM_CAP  
A9 core at  
792 MHz  
Output voltage must be set to the  
following rule:  
VDD_ARM_CAP – VDD_SOC_CAP <  
+50 mV  
A9 core at  
396 MHz  
1.05  
A9 core at  
198 MHz  
0.95  
VDD_SOC_IN  
VDD_SOC_CAP  
VDD_ARM_IN  
1.275  
VDDSOC_IN must be 125 mV higher  
than the LDO Output Set Point  
(VDD_SOC_CAP) for correct supply  
voltage regulation.  
1.15  
1.3  
V
Output voltage must be set to the  
following rule:  
VDD_ARM_CAP – VDD_SOC_CAP <  
+50 mV  
Run Mode:  
LDO  
bypassed  
A9 core at  
792 MHz  
1.15  
1.05  
0.95  
1.15  
1.3  
1.3  
1.3  
1.3  
V
V
V
V
A9 core at  
396 MHz  
A9 core at  
198 MHz  
VDD_SOC_IN  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
25  
Electrical Characteristics  
Parameter  
Table 9. Operating Ranges (continued)  
Operating  
Symbol  
Min  
Typ  
Max1 Unit  
Notes  
Description  
Conditions  
Standby/DSM  
Mode  
VDD_ARM_IN  
VDD_SOC_IN  
VDD_HIGH_IN  
0.9  
1.05  
2.8  
1.3  
1.3  
3.6  
V
V
V
See Table 13 and Table 14.  
VDD_HIGH  
internal  
regulator  
Must match the range of voltages that  
the rechargeable backup battery  
supports.  
Backup  
batterysupply  
range  
VDD_SNVS_IN  
2.4  
4.4  
3.6  
5.5  
V
V
Could be combined with VDD_HIGH_IN  
if the system does not require real time  
and other data on off state.  
USB supply  
voltages  
USB_OTG1_VBUS/  
USB_OTG2_VBUS  
DDR I/O  
supply  
NVCC_DRAM  
LPDDR2  
DDR3L  
DDR3  
1.14  
1.283  
1.425  
1.15  
1.2  
1.35  
1.5  
1.3  
1.45  
1.575  
1.3  
V
V
V
V
HSIC I/O  
supply  
NVCC_USB_H  
1.2 V  
operation  
1.2  
IOMUXC_SW_PAD_CTL_PAD_USB_H  
_DATA[DDR_SEL] = ‘10’  
IOMUXC_SW_PAD_CTL_PAD_USB_H  
_STROBE[DDR_SEL] = ‘10’  
NVCC_USB_H should be grounded  
through a 10k resistor if the HSIC pins  
are not used.  
1.5 V  
operation  
1.425  
1.62  
2.25  
1.5  
1.8  
2.5  
1.575  
1.98  
2.75  
V
V
V
IOMUXC_SW_PAD_CTL_PAD_USB_H  
_DATA[DDR_SEL] = ‘11’  
IOMUXC_SW_PAD_CTL_PAD_USB_H  
_STROBE[DDR_SEL] = ‘11’  
1.8 V  
operation  
NVCC_USB_H should be grounded  
through a 10k resistor if the HSIC pins  
are not used.  
2.5 V  
operation  
RGMII I/O  
supply  
NVCC_RGMII1  
NVCC_RGMII2  
1.5 V mode  
1.8 V mode  
2.5 V mode  
3.3 V mode  
1.43  
1.7  
1.5  
1.8  
2.5  
1.58  
1.9  
V
V
V
V
2.25  
3.0  
2.625  
3.15/3.3 3.6  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
26  
NXP Semiconductors  
Electrical Characteristics  
Notes  
Table 9. Operating Ranges (continued)  
Operating  
Parameter  
Description  
Symbol  
Min  
Typ  
Max1 Unit  
Conditions  
GPIO  
supplies  
NVCC_CSI  
NVCC_ENET  
NVCC_GPIO  
NVCC_HIGH  
NVCC_KEY  
NVCC_LCD1  
NVCC_LOW  
NVCC_NAND  
NVCC_QSPI  
NVCC_SD1  
NVCC_SD2  
NVCC_SD4  
NVCC_JTAG  
1.65  
1.8  
2.8  
3.15  
3.6  
V
All digital I/O supplies (NVCC_xxxx)  
must be powered (unless otherwise  
specified in this data sheet) under  
normal conditions whether the  
associated I/O pins are in use or not and  
the associated IO pins need to have a  
pull-up or pull-down resistor applied to  
limit any floating gate current.  
NVCC_LVDS  
2.25  
2.5  
2.75  
V
NVCC_DRAM_2P5  
PCIe supplies  
PCIE_VP  
PCIE_VPH  
PCIE_VPTX  
1.023  
2.325  
1.023  
3
1.1  
2.5  
1.21  
2.75  
1.21  
3.6  
V
V
V
V
1.1  
A/D converter VDDA_ADC_3P3  
supply  
3.15  
VDDA_ADC_3P3mustbepoweredeven  
if the ADC is not used. VDDA_ADC_3P3  
should not be powered when the other  
SoC supplies (except VDD_SNVS_IN)  
are off.  
Temperature Operating Ranges  
Industrial –40 105  
Junction  
temperature  
TJ  
°C See the application note, i.MX 6SoloX  
Product Lifetime Usage Estimates  
(AN5062) for information on product  
lifetime (power-on years) for this  
processor.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.  
Table 10 shows on-chip LDO regulators that can supply on-chip loads.  
1
Table 10. On-Chip LDOs and their On-Chip Loads  
Voltage Source  
Load  
Comment  
VDD_HIGH_CAP  
NVCC_LVDS  
NVCC_DRAM_2P5  
PCIE_VPH  
Board-level connection to VDD_HIGH_CAP  
1
On-chip LDOs are designed to supply i.MX6 loads and must not be used to supply external loads.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
27  
Electrical Characteristics  
4.1.4  
External Clock Sources  
Each i.MX 6SoloX processor has two external input system clocks: a low frequency (RTC_XTALI) and a  
high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using an internal oscillator amplifier. Additionally, there  
is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using an  
internal oscillator amplifier.  
CAUTION  
The internal RTC oscillator does not provide an accurate frequency and is  
affected by process, voltage, and temperature variations. NXP strongly  
recommends using an external crystal as the RTC_XTALI reference. If the  
internal oscillator is used, careful consideration must be given to the timing  
implications on all of the SoC modules dependent on this clock.  
Table 11 shows the interface frequency requirements.  
Table 11. External Input Clock Frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time  
keeping and USB operation. For RTC_XTALI operation, two clock sources are available.  
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:  
— Approximately 25 µA more Idd than crystal oscillator  
— Approximately 50ꢀ tolerance  
— No external component required  
— Starts up quicker than 32 kHz crystal oscillator  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
28  
NXP Semiconductors  
Electrical Characteristics  
— If no external crystal is present, then the ring oscillator is utilized  
The decision of choosing a clock source should be taken based on real-time clock use and precision  
timeout.  
4.1.5  
Maximum Supply Currents  
The data shown in Table 12 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to  
specifically show the worst case power consumption.  
Table 12. Maximum Supply Currents  
Power Line  
Conditions  
Max Current  
Unit  
VDD_ARM_IN  
996 MHz Arm clock based on  
Power Virus operation  
1100  
mA  
VDD_SOC_IN  
VDD_HIGH_IN  
VDD_SNVS_IN  
996 MHz Arm clock  
1260  
1251  
4002  
503  
mA  
mA  
μA  
USB_OTG1_VBUS/USB_OTG2_VBUS (LDO_USB)  
mA  
mA  
VDDA_ADC_3P3  
1.5  
Primary Interface (IO) Supplies  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_LCD1  
NVCC_GPIO  
NVCC_CSI  
(See Note4)  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
N=10  
N=29  
N=14  
N=12  
N=16  
N=6  
NVCC_QSPI  
NVCC_JTAG  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_SD1  
N=12  
N=12  
N=6  
NVCC_SD2  
N=6  
NVCC_SD4  
N=11  
N=16  
N=10  
N=10  
NVCC_NAND  
NVCC_KEY  
NVCC_LOW  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
29  
Electrical Characteristics  
Table 12. Maximum Supply Currents (continued)  
Conditions  
Power Line  
Max Current  
Unit  
NVCC_HIGH  
N=10  
N=2  
Use Maximum IO equation 5  
Use Maximum IO equation 5  
NVCC_USB_H  
1
The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the  
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS).  
2
Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 12. The maximum  
VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal  
to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of  
sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.  
3
4
This is the maximum current per active USB physical interface.  
The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators  
are typically available from memory vendors which take into account factors such as signal termination.  
See the i.MX 6SoloX Power Consumption Measurement Application Note (AN5050) for examples of DRAM power  
consumption during specific use case scenarios.  
5
General equation for estimated, maximum power consumption of an IO power supply:  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
4.1.6  
Low Power Mode Supply Currents  
Table 13 and Table 14 show the current core consumption (not including I/O) of i.MX 6SoloX processors  
in selected low power modes.  
Table 13. Low Power Mode Current and Power Consumption (LDO Bypass Mode)  
Mode  
Test Conditions  
Supply  
Typical1 Units  
System Idle  
See the Power Modes table in the Clock and Power Management VDDARM_IN (1.15 V)  
7.469  
8.436  
3.376  
29.430  
0.001  
2.337  
0.404  
4.022  
mA  
chapter of the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM) for the definition of this mode.  
VDDSOC_IN (1.15 V)  
VDDHIGH_IN (3.3 V)  
Total  
mW  
mA  
Low Power Idle See the Power Modes table in the Clock and Power Management VDDARM_IN (1.15 V)  
chapter of the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM) for the definition of this mode.  
VDDSOC_IN (1.15 V)  
SOC LDO must be bypassed.  
Bandgap is disabled.  
VDDHIGH_IN (3.3 V)  
Total  
mW  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
30  
NXP Semiconductors  
Electrical Characteristics  
Table 13. Low Power Mode Current and Power Consumption (LDO Bypass Mode) (continued)  
Mode  
Test Conditions  
Supply  
Typical1 Units  
Suspend/  
Deep Sleep  
mode  
See the Power Modes table in the Clock and Power Management VDD_ARM_IN (0.9 V)  
0.001  
mA  
chapter of the i.MX 6SoloX Applications Processor Reference  
VDD_SOC_IN (1.05 V) 1.005  
Manual (IMX6SXRM) for the definition of this mode.  
(DSM)  
VDDHIGH_IN (3.3 V)  
Total  
0.034  
2.067  
41  
mW  
μA  
SNVS  
SNVS power domain powered.  
All other power domains are off.  
VDD_SNVS_IN (2.8 V)  
Total  
0.115  
mW  
1
Typical process material in fab.  
Table 14. Low Power Mode Current and Power Consumption (LDO Enabled Mode)  
Mode  
Test Conditions  
Supply  
Typical1 Units  
Low Power Idle See the Power Modes table in the Clock and Power Management  
chapter of the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM) for the definition of this mode.  
SOC LDO is enabled.  
VDDARM_IN (1.3V)  
VDDSOC_IN (1.3V)  
0.008  
2.343  
mA  
VDDHIGH_IN (3.3V) 3.376  
Bandgap is enabled.  
Total  
14.196 mW  
Suspend/  
Deep Sleep  
mode  
See the Power Modes table in the Clock and Power Management  
chapter of the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM) for the definition of this mode.  
VDDARM_IN (1.3V)  
VDDSOC_IN (1.3V)  
0.033  
1.3  
mA  
(DSM  
VDDHIGH_IN (3.3V) 0.034  
Total 2.231  
mW  
1
Typical process material in fab.  
4.1.7  
USB PHY Current Consumption  
Power Down Mode  
4.1.7.1  
In power down mode, everything is powered down, including the USB_VBUS valid detectors in typical  
condition. Table 15 shows the USB interface current consumption in power down mode.  
Table 15. USB PHY Current Consumption in Power Down Mode  
VDD_USB_CAP (3.0 V)  
VDD_HIGH_CAP (2.5 V)  
NVCC_PLL (1.1 V)  
Current  
5.1 μA  
1.7 μA  
<0.5 μA  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level shifters.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
31  
Electrical Characteristics  
4.1.8  
PCIe 2.0 Power Consumption  
Table 16 provides PCIe PHY currents under certain transmit operating modes.  
Table 16. PCIe PHY Current Drain  
Mode  
Test Conditions  
Supply  
Max Current  
Unit  
P0: Normal Operation  
5G Operations  
2.5G Operations  
5G Operations  
2.5G Operations  
PCIE_VPH (2.5 V)  
PCIE_VPH (2.5 V)  
PCIE_VPH (2.5 V)  
PCIE_VPH (2.5 V)  
PCIE_VPH (2.5 V)  
21  
20  
18  
18  
12  
mA  
P0s: Low Recovery Time  
Latency, Power Saving State  
mA  
P1: Longer Recovery Time  
Latency, Lower Power State  
mA  
mA  
Power Down  
PCIE_VPH (2.5 V)  
0.36  
4.2  
Power Supplies Requirements and Restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
4.2.1  
Power-Up Sequence  
The restrictions that follow must be observed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
When the SRC_POR_B signal is used to control the processor POR, then SRC_POR_B must be  
immediately asserted at power-up and remain asserted until the VDD_ARM_CAP and  
VDD_SOC_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either  
order with no restrictions.  
NOTE  
Ensure there is no back voltage (leakage) from any supply on the board  
towards the 3.3 V supply (for example, from the external components that  
use both the 1.8 V and 3.3 V supplies).  
NOTE  
USB_OTG1_VBUS and USB_OTG2_VBUS are not part of the power  
supply sequence and may be powered at any time.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
32  
NXP Semiconductors  
Electrical Characteristics  
4.2.2  
Power-Down Sequence  
There are no special restrictions for the i.MX 6SoloX IC.  
4.2.3  
Power Supplies Usage  
All I/O pins must not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package Information  
and Contact Assignments.”  
4.3  
Integrated LDO Voltage Regulator Parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use  
only and must not be used to power any external circuitry. See the i.MX 6SoloX Applications Processor  
Reference Manual (IMX6SXRM) for details on the power tree scheme.  
NOTE  
The *_CAP signals must not be powered externally. These signals are  
intended for internal LDO operation only.  
4.3.1  
Digital Regulators (LDO_ARM, LDO_SOC, LDO_PCIE)  
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because  
of their construction). The advantages of the regulators are to reduce the input supply variation because of  
their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for  
the on-chip logic.  
These regulators have two basic modes:  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV  
steps.  
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual  
(IMX6SXRM).  
4.3.2  
Regulators for Analog Modules  
LDO_1P1  
4.3.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V  
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, LVDS Phy, and  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
33  
Electrical Characteristics  
PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to  
determine when the load capability of the regulator is being exceeded to take the necessary steps.  
Active-pull-down can also be enabled for systems requiring this feature.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).  
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual  
(IMX6SXRM).  
4.3.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is  
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy,  
LVDS Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that  
can be used by the system to determine when the load capability of the regulator is being exceeded, to take  
the necessary steps. Active-pull-down can also be enabled for systems requiring this feature. An alternate  
self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep  
the output voltage alive during low-power modes where the main regulator driver and its associated global  
bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a  
function of the input supply as well as the load current. Typically, with a 3 V input supply the  
weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).  
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual  
(IMX6SXRM).  
4.3.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the  
USB_OTG1_VBUS and USB_OTG2_VBUS voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output  
voltage. A programmable brown-out detector is included in the regulator that can be used by the system to  
determine when the load capability of the regulator is being exceeded, to take the necessary steps. This  
regulator has a built in power-mux that allows the user to select to run the regulator from either  
USB_VBUS supply, when both are present. If only one of the USB_VBUS voltages is present, then, the  
regulator automatically selects this supply. Current limit is also included to help the system meet in-rush  
current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).  
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual  
(IMX6SXRM).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
34  
NXP Semiconductors  
Electrical Characteristics  
4.4  
PLL Electrical Characteristics  
4.4.1  
Audio/Video PLL Electrical Parameters  
Table 17. Audio/Video PLL Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
<11250 reference cycles  
4.4.2  
4.4.3  
4.4.4  
528 MHz PLL  
Table 18. 528 MHz PLL Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
528 MHz PLL output  
24 MHz  
<11250 reference cycles  
Ethernet PLL  
Table 19. Ethernet PLL Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
500 MHz  
24 MHz  
<11250 reference cycles  
480 MHz PLL  
Table 20. 480 MHz PLL Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
<383 reference cycles  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
35  
Electrical Characteristics  
4.4.5  
Arm PLL  
Table 21. Arm PLL Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~ 1.3 GHz  
24 MHz  
<2250 reference cycles  
4.5  
On-Chip Oscillators  
OSC24M  
4.5.1  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.5.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when  
VDD_HIGH_IN is lost.  
Additionally, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz  
clock will automatically switch to the internal ring oscillator.  
CAUTION  
The internal RTC oscillator does not provide an accurate frequency and is  
affected by process, voltage, and temperature variations. NXP strongly  
recommends using an external crystal as the RTC_XTALI reference. If the  
internal oscillator is used, careful consideration must be given to the timing  
implications on all of the SoC modules dependent on this clock.  
The OSC32K runs from VDD_SNVS_CAP supply, which comes from the VDD_HIGH_IN/  
VDD_SNVS_IN.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
36  
NXP Semiconductors  
Electrical Characteristics  
Table 22. OSC32K Main Characteristics  
Characteristics  
Min  
Typ  
Max  
Comments  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K would work as well.  
Current consumption  
4 μA  
The 4 μA is the consumption of the oscillator alone (OSC32K). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 μA when ring oscillator is inactive, 20 μA  
when the ring oscillator is running. Another 1.5 μA is drawn from  
VDD_SNVS_IN in the power_detect block. So, the total current is 6.5 μA  
on VDD_SNVS_IN when the ring oscillator is not running.  
Bias resistor  
14 MΩ  
This the integrated bias resistor that sets the amplifier into a high gain  
state. Any leakage through the ESD network, external board leakage, or  
even a scope probe that is significant relative to this value will debias the  
amp. The debiasing will result in low gain, and will impact the circuit's ability  
to start up and maintain oscillations.  
Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
50 kΩ  
100 kΩ Equivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.6  
I/O DC Parameters  
This section includes the DC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes  
LVDS I/O  
NOTE  
The term ‘OVDD’ in this section refers to the associated supply rail of an  
input or output.  
ovdd  
pmos (Rpu)  
Voh min  
1
Vol max  
or  
0
pdat  
pad  
Predriver  
nmos (Rpd)  
ovss  
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
37  
Electrical Characteristics  
4.6.1  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
Table 23 shows the DC parameters for the clock inputs.  
Table 23. XTALI and RTC_XTALI DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Input Capacitance  
Vih  
0.8 x NVCC_PLL  
5
NVCC_PLL  
0.2V  
1.11  
V
V
Vil  
0
0.8  
0
Vih  
V
Vil  
CIN  
0.2  
V
Simulated data  
pF  
uA  
Startup current  
IXTALI_STARTUP  
Power-on startup for  
0.15msec with a driven  
24 MHz clock at 1.1V.  
This current draw is  
present even if an  
600  
external clock source  
directly drives XTALI  
DC input current  
IXTALI_DC  
2.5  
uA  
1
This voltage specification must not be exceeded and, as such, is an absolute maximum specification.  
NOTE  
The Vil and Vih specifications only apply when an external clock source is  
used. If a crystal is used, Vil and Vih do not apply.  
4.6.2  
Single Voltage General Purpose I/O (GPIO) DC Parameters  
Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the  
operating ranges in Table 9, unless otherwise noted.  
Table 24. Single Voltage GPIO DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Ioh= -0.1mA (DSE=001,010)  
Ioh= -1mA  
OVDD-0.15  
V
(DSE=011,100,101,110,111)  
Low-level output voltage1  
VOL  
Iol= 0.1mA (DSE=001,010)  
Iol= 1mA  
0.15  
V
(DSE=011,100,101,110,111)  
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7*OVDD  
0
OVDD  
V
0.3*OVDD  
V
Input Hysteresis (OVDD= 1.8V) VHYS_Low VDD  
Input Hysteresis (OVDD=3.3V) VHYS_High VDD  
OVDD=1.8 V  
OVDD=3.3 V  
250  
mV  
mV  
mV  
250  
Schmitt trigger VT+ 2,3  
VTH+  
0.5*OVDD  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
38  
NXP Semiconductors  
Electrical Characteristics  
Table 24. Single Voltage GPIO DC Parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Schmitt trigger VT- 2,3  
Pull-up resistor (22_kΩ PU)  
Pull-up resistor (22_kΩ PU)  
Pull-up resistor (47_kΩ PU)  
Pull-up resistor (47_kΩ PU)  
Pull-up resistor (100_kΩ PU)  
Pull-up resistor (100_kΩ PU)  
Pull-down resistor (100_kΩ PD)  
Pull-down resistor (100_kΩ PD)  
Input current (no PU/PD)  
VTH-  
Vin=0V  
-1  
0.5*OVDD  
mV  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
kΩ  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
RPU_100K  
RPU_100K  
RPD_100K  
RPD_100K  
IIN  
212  
1
Vin=OVDD  
Vin=0V  
100  
1
Vin=OVDD  
Vin=0V  
48  
1
Vin=OVDD  
Vin=OVDD  
48  
1
Vin=0V  
VI = 0, VI = OVDD  
VI =0.3*OVDD, VI = 0.7* OVDD  
1
Keeper Circuit Resistance  
R_Keeper  
105  
175  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.6.3  
Dual Voltage GPIO I/O DC Parameters  
Table 25 shows DC parameters for GPIO pads. The parameters in Table 25 are guaranteed per the  
operating ranges in Table 9, unless otherwise noted.  
Table 25. Dual Voltage GPIO I/O DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage1  
Voh  
Ioh = -0.1 mA (DSE2 = 001, 010) OVDD – 0.15  
Ioh = -1 mA  
V
(DSE = 011, 100, 101, 110, 111)  
Low-level output voltage1  
Vol  
Iol = 0.1 mA (DSE = 001, 010)  
Iol = 1mA  
0.15  
V
(DSE = 011, 100, 101, 110, 111)  
High-Level DC input voltage 1,3  
Low-Level DC input voltage1,3  
Input Hysteresis  
Vih  
Vil  
0.7 × OVDD  
OVDD  
0.3 × OVDD  
V
V
V
0
Vhys  
OVDD = 1.8 V  
OVDD = 3.3 V  
0.25  
Schmitt trigger VT+ 3,4  
Schmitt trigger VT– 3,4  
VT+  
VT–  
0.5 × OVDD  
V
V
0.5 × OVDD  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
39  
Electrical Characteristics  
Parameter  
Table 25. Dual Voltage GPIO I/O DC Parameters (continued)  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Input current (no pull-up/down)  
Iin  
Iin  
Vin = OVDD or 0  
-1.25  
1.25  
μA  
Input current (22 kΩ pull-up)  
Vin = 0 V  
Vin = OVDD  
212  
1
μA  
μA  
μA  
μA  
kΩ  
Input current (47 kΩ pull-up)  
Input current (100 kΩ pull-up)  
Input current (100 kΩ pull-down)  
Iin  
Iin  
Vin = 0 V  
Vin = OVDD  
100  
1
Vin = 0 V  
Vin= OVDD  
48  
1
Iin  
Vin = 0 V  
Vin = OVDD  
1
48  
Keeper circuit resistance  
Rkeep  
Vin = 0.3 x OVDD  
Vin = 0.7 x OVDD  
105  
205  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be  
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.  
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.  
2
3
DSE is the Drive Strength Field setting in the associated IOMUX control register.  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
4
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.6.4  
DDR I/O DC Parameters  
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.  
4.6.4.1 LPDDR2 Mode I/O DC Parameters  
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller  
(MMDC).  
1
Table 26. LPDDR2 I/O DC Electrical Parameters  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
Low-level output voltage  
VOH  
VOL  
Ioh= -0.1mA  
0.9*OVDD  
0.1*OVDD  
0.51*OVDD  
OVDD  
Vref-0.13  
Note2  
V
V
Iol= 0.1mA  
Input Reference Voltage  
Vref  
0.49*OVDD  
Vref+0.13  
OVSS  
0.26  
V
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Pull-up/Pull-down Impedance Mismatch  
240 Ω unit calibration resolution  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Mmpupd  
Rres  
V
V
%
Ω
Note3  
-15  
-0.26  
15  
10  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
40  
NXP Semiconductors  
Electrical Characteristics  
1
Table 26. LPDDR2 I/O DC Electrical Parameters (continued)  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Keeper Circuit Resistance  
Rkeep  
Iin  
110  
-2.5  
175  
2.5  
kΩ  
μA  
Input current (no pull-up/down)  
VI = 0, VI = OVDD  
1
2
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
3
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
4.6.4.2  
DDR3/DDR3L Mode I/O DC Parameters  
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller  
(MMDC). The parameters in Table 27 are guaranteed per the operating ranges in Table 9, unless otherwise  
noted.  
Table 27. DDR3/DDR3L I/O DC Electrical Characteristics  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
VOH  
Ioh= -0.1mA  
0.8*OVDD1  
V
Voh (for DSE=001)  
Low-level output voltage  
High-level output voltage  
Low-level output voltage  
VOL  
VOH  
VOL  
Iol= 0.1mA  
Vol (for DSE=001)  
0.2*OVDD  
0.8*OVDD  
0.2*OVDD  
V
V
Ioh= -1mA  
Voh (for all except DSE=001)  
Iol= 1mA  
V
Vol (for all except DSE=001)  
Input Reference Voltage  
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Termination Voltage  
Vref  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Vtt  
0.49*ovdd  
Vref2+0.1  
OVSS  
0.2  
0.51*ovdd  
OVDD  
Vref-0.1  
See Note3  
-0.2  
V
V
V
V
See Note  
0.49*OVDD  
-10  
V
Vtt tracking OVDD/2  
0.51*OVDD  
10  
V
Pull-up/Pull-down Impedance Mismatch Mmpupd  
%
Ω
240 Ω unit calibration resolution  
Keeper Circuit Resistance  
Rres  
Rkeep  
Iin  
10  
105  
165  
kΩ  
μA  
Input current (no pull-up/down)  
VI = 0,VI = OVDD  
-2.9  
2.9  
1
2
3
OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)  
Vref – DDR3/DDR3L external reference voltage  
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
41  
Electrical Characteristics  
4.6.5  
LVDS I/O DC Parameters  
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,  
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
Table 28 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.  
Table 28. LVDS I/O DC Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Differential Voltage  
Output High Voltage  
Output Low Voltage  
Offset Voltage  
VOD  
VOH  
VOL  
VOS  
Rload-100 Ω Diff  
IOH = 0 mA  
IOL = 0 mA  
250  
1.25  
0.9  
350  
1.375  
1.025  
1.2  
450  
1.6  
mV  
V
1.25  
1.375  
V
1.125  
V
4.7  
I/O AC Parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes  
LVDS I/O  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and  
Figure 5.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 4. Load Circuit for Output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 5. Output Transition Time Waveform  
4.7.1  
General Purpose I/O AC Parameters  
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30,  
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the  
IOMUXC control registers.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
42  
NXP Semiconductors  
Electrical Characteristics  
Table 29. General Purpose I/O AC Parameters 1.8 V Mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, DSE=111)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.72/2.79  
1.51/1.54  
Output Pad Transition Times, rise/fall  
(High Drive, DSE=101)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.20/3.36  
1.96/2.07  
ns  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, DSE=100)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.64/3.88  
2.27/2.53  
Output Pad Transition Times, rise/fall  
(Low Drive. DSE=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
4.32/4.50  
3.16/3.17  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
Table 30. General Purpose I/O AC Parameters 3.3 V Mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, DSE=101)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall  
(High Drive, DSE=011)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, DSE=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall  
(Low Drive, DSE=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
4.7.2  
DDR I/O AC Parameters  
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller  
(MMDC).  
Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode.  
1
Table 31. DDR I/O LPDDR2 Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vref + 0.22  
OVDD  
Vref - 0.22  
V
V
V
V
V
V
AC input logic low  
0
0.44  
AC differential input high voltage2  
AC differential input low voltage  
Input AC differential cross point voltage3  
Over/undershoot peak  
Vidh(ac)  
Vidl(ac)  
Vix(ac)  
Vpeak  
Relative to Vref  
0.44  
-0.12  
0.12  
0.35  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
43  
Electrical Characteristics  
Table 31. DDR I/O LPDDR2 Mode AC Parameters (continued)  
1
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
Over/undershoot area (above OVDD  
or below OVSS)  
Varea  
400 MHz  
0.3  
V-ns  
Single output slew rate, measured between  
Vol(ac) and Voh(ac)  
50 Ω to Vref.  
5 pF load.  
Drive impedance = 40 Ω 30%  
1.5  
1
3.5  
2.5  
0.1  
tsr  
V/ns  
ns  
50 Ω to Vref.  
5pF load.  
Drive impedance = 60 Ω 30%  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
1
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
2
3
Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.  
1
Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vid(ac)  
Vix(ac)  
Vpeak  
Varea  
Vref + 0.175  
OVDD  
Vref - 0.175  
V
V
AC input logic low  
0
0.35  
AC differential input voltage2  
Input AC differential cross point voltage3,4  
Over/undershoot peak  
Relative to Vref  
V
Vref - 0.15  
Vref + 0.15  
0.4  
V
V
Over/undershoot area (above OVDD  
or below OVSS)  
400 MHz  
0.5  
V-ns  
Single output slew rate, measured between  
Vol(ac) and Voh(ac)  
tsr  
Driver impedance = 34 Ω  
2.5  
5
V/ns  
ns  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
0.1  
1
2
Note that the JEDEC JESD79_3C specification supersedes any specification in this document.  
Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
3
4
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Extended range for Vix is only allowed for the clock and when the single-ended clock input signals CK and CK# are:  
Monotonic with a single-ended swing VSEL/VSEH of at least VDD/2 250 mV, and  
The differential slew rate of CK - CK# is larger than 3 V/ns  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
44  
NXP Semiconductors  
Electrical Characteristics  
4.7.3  
LVDS I/O AC Parameters  
The differential output transition time waveform is shown in Figure 6.  
padp  
V
OH  
0V  
0V  
0V (Differential)  
padn  
V
OL  
80%  
80%  
0V  
VDIFF  
VDIFF = {padp} - {padn}  
20%  
20%  
t
t
THL  
TLH  
Figure 6. Differential LVDS Driver Transition Time Waveform  
Table 33 shows the AC parameters for LVDS I/O.  
Table 33. I/O AC Parameters of LVDS Pad  
Parameter  
Differential pulse skew1  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
tSKD  
0.25  
0.5  
Rload = 100 Ω,  
Cload = 2 pF  
Transition Low to High Time2  
Transition High to Low Time2  
Operating Frequency  
tTLH  
ns  
tTHL  
0.5  
f
600  
800  
150  
MHz  
mV  
Offset voltage imbalance  
Vos  
1
tSKD = | tPHLD - tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and  
the negative going edge of the same channel.  
2
Measurement levels are 20-80% from output voltage.  
4.8  
Output Buffer Impedance Parameters  
This section defines the I/O impedance parameters of the i.MX 6SoloX processors for the following I/O  
types:  
Dual Voltage General Purpose I/O (DVGPIO)  
Single Voltage General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes  
LVDS I/O  
NOTE  
GPIO and DDR I/O output driver impedance is measured with “long”  
transmission line of impedance Ztl attached to I/O pad and incident wave  
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that  
defines specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 7).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
45  
Electrical Characteristics  
OVDD  
PMOS (Rpu)  
Ztl Ω, L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
Vin (do)  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd – Vref1  
Vref1  
Rpu =  
× Ztl  
× Ztl  
Vref2  
Rpd =  
Vovdd – Vref2  
Figure 7. Impedance Matching Load for Measurement  
4.8.1  
Dual Voltage GPIO Output Buffer Impedance  
Table 34 shows the GPIO output buffer impedance (OVDD 1.8 V).  
Table 34. DVGPIO Output Buffer Average Impedance (OVDD 1.8 V)  
Typical  
Typical  
Parameter  
Symbol  
Drive Strength (DSE)  
Unit  
ADD_DS=1  
ADD_DS=0  
000  
001  
010  
011  
100  
101  
110  
111  
Hi-Z  
262  
134  
88  
62  
51  
Hi-Z  
235  
117  
78  
52  
43  
Output Driver  
Impedance  
Rdrv  
Ω
43  
37  
36  
31  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
46  
NXP Semiconductors  
Electrical Characteristics  
Table 35 shows the GPIO output buffer impedance (OVDD 3.3 V).  
Table 35. DVGPIO Output Buffer Average Impedance (OVDD 3.3 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typical  
Unit  
000  
001  
010  
011  
100  
101  
110  
111  
Hi-Z  
247  
126  
84  
57  
47  
Output Driver  
Impedance  
Rdrv  
Ω
40  
34  
4.8.2  
Single Voltage GPIO Output Buffer Impedance  
Table 36 shows the GPIO output buffer impedance (OVDD 1.8 V).  
Table 36. GPIO Output Buffer Average Impedance (OVDD 1.8 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
260  
130  
88  
65  
52  
Output Driver  
Impedance  
Rdrv  
Ω
43  
37  
Table 37 shows the GPIO output buffer impedance (OVDD 3.3 V).  
Table 37. GPIO Output Buffer Average Impedance (OVDD 3.3 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
157  
78  
53  
39  
32  
26  
23  
Output Driver  
Impedance  
Rdrv  
Ω
4.8.3  
DDR I/O Output Buffer Impedance  
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller  
(MMDC).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
47  
Electrical Characteristics  
Table 38 shows DDR I/O output buffer impedance of i.MX 6SoloX processors.  
Table 38. DDR I/O Output Buffer Impedance  
Typical  
Test Conditions DSE  
Parameter  
Symbol  
Unit  
NVCC_DRAM=1.5 V  
(DDR3)  
NVCC_DRAM=1.2 V  
(LPDDR2)  
(Drive Strength)  
DDR_SEL=11  
DDR_SEL=10  
000  
001  
010  
011  
100  
101  
110  
111  
Hi-Z  
240  
120  
80  
60  
48  
Hi-Z  
240  
120  
80  
60  
48  
Output Driver  
Impedance  
Rdrv  
Ω
40  
34  
40  
34  
Note:  
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.  
2. Calibration is done against 240 Ω external reference resistor.  
3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs.  
4.8.4  
USB HSIC I/O Output Buffer Impedance  
Table 39 shows the USB HSIC I/O (USB_H_DATA and USB_H_STROBE) output buffer impedance.  
Table 39. USB HSIC I/O Output Buffer Impedance  
Typical  
Drive  
Parameter Symbol Strength  
(DSE)  
Unit  
NVCC_USB_H=1.2V NVCC_USB_H=1.5V NVCC_USB_H=1.8V NVCC_USB_H=2.5V  
DDR_SEL=10  
DDR_SEL=11  
DDR_SEL=11  
DDR_SEL=11  
000  
001  
010  
Hi-Z  
240  
120  
80  
60  
48  
Hi-Z  
240  
120  
80  
60  
48  
Hi-Z  
247  
113  
73  
55  
43  
Hi-Z  
287  
121  
76  
57  
45  
Output  
011  
Driver  
Impedance  
Rdrv  
Ω
100  
101  
110  
111  
40  
34  
40  
34  
36  
30  
37  
31  
4.8.5  
LVDS I/O Output Buffer Impedance  
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,  
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
4.9  
System Modules Timing  
This section contains the timing and electrical parameters for the modules in each i.MX 6SoloX processor.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
48  
NXP Semiconductors  
Electrical Characteristics  
4.9.1  
Reset Timing Parameters  
Figure 8 shows the reset timing and Table 40 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 8. Reset Timing Diagram  
Table 40. Reset Timing Parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
4.9.2  
WDOG Reset Timing Parameters  
Figure 9 shows the WDOG reset timing and Table 41 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 9. WDOGn_B Timing Diagram  
Table 41. WDOGn_B Timing Parameters  
ID  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 μs.  
NOTE  
WDOG1_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
4.9.3  
External Interface Module (EIM)  
The following subsections provide information on the EIM. Maximum operating frequency for EIM data  
transfer is 104 MHz. Two system clocks are used with the EIM:  
ACLK_EIM_SLOW_CLK_ROOT is used to clock the EIM module.  
The maximum frequency for CLK_EIM_SLOW_CLK_ROOT is 132 MHz.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
49  
Electrical Characteristics  
ACLK_EXSC is also used when the EIM is in synchronous mode.  
The maximum frequency for ACLK_EXSC is 132 MHz.  
Timing parameters in this section that are given as a function of register settings.  
4.9.3.1 EIM Interface Pads Allocation  
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.  
Table 42 provides EIM interface pads allocation in different modes.  
1
Table 42. EIM Internal Module Multiplexing  
Multiplexed  
Non Multiplexed Address/Data Mode  
Address/Data mode  
Setup  
8 Bit  
16 Bit  
32 Bit  
16 Bit  
32 Bit  
MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 1, MUM = 1,  
DSZ = 100 DSZ = 101 DSZ = 110 DSZ = 111 DSZ = 001 DSZ = 010 DSZ = 011 DSZ = 001 DSZ = 011  
EIM_ADDR  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_DATA  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
EIM_DATA EIM_AD  
[07:00] [07:00]  
[25:16]  
[09:00]  
EIM_DATA EIM_DATA  
[07:00],  
EIM_EB0_B  
EIM_DATA  
[07:00]  
EIM_AD  
[07:00]  
[07:00]  
EIM_DATA  
[15:08],  
EIM_EB1_B  
EIM_DATA  
[15:08]  
EIM_DATA  
[15:08]  
EIM_DATA EIM_AD  
EIM_AD  
[15:08]  
[15:08]  
[15:08]  
EIM_DATA  
[23:16],  
EIM_EB2_B  
EIM_DATA  
[23:16]  
EIM_DATA EIM_DATA  
[23:16] [23:16]  
EIM_DATA  
[07:00]  
EIM_DATA  
[31:24],  
EIM_DATA  
[31:24]  
EIM_DATA EIM_DATA  
[31:24] [31:24]  
EIM_DATA  
[15:08]  
EIM_EB3_B  
1
For more information on configuration ports mentioned in this table, see the i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
50  
NXP Semiconductors  
Electrical Characteristics  
4.9.3.2  
General EIM Timing-Synchronous Mode  
Figure 10, Figure 11, and Table 43 specify the timings related to the EIM module. All EIM output control  
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge  
according to corresponding assertion/negation control fields.  
,
WE2  
...  
WE3  
EIM_BCLK  
WE1  
WE4  
WE6  
WE5  
WE7  
WE9  
EIM_ADDRxx  
EIM_CSx_B  
WE8  
WE10  
WE12  
EIM_WE_B  
EIM_OE_B  
EIM_EBx_B  
WE11  
WE13  
WE15  
WE17  
WE14  
WE16  
EIM_LBA_B  
Output Data  
Figure 10. EIM Outputs Timing Diagram  
EIM_BCLK  
WE18  
Input Data  
WE19  
WE20  
EIM_WAIT_B  
WE21  
Figure 11. EIM Inputs Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
51  
Electrical Characteristics  
4.9.3.3  
Examples of EIM Synchronous Accesses  
1
Table 43. EIM Bus Timing Parameters  
BCD = 0 BCD = 1  
BCD = 2  
Max  
BCD = 3  
Max  
ID  
Parameter  
Min  
Max  
Min  
Max  
Min  
Min  
WE1 EIM_BCLK Cycle  
time2  
t
2 x t  
3 x t  
4 x t  
WE2 EIM_BCLK Low  
Level Width  
0.4 x t  
0.4 x t  
0.8 x t  
0.8 x t  
1.2 x t  
1.2 x t  
1.6 x t  
1.6 x t  
WE3 EIM_BCLK High  
Level Width  
WE4 Clock rise to  
address valid3  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 -t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE5 Clock rise to  
address invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE6 Clock rise to  
EIM_CSx_B valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE7 Clock rise to  
EIM_CSx_B invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE8 Clock rise to  
EIM_WE_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE9 Clock rise to  
EIM_WE_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE10 Clock rise to  
EIM_OE_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE11 Clock rise to  
EIM_OE_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE12 Clock rise to  
EIM_EBx_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE13 Clock rise to  
EIM_EBx_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE14 Clock rise to  
EIM_LBA_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE15 Clock rise to  
EIM_LBA_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE16 Clock rise to Output -0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
Data Valid 1.25 1.25  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
WE17 Clock rise to Output 0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
Data Invalid  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE18 Input Data setup  
time to Clock rise  
2
2
2
2
4
2
4
2
WE19 Input Data hold time  
from Clock rise  
WE20 EIM_WAIT_B setup  
time to Clock rise  
WE21 EIM_WAIT_B hold  
time from Clock rise  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
52  
NXP Semiconductors  
Electrical Characteristics  
1
t is the maximum EIM logic (ACLK_EXSC) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed  
latency configuration, whereas the maximum allowed EIM_BCLK frequency is:  
—Fixed latency for both read and write is 104 MHz.  
—Variable latency for read only is 104 MHz.  
—Variable latency for write only is 52 MHz.  
In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz.Write BCD = 1 and  
104 MHz ACLK_EXSC, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other  
buses are impacted which are clocked from this source. See the CCM chapter of the ii.MX 6SoloX Applications Processor  
Reference Manual (IMX6SXRM) for a detailed clock tree description.  
2
EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is  
defined as 50% as signal value.  
3
For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.  
Figure 12 to Figure 15 provide few examples of basic EIM accesses to external memory devices with the  
timing parameters mentioned previously for specific control parameters settings.  
EIM_BCLK  
WE4  
WE6  
WE5  
WE7  
EIM_ADDRxx  
Address v1  
Last Valid Address  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
WE14  
WE10  
WE12  
WE15  
WE18  
WE11  
WE13  
EIM_OE_B  
EIM_EBx_B  
EIM_DATAxx  
D(v1)  
WE19  
Figure 12. Synchronous Memory Read Access, WSC=1  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
53  
Electrical Characteristics  
EIM_BCLK  
WE5  
WE4  
EIM_ADDRxx  
Last Valid Address  
Address V1  
WE7  
WE6  
WE8  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE9  
WE14  
WE15  
WE13  
WE12  
WE16  
EIM_EBx_B  
WE17  
EIM_DATAxx  
D(V1)  
Figure 13. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0  
EIM_BCLK  
WE16  
WE17  
WE5  
WE4  
EIM_ADDRxx/  
EIM_ADxx  
Write Data  
Last Valid Address  
Address V1  
WE6  
WE7  
WE9  
EIM_CSx_B  
EIM_WE_B  
WE8  
WE14  
WE15  
EIM_LBA_B  
EIM_OE_B  
WE10  
WE11  
EIM_EBx_B  
Figure 14. Muxed Address/Data (A/D) Mode, Synchronous Write Access,  
WSC=6, ADVA=0, ADVN=1, and ADH=1  
NOTE  
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the  
data bus.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
54  
NXP Semiconductors  
Electrical Characteristics  
EIM_BCLK  
WE4  
Valid Address  
WE6  
WE5  
Address V1  
WE19  
Data  
EIM_ADDRxx/  
EIM_ADxx  
Last  
WE18  
EIM_CSx_B  
EIM_WE_B  
WE7  
WE15  
WE10  
WE14  
WE12  
EIM_LBA_B  
EIM_OE_B  
WE11  
WE13  
EIM_EBx_B  
Figure 15. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0  
4.9.3.4  
General EIM Timing-Asynchronous Mode  
Figure 16 through Figure 21, and Table 44 help you determine timing parameters relative to the chip  
select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the  
timing parameters mentioned above.  
Asynchronous read and write access length in cycles may vary from what is shown in Figure 16 through  
Figure 19 as RWSC, OEN and CSN is configured differently. See the ii.MX 6SoloX Applications  
Processor Reference Manual (IMX6SXRM) for the EIM programming model.  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
EIM_ADDRxx/  
EIM_ADxx  
WE31  
WE32  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
WE39  
WE40  
WE36  
WE38  
WE35  
WE37  
EIM_OE_B  
EIM_EBx_B  
WE44  
MAXCO  
EIM_DATAxx[7:0]  
D(V1)  
WE43  
MAXDI  
Figure 16. Asynchronous Memory Read Access (RWSC = 5)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
55  
Electrical Characteristics  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
MAXDI  
WE31  
EIM_ADDRxx/  
EIM_ADxx  
D(V1)  
Addr. V1  
WE32A  
WE44  
EIM_WE_B  
EIM_LBA_B  
WE40A  
WE39  
WE35A  
WE37  
WE36  
WE38  
EIM_OE_B  
EIM_EBx_B  
MAXCO  
Figure 17. Asynchronous A/D Muxed Read Access (RWSC = 5)  
EIM_CSx_B  
WE31  
Last Valid Address  
WE33  
WE32  
WE34  
WE40  
EIM_ADDRxx  
Next Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE39  
WE45  
WE41  
WE46  
EIM_EBx_B  
WE42  
EIM_DATAxx  
D(V1)  
Figure 18. Asynchronous Memory Write Access  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
56  
NXP Semiconductors  
Electrical Characteristics  
EIM_CSx_B  
WE41A  
WE31  
EIM_ADDRxx/  
EIM_DATAxx  
D(V1)  
Addr. V1  
WE32A  
WE42  
WE33  
WE39  
WE34  
EIM_WE_B  
WE40A  
EIM_LBA_B  
EIM_OE_B  
WE45  
WE46  
EIM_EBx_B  
Figure 19. Asynchronous A/D Muxed Write Access  
EIM_CSx_B  
WE31  
WE32  
EIM_ADDRxx  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE39  
WE35  
WE37  
WE40  
WE36  
WE38  
EIM_EBx_B  
WE44  
D(V1)  
EIM_DATAxx[7:0]  
EIM_DTACK_B  
WE43  
WE48  
WE47  
Figure 20. DTACK Mode Read Access (DAP=0)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
57  
Electrical Characteristics  
EIM_CSx_B  
WE31  
WE32  
WE34  
WE40  
EIM_ADDRxx  
EIM_WE_B  
Next Address  
Last Valid Address  
Address V1  
WE33  
WE39  
EIM_LBA_B  
EIM_OE_B  
EIM_EBx_B  
WE45  
WE41  
WE46  
WE42  
EIM_DATAxx  
D(V1)  
WE48  
EIM_DTACK_B  
WE47  
Figure 21. DTACK Mode Write Access (DAP=0)  
1 2  
,
Table 44. EIM Asynchronous Timing Parameters Relative to Chip Select  
DeterminationbySynchronous  
Ref No.  
Parameter  
Min  
Max  
Unit  
measured parameters  
WE31 EIM_CSx_B valid to Address  
Valid  
WE4-WE6-CSA×t  
-3.5-CSA×t  
3.5-CSA×t  
3.5-CSN×t  
ns  
WE32 Address Invalid to EIM_CSx_B  
Invalid  
WE7-WE5-CSN× t  
-3.5-CSN×t  
ns  
WE32A EIM_CSx_B valid to Address  
(muxed Invalid  
A/D)  
t+WE4-WE7+  
(ADVN+ADVA+1-CSA)×t  
t - 3.5+(ADVN+A t + 3.5+(ADVN+ADVA+ ns  
DVA+1-CSA)×t 1-CSA)×t  
WE33 EIM_CSx_B Valid to EIM_WE_B WE8-WE6+(WEA-WCSA)×t -3.5+(WEA-WCS 3.5+(WEA-WCSA)×t  
ns  
ns  
ns  
Valid  
A)×t  
WE34 EIM_WE_B Invalid to  
EIM_CSx_B Invalid  
WE7-WE9+(WEN-WCSN)×t -3.5+(WEN-WCS 3.5+(WEN-WCSN)×t  
N)×t  
WE35 EIM_CSx_B Valid to EIM_OE_B WE10- WE6+(OEA-RCSA)×t -3.5+(OEA-RCS 3.5+(OEA-RCSA)×t  
Valid A)×t  
WE35A EIM_CSx_B Valid to EIM_OE_B WE10-WE6+(OEA+RADVN+R -3.5+(OEA+RAD 3.5+(OEA+RADVN+RA ns  
(muxed Valid  
A/D)  
ADVA+ADH+1-RCSA)×t  
VN+RADVA+ADH DVA+ADH+1-RCSA)×t  
+1-RCSA)×t  
WE36 EIM_OE_B Invalid to  
EIM_CSx_B Invalid  
WE7-WE11+(OEN-RCSN)×t -3.5+(OEN-RCS 3.5+(OEN-RCSN)×t  
N)×t  
ns  
WE37 EIM_CSx_BValidtoEIM_EBx_B WE12-WE6+(RBEA-RCSA)× t -3.5+(RBEA- RC 3.5+(RBEA - RCSA)×t ns  
Valid (Read access)  
SA)×t  
WE38 EIM_EBx_B Invalid to  
EIM_CSx_B Invalid (Read  
access)  
WE7-WE13+(RBEN-RCSN)×t  
-3.5+  
(RBEN-RCSN)×t  
3.5+(RBEN-RCSN)×t ns  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
58  
NXP Semiconductors  
Electrical Characteristics  
1 2  
,
Table 44. EIM Asynchronous Timing Parameters Relative to Chip Select (continued)  
DeterminationbySynchronous  
Ref No.  
Parameter  
Min  
Max  
Unit  
measured parameters  
WE39 EIM_CSx_B Valid to  
EIM_LBA_B Valid  
WE14-WE6+(ADVA-CSA)×t  
-3.5+  
(ADVA-CSA)×t  
3.5+(ADVA-CSA)×t  
ns  
WE40 EIM_LBA_B Invalid to  
EIM_CSx_B Invalid (ADVL is  
asserted)  
WE7-WE15-CSN×t  
-3.5-CSN×t  
3.5-CSN×t  
ns  
ns  
ns  
WE40A EIM_CSx_B Valid to  
(muxed EIM_LBA_B Invalid  
A/D)  
WE14-WE6+(ADVN+ADVA+1- -3.5+(ADVN+AD  
3.5+(ADVN+ADVA  
CSA)×t  
VA+1-CSA)×t  
+1-CSA)×t  
WE41 EIM_CSx_B Valid to Output Data  
Valid  
WE16-WE6-WCSA×t  
-3.5-WCSA×t  
3.5-WCSA×t  
WE41A EIM_CSx_B Valid to Output Data WE16-WE6+(WADVN+WADVA -3.5+(WADVN+ 3.5+(WADVN+WADVA ns  
(muxed Valid  
A/D)  
+ADH+1-WCSA)×t  
WADVA  
+ADH+1-WCSA)  
×t  
+ADH+1-WCSA)×t  
WE42 Output Data Invalid to  
EIM_CSx_B Invalid  
WE17-WE7-CSN×t  
-3.5-CSN×t  
3.5-CSN×t  
ns  
ns  
MAXCO Output maximum delay from  
internal driving  
10  
10  
EIM_ADDRxx/controlflip-flopsto  
chip outputs.  
MAXCSO Output maximum delay from  
internal chip selects driving  
10  
5
10  
5
ns  
ns  
flip-flops to EIM_CSx_B out.  
MAXDI EIM_DATAxx MAXIMUM delay  
from chip input data to its internal  
flip-flop  
WE43 Input Data Valid to EIM_CSx_B  
Invalid  
MAXCO-MAXCSO+MAXDI MAXCO-MAXCS  
O+MAXDI  
ns  
ns  
WE44 EIM_CSx_B Invalid to Input Data  
Invalid  
0
0
WE45 EIM_CSx_BValidtoEIM_EBx_B WE12-WE6+(WBEA-WCSA)×t -3.5+(WBEA-WC 3.5+(WBEA-WCSA)×t ns  
Valid (Write access)  
SA)×t  
WE46 EIM_EBx_B Invalid to  
EIM_CSx_B Invalid (Write  
access)  
WE7-WE13+(WBEN-WCSN)×t -3.5+(WBEN-WC 3.5+(WBEN-WCSN)×t ns  
SN)×t  
MAXDTI Maximum delay from  
EIM_DTACK_B input to its  
internal flip-flop + 2 cycles for  
synchronization  
10  
10  
ns  
WE47 EIM_DTACK_B Active to  
EIM_CSx_B Invalid  
MAXCO-MAXCSO+MAXDTI MAXCO-MAXCS  
O+MAXDTI  
ns  
ns  
WE48 EIM_CSx_B Invalid to  
EIM_DTACK_B invalid  
0
0
1
For more information on configuration parameters mentioned in this table, see the i.MX 6SoloX Applications Processor  
Reference Manual (IMX6SXRM).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
59  
Electrical Characteristics  
2
In this table:  
t means clock period from axi_clk frequency.  
CSA means register setting for WCSA when in write operations or RCSA when in read operations.  
CSN means register setting for WCSN when in write operations or RCSN when in read operations.  
ADVN means register setting for WADVN when in write operations or RADVN when in read operations.  
ADVA means register setting for WADVA when in write operations or RADVA when in read operations.  
4.10 Multi-mode DDR Controller (MMDC)  
The Multi-mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM.  
4.10.1 MMDC Compatibility with JEDEC-Compliant SDRAMs  
The i.MX 6SoloX MMDC supports the following memory types:  
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009  
DDR3 SDRAM compliant to JESD79-3D DDR3 JEDEC standard release April, 2008  
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to  
the DDR design and layout requirements stated in the Hardware Development Guide for i.MX 6SoloX  
Application Processors (IMX6SXHDG).  
4.10.2 MMDC Supported DDR3/LPDDR2 Configurations  
The table below shows the supported DDR3/LPDDR2 configurations:  
Table 45. i.MX 6SoloX Supported DDR3/LPDDR2 Configurations  
Parameter  
Min  
Max  
Unit  
LPDDR2  
JEDEC LPDDR2 Device Speed Grade1  
JEDEC LPDDR2 Device Bus Width  
JEDEC LPDDR2 Device Count2  
LPDDR2-800  
x32  
2
Bits  
x16  
1
Devices  
DDR3/DDR3L  
JEDEC DDR3/DDR3L Device Speed Grade3  
DDR3-800  
x32  
2
Bits  
JEDEC DDR3/DDR3L Device Bus Width  
JEDEC DDR3/DDR3L Device Count4  
x16  
1
Devices  
1
2
3
4
Higher speed grade memories are supported as long as they are backward compatible with the speed grade shown.  
Supported configurations are one 32-bit DDR memory or two 16-bit DDR memories.  
Higher speed grade memories are supported as long as they are backward compatible with the speed grade shown.  
Supported configurations are one 32-bit DDR memory or two 16-bit DDR memories.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
60  
NXP Semiconductors  
Electrical Characteristics  
4.11 General-Purpose Media Interface (GPMI) Timing  
The i.MX 6SoloX GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up  
to 200 MB/s I/O speed and individual chip select.  
It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing  
mode separately described in the following subsections.  
4.11.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 22 through Figure 25  
depicts the relative timing between GPMI signals at the module level for different operations under  
asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 22. Command Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
NF3  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 23. Address Latch Cycle Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
61  
Electrical Characteristics  
NF1  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
.!.$?!,%  
NF8  
Data to NF  
NF9  
.!.$?$!4!XX  
Figure 24. Write Data Latch Cycle Timing Diagram  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF15  
NF13  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 25. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 26. Read Data Latch Cycle Timing Diagram (EDO Mode)  
1
Table 46. Asynchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
(AS + DS) × T - 0.12 [see 2,3  
Max  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CE0_B setup time  
NAND_CE0_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
tCLS  
tCLH  
tCS  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DH × T - 0.72 [see 2]  
(AS + DS + 1) × T [see 3,2  
(DH+1) × T - 1 [see 2]  
DS × T [see 2]  
]
tCH  
tWP  
tALS  
tALH  
(AS + DS) × T - 0.49 [see 3,2  
(DH × T - 0.42 [see 2]  
]
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
62  
NXP Semiconductors  
Electrical Characteristics  
1
Table 46. Asynchronous Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF8  
NF9  
Data setup time  
Data hold time  
tDS  
tDH  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
ns  
ns  
ns  
ns  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) × T [see 3,2  
]
ns  
ns  
ns  
ns  
ns  
ns  
DS × T [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
tRC  
NF15 NAND_RE_B high hold time  
NF16 Data setup on read  
NF17 Data hold on read  
tREH  
tDSR  
tDHR  
(DS × T -0.67)/18.38 [see 5,6  
]
0.82/11.83 [see 5,6  
]
1
GPMI’s Async Mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075ns (half of maximum p-p jitter).  
NF12 is guaranteed by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 25), NF16/NF17 are different from the definition in non-EDO mode (Figure 24).  
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them  
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will  
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay  
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6SoloX  
Applications Processor Reference Manual (IMX6SXRM)). The typical value of this control register is 0x8  
at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should  
be made larger to compensate the board delay.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
63  
Electrical Characteristics  
4.11.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)  
Figure 27 to Figure 29 show the write and read timing of Source Synchronous Mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 27. Source Synchronous Mode Command and Address Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
64  
NXP Semiconductors  
Electrical Characteristics  
NF19  
NF18  
.!.$?#%ꢀ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢁꢂꢀ=  
NF28  
NF28  
.!.$?$1;ꢁꢂꢀ=  
Output enable  
Figure 28. Source Synchronous Mode Data Write Timing Diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢃ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢁꢂꢀ=  
.!.$?$!4!;ꢁꢂꢀ=  
/UTPUT ENABLE  
Figure 29. Source Synchronous Mode Data Read Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
65  
Electrical Characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢁꢂꢀ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 30. NAND_DQS/NAND_DQ Read Valid Window  
1
Table 47. Source Synchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
2
NF18 NAND_CE0_B access time  
NF19 NAND_CE0_B hold time  
tCE  
tCH  
CE_DELAY × T - 0.79 [see ]  
0.5 × tCK - 0.63 [see 2]  
0.5 × tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 × tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
PRE_DELAY × T - 0.29 [see 2]  
POST_DELAY × T - 0.78 [see 2]  
0.5 × tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 × tCK - 0.37  
T - 0.41 [see 2]  
0.25 × tCK - 0.35  
NF29 Data write hold  
0.25 × tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
2.06  
1.95  
NF31 NAND_DQS/NAND_DQ read hold skew  
1
2
GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY,GPMI_TIMING_PREAMBLE_DELAY,GPMI_TIMING2_POST_DELAY.ThisACtimingdepends  
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).  
For DDR Source sync mode, Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read  
valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI  
will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which  
can be provided by an internal DPLL. The delay value can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6SoloX  
Applications Processor Reference Manual (IMX6SXRM)). Generally, the typical delay value of this  
register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough  
and cannot be ignored, the delay value should be made larger to compensate the board delay.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
66  
NXP Semiconductors  
Electrical Characteristics  
4.11.3 Samsung Toggle Mode AC Timing  
4.11.3.1 Command and Address Timing  
NOTE  
Samsung Toggle Mode command and address timing is the same as ONFI  
1.0 compatible Async mode AC timing. See Section 4.11.1, “Asynchronous  
Mode AC Timing (ONFI 1.0 Compatible),” for details.  
4.11.3.2 Read and Write Timing  
DEV?CLK  
.!.$?#%X?"  
.!.$?#,%  
.!.$?!,%  
.!.$?7%?"  
.!.$?2%?"  
.!.$?$13  
.&ꢇꢉ  
.&ꢇꢈ  
ꢀꢅꢆ T#+  
ꢀꢅꢆ T#+  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 31. Samsung Toggle Mode Data Write Timing  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
67  
Electrical Characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢄꢊ  
.!.$?#,%  
.!.$?!,%  
ꢄ T #+  
.&ꢇꢉ  
.!.$?7%?"  
.!.$?2%?"  
ꢄ T #+  
.& ꢇꢈ  
ꢄ T #+  
ꢄ T #+  
ꢄ T #+  
.!.$?$13  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 32. Samsung Toggle Mode Data Read Timing  
1
Table 48. Samsung Toggle Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
Min  
ID  
Parameter  
Symbol  
Unit  
Max  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) × T - 0.12 [see 2,3  
DH × T - 0.72 [see 2]  
(AS + DS) × T - 0.58 [see 3,2  
DH × T - 1 [see 2]  
]
ns  
ns  
ns  
ns  
]
tCH  
tWP  
tALS  
tALH  
DS × T [see 2]  
(AS + DS) × T - 0.49 [see 3,2  
DH × T - 0.42 [see 2]  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
]
NF8 Command/address NAND_DATAxx setup time tCAS  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
tCAH  
tCE  
CE_DELAY × T [see 4,2  
]
tCK  
NF23 preamble delay  
tPRE  
PRE_DELAY × T [see 5,2  
]
NF24 postamble delay  
tPOST POST_DELAY × T +0.43 [see 2]  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
68  
NXP Semiconductors  
Electrical Characteristics  
1
Table 48. Samsung Toggle Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF28 Data write setup  
NF29 Data write hold  
tDS6  
tDH6  
tDQSQ7  
tQHS7  
0.25 × tCK - 0.32  
ns  
ns  
0.25 × tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1) (AS+DS)  
Shown in Figure 31.  
Shown in Figure 32.  
For DDR Toggle mode, Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will  
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is  
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6SoloX  
Applications Processor Reference Manual (IMX6SXRM)). Generally, the typical delay value is equal to  
0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be  
ignored, the delay value should be made larger to compensate the board delay.  
4.12 External Peripheral Interface Parameters  
The following subsections provide information on external peripheral interfaces.  
4.12.1 AUDMUX Timing Parameters  
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between  
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of  
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI  
electrical specifications found within this document.  
4.12.2 CMOS Sensor Interface (CSI) Timing Parameters  
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as  
dumb or smart as follows:  
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync  
(HSYNC)) and output-only Bayer and statistics data.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
69  
Electrical Characteristics  
Smart sensors support CCIR656 video decoder formats and perform additional processing of the  
image (for example, image compression, image pre-filtering, and various data output formats).  
The following subsections describe the CSI timing in gated and ungated clock modes.  
4.12.2.1 Gated Clock Mode Timing  
Figure 33 and Figure 34 shows the gated clock mode timings for CSI, and Table 49 describes the timing  
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC  
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,  
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P5 P6  
CSI_PIXCLK  
P3 P4  
CSI_DATA[15:00]  
Figure 33. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P6 P5  
CSI_PIXCLK  
P3 P4  
CSI_DATA[15:00]  
Figure 34. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
70  
NXP Semiconductors  
Electrical Characteristics  
Table 49. CSI Gated Clock Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
CSI_VSYNC to CSI_HSYNC time  
CSI_HSYNC setup time  
CSI DATA setup time  
tV2H  
tHsu  
tDsu  
tDh  
33.5  
1
ns  
ns  
1
ns  
CSI DATA hold time  
1
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
133  
MHz  
4.12.2.2 Ungated Clock Mode Timing  
Figure 35 shows the ungated clock mode timings of CSI, and Table 50 describes the timing parameters  
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are  
used, and the CSI_HSYNC signal is ignored.  
CSI_VSYNC  
P1  
P6  
P4 P5  
CSI_PIXCLK  
P2 P3  
CSI_DATA[15:00]  
Figure 35. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge  
Table 50. CSI Ungated Clock Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
CSI_VSYNC to pixel clock time  
CSI DATA setup time  
tVSYNC  
tDsu  
33.5  
1
ns  
ns  
CSI DATA hold time  
tDh  
1
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
133  
MHz  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
71  
Electrical Characteristics  
4.12.3 ECSPI Timing Parameters  
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing  
parameters for master and slave modes.  
4.12.3.1 ECSPI Master Mode Timing  
Figure 36 depicts the timing of ECSPI in master mode. Table 51 lists the ECSPI master mode timing  
characteristics.  
ECSPIx_RDY_B  
ECSPIx_SS_B  
CS10  
CS5  
CS2  
CS6  
CS3  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MOSI  
ECSPIx_MISO  
CS2  
CS3  
CS7  
CS9  
CS8  
Figure 36. ECSPI Master Mode Timing Diagram  
NOTE  
ECSPIx_MOSI is always driven (not tri-stated) between actual data  
transmissions. This limits the ECSPI to be connected between a single  
master and a single slave.  
Table 51. ECSPI Master Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
ns  
CS3 ECSPIx_SCLK Rise or Fall1  
tRISE/FALL  
tCSLH  
1
ns  
ns  
ns  
ns  
ns  
ns  
CS4 ECSPIx_SS_B pulse width  
Half ECSPIx_SCLK period  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)  
CS8 ECSPIx_MISO Setup Time  
tSCS  
Half ECSPIx_SCLK period - 4  
tHCS  
Half ECSPIx_SCLK period - 2  
tPDmosi  
tSmiso  
-1  
14  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
72  
NXP Semiconductors  
Electrical Characteristics  
Max Unit  
Table 51. ECSPI Master Mode Timing Parameters (continued)  
ID  
Parameter  
Symbol  
Min  
CS9 ECSPIx_MISO Hold Time  
tHmiso  
tSDRY  
0
5
ns  
ns  
CS10 RDY to ECSPIx_SS_B Time2  
1
2
See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”  
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.  
4.12.3.2 ECSPI Slave Mode Timing  
Figure 37 depicts the timing of ECSPI in slave mode. Table 52 lists the ECSPI slave mode timing  
characteristics.  
ECSPIx_SS_B  
CS5  
CS6  
CS2  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MISO  
CS2  
CS9  
CS8  
CS7  
ECSPIx_MOSI  
Figure 37. ECSPI Slave Mode Timing Diagram  
NOTE  
ECSPIx_MISO is always driven (not tri-stated) between actual data  
transmissions. This limits the ECSPI to be connected between a single  
master and a single slave.  
Table 52. ECSPI Slave Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPI_SCLK Cycle Time–Write  
tclk  
15  
43  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
7
21.5  
ns  
CS4 ECSPIx_SS_B pulse width  
tCSLH  
tSCS  
Half ECSPIx_SCLK period  
19  
ns  
ns  
ns  
ns  
ns  
ns  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Setup Time  
5
5
4
4
4
tHCS  
tSmosi  
tHmosi  
tPDmiso  
CS8 ECSPIx_MOSI Hold Time  
CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
73  
Electrical Characteristics  
4.12.4 Enhanced Serial Audio Interface (ESAI) Timing Parameters  
The ESAI consists of independent transmitter and receiver sections, each section with its own clock  
generator. Table 53 shows the interface timing values. The number field in the table refers to timing  
signals found in Figure 38 and Figure 39.  
Table 53. Enhanced Serial Audio Interface (ESAI) Timing  
No.  
Characteristics1,2  
Symbol Expression2 Min  
Max Condition3 Unit  
62 Clock cycle4  
tSSICC  
4 × T  
4 × T  
30.0  
30.0  
i ck  
i ck  
ns  
c
c
63 Clock high period:  
ns  
• For internal clock  
• For external clock  
2 × T 9.0  
6
15  
c
2 × T  
c
64 Clock low period:  
• For internal clock  
• For external clock  
ns  
2 × T 9.0  
6
15  
c
2 × T  
c
65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low  
17.0  
7.0  
x ck  
i ck a  
67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr)  
high5  
19.0  
9.0  
x ck  
i ck a  
68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5  
69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high  
70 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low  
19.0  
9.0  
x ck  
i ck a  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
71 Data in setup time before ESAI_RX_CLK (SCK in  
synchronous mode) falling edge  
12.0  
19.0  
x ck  
i ck  
72 Data in hold time after ESAI_RX_CLK falling edge  
3.5  
9.0  
x ck  
i ck  
73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK  
falling edge5  
2.0  
12.0  
x ck  
i ck a  
74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK  
falling edge  
2.0  
12.0  
x ck  
i ck a  
75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling  
edge  
2.5  
8.5  
x ck  
i ck a  
78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high  
18.0  
8.0  
x ck  
i ck  
79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low  
20.0  
10.0  
x ck  
i ck  
80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr)  
high5  
20.0  
10.0  
x ck  
i ck  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
74  
NXP Semiconductors  
Electrical Characteristics  
Table 53. Enhanced Serial Audio Interface (ESAI) Timing (continued)  
Characteristics1,2 Symbol Expression2 Min Max Condition3 Unit  
No.  
81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5  
82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high  
83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low  
22.0  
12.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
19.0  
9.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
84 ESAI_TX_CLK rising edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
86 ESAI_TX_CLK rising edge to data out valid  
18.0  
13.0  
x ck  
i ck  
87 ESAI_TX_CLK rising edge to data out high impedance 67  
21.0  
16.0  
x ck  
i ck  
89 ESAI_TX_FS input (bl, wr) setup time before  
ESAI_TX_CLK falling edge5  
2.0  
18.0  
x ck  
i ck  
90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK  
falling edge  
2.0  
18.0  
x ck  
i ck  
91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling  
edge  
4.0  
5.0  
x ck  
i ck  
95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle  
2 x TC  
15  
ns  
ns  
96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK  
output  
18.0  
97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK  
output  
18.0  
ns  
1
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)  
i ck s = internal clock, synchronous mode  
(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)  
2
3
bl = bit length  
wl = word length  
wr = word length relative  
ESAI_TX_CLK(SCKT pin) = transmit clock  
ESAI_RX_CLK(SCKR pin) = receive clock  
ESAI_TX_FS(FST pin) = transmit frame sync  
ESAI_RX_FS(FSR pin) = receive frame sync  
ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock  
ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock  
4
5
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the  
second-to-last bit clock of the first word in the frame.  
6
Periodically sampled and not 100% tested.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
75  
Electrical Characteristics  
62  
63  
64  
ESAI_TX_CLK  
(Input/Output)  
78  
79  
ESAI_TX_FS  
(Bit)  
82  
83  
Out  
ESAI_TX_FS  
(Word)  
86  
84  
86  
Out  
87  
First Bit  
Last Bit  
Data Out  
89  
91  
ESAI_TX_FS  
(Bit) In  
91  
90  
ESAI_TX_FS  
(Word) In  
Figure 38. ESAI Transmitter Timing  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
76  
NXP Semiconductors  
Electrical Characteristics  
62  
63  
64  
ESAI_RX_CLK  
(Input/Output)  
65  
66  
ESAI_RX_FS  
(Bit)  
Out  
69  
70  
ESAI_RX_FS  
(Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
ESAI_RX_FS  
(Bit)  
In  
74  
75  
ESAI_RX_FS  
(Word)  
In  
Figure 39. ESAI Receiver Timing  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
77  
Electrical Characteristics  
4.12.5 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC)  
AC Timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single  
Data Rate) timing, eMMC4.4/4.41 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.  
4.12.5.1 SD/eMMC4.3 (Single Data Rate) AC Timing  
Figure 40 depicts the timing of SD/eMMC4.3, and Table 54 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 40. SD/eMMC4.3 Timing  
Table 54. SD/eMMC4.3 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD -6.6  
3.6  
ns  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
78  
NXP Semiconductors  
Electrical Characteristics  
Table 54. SD/eMMC4.3 Interface Timing Specification (continued)  
Parameter Symbols Min  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ID  
Max  
Unit  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.12.5.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing  
Figure 41 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 41. eMMC4.4/4.41 Timing  
Table 55. eMMC4.4/4.41 Interface Timing Specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1 Clock Frequency (eMMC4.4/4.41 DDR)  
SD1 Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2 uSDHC Output Delay tOD 2.8 6.8  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ns  
SD3 uSDHC Input Setup Time  
SD4 uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
79  
Electrical Characteristics  
4.12.5.3 SDR50/SDR104 AC Timing  
Figure 42 depicts the timing of SDR50/SDR104, and Table 56 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
SD5  
SD4  
Output from uSDHC to card  
SD7  
SD6  
SD8  
Figure 42. SDR50/SDR104 Timing  
Table 56. SDR50/SDR104 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
4.8  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
SD5 uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
1
ns  
ns  
SD6 uSDHC Input Setup Time  
SD7 uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
SD8 Card Output Data Window  
tODW  
0.5 × tCLK  
ns  
1
Data window in SDR100 mode is variable.  
4.12.5.4 HS200 Mode Timing  
Figure 43 depicts the timing of HS200 mode, and Table 57 lists the HS200 timing characteristics.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
80  
NXP Semiconductors  
Electrical Characteristics  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 43. HS200 Mode Timing  
Table 57. HS200 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
ns  
ns  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
4.12.5.5 Bus Operation Condition for 3.3 V and 1.8 V Signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD4 supplies are  
identical to those shown in Table 24, “Single Voltage GPIO DC Parameters”. The DC parameters for the  
NVCC_LOW/NVCC_HIGH are identical to those shown in Table 25, “Dual Voltage GPIO I/O DC  
Parameters”.  
4.12.6 Ethernet Controller (ENET) AC Electrical Specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
81  
Electrical Characteristics  
4.12.6.1 ENET MII Mode Timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.12.6.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1ꢀ. There  
is no minimum frequency requirement.  
Figure 44 shows MII receive signal timings. Table 58 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 44. MII Receive Signal Timing Diagram  
Table 58. MII Receive Signal Timing  
ID  
Characteristic1  
Min  
Max  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
5
ns  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
4.12.6.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1ꢀ.  
There is no minimum frequency requirement.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
82  
NXP Semiconductors  
Electrical Characteristics  
Figure 45 shows MII transmit signal timings. Table 59 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 45. MII Transmit Signal Timing Diagram  
Table 59. MII Transmit Signal Timing  
ID  
Characteristic1  
Min  
Max  
Unit  
M5  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
ns  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.12.6.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)  
Figure 46 shows MII asynchronous input timings. Table 60 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 46. MII Async Inputs Timing Diagram  
Table 60. MII Asynchronous Inputs Signal Timing  
ID  
Characteristic  
Min  
Max  
Unit  
M91  
ENET_CRS to ENET_COL minimum pulse width  
1.5  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
83  
Electrical Characteristics  
4.12.6.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 47 shows MII asynchronous input timings. Table 61 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 47. MII Serial Management Channel Timing Diagram  
Table 61. MII Serial Management Channel Timing  
ID  
Characteristic  
Min  
Max  
Unit  
M10  
ENET_MDC falling edge to ENET_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid  
(maximum propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
4.12.6.2 RMII Mode Timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz 50 ppm continuous reference  
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include  
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
84  
NXP Semiconductors  
Electrical Characteristics  
Figure 48 shows RMII mode timings. Table 62 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 48. RMII Mode Signal Timing Diagram  
Table 62. RMII Signal Timing  
ID  
Characteristic  
Min  
Max  
Unit  
M16 ENET_CLK pulse width high  
M17 ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
ENET_CLK period  
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
13  
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to  
ENET_CLK setup  
2
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold  
2
ns  
4.12.6.3 Signal Switching Specifications  
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver  
devices.  
1
Table 63. RGMII Signal Switching Specifications  
Symbol  
Description  
Min  
Max  
Unit  
2
Tcyc  
Clock cycle duration  
Data to clock output skew at transmitter  
7.2  
8.8  
ns  
ps  
3
TskewT  
-500  
500  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
85  
Electrical Characteristics  
1
Table 63. RGMII Signal Switching Specifications (continued)  
Symbol  
Description  
Data to clock input skew at receiver  
Min  
Max  
Unit  
4
TskewR  
Duty_G5  
Duty_T6  
Tr/Tf  
1
2.6  
55  
ns  
%
%
ns  
Duty cycle for Gigabit  
Duty cycle for 10/100T  
Rise/fall time (20–80%)  
45  
40  
60  
0.75  
1
For all signals, the maximum load is as follows:  
CL = 5 pF at 1.8 V  
CL = 10 pF at 2.5 V  
See Figure 4 for the test circuit.  
2
3
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
4
5
6
For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
2'-))?48# ꢋAT TRANSMITTERꢌ  
4SKEW4  
2'-))?48$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
2'-))?48?#4,  
48%.  
48%22  
4SKEW2  
2'-))?48# ꢋAT RECEIVERꢌ  
Figure 49. RGMII Transmit Signal Timing Diagram Original  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
86  
NXP Semiconductors  
Electrical Characteristics  
2'-))?28# ꢋAT TRANSMITTERꢌ  
2'-))?28$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
2'-))?28?#4,  
4SKEW4  
28$6  
28%22  
4SKEW2  
2'-))?28# ꢋAT RECEIVERꢌ  
Figure 50. RGMII Receive Signal Timing Diagram Original  
)NTERNAL DELAY  
2'-))?28# ꢋSOURCE OF DATAꢌ  
4SETUP 4  
4 HOLD 4  
2'-))?28$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
28$6  
28%22  
2'-))?28?#4,  
4 SETUP 2  
4 HOLD 2  
2'-))?28# ꢋAT RECEIVERꢌ  
Figure 51. RGMII Receive Signal Timing Diagram with Internal Delay  
4.12.7 Flexible Controller Area Network (FLEXCAN) AC Electrical  
Specifications  
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing  
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules  
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See  
the IOMUXC chapter of the i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM) to see  
which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
87  
Electrical Characteristics  
4.12.8 I2C Module Timing Parameters  
2
2
This section describes the timing parameters of the I C module. Figure 52 depicts the timing of I C  
2
module, and Table 64 lists the I C module timing characteristics.  
IC11  
IC9  
IC10  
I2Cx_SDA  
I2Cx_SCL  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10  
IC6  
IC11  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 52. I C Bus Timing  
2
Table 64. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
ID  
Parameter  
Unit  
Min  
Max  
Min  
Max  
IC1  
IC2  
I2Cx_SCL cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
µs  
µs  
µs  
Hold time (repeated) START condition  
Set-up time for STOP condition  
IC3  
IC4  
Data hold time  
3.452  
0.92 µs  
IC5  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
1003  
1.3  
µs  
µs  
µs  
ns  
µs  
IC6  
IC7  
IC8  
IC9  
Bus free time between a STOP and START condition  
Rise time of both I2Cx_SDA and I2Cx_SCL signals  
Fall time of both I2Cx_SDA and I2Cx_SCL signals  
Capacitive load for each bus line (Cb)  
4
IC10  
IC11  
IC12  
1000  
300  
400  
20 + 0.1Cb 300 ns  
4
20 + 0.1Cb 300 ns  
400 pF  
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling  
edge of I2Cx_SCL.  
2
3
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.  
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line  
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)  
before the I2Cx_SCL line is released.  
4
Cb = total capacitance of one bus line in pF.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
88  
NXP Semiconductors  
Electrical Characteristics  
4.12.9 LCD Controller (LCDIF) Timing Parameters  
Figure 53 shows the LCDIF timing and Table 65 lists the timing parameters.  
Figure 53. LCD Timing  
Table 65. LCD Timing Parameters  
ID  
Parameter  
Symbol  
tCLK(LCD)  
Min Max Unit  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
LCD pixel clock frequency  
-
150 MHz  
LCD pixel clock high (falling edge capture)  
tCLKH(LCD)  
3
-
-
ns  
ns  
ns  
ns  
ns  
ns  
LCD pixel clock low (rising edge capture)  
tCLKL(LCD)  
3
LCD pixel clock high to data valid (falling edge capture)  
LCD pixel clock low to data valid (rising edge capture)  
LCD pixel clock high to control signals valid (falling edge capture)  
LCD pixel clock low to control signals valid (rising edge capture)  
td(CLKH-DV)  
td(CLKL-DV)  
-1  
-1  
-1  
-1  
1
1
1
1
td(CLKH-CTRLV)  
td(CLKL-CTRLV)  
4.12.9.1 LCDIF Display Interface Signal Mapping  
Table 66. LCDIF Display Interface Signal Mapping  
8-bit DOTCLK  
LCD IF  
16-bit DOTCLK  
LCD IF  
18-bit DOTCLK  
LCD IF  
24-bit DOTCLK  
8-bit DVI  
LCD IF  
Pin Name  
LCD_RS  
LCD IF  
CCIR_CLK  
LCD_CS  
LCD_WR_RWn  
LCD_RD_E  
LCD_VSYNC* (two  
options)  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
89  
Electrical Characteristics  
Pin Name  
Table 66. LCDIF Display Interface Signal Mapping (continued)  
8-bit DOTCLK  
LCD IF  
16-bit DOTCLK  
LCD IF  
18-bit DOTCLK  
LCD IF  
24-bit DOTCLK  
LCD IF  
8-bit DVI  
LCD IF  
LCD_DOTCLK  
LCD_ENABLE  
LCD_D23  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
R[7]  
LCD_D22  
R[6]  
LCD_D21  
R[5]  
LCD_D20  
R[4]  
LCD_D19  
R[3]  
LCD_D18  
R[2]  
LCD_D17  
R[5]  
R[4]  
R[3]  
R[2]  
R[1]  
R[1]  
LCD_D16  
R[0]  
LCD_D15 / VSYNC*  
LCD_D14 / HSYNC**  
R[4]  
R[3]  
R[2]  
G[7]  
G[6]  
LCD_D13 /  
G[5]  
LCD_DOTCLK**  
LCD_D12 / ENABLE**  
LCD_D11  
LCD_D10  
LCD_D9  
R[1]  
R[0]  
R[0]  
G[5]  
G[4]  
G[3]  
G[5]  
G[4]  
G[2]  
G[4]  
G[3]  
G[1]  
LCD_D8  
G[3]  
G[2]  
G[0]  
LCD_D7  
R[2]  
R[1]  
R[0]  
G[2]  
G[1]  
G[0]  
B[1]  
G[2]  
G[1]  
B[7]  
Y/C[7]  
Y/C[6]  
Y/C[5]  
Y/C[4]  
Y/C[3]  
Y/C[2]  
Y/C[1]  
Y/C[0]  
LCD_D6  
G[1]  
G[0]  
B[6]  
LCD_D5  
G[0]  
B[5]  
B[5]  
LCD_D4  
B[4]  
B[4]  
B[4]  
LCD_D3  
B[3]  
B[3]  
B[3]  
LCD_D2  
B[2]  
B[2]  
B[2]  
LCD_D1  
B[1]  
B[1]  
B[1]  
LCD_D0  
B[0]  
B[0]  
B[0]  
B[0]  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_BUSY /  
LCD_VSYNC  
LCD_BUSY (OR  
optional  
LCD_BUSY (OR  
optional  
LCD_BUSY (OR  
optional  
LCD_BUSY (OR  
optional  
LCD_VSYNC)  
LCD_VSYNC)  
LCD_VSYNC)  
LCD_VSYNC)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
90  
NXP Semiconductors  
Electrical Characteristics  
4.12.10 LVDS Display Bridge (LDB) Module Parameters  
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD  
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits”.  
Table 67. LVDS Display Bridge (LDB) Electrical Specification  
Parameter  
Symbol  
Test Condition  
Min Max Units  
DifferentialVoltageOutputVoltage VOD 100 Ω Differential load  
250 450  
Voh 100 Ω differential load (0 V Diff—Output High Voltage static) 1.25 1.6  
Vol 100 Ω differential load (0 V Diff—Output Low Voltage static) 0.9 1.25  
mV  
V
Output Voltage High  
Output Voltage Low  
Offset Static Voltage  
V
VOS Two 49.9 Ω resistors in series between N-P terminal, with  
output in either Zero or One state, the voltage measured  
between the 2 resistors.  
1.15 1.375  
V
VOS Differential  
VOSDIFF Difference in VOS between a One and a Zero state  
ISA ISB With the output common shorted to GND  
-50  
-24  
50  
24  
mV  
mA  
mV  
Output short circuited to GND  
VT Full Load Test  
VTLoad 100 Ω Differential load with a 3.74 kΩ load between GND and 247 454  
IO Supply Voltage  
4.12.11 PCIe PHY Parameters  
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0  
standard.  
4.12.11.1 PCIE_REXT Reference Resistor Connection  
The impedance calibration process requires connection of reference resistor 200 Ω. 1ꢀ precision resistor  
on PCIE_REXT pads to ground. It is used for termination impedance calibration.  
4.12.12 Pulse Width Modulator (PWM) Timing Parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMx_OUT)  
external pin.  
Figure 54 depicts the timing of the PWM, and Table 68 lists the PWM timing parameters.  
0ꢄ  
0ꢇ  
07-N?/54  
Figure 54. PWM Timing  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
91  
Electrical Characteristics  
Table 68. PWM Output Timing Parameters  
ID  
Parameter  
Min  
Max  
Unit  
P1  
P2  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
ipg_clk  
MHz  
ns  
15  
15  
ns  
4.12.13 QUAD SPI (QSPI) Timing Parameters  
Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.  
4.12.13.1 SDR Mode  
1
2
3
4
5
6
7
QSPI1x_SCLK  
Tis Tih  
QSPI1x_DATA[0:3]  
Figure 55. QuadSPI Input/Read Timing (SDR mode with internal sampling)  
Table 69. QuadSPI Input/Read Timing (SDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
8.67  
0
ns  
ns  
Hold time requirement for incoming data  
Tis  
Tih  
Q S P I1 x _ D A TA [0 :3 ]  
Q S P I1 x _ D Q S  
Figure 56. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
92  
NXP Semiconductors  
Electrical Characteristics  
Table 70. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
Hold time requirement for incoming data  
1
1
ns  
ns  
NOTE  
For internal sampling, the timing values assumes using sample point 0,  
that is QuadSPIx_SMPR[SDRSMP] = 0.  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from DQS  
pad and used to sample input data.  
Figure 57. QuadSPI Output/Write Timing (SDR mode)  
Table 71. QuadSPI Output/Write Timing (SDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tov  
Toh  
Tck  
Output Data Valid  
0
3.2  
ns  
ns  
Output Data Hold  
SCK clock period  
12.5  
3
ns  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
SCK cycle(s)  
SCK cycle(s)  
3
NOTE  
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the  
default values of 3 are shown on the timing. Please refer to Reference  
Manual for further details.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
93  
Electrical Characteristics  
4.12.13.2 DDR Mode  
Figure 58. QuadSPI Input/Read Timing (DDR mode with internal sampling)  
Table 72. QuadSPI Input/Read Timing (DDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
8.67  
0
ns  
ns  
Hold time requirement for incoming data  
Figure 59. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)  
Table 73. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
1
1
ns  
ns  
Hold time requirement for incoming data  
NOTE  
For internal sampling, the timing values assumes sample point 0, that is  
QuadSPIx_SMPR[DDRSMP] = 0.  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from the  
DQS pad and used to sample input data.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
94  
NXP Semiconductors  
Electrical Characteristics  
Figure 60. QuadSPI Output/Write Timing (DDR mode)  
Table 74. QuadSPI Output/Write Timing (DDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Tov  
Toh  
Tck  
Output Data Valid  
1
2
ns  
ns  
Output Data Hold  
SCK clock period  
22  
3
ns  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
SCK cycle(s)  
SCK cycle(s)  
3
NOTE  
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the  
default register values of 3 are shown on the timing. Please refer to  
Reference Manual for further details.  
4.12.14 SAI/I2S Switching Specifications  
This sections provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
95  
Electrical Characteristics  
Figure 61. SAI Timing—Master Modes  
Table 75. Master Mode SAI Timing  
Num  
Characteristic  
Min  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_MCLK cycle time  
SAI_MCLK pulse width high/low  
20  
40%  
2 x S1  
40%  
60%  
ns  
MCLK period  
SAI_BCLK cycle time  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
96  
NXP Semiconductors  
Electrical Characteristics  
Figure 62. SAI Timing—Slave Modes  
Table 76. Slave Mode SAI Timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
20  
40%  
10  
2
60%  
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
0
20  
10  
2
SAI_RXD hold after SAI_BCLK  
I2S_TX_FX input assertion to I2S_TXD output valid1  
25  
1
Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
4.12.15 SCAN JTAG Controller (SJC) Timing Parameters  
Figure 63 depicts the SJC test clock input timing. Figure 64 depicts the SJC boundary scan timing.  
Figure 65 depicts the SJC test access port. Signal parameters are listed in Table 77.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 63. Test Clock Input Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
97  
Electrical Characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 64. Boundary Scan (JTAG) Timing Diagram  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ8  
Input Data Valid  
SJ9  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 65. Test Access Port Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
98  
NXP Semiconductors  
Electrical Characteristics  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 66. JTAG_TRST_B Timing Diagram  
Table 77. JTAG Timing  
All Frequencies  
ID  
Parameter1,2  
Unit  
Min  
Max  
1
SJ0  
SJ1  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAG_TCK cycle time in crystal mode  
2
SJ2  
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
SJ3  
SJ4  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
5
40  
40  
44  
44  
SJ5  
24  
SJ6  
SJ7  
SJ8  
5
SJ9  
25  
SJ10  
SJ11  
SJ12  
SJ13  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
1
2
T
= target frequency of SJC  
DC  
VM = mid-point voltage  
4.12.16 SPDIF Timing Parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 78 and Figure 67 and Figure 68 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
99  
Electrical Characteristics  
Table 78. SPDIF Timing Parameters  
Symbol  
Timing Parameter Range  
Characteristics  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
SPDIF_OUT output (Load = 50pf)  
0.7  
ns  
1.5  
24.2  
31.3  
• Skew  
• Transition rising  
• Transition falling  
ns  
ns  
SPDIF_OUT1 output (Load = 30pf)  
1.5  
13.6  
18.0  
• Skew  
• Transition rising  
• Transition falling  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
srckph  
VM  
SPDIF_SR_CLK  
VM  
(Output)  
Figure 67. SPDIF_SR_CLK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 68. SPDIF_ST_CLK Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
100  
NXP Semiconductors  
Electrical Characteristics  
4.12.17 SSI Timing Parameters  
This section describes the timing parameters of the SSI module. The connectivity of the serial  
synchronous interfaces are summarized in Table 79.  
Table 79. AUDMUX Port Allocation  
Port  
Signal Nomenclature  
Type and Access  
AUDMUX port 1  
AUDMUX port 2  
AUDMUX port 3  
AUDMUX port 4  
AUDMUX port 5  
AUDMUX port 6  
AUDMUX port 7  
SSI 1  
SSI 2  
AUD3  
AUD4  
AUD5  
AUD6  
SSI 3  
Internal  
Internal  
External— LCD or SD4 through IOMUXC  
External— ENET or NAND through IOMUXC  
External— KPP or SD1 through IOMUXC  
External— SD2 or CSI through IOMUXC  
Internal  
NOTE  
The terms WL and BL used in the timing diagrams and tables refer to Word  
Length (WL) and Bit Length (BL).  
4.12.17.1 SSI Transmitter Timing with Internal Clock  
Figure 69 depicts the SSI transmitter internal clock timing and Table 80 lists the timing parameters for  
the SSI transmitter internal clock.  
.
SS1  
SS5  
SS4  
SS3  
SS2  
AUDx_TXC  
(Output)  
SS8  
SS6  
AUDx_TXFS (bl)  
(Output)  
SS10  
SS12  
AUDx_TXFS (wl)  
(Output)  
SS14  
SS17  
SS15  
SS16  
SS18  
AUDx_TXD  
(Output)  
SS43  
SS42  
SS19  
AUDx_RXD  
(Input)  
Note: AUDx_RXD input in synchronous mode only  
Figure 69. SSI Transmitter Internal Clock Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
101  
Electrical Characteristics  
Table 80. SSI Transmitter Timing with Internal Clock  
ID  
Parameter  
Internal Clock Operation  
Min  
Max  
Unit  
SS1  
SS2  
AUDx_TXC/AUDxRXC clock period  
81.4  
36.0  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDxRXC clock high period  
AUDx_TXC/AUDxRXC clock low period  
SS4  
SS6  
AUDx_TXC high to AUDx_TXFS (bl) high  
AUDx_TXC high to AUDx_TXFS (bl) low  
AUDx_TXC high to AUDx_TXFS (wl) high  
AUDx_TXC high to AUDx_TXFS (wl) low  
AUDx_TXC/AUDxRXC Internal AUDx_TXFS rise time  
AUDx_TXC/AUDxRXC Internal AUDx_TXFS fall time  
AUDx_TXC high to AUDx_TXD valid from high impedance  
AUDx_TXC high to AUDx_TXD high/low  
15.0  
15.0  
15.0  
15.0  
6.0  
SS8  
SS10  
SS12  
SS14  
SS15  
SS16  
SS17  
SS18  
6.0  
15.0  
15.0  
15.0  
AUDx_TXC high to AUDx_TXD high impedance  
Synchronous Internal Clock Operation  
SS42  
SS43  
AUDx_RXD setup before AUDx_TXC falling  
AUDx_RXD hold after AUDx_TXC falling  
10.0  
0.0  
ns  
ns  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
102  
NXP Semiconductors  
Electrical Characteristics  
4.12.17.2 SSI Receiver Timing with Internal Clock  
Figure 70 depicts the SSI receiver internal clock timing and Table 81 lists the timing parameters for the  
receiver timing with the internal clock.  
SS1  
SS3  
SS5  
SS4  
SS2  
AUDx_TXC  
(Output)  
SS9  
SS7  
AUDx_TXFS (bl)  
(Output)  
SS11  
SS13  
AUDx_TXFS (wl)  
(Output)  
SS20  
SS21  
AUDx_RXD  
(Input)  
SS51  
SS50  
SS47  
SS49  
SS48  
AUDx_RXC  
(Output)  
Figure 70. SSI Receiver Internal Clock Timing Diagram  
Table 81. SSI Receiver Timing with Internal Clock  
ID  
Parameter  
Min  
Max  
Unit  
Internal Clock Operation  
SS1  
SS2  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
AUDx_RXC high to AUDx_TXFS (bl) high  
AUDx_RXC high to AUDx_TXFS (bl) low  
AUDx_RXC high to AUDx_TXFS (wl) high  
AUDx_RXC high to AUDx_TXFS (wl) low  
AUDx_RXD setup time before AUDx_RXC low  
AUDx_RXD hold time after AUDx_RXC low  
SS3  
6.0  
SS4  
36.0  
SS5  
6.0  
15.0  
15.0  
15.0  
15.0  
SS7  
SS9  
SS11  
SS13  
SS20  
SS21  
10.0  
0.0  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
103  
Electrical Characteristics  
Table 81. SSI Receiver Timing with Internal Clock (continued)  
ID  
Parameter  
Min  
Max  
Unit  
Oversampling Clock Operation  
SS47  
SS48  
SS49  
SS50  
SS51  
Oversampling clock period  
Oversampling clock high period  
15.04  
6.0  
ns  
ns  
ns  
ns  
ns  
Oversampling clock rise time  
Oversampling clock low period  
Oversampling clock fall time  
3.0  
6.0  
3.0  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
104  
NXP Semiconductors  
Electrical Characteristics  
4.12.17.3 SSI Transmitter Timing with External Clock  
Figure 71 depicts the SSI transmitter external clock timing and Table 82 lists the timing parameters for  
the transmitter timing with the external clock.  
SS22  
SS23  
SS25  
SS26  
SS24  
AUDx_TXC  
(Input)  
SS27  
SS29  
AUDx_TXFS (bl)  
(Input)  
SS33  
SS31  
AUDx_TXFS (wl)  
(Input)  
SS39  
SS37  
SS38  
AUDx_TXD  
(Output)  
SS45  
SS44  
AUDx_RXD  
(Input)  
SS46  
Note: AUDx_RXD Input in Synchronous mode only  
Figure 71. SSI Transmitter External Clock Timing Diagram  
Table 82. SSI Transmitter Timing with External Clock  
ID  
Parameter  
External Clock Operation  
Min  
Max  
Unit  
SS22  
SS23  
SS24  
SS25  
SS26  
SS27  
SS29  
SS31  
SS33  
SS37  
SS38  
SS39  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
6.0  
36.0  
6.0  
15.0  
AUDx_TXC high to AUDx_TXFS (bl) high  
AUDx_TXC high to AUDx_TXFS (bl) low  
AUDx_TXC high to AUDx_TXFS (wl) high  
AUDx_TXC high to AUDx_TXFS (wl) low  
AUDx_TXC high to AUDx_TXD valid from high impedance  
AUDx_TXC high to AUDx_TXD high/low  
AUDx_TXC high to AUDx_TXD high impedance  
-10.0  
10.0  
-10.0  
10.0  
15.0  
15.0  
15.0  
15.0  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
105  
Electrical Characteristics  
Table 82. SSI Transmitter Timing with External Clock (continued)  
ID  
Parameter  
Min  
Max  
Unit  
Synchronous External Clock Operation  
SS44  
SS45  
SS46  
AUDx_RXD setup before AUDx_TXC falling  
10.0  
2.0  
ns  
ns  
ns  
AUDx_RXD hold after AUDx_TXC falling  
AUDx_RXD rise/fall time  
6.0  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
4.12.17.4 SSI Receiver Timing with External Clock  
Figure 72 depicts the SSI receiver external clock timing and Table 83 lists the timing parameters for the  
receiver timing with the external clock.  
SS22  
SS26  
SS25  
SS24  
SS23  
AUDx_TXC  
(Input)  
SS30  
SS28  
AUDx_TXFS (bl)  
(Input)  
SS32  
SS35  
SS34  
AUDx_TXFS (wl)  
(Input)  
SS41  
SS36  
SS40  
AUDx_RXD  
(Input)  
Figure 72. SSI Receiver External Clock Timing Diagram  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
106  
NXP Semiconductors  
Electrical Characteristics  
Table 83. SSI Receiver Timing with External Clock  
ID  
Parameter  
Min  
Max  
Unit  
External Clock Operation  
SS22  
SS23  
SS24  
SS25  
SS26  
SS28  
SS30  
SS32  
SS34  
SS35  
SS36  
SS40  
SS41  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
6.0  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
36  
6.0  
15.0  
AUDx_RXC high to AUDx_TXFS (bl) high  
AUDx_RXC high to AUDx_TXFS (bl) low  
AUDx_RXC high to AUDx_TXFS (wl) high  
AUDx_RXC high to AUDx_TXFS (wl) low  
AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time  
AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time  
AUDx_RXD setup time before AUDx_RXC low  
AUDx_RXD hold time after AUDx_RXC low  
-10  
10  
-10  
10  
15.0  
6.0  
6.0  
10  
2
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms WL and BL refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
4.12.18 UART I/O Configuration and Timing Parameters  
4.12.18.1 UART RS-232 Serial Mode Timing  
The following sections describe the electrical information of the UART module in the RS-232 mode.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
107  
Electrical Characteristics  
4.12.18.1.1 UART Transmitter  
Figure 73 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit  
format. Table 84 lists the UART RS-232 serial mode transmit timing characteristics.  
Possible  
UA1  
UA1  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 73. UART RS-232 Serial Mode Transmit Timing Diagram  
Table 84. RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1 Transmit Bit Time  
tTbit  
1/Fbaud_rate1 - Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
4.12.18.1.2 UART Receiver  
Figure 74 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 85 lists  
serial mode receive timing characteristics.  
Possible  
Parity  
UA2  
UA2  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_RX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 74. UART RS-232 Serial Mode Receive Timing Diagram  
Table 85. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA2  
Receive Bit Time1  
tRbit  
1/Fbaud_rate2 - 1/(16  
1/Fbaud_rate  
+
x Fbaud_rate  
)
1/(16 x Fbaud_rate)  
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
108  
NXP Semiconductors  
Electrical Characteristics  
4.12.18.1.3 UART IrDA Mode Timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
UART IrDA Mode Transmitter  
Figure 75 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 86 lists  
the transmit timing characteristics.  
UA4  
UA3  
UA3  
UA3  
UA3  
UARTx_TX_DAT  
A
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 75. UART IrDA Mode Transmit Timing Diagram  
Table 86. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
1
UA3  
Transmit Bit Time in IrDA mode  
Transmit IR Pulse Duration  
tTIRbit  
1/Fbaud_rate  
-
2
Tref_clk  
UA4  
tTIRpulse (3/16) x (1/Fbaud_rate  
- Tref_clk  
)
(3/16) x (1/Fbaud_rate  
)
+ Tref_clk  
1
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
2
UART IrDA Mode Receiver  
Figure 76 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 87 lists  
the receive timing characteristics.  
UA6  
UA5  
UA5  
UA5  
UA5  
UARTx_RX_  
DATA  
(input)  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 76. UART IrDA Mode Receive Timing Diagram  
Table 87. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA5  
Receive Bit Time1 in IrDA mode  
tRIRbit  
1/Fbaud_rate2 - 1/(16 1/Fbaud_rate + 1/(16 x  
x Fbaud_rate  
)
Fbaud_rate  
)
UA6  
Receive IR Pulse Duration  
tRIRpulse  
1.41 μs  
(5/16) x (1/Fbaud_rate  
)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
109  
Electrical Characteristics  
1
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
4.12.19 USB HSIC Timings  
This section describes the electrical information of the USB HSIC port.  
NOTE  
In Figure 77, HSIC is a DDR interface and the timing parameters shown  
refer to both rising and falling edges.  
4.12.19.1 Transmit Timing  
Tstrobe  
USB_H_STROBE  
Todelay  
Todelay  
USB_H_DATA  
Figure 77. USB HSIC Transmit Waveform  
Table 88. USB HSIC Transmit Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
4.166  
550  
4.167  
1350  
2
ns  
ps  
Todelay data output delay time  
Measured at 50% point  
Averaged from 30% – 70% points  
Tslew  
strobe/data rising/falling time  
0.7  
V/ns  
4.12.19.2 Receive Timing  
Tstrobe  
USB_H_STROBE  
USB_H_DATA  
Thold  
Tsetup  
Figure 78. USB HSIC Receive Waveform  
1
Table 89. USB HSIC Receive Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
Thold data hold time  
4.166  
300  
4.167  
ns  
ps  
Measured at 50% point  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
110  
NXP Semiconductors  
Electrical Characteristics  
Comment  
1
Table 89. USB HSIC Receive Parameters (continued)  
Name  
Parameter  
Min  
Max  
Unit  
Tsetup  
Tslew  
data setup time  
strobe/data rising/falling time  
365  
0.7  
2
ps  
Measured at 50% point  
Averaged from 30% – 70% points  
V/ns  
1
The timings in the table are guaranteed when:  
—AC I/O voltage is between 0.9x to 1x of the I/O supply  
—DDR_SEL configuration bits of the I/O are set to (10)b  
4.12.20 USB PHY Parameters  
This section describes the USB-OTG PHY and the USB Host port PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in revision 2.0 of the USB  
On-The-Go and Embedded Host Supplement to the USB 2.0 Specification with the amendments below  
(On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to  
Host port).  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ECN June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
111  
Electrical Characteristics  
4.13 A/D Converter  
4.13.1 12-bit ADC Electrical Characteristics  
4.13.1.1 12-bit ADC Operating Conditions  
Table 90. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Absolute  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage  
VDDA_ADC_ 3.0  
3P3  
-
3.6  
V
Delta to VDD  
VDDA_ADC_ -100  
3P3  
0
0
100  
100  
mV  
mV  
(VDD-VDDA_ADC_3P3  
2
)
Ground voltage  
Delta to VSS  
(VSS-VSSAD)  
ΔVSSAD  
-100  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
VREFH  
VREFL  
VADIN  
CADIN  
RADIN  
1.13 VDDA_ADC_3P3 VDDA_ADC_3P3  
V
V
VSSAD  
VREFL  
VSSAD  
VSSAD  
VREFH  
V
Input Capacitance 8/10/12 bit modes  
Input Resistance ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
1.5  
5
2
7
pF  
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
1
ADLPC=1, ADHSC=0  
Analog Source  
Resistance  
12 bit mode fADCK  
40MHz ADLSMP=0,  
=
RAS  
kohms Tsamp=150ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time versus RAS  
ADC Conversion ADLPC=0, ADHSC=1  
Clock Frequency 12 bit mode  
fADCK  
4
4
4
40  
30  
20  
MHz  
MHz  
MHz  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1
Typical values assume VDDA_ADC_3P3= 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2
DC potential difference  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
112  
NXP Semiconductors  
Electrical Characteristics  
Figure 79. 12-bit ADC Input Impedance Equivalency Diagram  
4.13.1.2 12-bit ADC Characteristics  
Table 91. 12-bit ADC Characteristics (V  
= VDDA_ADC_3P3, V  
= V  
)
SSAD  
REFH  
REFL  
Characteristic  
Conditions1  
Symbol Min  
Typ2  
250  
Max  
Unit  
Comment  
[L:] Supply Current  
ADLPC=1, ADHSC=0 IDDAD  
ADLPC=0, ADHSC=0  
µA  
ADLSMP=0  
ADSTS=10  
ADCO=1  
350  
400  
0.01  
ADLPC=0, ADHSC=1  
[L:] Supply Current  
Stop, Reset,  
Module Off  
IDDAD  
0.8  
µA  
ADC Asynchronous  
Clock Source  
ADHSC=0  
ADHSC=1  
fADACK  
10  
20  
2
MHz  
tADACK = 1/fADACK  
Sample Cycles  
ADLSMP=0, ADSTS=00 Csamp  
ADLSMP=0, ADSTS=01  
ADLSMP=0, ADSTS=10  
ADLSMP=0, ADSTS=11  
ADLSMP=1, ADSTS=00  
ADLSMP=1, ADSTS=01  
ADLSMP=1, ADSTS=10  
ADLSMP=1, ADSTS=11  
cycles  
4
6
8
12  
16  
20  
24  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
113  
Electrical Characteristics  
Table 91. 12-bit ADC Characteristics (V  
= VDDA_ADC_3P3, V  
= V  
) (continued)  
SSAD  
REFH  
REFL  
Characteristic  
Conditions1  
Symbol Min  
Typ2  
Max  
Unit  
Comment  
Conversion Cycles ADLSMP=0 ADSTS=00 Cconv  
ADLSMP=0 ADSTS=01  
28  
30  
cycles  
ADLSMP=0 ADSTS=10  
32  
ADLSMP=0 ADSTS=11  
34  
ADLSMP=1 ADSTS=00  
38  
ADLSMP=1 ADSTS=01  
42  
ADLSMP=1 ADSTS=10  
46  
ADLSMP=1, ADSTS=11  
50  
Conversion Time  
ADLSMP=0 ADSTS=00 Tconv  
ADLSMP=0 ADSTS=01  
ADLSMP=0 ADSTS=10  
ADLSMP=0 ADSTS=11  
ADLSMP=1 ADSTS=00  
ADLSMP=1 ADSTS=01  
ADLSMP=1 ADSTS=10  
ADLSMP=1, ADSTS=11  
0.7  
0.75  
0.8  
0.85  
0.95  
1.05  
1.15  
1.25  
µs  
Fadc=40 MHz  
[P:][C:] Total  
Unadjusted Error  
12 bit mode  
10 bit mode  
8 bit mode  
TUE  
DNL  
INL  
-2  
-0.5  
-0.25  
+5  
+2  
+1.5  
2.5  
1
LSB  
1 LSB =  
(VREFH - VREFL)/2N  
With Max Averaging  
[P:][C:] Differential 12 bit mode  
Non-Linearity  
0.6  
0.5  
0.25  
2
LSB  
LSB  
LSB  
LSB  
Waiting for histogram  
method confirmation  
10bit mode  
8 bit mode  
0.5  
5
[P:][C:] Integral  
Non-Linearity  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
Waiting for histogram  
method confirmation  
1
2
0.5  
1
1
Zero-Scale Error  
Full-Scale Error  
EZS  
2
VADIN = VREFL With  
Max Averaging  
0.5  
0.2  
2
1
0.5  
+1/-6  
1/-2  
0.75  
EFS  
VADIN = VREFH With  
Max Averaging  
0.5  
0.25  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
114  
NXP Semiconductors  
Electrical Characteristics  
= V ) (continued)  
SSAD  
Table 91. 12-bit ADC Characteristics (V  
= VDDA_ADC_3P3, V  
REFH  
REFL  
Characteristic  
Conditions1  
12 bit mode  
Symbol Min  
ENOB 10.1  
Typ2  
Max  
Unit  
Comment  
[L:] Effective  
10.7  
Bits  
Fin = 100Hz  
Number of Bits  
[L:] Signal to Noise See ENOB  
plus Distortion  
SINAD SINAD = 6.02 x ENOB + 1.76  
dB  
1
All accuracy numbers assume the ADC is calibrated with VREFH=VDDA_ADC_3P3  
2
Typical values assume VDDA_ADC_3P3 = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
NOTE  
The ADC electrical spec is met with the calibration enabled configuration.  
Figure 80. Minimum Sample Time versus Ras (Cas = 2pF)  
Figure 81. Minimum Sample Time versus Ras (Cas = 5pF)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
115  
Boot Mode Configuration  
Figure 82. Minimum Sample Time versus Ras (Cas = 10pF)  
5 Boot Mode Configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot Mode Configuration Pins  
Table 92 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6SoloX  
Fuse Map chapter and the System Boot chapter in i.MX 6SoloX Applications Processor Reference  
Manual (IMX6SXRM).  
Table 92. Fuses and Associated Pins Used for Boot  
State during  
reset (POR_B  
asserted)  
State after reset  
(POR_B  
deasserted)  
Direction at  
reset  
Pin  
eFuse name  
Details  
BOOT_MODE0  
BOOT_MODE1  
Input  
Input  
N/A  
N/A  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Boot mode selection  
Bootmode selection  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
116  
NXP Semiconductors  
Boot Mode Configuration  
Table 92. Fuses and Associated Pins Used for Boot (continued)  
State during  
reset (POR_B  
asserted)  
State after reset  
(POR_B  
deasserted)  
Direction at  
reset  
Pin  
eFuse name  
Details  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
BT_CFG1[0]  
BT_CFG1[1]  
BT_CFG1[2]  
BT_CFG1[3]  
BT_CFG1[4]  
BT_CFG1[5]  
BT_CFG1[6]  
BT_CFG1[7]  
BT_CFG2[0]  
BT_CFG2[1]  
BT_CFG2[2]  
BT_CFG2[3]  
BT_CFG2[4]  
BT_CFG2[5]  
BT_CFG2[6]  
BT_CFG2[7]  
BT_CFG4[0]  
BT_CFG4[1]  
BT_CFG4[2]  
BT_CFG4[3]  
BT_CFG4[4]  
BT_CFG4[5]  
BT_CFG4[6]  
BT_CFG4[7]  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
100K Pull Down  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Boot Options, Pin value  
overrides fuse settings for  
BT_FUSE_SEL=’0’. Signal  
Configuration as Fuse  
Override Input at Power Up.  
These are special I/O lines that  
control the boot up  
configuration during product  
development. In production,  
the boot configuration can be  
controlled by fuses.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
117  
Boot Mode Configuration  
5.2  
Boot Device Interface Allocation  
The tables below list the interfaces that can be used by the boot process in accordance with the specific  
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC  
allocation, which are configured during boot when appropriate.  
Table 93. QSPI Boot through QSPI1  
Mux  
Mode  
Quad + Port A + Port A + Port + Port B + Port B  
Ball Name  
Signal Name  
Common  
Mode  
DQS  
CS1  
B
DQS  
CS1  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1B_DATA3  
QSPI1B_DATA2  
QSPI1B_DATA1  
QSPI1B_DATA0  
QSPI1B_SS0_B  
QSPI1B_SCLK  
QSPI1A_SS1_B  
QSPI1A_DQS  
qspi1.A_SCLK  
qspi1.A_SS0_B  
qspi1.A_DATA[0]  
qspi1.A_DATA[1]  
qspi1.A_DATA[2]  
qspi1.A_DATA[3]  
qspi1.B_DATA[3]  
qspi1.B_DATA[2]  
qspi1.B_DATA[1]  
qspi1.B_DATA[0]  
qspi1.B_SS0_B  
qspi1.B_SCLK  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Alt0  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
qspi1.A_SS1_B  
qspi1.A_DQS  
QSPI1B_SS1_B  
QSPI1B_DQS  
qspi1.B_SS1_B  
qspi1.B_DQS  
Table 94. QPSI Boot through QPSI2  
Mux  
Mode  
Quad  
Mode  
+ Port A + Port A + Port + Port B + Port B  
Ball Name  
Signal Name  
Common  
DQS  
CS1  
B
DQS  
CS1  
NAND_CLE  
NAND_ALE  
NAND_WP_B  
qspi2.A_SCLK  
qspi2.A_SS0_B  
qspi2.A_DATA[0]  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_READY_B qspi2.A_DATA[1]  
NAND_CE0_B  
NAND_CE1_B  
NAND_RE_B  
NAND_WE_B  
qspi2.A_DATA[2]  
qspi2.A_DATA[3]  
qspi2.B_DATA[3]  
qspi2.B_DATA[2]  
Yes  
Yes  
Yes  
NAND_DATA00 qspi2.B_DATA[1]  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
118  
NXP Semiconductors  
Boot Mode Configuration  
Table 94. QPSI Boot through QPSI2 (continued)  
Mux  
Mode  
Quad  
Mode  
+ Port A + Port A + Port + Port B + Port B  
Ball Name  
Signal Name  
Common  
DQS  
CS1  
B
DQS  
CS1  
NAND_DATA01 qspi2.B_DATA[0]  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Yes  
Yes  
Yes  
NAND_DATA03  
NAND_DATA02  
NAND_DATA06  
NAND_DATA07  
NAND_DATA04  
NAND_DATA05  
qspi2.B_SS0_B  
qspi2.B_SCLK  
qspi2.A_SS1_B  
qspi2.A_DQS  
qspi2.B_SS1_B  
qspi2.B_DQS  
Yes  
Yes  
Yes  
Yes  
Table 95. SPI Boot through ECSPI1  
Mux  
Mode  
BOOT_CFG BOOT_CFG BOOT_CFG BOOT_CFG  
Ball Name  
Signal Name  
Common  
4[5:4]=00b  
4[5:4]=01b  
4[5:4]=10b  
4[5:4]=11b  
KEY_COL1  
KEY_ROW0  
ecspi1.MISO  
ecspi1.MOSI  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 7  
Alt 7  
Alt 7  
Yes  
Yes  
Yes  
KEY_COL0 (SCLK)  
KEY_ROW1  
ecspi1.SCLK  
ecspi1.SS0  
ecspi1.SS1  
ecspi1.SS2  
ecspi1.SS3  
Yes  
KEY_ROW3  
KEY_COL3  
Yes  
Yes  
KEY_ROW2  
Yes  
Table 96. SPI Boot through ECSPI2  
BOOT_CFG BOOT_CFG BOOT_CFG BOOT_CFG  
Ball Name  
Signal Name Mux Mode Common  
4[5:4]=00b 4[5:4]=01b  
4[5:4]=10b 4[5:4]=11b  
SD4_CLK  
SD4_CMD  
ecspi2.MISO  
ecspi2.MOSI  
Alt 2  
Alt 2  
Alt 2  
Alt 2  
Alt 2  
Alt 2  
Alt 6  
Yes  
Yes  
Yes  
SD4_DATA1 ecspi2.SCLK  
SD4_DATA0  
SD3_DATA0  
SD3_DATA1  
SD4_DATA2  
ecspi2.SS0  
ecspi2.SS1  
ecspi2.SS2  
ecspi2.SS3  
Yes  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
119  
Boot Mode Configuration  
Table 97. SPI Boot through ECSPI3  
BOOT_CFG BOOT_CFG BOOT_CFG BOOT_CFG  
Ball Name  
Signal Name Mux Mode Common  
4[5:4]=00b  
4[5:4]=01b 4[5:4]=10b 4[5:4]=11b  
SD4_DATA6  
SD4_DATA5  
SD4_DATA4  
SD4_DATA7  
SD4_CMD  
ecspi3.MISO  
ecspi3.MOSI  
ecspi3.SCLK  
ecspi3.SS0  
ecspi3.SS1  
ecspi3.SS2  
ecspi3.SS3  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 6  
Alt 6  
Alt 6  
Yes  
Yes  
Yes  
Yes  
Yes  
SD4_CLK  
Yes  
SD4_DATA0  
Yes  
Table 98. SPI Boot through ECSPI4  
BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4  
Ball Name  
Signal Name  
Mux Mode Common  
[5:4]=00b  
[5:4]=01b  
[5:4]=10b  
[5:4]=11b  
SD2_DATA3  
SD2_CMD  
ecspi4.MISO  
ecspi4.MOSI  
ecspi4.SCLK  
ecspi4.SS0  
ecspi4.SS1  
ecspi4.SS2  
ecspi4.SS3  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 6  
Alt 6  
Alt 6  
Yes  
Yes  
Yes  
SD2_CLK  
SD2_DATA2  
SD1_DATA3  
SD2_DATA1  
SD2_DATA0  
Yes  
Yes  
Yes  
Yes  
Table 99. SPI Boot through ECSPI5  
BOOT_CFG4 BOOT_CFG4 BOOT_CFG4[ BOOT_CFG4  
Ball Name  
Signal Name Mux Mode Common  
[5:4]=00b  
[5:4]=01b  
5:4]=10b  
[5:4]=11b  
QSPI1A_SS1_B  
QSPI1A_DQS  
ecspi5.MISO  
ecspi5.MOSI  
ecspi5.SCLK  
ecspi5.SS0  
ecspi5.SS1  
ecspi5.SS2  
ecspi5.SS3  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 2  
Alt 2  
Alt 2  
Yes  
Yes  
Yes  
QSPI1B_SS1_B  
QSPI1B_DQS  
Yes  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1B_DATA3  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
120  
NXP Semiconductors  
Boot Mode Configuration  
BOOT_CFG1[3:2]=10b  
Table 100. NAND Boot through GPMI  
Ball Name  
Signal Name  
Mux Mode Common BOOT_CFG1[3:2]=01b  
NAND_CLE  
NAND_ALE  
NAND_WP_B  
rawnand.CLE  
rawnand.ALE  
rawnand.WP_B  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 1  
Alt 1  
Alt 1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_READY_B rawnand.READY_B  
NAND_CE0_B  
NAND_CE1_B  
NAND_RE_B  
rawnand.CE0_B  
rawnand.CE1_B  
rawnand.RE_B  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_WE_B  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
SD4_RESET_B  
SD4_DATA5  
rawnand.WE_B  
rawnand.DATA00  
rawnand.DATA01  
rawnand.DATA02  
rawnand.DATA03  
rawnand.DATA04  
rawnand.DATA05  
rawnand.DATA06  
rawnand.DATA07  
rawnand.DQS  
rawnand.CE2_B  
rawnand.CE3_B  
SD4_DATA6  
Table 101. SD/MMC Boot through USDHC1  
BOOT_CFG1[1]=1  
SDMMC  
Mux  
Mode  
(SD Power Cycle  
MFG  
Ball Name  
Signal Name  
Common  
4-bit  
8-bit  
or SD boot with  
Mode  
SDR50/SDR104)  
GPIO1_IO02  
SD1_CLK  
usdhc1.CD_B  
usdhc1.CLK  
Alt 1  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 1  
Alt 1  
Yes  
Yes  
Yes  
Yes  
SD1_CMD  
usdhc1.CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
NAND_DATA00  
NAND_DATA01  
usdhc1.DATA0  
usdhc1.DATA1  
usdhc1.DATA2  
usdhc1.DATA3  
usdhc1.DATA4  
usdhc1.DATA5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
121  
Boot Mode Configuration  
Table 101. SD/MMC Boot through USDHC1 (continued)  
Mux  
BOOT_CFG1[1]=1  
(SD Power Cycle  
or SD boot with  
SDR50/SDR104)  
SDMMC  
MFG  
Mode  
Ball Name  
Signal Name  
Common  
4-bit  
8-bit  
Mode  
NAND_DATA02  
NAND_DATA03  
NAND_WP_B  
usdhc1.DATA6  
usdhc1.DATA7  
GPIO4_15  
Alt 1  
Alt 1  
Alt 5  
Alt 1  
Yes  
Yes  
Yes  
Yes  
NAND_READY_B usdhc1.VSELECT  
Table 102. SD/MMC Boot through USDHC2  
BOOT_CFG1[1]=1  
(SD Power Cycle  
or SD boot with  
SDR50/SDR104)  
Ball Name  
Signal Name  
Mux Mode Common  
4-bit  
8-bit  
SD2_CLK  
SD2_CMD  
usdhc2.CLK  
usdhc2.CMD  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 5  
Alt 1  
Yes  
Yes  
Yes  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_RE_B  
NAND_CE0_B  
usdhc2.DATA0  
usdhc2.DATA1  
usdhc2.DATA2  
usdhc2.DATA3  
usdhc2.DATA4  
usdhc2.DATA5  
usdhc2.DATA6  
usdhc2.DATA7  
GPIO4_IO12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
usdhc2.VSELECT  
Table 103. SD/MMC Boot through USDHC3  
BOOT_CFG1[1]=1  
(SD Power Cycle  
or SD boot with  
SDR50/SDR104)  
Ball Name  
Signal Name  
Mux Mode Common  
4-bit  
8-bit  
SD3_CLK  
SD3_CMD  
usdhc3.CLK  
usdhc3.CMD  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Yes  
Yes  
Yes  
SD3_DATA0  
SD3_DATA1  
SD3_DATA2  
usdhc3.DATA0  
usdhc3.DATA1  
usdhc3.DATA2  
Yes  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
122  
NXP Semiconductors  
Boot Mode Configuration  
Table 103. SD/MMC Boot through USDHC3 (continued)  
BOOT_CFG1[1]=1  
(SD Power Cycle  
or SD boot with  
SDR50/SDR104)  
Ball Name  
Signal Name  
Mux Mode Common  
4-bit  
8-bit  
SD3_DATA3  
SD3_DATA4  
SD3_DATA5  
SD3_DATA6  
SD3_DATA7  
KEY_COL1  
usdhc3.DATA3  
usdhc3.DATA4  
usdhc3.DATA5  
usdhc3.DATA6  
usdhc3.DATA7  
GPIO2_IO11  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Table 104. SD/MMC Boot through USDHC4  
BOOT_CFG1[1]=1  
(SDPowerCycleor  
SD boot with  
Ball Name  
Signal Name  
Mux Mode Common  
4-bit  
8-bit  
SDR50/SDR104)  
SD4_CLK  
SD4_CMD  
usdhc4.CLK  
usdhc4.CMD  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 5  
Alt 1  
Yes  
Yes  
Yes  
SD4_DATA0  
SD4_DATA1  
SD4_DATA2  
SD4_DATA3  
SD4_DATA4  
SD4_DATA5  
SD4_DATA6  
SD4_DATA7  
SD4_RESET_B  
KEY_ROW1  
usdhc4.DATA0  
usdhc4.DATA1  
usdhc4.DATA2  
usdhc4.DATA3  
usdhc4.DATA4  
usdhc4.DATA5  
usdhc4.DATA6  
usdhc4.DATA7  
GPIO6_IO22  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
usdhc4.VSELECT  
Table 105. NOR/OneNAND Boot through EIM  
ADH16  
Non-Mux  
ADL16  
Non-Mux  
Ball Name  
Signal Name  
Mux Mode Common  
AD16 Mux  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
weim.AD[0]  
weim.AD[1]  
weim.AD[2]  
weim.AD[3]  
weim.AD[4]  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Yes  
Yes  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
123  
Boot Mode Configuration  
Ball Name  
Table 105. NOR/OneNAND Boot through EIM (continued)  
ADH16  
ADL16  
Non-Mux  
Signal Name  
Mux Mode Common  
AD16 Mux  
Non-Mux  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
NAND_ALE  
weim.AD[5]  
weim.AD[6]  
Alt 6  
Alt 6  
Alt 6  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
weim.AD[7]  
weim.AD[8]  
weim.AD[9]  
weim.AD[10]  
weim.AD[11]  
weim.AD[12]  
weim.AD[13]  
weim.AD[14]  
weim.AD[15]  
weim.ADDR[16]  
weim.ADDR[17]  
weim.ADDR[18]  
weim.ADDR[19]  
weim.ADDR[20]  
weim.ADDR[21]  
weim.ADDR[22]  
weim.ADDR[23]  
weim.ADDR[24]  
weim.ADDR[25]  
weim.ADDR[26]  
weim.CS0_B  
weim.DATA[0]  
weim.DATA[1]  
weim.DATA[2]  
weim.DATA[3]  
weim.DATA[4]  
weim.DATA[5]  
weim.DATA[6]  
weim.DATA[7]  
weim.DATA[8]  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
QSPI1A_DATA3  
QSPI1A_DATA2  
QSPI1A_DATA1  
QSPI1A_DATA0  
QSPI1A_DQS  
QSPI1B_SCLK  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
124  
NXP Semiconductors  
Boot Mode Configuration  
Table 105. NOR/OneNAND Boot through EIM (continued)  
ADH16  
ADL16  
Ball Name  
Signal Name  
Mux Mode Common  
AD16 Mux  
Non-Mux  
Non-Mux  
QSPI1B_SS0_B  
QSPI1B_SS1_B  
QSPI1B_DATA3  
QSPI1B_DATA2  
QSPI1B_DATA1  
QSPI1B_DATA0  
QSPI1B_DQS  
CSI_DATA07  
CSI_DATA06  
CSI_DATA05  
CSI_DATA04  
CSI_DATA03  
CSI_DATA02  
CSI_DATA01  
CSI_DATA00  
CSI_VSYNC  
weim.DATA[9]  
weim.DATA[10]  
weim.DATA[11]  
weim.DATA[12]  
weim.DATA[13]  
weim.DATA[14]  
weim.DATA[15]  
weim.DATA[16]  
weim.DATA[17]  
weim.DATA[18]  
weim.DATA[19]  
weim.DATA[20]  
weim.DATA[21]  
weim.DATA[22]  
weim.DATA[23]  
weim.DATA[24]  
weim.DATA[25]  
weim.DATA[26]  
weim.DATA[27]  
weim.DATA[28]  
weim.DATA[29]  
weim.DATA[30]  
weim.DATA[31]  
weim.EB_B[0]  
weim.EB_B[1]  
weim.EB_B[2]  
weim.EB_B[3]  
weim.LBA_B  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 6  
Alt 1  
Alt 1  
Alt 6  
Alt 6  
Alt 6  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CSI_HSYNC  
CSI_MCLK  
CSI_PIXCLK  
KEY_COL3  
KEY_ROW2  
KEY_COL2  
KEY_ROW1  
NAND_WP_B  
NAND_READY_B  
LCD1_DATA06  
LCD1_DATA07  
NAND_CE0_B  
NAND_CE1_B  
NAND_RE_B  
Yes  
Yes  
Yes  
Yes  
weim.OE  
weim.RW  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
125  
Package Information and Contact Assignments  
6 Package Information and Contact Assignments  
This section includes the contact assignment information and mechanical package drawing.  
6.1  
i.MX 6SoloX Signal Availability by Package  
The i.MX 6SoloX is available in multiple packages. Not all signals are available in all packages. Table 106  
summarizes the signal differences and their implications. Signals available on all packages are not shown in this  
table. This table only shows signals impacted that are not available through another IOMUX option.  
Table 106. i.MX 6SoloX Signal Availability by Package  
Package  
Affected  
Module  
SoC Capability  
Implication  
19x19 mm  
[VM]  
17x17 mm NP 17x17 mm WP  
(no PCIe) [VO] (with PCIe) [VN]  
14x14 mm  
[VK]  
ADC  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
ADC_VREFL  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
ADC_VREFL  
ADC1_IN0  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
ADC1_IN1  
Tied internally  
to VSS  
ADC_VREFL 17x17NP low reference voltage is not  
controllable.  
ADC_VREFH  
ECSPI4_RDY  
ADC_VREFH Tied internally to ADC_VREFH 17x17NP high reference voltage is not  
VDDA_ADC_3P3  
controllable.  
ECSPI4  
EIM  
Master mode flow control cannot be  
used without ECSPI4_RDY  
EIM_DATA[27:16]  
Reduced EIM throughput on the  
smaller packages  
ENET1  
1588_EVENT1_IN  
1588_EVENT1_OUT  
1588_EVENT1_IN  
1588_EVENT1_OUT  
ENET2  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
126  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 106. i.MX 6SoloX Signal Availability by Package (continued)  
Package  
Affected  
Module  
SoC Capability  
Implication  
19x19 mm  
[VM]  
17x17 mm NP 17x17 mm WP  
(no PCIe) [VO] (with PCIe) [VN]  
14x14 mm  
[VK]  
GPIO  
GPIO1_IO[21]  
GPIO1_IO[20]  
GPIO1_IO[19]  
GPIO1_IO[18]  
GPIO1_IO[17]  
GPIO1_IO[16]  
GPIO1_IO[15]  
GPIO1_IO[14]  
GPIO1_IO[25]  
GPIO1_IO[22]  
GPIO1_IO[23]  
GPIO1_IO[24]  
GPIO6_IO[2]  
GPIO6_IO[3]  
GPIO6_IO[1]  
GPIO6_IO[0]  
GPIO6_IO[4]  
GPIO6_IO[5]  
GPT  
GPT_CAPTURE1  
GPT_CAPTURE2  
GPT_COMPARE1  
GPT_CLK  
GPT_COMPARE2  
GPT_COMPARE3  
GPT_CAPTURE1  
LVDS_CLK_N  
LVDS_CLK_P  
LVDS_DATA0_N  
LVDS_DATA0_P  
LVDS_DATA1_N  
LVDS_DATA1_P  
LVDS_DATA2_N  
LVDS_DATA2_P  
LVDS_DATA3_N  
LVDS_DATA3_P  
LVDS_CLK_N  
LVDS I/F  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
127  
Package Information and Contact Assignments  
Table 106. i.MX 6SoloX Signal Availability by Package (continued)  
Package  
Affected  
Module  
SoC Capability  
Implication  
19x19 mm  
[VM]  
17x17 mm NP 17x17 mm WP  
(no PCIe) [VO] (with PCIe) [VN]  
14x14 mm  
[VK]  
MMDC  
PCIe  
DRAM_ADDR15  
Address space is limited to 2GB on the  
smaller packages vs.4 GB on the  
19x19 package.  
PCIE_REXT  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
PCIE_VP  
PCIE_REXT  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
PCIE_VP  
PCIE_VP_CAP  
PCIE_VP_CAP  
PCIE_VPH  
PCIE_VPH  
PCIE_VPTX  
PCIE_VPTX  
UART6_DCD_B  
UART6_DTR_B  
UART6_DSR_B  
UART6_RI_B  
SD1_DATA0  
UART6  
uSDHC1  
Entire interface not available on the  
smaller packages  
SD1_DATA1  
SD1_CMD  
SD1_CLK  
SD1_DATA2  
SD1_DATA3  
6.2  
Signals with Different States During Reset and After Reset  
For most of the signals, the state during reset is the same as the state after reset as listed in the “Out of Reset  
Condition” column of the Functional Contact Assignment tables for the various packages (Table 109,  
Table 113, Table 116, and Table 119). However, there are a few signals for which the state during reset is  
different from the state after reset. These signals along with their state during reset are given in Table 107.  
Table 107. Signals with Different States During Reset and After Reset  
State During Reset (POR_B Asserted)  
Ball Name  
Input/Output  
Value  
GPIO1_IO06  
GPIO1_IO09  
Output  
Drive state unknown. This signal should not be used for system functions that will  
require it to be an input or stable output during reset.  
Output  
Drive state unknown. This signal should not be used for system functions that will  
require it to be an input or stable output during reset.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
128  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 107. Signals with Different States During Reset and After Reset (continued)  
State During Reset (POR_B Asserted)  
Value  
Ball Name  
Input/Output  
RGMII2_TD3  
Output  
Drive state unknown. This signal should not be used for system functions that will  
require it to be an input or stable output during reset.  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
BT_CFG[0] with 100K Pull Down  
BT_CFG[1] with 100K Pull Down  
BT_CFG[2] with 100K Pull Down  
BT_CFG[3] with 100K Pull Down  
BT_CFG[4] with 100K Pull Down  
BT_CFG[5] with 100K Pull Down  
BT_CFG[6] with 100K Pull Down  
BT_CFG[7] with 100K Pull Down  
BT_CFG[8] with 100K Pull Down  
BT_CFG[9] with 100K Pull Down  
BT_CFG[10] with 100K Pull Down  
BT_CFG[11] with 100K Pull Down  
BT_CFG[12] with 100K Pull Down  
BT_CFG[13] with 100K Pull Down  
BT_CFG[14] with 100K Pull Down  
BT_CFG[15] with 100K Pull Down  
BT_CFG[24] with 100K Pull Down  
BT_CFG[25] with 100K Pull Down  
BT_CFG[26] with 100K Pull Down  
BT_CFG[27] with 100K Pull Down  
BT_CFG[28] with 100K Pull Down  
BT_CFG[29] with 100K Pull Down  
BT_CFG[30] with 100K Pull Down  
BT_CFG[31] with 100K Pull Down  
6.3  
19x19 mm Package Information  
6.3.1  
19x19 mm, 0.8 mm Pitch, 23x23 Ball Matrix  
Figure 83 shows the top, bottom, and side views of the 19×19 mm BGA package.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
129  
Package Information and Contact Assignments  
Figure 83. 19x19 mm BGA Package—Top, Bottom, and Side Views  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
130  
NXP Semiconductors  
Package Information and Contact Assignments  
Figure 84. 19x19 mm BGA Package Notes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
131  
Package Information and Contact Assignments  
6.3.2  
19x19 mm Supplies Contact Assignments and Functional Contact  
Assignments  
Table 108 shows supplies contact assignments for the 19x19 mm package.  
Table 108. 19x19 mm Supplies Contact Assignments  
19x19  
Ball(s) Position(s)  
Supply Rail Name  
Remark  
ADC_VREFH  
ADC_VREFL  
DRAM_VREF  
AA16  
U16  
M3  
ADC high reference voltage  
ADC low reference voltage  
DDR voltage reference input. Connect to a voltage source  
that is 50% of NVCC_DRAM.  
DRAM_ZQPAD  
GPANAIO  
C4  
DDR output buffer driver calibration reference voltage input.  
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor  
to Vss.  
V18  
Analog output for NXP use only. This output must always be  
left unconnected.  
NGND_KEL0  
NVCC_CSI  
R16  
P18  
Connect to Vss  
Supply input for the CSI interface  
Supply input for the DDR I/O interface  
NVCC_DRAM  
F5, G5, H5, J5, K5, L5, M5, N5, P5,  
R5, T5, U5, V5  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
M6  
F6  
Supply input for the DDR interface  
Supply input for the ENET interfaces  
Supply input for the GPIO interface  
G15  
U12  
NVCC_HIGH  
3.3 V Supply input for the dual-voltage I/Os on the SD3  
interface  
NVCC_JTAG  
NVCC_KEY  
NVCC_LCD1  
NVCC_LOW  
U11  
G16  
G17  
V11  
Supply input for the JTAG interface  
Supply input for the Key Pad Port (KPP) interface  
Supply input for the LCD interface  
1.8 V Supply input for the dual-voltage IOs on the SD3  
interface  
NVCC_LVDS  
NVCC_NAND  
NVCC_PLL  
T18  
U8  
Supply input for the LVDS interface  
Supply input for the Raw NAND flash memories interface  
Supply input for the PLLs  
Y23  
G14  
F8  
NVCC_QSPI  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_SD1  
Supply input for the QSPI interface  
Supply input for the RGMII1 interface  
Supply input for the RGMII2 interface  
Supply input for the SD1 interface  
G9  
G12  
G11  
U10  
AA6  
M21  
NVCC_SD2  
Supply input for the SD2 interface  
NVCC_SD4  
Supply input for the SD4 interface  
NVCC_USB_H  
PCIE_REXT  
Supply input for the USB HSIC interface  
PCIe impedance calibration resistor. Connect PCIE_REXT to  
an external 200 ohm 1% resistor to Vss.  
PCIE_VP  
L18  
R18  
Supply input for the PCIe PHY  
Supply input for the PCIe PHY  
PCIE_VPH  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
132  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 108. 19x19 mm Supplies Contact Assignments (continued)  
19x19  
Ball(s) Position(s)  
Supply Rail Name  
Remark  
PCIE_VPTX  
RSVD  
M18  
E5  
Supply input for the PCIe PHY  
Reserved. Do not connect.  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
Reserved  
W20  
Y18  
K21  
L21  
N18  
VBUS input for USB_OTG1  
VBUS input for USB_OTG2  
Reserved. Leave unconnected.  
Reserved  
Reserved. Connect to ground through a 10 kΩ resistor.  
Reserved. Connect to ground through a 10 kΩ resistor.  
Reserved  
VDD_ARM_CAP  
C18, J12, J13, J14, J15, J16, K16,  
L16, M16  
Supply voltage output from internal LDO_ARM. Requires  
external capacitor(s).  
VDD_ARM_IN  
K12, K13, K14, K15, J21, L15, M15  
U17, U18  
Supply voltage input for internal LDO_ARM.  
VDD_HIGH_CAP  
Supply voltage output from internal LDO_2P5. Requires  
external capacitor(s).  
VDD_HIGH_IN  
U14, U15  
Y22  
Supply voltage input to internal LDO_2P5, LDO_1P1 and  
LDO_SNVS.  
VDD_SNVS_CAP  
Supply voltage output from internal LDO_SNVS. Requires  
external capacitor(s).  
VDD_SNVS_IN  
VDD_SOC_CAP  
V15  
Supply voltage input to the SNVS voltage domain  
J7, J8, J9, J10, J11, K7, L7, M7, N7,  
N16, P7, P16, R7, R8, R9, R10, R11,  
R12, R13, R14, R15, Y10, AA10  
Supply voltage output from internal LDO_SOC. Requires  
external capacitor(s).  
VDD_SOC_IN  
C9, K8, K9, K10, K11, L8, M8, N8,  
N15, P8, P9, P10, P11, P12, P13,  
P14, P15  
Supply voltage input to internal LDO_SOC and LDO_PCIE  
VDD_USB_CAP  
VDDA_ADC_3P3  
VSS  
AA17  
Supply voltage output from internal LDO_USB. Requires  
external capacitor(s).  
U13  
Supply voltage input to the ADC. This supply must be  
provided even if the ADC is not used.  
A1, A6, A23, B3, B6, C2, C3, C5, D7,  
D9, D11, D13, D15, D17, D19, F2, F3,  
F20, G6, G7, G8, H6, H7, H8, H9,  
H10, H11, H12, H13, H14, H15, H16,  
H17, J2, J3, J6, J17, J20, K6, K17, L2,  
L3, L6, L9, L10, L11, L12, L13, L14,  
L17, M9, M10, M11, M12, M13, M14,  
M17, M20, M22, M23, N2, N3, N6, N9,  
N10, N11, N12, N13, N14, N17, P6,  
P17, R2, R3, R6, R17, R20, R21, R22,  
R23, T6, T7, T8, T9, T10, T11, T12,  
T13, T14, T15, T16, T17, U6, U7, U20,  
U21, V2, V3, V8, V9, W19, W21, W22,  
W23, Y7, Y11, Y13, Y15, Y17, Y20,  
AA2, AA3, AA5, AA18, AA20, AB3,  
AB6, AB19, AB21, AB23, AC1, AC6,  
AC19, AC21, AC23  
Ground  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
133  
Package Information and Contact Assignments  
Table 109 shows an alpha-sorted list of functional contact assignments for the 19x19 mm package.  
Table 109. 19x19 mm Functional Contact Assignments  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
ADC1_IN0  
AC15 VDDA_ADC_3P3  
AB15 VDDA_ADC_3P3  
AC16 VDDA_ADC_3P3  
AB16 VDDA_ADC_3P3  
AC17 VDDA_ADC_3P3  
AB17 VDDA_ADC_3P3  
AC18 VDDA_ADC_3P3  
AB18 VDDA_ADC_3P3  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
BOOT_MODE0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
BOOT_MODE0  
W14  
VDD_SNVS_IN  
GPIO  
100 kΩ  
pull-down  
BOOT_MODE1  
W15  
VDD_SNVS_IN  
GPIO  
BOOT_MODE1  
Input  
100 kΩ  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
AA22 VDD_HIGH_CAP  
AA23 VDD_HIGH_CAP  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
W18  
V16  
P21  
P20  
P19  
N21  
N19  
N20  
M19  
L19  
L20  
R19  
T19  
U19  
N4  
VDD_HIGH_CAP  
VDD_SNVS_IN  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_DRAM  
CCM_PMIC_STBY_REQ  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
CSI_HSYNC  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DDR  
CCM_PMIC_STBY_REQ Output  
0
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1_IO14  
GPIO1_IO15  
GPIO1_IO16  
GPIO1_IO17  
GPIO1_IO18  
GPIO1_IO19  
GPIO1_IO20  
GPIO1_IO21  
GPIO1_IO22  
GPIO1_IO23  
GPIO1_IO24  
GPIO1_IO25  
DRAM_ADDR00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
CSI_MCLK  
CSI_PIXCLK  
CSI_VSYNC  
DRAM_ADDR00  
100 kΩ  
pull-up  
DRAM_ADDR01  
Y4  
NVCC_DRAM  
DDR  
DRAM_ADDR01  
Output  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
134  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
G4  
H3  
R4  
G3  
Y3  
F4  
T3  
P3  
U4  
T4  
W3  
P4  
W4  
E4  
K4  
J4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
Output  
100 kΩ  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
D3  
U2  
W2  
V1  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
135  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
W1  
P1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
N1  
100 kΩ  
pull-up  
R1  
100 kΩ  
pull-up  
P2  
100 kΩ  
pull-up  
J1  
100 kΩ  
pull-up  
L1  
100 kΩ  
pull-up  
K2  
100 kΩ  
pull-up  
G2  
K1  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
F1  
100 kΩ  
pull-up  
E2  
100 kΩ  
pull-up  
E1  
100 kΩ  
pull-up  
AB1  
AB5  
AC5  
AB4  
Y2  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
AC3  
AA1  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
136  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
Y1  
B4  
D1  
B2  
D2  
B1  
A4  
B5  
A5  
T2  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
Input  
100 kΩ  
pull-up  
Input  
Input  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
100 kΩ  
pull-up  
G1  
AC4  
C1  
AA4  
L4  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
100 kΩ  
pull-up  
D4  
H4  
U3  
M4  
V4  
100 kΩ  
pull-down  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
137  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_SDCKE1  
E3  
NVCC_DRAM  
DDR  
DRAM_SDCKE1  
Output  
100 kΩ  
pull-down  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
DRAM_SDWE_B  
M1  
M2  
U1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDR  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
DRAM_SDWE_B  
Output  
Low  
T1  
Input  
H2  
H1  
Input  
AC2  
AB2  
A2  
Input  
A3  
Input  
Output  
K3  
100 kΩ  
pull-up  
ENET1_COL  
ENET1_CRS  
ENET1_MDC  
ENET1_MDIO  
ENET1_RX_CLK  
ENET1_TX_CLK  
ENET2_COL  
ENET2_CRS  
ENET2_RX_CLK  
ENET2_TX_CLK  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
E6  
C7  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
GPIO2_IO03  
GPIO2_IO04  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO2_IO08  
GPIO2_IO09  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
F9  
E7  
B7  
A7  
F7  
D6  
D5  
C6  
A20  
B20  
C20  
D20  
A19  
B19  
C19  
A18  
B18  
D18  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
138  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
GPIO1_IO10  
E19  
E18  
A17  
B17  
U9  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_JTAG  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
100 kΩ  
pull-up  
JTAG_TCK  
JTAG_TDI  
V10  
V12  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TCK  
JTAG_TDI  
Input  
Input  
47 kΩ  
pull-up  
47 kΩ  
pull-up  
JTAG_TDO  
JTAG_TMS  
W9  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TDO  
JTAG_TMS  
Output  
Input  
Keeper  
W12  
47 kΩ  
pull-up  
JTAG_TRST_B  
V13  
NVCC_JTAG  
GPIO  
JTAG_TRST_B  
Input  
47 kΩ  
pull-up  
KEY_COL0  
C23  
C22  
B23  
B22  
A22  
A21  
B21  
C21  
D21  
D22  
H21  
J23  
J22  
K20  
K19  
K18  
J19  
J18  
H23  
H22  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO10  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
GPIO2_IO14  
GPIO2_IO15  
GPIO2_IO16  
GPIO2_IO17  
GPIO2_IO18  
GPIO2_IO19  
GPIO3_IO00  
GPIO3_IO01  
GPIO3_IO02  
GPIO3_IO03  
GPIO3_IO04  
GPIO3_IO05  
GPIO3_IO06  
GPIO3_IO07  
GPIO3_IO08  
GPIO3_IO09  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
KEY_COL1  
KEY_COL2  
KEY_COL3  
KEY_COL4  
KEY_ROW0  
KEY_ROW1  
KEY_ROW2  
KEY_ROW3  
KEY_ROW4  
LCD1_CLK  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
139  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
LCD1_DATA09  
H20  
H19  
H18  
G23  
G22  
G21  
G19  
G18  
F23  
F22  
F21  
G20  
F19  
F18  
E20  
E21  
D23  
E22  
E23  
T20  
T21  
V22  
V23  
V20  
V21  
U22  
U23  
T22  
T23  
AB7  
AB8  
AC9  
AB9  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_LVDS  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3_IO10  
GPIO3_IO11  
GPIO3_IO12  
GPIO3_IO13  
GPIO3_IO14  
GPIO3_IO15  
GPIO3_IO16  
GPIO3_IO17  
GPIO3_IO18  
GPIO3_IO19  
GPIO3_IO20  
GPIO3_IO21  
GPIO3_IO22  
GPIO3_IO23  
GPIO3_IO24  
GPIO3_IO25  
GPIO3_IO26  
GPIO3_IO27  
GPIO3_IO28  
LVDS_CLK_N  
LVDS_CLK_P  
LVDS_DATA0_N  
LVDS_DATA0_P  
LVDS_DATA1_N  
LVDS_DATA1_P  
LVDS_DATA2_N  
LVDS_DATA2_P  
LVDS_DATA3_N  
LVDS_DATA3_P  
GPIO4_IO00  
GPIO4_IO01  
GPIO4_IO02  
GPIO4_IO03  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
LCD1_ENABLE  
LCD1_HSYNC  
LCD1_RESET  
LCD1_VSYNC  
LVDS_CLK_N  
LVDS_CLK_P  
LVDS_DATA0_N  
LVDS_DATA0_P  
LVDS_DATA1_N  
LVDS_DATA1_P  
LVDS_DATA2_N  
LVDS_DATA2_P  
LVDS_DATA3_N  
LVDS_DATA3_P  
NAND_ALE  
ALT0  
Input  
ALT0  
Input  
ALT0  
Input  
ALT0  
Input  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
140  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_RE_B  
V7  
AA8  
W8  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO04  
GPIO4_IO05  
GPIO4_IO06  
GPIO4_IO07  
GPIO4_IO08  
GPIO4_IO09  
GPIO4_IO10  
GPIO4_IO11  
GPIO4_IO12  
GPIO4_IO13  
GPIO4_IO14  
GPIO4_IO15  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
V6  
W7  
W5  
Y8  
W6  
AA9  
AC7  
AA7  
AC8  
W17  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
100 kΩ  
pull-up  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
POR_B  
N22  
N23  
P22  
P23  
V17  
PCIE_VPH  
PCIE_VPH  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
POR_B  
PCIE_VPH  
PCIE_VPH  
VDD_SNVS_IN  
GPIO  
Input  
100 kΩ  
pull-up  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1A_DQS  
C16  
E16  
D16  
C17  
E13  
E17  
F16  
F17  
C14  
E14  
D14  
C15  
C13  
E15  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO16  
GPIO4_IO17  
GPIO4_IO18  
GPIO4_IO19  
GPIO4_IO20  
GPIO4_IO21  
GPIO4_IO22  
GPIO4_IO23  
GPIO4_IO24  
GPIO4_IO25  
GPIO4_IO26  
GPIO4_IO27  
GPIO4_IO28  
GPIO4_IO29  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
QSPI1B_DATA0  
QSPI1B_DATA1  
QSPI1B_DATA2  
QSPI1B_DATA3  
QSPI1B_DQS  
QSPI1B_SCLK  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
141  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
QSPI1B_SS0_B  
QSPI1B_SS1_B  
RGMII1_RD0  
RGMII1_RD1  
RGMII1_RD2  
RGMII1_RD3  
RGMII1_RX_CTL  
RGMII1_RXC  
RGMII1_TD0  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RGMII1_TX_CTL  
RGMII1_TXC  
RGMII2_RD0  
RGMII2_RD1  
RGMII2_RD2  
RGMII2_RD3  
RGMII2_RX_CTL  
RGMII2_RXC  
RGMII2_TD0  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
RGMII2_TX_CTL  
RGMII2_TXC  
RTC_XTALI  
F14  
F15  
D8  
NVCC_QSPI  
NVCC_QSPI  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO30  
GPIO4_IO31  
GPIO5_IO00  
GPIO5_IO01  
GPIO5_IO02  
GPIO5_IO03  
GPIO5_IO04  
GPIO5_IO05  
GPIO5_IO06  
GPIO5_IO07  
GPIO5_IO08  
GPIO5_IO09  
GPIO5_IO10  
GPIO5_IO11  
GPIO5_IO12  
GPIO5_IO13  
GPIO5_IO14  
GPIO5_IO15  
GPIO5_IO16  
GPIO5_IO17  
GPIO5_IO18  
GPIO5_IO19  
GPIO5_IO20  
GPIO5_IO21  
GPIO5_IO22  
GPIO5_IO23  
RTC_XTALI  
RTC_XTALO  
GPIO6_IO00  
GPIO6_IO01  
GPIO6_IO02  
GPIO6_IO03  
GPIO6_IO04  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
E9  
C8  
E8  
E10  
D10  
C12  
D12  
E12  
C11  
C10  
E11  
A9  
B9  
A8  
B8  
B10  
A10  
A12  
B12  
A13  
B13  
B11  
A11  
AB20 VDD_SNVS_CAP  
AC20 VDD_SNVS_CAP  
RTC_XTALO  
SD1_CLK  
A15  
B15  
B16  
A16  
B14  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
142  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
SD1_DATA3  
A14  
F12  
F11  
G13  
F13  
F10  
G10  
Y12  
NVCC_SD1  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO05  
GPIO6_IO06  
GPIO6_IO07  
GPIO6_IO08  
GPIO6_IO09  
GPIO6_IO10  
GPIO6_IO11  
GPIO7_IO00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD2_CLK  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD3_CLK  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD3_CMD  
W13  
AA11  
W10  
NVCC_LOW  
NVCC_HIGH  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO7_IO01  
GPIO7_IO02  
GPIO7_IO03  
GPIO7_IO04  
GPIO7_IO05  
GPIO7_IO06  
GPIO7_IO07  
GPIO7_IO08  
GPIO7_IO09  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
SD3_DATA0  
SD3_DATA1  
SD3_DATA2  
SD3_DATA3  
SD3_DATA4  
SD3_DATA5  
SD3_DATA6  
SD3_DATA7  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
AA15  
Y14  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
AA14  
AA13  
AA12  
W11  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD4_CLK  
AB12  
AB13  
AC10  
AB10  
AC14  
AB14  
AC13  
AC12  
AC11  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO12  
GPIO6_IO13  
GPIO6_IO14  
GPIO6_IO15  
GPIO6_IO16  
GPIO6_IO17  
GPIO6_IO18  
GPIO6_IO19  
GPIO6_IO20  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD4_CMD  
SD4_DATA0  
SD4_DATA1  
SD4_DATA2  
SD4_DATA3  
SD4_DATA4  
SD4_DATA5  
SD4_DATA6  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
143  
Package Information and Contact Assignments  
Table 109. 19x19 mm Functional Contact Assignments (continued)  
Out of Reset Condition  
19x19  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
SD4_DATA7  
AB11  
Y9  
NVCC_SD4  
NVCC_SD4  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
GPIO6_IO21  
GPIO6_IO22  
Input  
Input  
Keeper  
Keeper  
SD4_RESET_B  
SNVS_PMIC_ON_REQ1  
W16  
VDD_SNVS_IN  
SNVS_PMIC_ON_REQ  
Output  
100 kΩ  
pull-up  
SNVS_TAMPER  
TEST_MODE  
V14  
Y16  
Y5  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_USB_H  
NVCC_USB_H  
GPIO  
SNVS_TAMPER  
TEST_MODE  
GPIO7_IO10  
GPIO7_IO11  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
USB_H_DATA  
USB_H_STROBE  
GPIO  
GPIO  
ALT5  
ALT5  
100 kΩ  
pull-down  
Y6  
100 kΩ  
pull-down  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
Reserved  
V19  
Y21  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
USB_OTG1_CHD_B  
USB_OTG1_DN  
AA21  
Y19  
USB_OTG1_DP  
USB_OTG2_DN  
AA19  
L23  
USB_OTG2_DP  
Reserved  
L22  
Reserved  
K23  
Reserved  
K22  
XTALI  
AB22  
AC22  
NVCC_PLL  
NVCC_PLL  
XTALI  
XTALO  
XTALO  
1
On silicon revisions prior to 1.2, the SNVS_PMIC_ON_REQ may briefly go low and then return high during POR. SNVS_PMIC_ON_REQ should be  
high during POR. An external 100k pull-up is required.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
144  
NXP Semiconductors  
Package Information and Contact Assignments  
6.3.3  
19x19 mm, 0.8 mm Pitch, 23x23 Ball Map  
Table 110 shows the 19x19 mm, 0.8 mm pitch ball map for the i.MX 6SoloX.  
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
145  
Package Information and Contact Assignments  
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
146  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
147  
Package Information and Contact Assignments  
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)  
6.4  
17x17 mm Package Information  
6.4.1  
17x17 mm Package Comparison  
The i.MX 6SoloX comes in two versions in a 17x17 mm package:  
The 17x17 NP (No PCIe) package does not support PCIe but supports an increased number of ADC  
input channels.  
The 17x17 WP (With PCIe) package supports PCIe with a reduced number of ADC input channels.  
Note that the package pinouts have differences beyond the PCIe and ADC signals.  
A summary of the difference between the two packages is shown in Table 111 below. All other signals have  
the same ball number on both 17x17 package versions.  
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages  
17x17 NP Package  
(No PCIe)  
17x17 WP Package  
(With PCIe)  
Ball Name  
M18  
N19  
N20  
V15  
U14  
V16  
R14  
Y15  
W15  
Y16  
L18  
M18  
LCD1_DATA01  
LCD1_DATA03  
LCD1_DATA04  
SD3_DATA2  
SD3_DATA4  
ADC_VREFH1  
ADC_VREFL1  
ADC1_IN2  
N17  
U14  
T14  
Not in this package  
Not in this package  
Not in this package  
Not in this package  
Not in this package  
ADC1_IN3  
ADC2_IN0  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
148  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages (continued)  
17x17 NP Package  
(No PCIe)  
17x17 WP Package  
(With PCIe)  
Ball Name  
W16  
Not in this package  
ADC2_IN1  
ADC2_IN2  
T16  
Not in this package  
U16  
Not in this package  
ADC2_IN3  
N15  
U20  
U19  
BOOT_MODE0  
BOOT_MODE1  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
P14  
P19  
P16  
P20  
R16  
T14  
R15  
N16  
P15  
CCM_PMIC_STBY_REQ  
GPANAIO  
T15  
U16  
U18  
W20  
N15  
NVCC_PLL  
R15  
ONOFF  
Not in this package  
N18  
PCIE_REXT  
Not in this package  
P19  
PCIE_RX_N  
Not in this package  
P20  
PCIE_RX_P  
Not in this package  
R19  
PCIE_TX_N  
Not in this package  
R20  
PCIE_TX_P  
Not in this package  
P18  
PCIE_VP  
L18  
Not in this package  
R18  
PCIE_VP_CAP2  
PCIE_VPH  
Not in this package  
Not in this package  
P17  
PCIE_VPTX  
R16  
V19  
V20  
P16  
P15  
W20  
W19  
Y19  
T17  
W17  
Y17  
P14  
POR_B  
W19  
Y19  
RTC_XTALI  
RTC_XTALO  
SNVS_PMIC_ON_REQ  
SNVS_TAMPER  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
USB_OTG2_DN  
USB_OTG2_DP  
N16  
R14  
T17  
W17  
Y17  
T16  
W15  
Y15  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
149  
Package Information and Contact Assignments  
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages (continued)  
17x17 NP Package  
(No PCIe)  
17x17 WP Package  
(With PCIe)  
Ball Name  
U17  
T15  
USB_OTG2_VBUS  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_USB_CAP  
VSS  
N17  
V17  
N18  
V18  
P17  
U17  
P18  
U18  
T18  
V16  
R18  
T18  
V17  
V15  
R19  
N19  
R20  
N20  
VSS  
U19  
T19  
VSS  
U20  
T20  
VSS  
V18  
Not in this package  
Not in this package  
T19  
Not in this package  
VSS  
W16  
Y16  
V19  
V20  
VSS  
VSS  
XTALI  
T20  
XTALO  
1
2
In the 17x17 WP package, ADC_VREFL is connected internally to VSS. ADC_VREFH is  
connected internally to VDDA_ADC_3P3.  
In the 17x17 NP package, PCIE_VP_CAP must be connected to an external 4.7uF filter capacitor.  
6.4.2  
17x17 mm, 0.8 mm Pitch, 20x20 Ball Matrix  
Figure 85 shows the top, bottom, and side views of the 17×17 mm BGA package.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
150  
NXP Semiconductors  
Package Information and Contact Assignments  
Figure 85. 17x17 mm BGA Package—Top, Bottom, and Side Views  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
151  
Package Information and Contact Assignments  
Figure 86. 17x17 mm BGA Package Notes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
152  
NXP Semiconductors  
Package Information and Contact Assignments  
6.4.3  
17x17 mm NP (No PCIe) Supplies Contact Assignments and  
Functional Contact Assignments  
Table 112 shows supplies contact assignments for the 17x17 mm NP (No PCIe) package.  
Table 112. 17x17 mm NP (no PCIe) Supplies Contact Assignments  
17x17 NP [No PCIe]  
Ball(s) Position(s)  
Supply Rail Name  
Remark  
ADC high reference voltage  
ADC_VREFH  
ADC_VREFL  
DRAM_VREF  
V16  
R14  
J3  
ADC low reference voltage  
DDR voltage reference input. Connect to a voltage source that  
is 50% of NVCC_DRAM.  
DRAM_ZQPAD  
GPANAIO  
C5  
DDR output buffer driver calibration reference voltage input.  
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor to  
Vss.  
T15  
Analog output for NXP use only. This output must always be left  
unconnected.  
NGND_KEL0  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
NVCC_HIGH  
P13  
Connect to Vss  
G6, H6, J6, K6, L6, M6, N6, P6  
Supply input for the DDR I/O interface  
Supply input for the DDR interface  
Supply input for the ENET interfaces  
Supply input for the GPIO interface  
K7  
F6  
F15  
R12  
3.3 V Supply input for the dual-voltage I/Os on the SD3  
interface  
NVCC_JTAG  
NVCC_KEY  
NVCC_LCD1  
NVCC_LOW  
R11  
G15  
H15  
V13  
Supply input for the JTAG interface  
Supply input for the Key Pad Port (KPP) interface  
Supply input for the LCD interface  
1.8 V Supply input for the dual-voltage I/Os on the SD3  
interface  
NVCC_NAND  
NVCC_PLL  
R6  
U18  
F14  
F8  
Supply input for the Raw NAND flash memories interface  
Supply input for the PLLs  
NVCC_QSPI  
Supply input for the QSPI interface  
Supply input for the RGMII1 interface  
Supply input for the RGMII2 interface  
Supply input for the SD2 interface  
Supply input for the SD4 interface  
Supply input for the USB HSIC interface  
PCIe LDO output  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_SD2  
F9  
F13  
V10  
V5  
NVCC_SD4  
NVCC_USB_H  
PCIE_VP_CAP  
USB_OTG1_VBUS  
L18  
T17  
VBUS input for USB_OTG1  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
153  
Package Information and Contact Assignments  
Table 112. 17x17 mm NP (no PCIe) Supplies Contact Assignments (continued)  
17x17 NP [No PCIe]  
Ball(s) Position(s)  
Supply Rail Name  
Remark  
VBUS input for USB_OTG2  
USB_OTG2_VBUS  
VDD_ARM_CAP  
U17  
C16, D16, H10, H11, H12, H13, Supply voltage output from internal LDO_ARM. Requires  
J13, K13, L13  
H18, J10, J11, J12, K12, L12  
N17, N18  
external capacitor(s).  
VDD_ARM_IN  
Supply voltage input for internal LDO_ARM.  
VDD_HIGH_CAP  
Supply voltage output from internal LDO_2P5. Requires  
external capacitor(s).  
VDD_HIGH_IN  
P17, P18  
T18  
Supply voltage input to internal LDO_2P5, LDO_1P1 and  
LDO_SNVS.  
VDD_SNVS_CAP  
Supply voltage output from internal LDO_SNVS. Requires  
external capacitor(s).  
VDD_SNVS_IN  
VDD_SOC_CAP  
R18  
Supply voltage input to the SNVS voltage domain  
H8, H9, J8, K8, L8, M8, M13, N8, Supply voltage output from internal LDO_SOC. Requires  
N9, N10, N11, N12, V8  
external capacitor(s).  
VDD_SOC_IN  
VDD_USB_CAP  
VDDA_ADC_3P3  
VSS  
C7, C8, J9, K9, L9,  
M9, M10, M11, M12  
Supply voltage input to internal LDO_SOC and LDO_PCIE  
V17  
Supply voltage output from internal LDO_USB. Requires  
external capacitor(s).  
R13  
Supply voltage input to the ADC. This supply must be provided  
even if the ADC is not used.  
A1, A20, C3, C4, C18, D6, D9, D12, Ground  
D15, E3, F3, F5, F17, G7, G8, G9,  
G10, G11, G12, G13, G14, H3, H7,  
H14, J7, J14, J17, K3, K10, K11,  
K14, L3, L7, L10, L11, L14, M7,  
M14, M17, N3, N7, N13, P7, P8,  
P9, P10, P11, P12, R3, R5, R17,  
R19, R20, T3, U6, U9, U12, U15,  
U19, U20, V3, V4, V18, W18, Y1,  
Y18, Y20  
Table 113 shows an alpha-sorted list of functional contact assignments for the 17x17 mm NP (No PCIe)  
package.  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments  
Out of Reset Condition  
17x17  
Power  
Group  
Ball  
Type  
Ball Name  
NP  
Ball  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
ADC1_IN0  
Y14  
W14  
Y15  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
Input  
Input  
Input  
ADC1_IN1  
ADC1_IN2  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
154  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
ADC1_IN3  
W15  
Y16  
W16  
T16  
U16  
N15  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDD_SNVS_IN  
ADC1_IN3  
ADC2_IN0  
Input  
Input  
Input  
Input  
Input  
Input  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
BOOT_MODE0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
GPIO  
BOOT_MODE0  
100 kΩ  
pull-down  
BOOT_MODE1  
P14  
VDD_SNVS_IN  
GPIO  
BOOT_MODE1  
Input  
100 kΩ  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
P19  
P20  
T14  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_SNVS_IN  
NVCC_DRAM  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
0
CCM_PMIC_STBY_REQ N16  
GPIO  
DDR  
CCM_PMIC_STBY_REQ Output  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
L4  
U4  
K5  
G5  
M3  
G4  
T4  
F4  
M5  
L5  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
100 kΩ  
pull-up  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
N5  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
155  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
N4  
P4  
M4  
R4  
J4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
Output  
100 kΩ  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
H4  
D3  
R1  
T2  
T1  
R2  
M1  
M2  
L2  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
N1  
H1  
F2  
K2  
J2  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
Input  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
156  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
J1  
F1  
E2  
E1  
V1  
W4  
Y4  
U2  
W3  
Y2  
U1  
V2  
A2  
D1  
C1  
D2  
C2  
B3  
B4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
Input  
100 kΩ  
pull-up  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
157  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
A4  
N2  
G2  
Y3  
A3  
U3  
H5  
D4  
G3  
P3  
K4  
P5  
E4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
Input  
100 kΩ  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
L1  
K1  
P2  
P1  
H2  
G1  
W1  
W2  
B2  
B1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
Output  
Low  
Input  
Input  
Input  
Input  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
158  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_SDWE_B  
J5  
NVCC_DRAM  
DDR  
DRAM_SDWE_B  
Output  
100 kΩ  
pull-up  
ENET1_COL  
ENET1_CRS  
ENET1_MDC  
ENET1_MDIO  
ENET1_RX_CLK  
ENET1_TX_CLK  
ENET2_COL  
ENET2_CRS  
ENET2_RX_CLK  
ENET2_TX_CLK  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
B5  
C6  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_JTAG  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
GPIO2_IO03  
GPIO2_IO04  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO2_IO08  
GPIO2_IO09  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
B6  
A6  
A5  
F7  
E7  
E6  
E5  
D5  
C19  
D19  
C20  
D20  
A18  
B18  
D18  
A17  
B17  
A19  
B19  
B20  
B16  
A16  
R7  
100 kΩ  
pull-up  
JTAG_TCK  
JTAG_TDI  
R9  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TCK  
JTAG_TDI  
Input  
Input  
47 kΩ  
pull-up  
R10  
47 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
159  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
JTAG_TDO  
R8  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TDO  
JTAG_TMS  
Output  
Input  
Keeper  
JTAG_TMS  
T10  
47 kΩ  
pull-up  
JTAG_TRST_B  
T9  
NVCC_JTAG  
GPIO  
JTAG_TRST_B  
Input  
47 kΩ  
pull-up  
KEY_COL0  
G20  
F20  
G18  
E20  
E19  
F16  
E18  
F18  
F19  
G19  
L17  
M20  
M18  
M19  
N19  
N20  
M16  
M15  
L20  
K18  
L16  
L19  
L15  
K16  
K15  
K17  
H16  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO10  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
GPIO2_IO14  
GPIO2_IO15  
GPIO2_IO16  
GPIO2_IO17  
GPIO2_IO18  
GPIO2_IO19  
GPIO3_IO00  
GPIO3_IO01  
GPIO3_IO02  
GPIO3_IO03  
GPIO3_IO04  
GPIO3_IO05  
GPIO3_IO06  
GPIO3_IO07  
GPIO3_IO08  
GPIO3_IO09  
GPIO3_IO10  
GPIO3_IO11  
GPIO3_IO12  
GPIO3_IO13  
GPIO3_IO14  
GPIO3_IO15  
GPIO3_IO16  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
KEY_COL1  
KEY_COL2  
KEY_COL3  
KEY_COL4  
KEY_ROW0  
KEY_ROW1  
KEY_ROW2  
KEY_ROW3  
KEY_ROW4  
LCD1_CLK  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
160  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
LCD1_ENABLE  
LCD1_HSYNC  
LCD1_RESET  
LCD1_VSYNC  
NAND_ALE  
H20  
K19  
K20  
J20  
H17  
G17  
H19  
G16  
J19  
J16  
J18  
J15  
W6  
U7  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3_IO17  
GPIO3_IO18  
GPIO3_IO19  
GPIO3_IO20  
GPIO3_IO21  
GPIO3_IO22  
GPIO3_IO23  
GPIO3_IO24  
GPIO3_IO25  
GPIO3_IO26  
GPIO3_IO27  
GPIO3_IO28  
GPIO4_IO00  
GPIO4_IO01  
GPIO4_IO02  
GPIO4_IO03  
GPIO4_IO04  
GPIO4_IO05  
GPIO4_IO06  
GPIO4_IO07  
GPIO4_IO08  
GPIO4_IO09  
GPIO4_IO10  
GPIO4_IO11  
GPIO4_IO12  
GPIO4_IO13  
GPIO4_IO14  
GPIO4_IO15  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
V9  
T8  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_RE_B  
V6  
W8  
Y7  
U5  
W7  
T5  
Y8  
T6  
U8  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
Y6  
T7  
V7  
R15  
100 kΩ  
pull-up  
POR_B  
R16  
VDD_SNVS_IN  
GPIO  
POR_B  
Input  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
161  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1A_DQS  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
QSPI1B_DATA0  
QSPI1B_DATA1  
QSPI1B_DATA2  
QSPI1B_DATA3  
QSPI1B_DQS  
QSPI1B_SCLK  
QSPI1B_SS0_B  
QSPI1B_SS1_B  
RGMII1_RD0  
E15  
C15  
D14  
E16  
A13  
D17  
C17  
E17  
B14  
A14  
D13  
C13  
B13  
B15  
C14  
A15  
D8  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO16  
GPIO4_IO17  
GPIO4_IO18  
GPIO4_IO19  
GPIO4_IO20  
GPIO4_IO21  
GPIO4_IO22  
GPIO4_IO23  
GPIO4_IO24  
GPIO4_IO25  
GPIO4_IO26  
GPIO4_IO27  
GPIO4_IO28  
GPIO4_IO29  
GPIO4_IO30  
GPIO4_IO31  
GPIO5_IO00  
GPIO5_IO01  
GPIO5_IO02  
GPIO5_IO03  
GPIO5_IO04  
GPIO5_IO05  
GPIO5_IO06  
GPIO5_IO07  
GPIO5_IO08  
GPIO5_IO09  
GPIO5_IO10  
GPIO5_IO11  
GPIO5_IO12  
GPIO5_IO13  
GPIO5_IO14  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
RGMII1_RD1  
C9  
RGMII1_RD2  
D7  
RGMII1_RD3  
E8  
RGMII1_RX_CTL  
RGMII1_RXC  
RGMII1_TD0  
C10  
E9  
D11  
C12  
E11  
D10  
E10  
C11  
A8  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RGMII1_TX_CTL  
RGMII1_TXC  
RGMII2_RD0  
RGMII2_RD1  
B8  
RGMII2_RD2  
A7  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
162  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
RGMII2_RD3  
B7  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
VDD_SNVS_CAP  
VDD_SNVS_CAP  
NVCC_SD2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5_IO15  
GPIO5_IO16  
GPIO5_IO17  
GPIO5_IO18  
GPIO5_IO19  
GPIO5_IO20  
GPIO5_IO21  
GPIO5_IO22  
GPIO5_IO23  
RTC_XTALI  
RTC_XTALO  
GPIO6_IO06  
GPIO6_IO07  
GPIO6_IO08  
GPIO6_IO09  
GPIO6_IO10  
GPIO6_IO11  
GPIO7_IO00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
RGMII2_RX_CTL  
RGMII2_RXC  
RGMII2_TD0  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
RGMII2_TX_CTL  
RGMII2_TXC  
RTC_XTALI  
RTC_XTALO  
SD2_CLK  
B9  
A9  
A11  
B11  
A12  
B12  
B10  
A10  
V19  
V20  
E12  
F12  
E13  
E14  
F10  
F11  
V11  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD2_CMD  
NVCC_SD2  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD3_CLK  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD3_CMD  
T13  
U10  
T11  
V15  
V14  
U14  
U13  
NVCC_LOW  
NVCC_HIGH  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO7_IO01  
GPIO7_IO02  
GPIO7_IO03  
GPIO7_IO04  
GPIO7_IO05  
GPIO7_IO06  
GPIO7_IO07  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
SD3_DATA0  
SD3_DATA1  
SD3_DATA2  
SD3_DATA3  
SD3_DATA4  
SD3_DATA5  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
163  
Package Information and Contact Assignments  
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
NP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
SD3_DATA6  
V12  
U11  
NVCC_LOW  
NVCC_HIGH  
GPIO  
GPIO  
ALT5  
GPIO7_IO08  
Input  
100 kΩ  
pull-down  
SD3_DATA7  
NVCC_LOW  
NVCC_HIGH  
ALT5  
GPIO7_IO09  
Input  
100 kΩ  
pull-down  
SD4_CLK  
W11  
W12  
Y9  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO12  
GPIO6_IO13  
GPIO6_IO14  
GPIO6_IO15  
GPIO6_IO16  
GPIO6_IO17  
GPIO6_IO18  
GPIO6_IO19  
GPIO6_IO20  
GPIO6_IO21  
GPIO6_IO22  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD4_CMD  
SD4_DATA0  
SD4_DATA1  
SD4_DATA2  
SD4_DATA3  
SD4_DATA4  
SD4_DATA5  
SD4_DATA6  
SD4_DATA7  
SD4_RESET_B  
SNVS_PMIC_ON_REQ  
W9  
Y13  
W13  
Y12  
Y11  
Y10  
W10  
T12  
P16  
SNVS_PMIC_ON_REQ Output  
100 kΩ  
pull-up  
SNVS_TAMPER  
TEST_MODE  
P15  
N14  
Y5  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_USB_H  
NVCC_USB_H  
GPIO  
SNVS_TAMPER  
TEST_MODE  
GPIO7_IO10  
GPIO7_IO11  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
USB_H_DATA  
USB_H_STROBE  
GPIO  
GPIO  
ALT5  
ALT5  
100 kΩ  
pull-down  
W5  
100 kΩ  
pull-down  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
W20  
W19  
Y19  
W17  
Y17  
T19  
T20  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
NVCC_PLL  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
XTALO  
NVCC_PLL  
XTALO  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
164  
NXP Semiconductors  
Package Information and Contact Assignments  
6.4.4  
17x17 mm NP (No PCIe), 0.8 mm Pitch, 20x20 Ball Map  
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
165  
Package Information and Contact Assignments  
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
166  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
167  
Package Information and Contact Assignments  
6.4.5  
17x17 mm WP (with PCIe) Supplies Contact Assignments and  
Functional Contact Assignments  
Table 115 shows supplies contact assignments for the 17x17 mm WP (with PCIe) package.  
Table 115. 17x17 mm WP (with PCIe) Supplies Contact Assignments  
17x17 WP [with PCIe]  
Ball(s) Position(s)  
Supply Rail Name  
DRAM_VREF  
Remark  
J3  
DDR voltage reference input. Connect to a voltage source that  
is 50% of NVCC_DRAM.  
DRAM_ZQPAD  
GPANAIO  
C5  
DDR output buffer driver calibration reference voltage input.  
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor  
to Vss.  
U16  
Analog output for NXP use only. This output must always be  
left unconnected.  
NGND_KEL0  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
NVCC_HIGH  
P13  
Connect to Vss  
G6, H6, J6, K6, L6, M6, N6, P6  
Supply input for the DDR I/O interface  
Supply input for the DDR interface  
Supply input for the ENET interfaces  
Supply input for the GPIO interface  
K7  
F6  
F15  
R12  
3.3 V Supply input for the dual-voltage I/Os on the SD3  
interface  
NVCC_JTAG  
NVCC_KEY  
NVCC_LCD1  
NVCC_LOW  
R11  
G15  
H15  
V13  
Supply input for the JTAG interface  
Supply input for the Key Pad Port (KPP) interface  
Supply input for the LCD interface  
1.8 V Supply input for the dual-voltage I/Os on the SD3  
interface  
NVCC_NAND  
NVCC_PLL  
R6  
W20  
F14  
F8  
Supply input for the Raw NAND flash memories interface  
Supply input for the PLLs  
NVCC_QSPI  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_SD2  
Supply input for the QSPI interface  
Supply input for the RGMII1 interface  
Supply input for the RGMII2 interface  
Supply input for the SD2 interface  
F9  
F13  
V10  
V5  
NVCC_SD4  
Supply input for the SD4 interface  
NVCC_USB_H  
PCIE_REXT  
Supply input for the USB HSIC interface  
N18  
PCIe impedance calibration resistor. Connect PCIE_REXT to  
an external 200 ohm 1% resistor to Vss.  
PCIE_VP  
P18  
R18  
P17  
Supply input for the PCIe PHY  
Supply input for the PCIe PHY  
Supply input for the PCIe PHY  
PCIE_VPH  
PCIE_VPTX  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
168  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 115. 17x17 mm WP (with PCIe) Supplies Contact Assignments (continued)  
17x17 WP [with PCIe]  
Ball(s) Position(s)  
Supply Rail Name  
Remark  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
VDD_ARM_CAP  
T16  
T15  
VBUS input for USB_OTG1  
VBUS input for USB_OTG2  
C16, D16, H10, H11, H12, H13, Supply voltage output from internal LDO_ARM. Requires  
J13, K13, L13  
H18, J10, J11, J12, K12, L12  
V17, V18  
external capacitor(s).  
VDD_ARM_IN  
Supply voltage input for internal LDO_ARM.  
VDD_HIGH_CAP  
Supply voltage output from internal LDO_2P5. Requires  
external capacitor(s).  
VDD_HIGH_IN  
U17, U18  
V16  
Supply voltage input to internal LDO_2P5, LDO_1P1 and  
LDO_SNVS.  
VDD_SNVS_CAP  
Supply voltage output from internal LDO_SNVS. Requires  
external capacitor(s).  
VDD_SNVS_IN  
VDD_SOC_CAP  
T18  
Supply voltage input to the SNVS voltage domain  
H8, H9, J8, K8, L8, M8, M13, N8, Supply voltage output from internal LDO_SOC. Requires  
N9, N10, N11, N12, V8  
external capacitor(s).  
VDD_SOC_IN  
VDD_USB_CAP  
VDDA_ADC_3P3  
VSS  
C7, C8, J9, K9, L9,  
M9, M10, M11, M12  
Supply voltage input to internal LDO_SOC and LDO_PCIE  
V15  
Supply voltage output from internal LDO_USB. Requires  
external capacitor(s).  
R13  
Supply voltage input to the ADC. This supply must be provided  
even if the ADC is not used.  
A1, A20, C3, C4, C18, D6, D9, D12, Ground  
D15, E3, F3, F5, F17, G7, G8, G9,  
G10, G11, G12, G13, G14, H3, H7,  
H14, J7, J14, J17, K3, K10, K11,  
K14, L3, L7, L10, L11, L14, M7,  
M14, M17, N3, N7, N13, N19, N20,  
P7, P8, P9, P10, P11, P12, R3, R5,  
R17, T3, T19, T20, U6, U9, U12,  
U15, V3, V4, W16, W18, Y1, Y16,  
Y18, Y20  
Table 116 shows an alpha-sorted list of functional contact assignments for the 17x17 mm WP (with  
PCIe) package.  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments  
Out of Reset Condition  
17x17  
Power  
Group  
Ball  
Type  
Ball Name  
WP  
Ball  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
ADC1_IN0  
Y14  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
ADC1_IN0  
ADC1_IN1  
Input  
Input  
ADC1_IN1  
W14  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
169  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
BOOT_MODE0  
BOOT_MODE1  
U20  
U19  
VDD_SNVS_IN  
VDD_SNVS_IN  
GPIO  
GPIO  
BOOT_MODE0  
Input  
100 kΩ  
pull-down  
BOOT_MODE1  
Input  
100 kΩ  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
P16  
R16  
R15  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_SNVS_IN  
NVCC_DRAM  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
0
CCM_PMIC_STBY_REQ P15  
GPIO  
DDR  
CCM_PMIC_STBY_REQ Output  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
L4  
U4  
K5  
G5  
M3  
G4  
T4  
F4  
M5  
L5  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
100 kΩ  
pull-up  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
N5  
N4  
P4  
M4  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
170  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_ADDR14  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
R4  
J4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_ADDR14  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
Output  
100 kΩ  
pull-up  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-up  
H4  
D3  
R1  
T2  
T1  
R2  
M1  
M2  
L2  
N1  
H1  
F2  
K2  
J2  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
J1  
100 kΩ  
pull-up  
F1  
E2  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
171  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
E1  
V1  
W4  
Y4  
U2  
W3  
Y2  
U1  
V2  
A2  
D1  
C1  
D2  
C2  
B3  
B4  
A4  
N2  
G2  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
Input  
100 kΩ  
pull-up  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
DRAM_DQM1  
DRAM_DQM1  
100 kΩ  
pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
172  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
DRAM_DQM2  
Y3  
A3  
U3  
H5  
D4  
G3  
P3  
K4  
P5  
E4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
Output  
100 kΩ  
pull-up  
DRAM_DQM3  
DRAM_ODT0  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-up  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
DRAM_SDWE_B  
L1  
K1  
P2  
P1  
H2  
G1  
W1  
W2  
B2  
B1  
J5  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDRCLK  
DDR  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDQS2_N  
DRAM_SDQS2_P  
DRAM_SDQS3_N  
DRAM_SDQS3_P  
DRAM_SDWE_B  
Output  
Low  
Input  
Input  
Input  
Input  
Output  
100 kΩ  
pull-up  
ENET1_COL  
ENET1_CRS  
ENET1_MDC  
B5  
C6  
B6  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
173  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
ENET1_MDIO  
A6  
A5  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_JTAG  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO03  
GPIO2_IO04  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO2_IO08  
GPIO2_IO09  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
ENET1_RX_CLK  
ENET1_TX_CLK  
ENET2_COL  
ENET2_CRS  
ENET2_RX_CLK  
ENET2_TX_CLK  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
F7  
E7  
E6  
E5  
D5  
C19  
D19  
C20  
D20  
A18  
B18  
D18  
A17  
B17  
A19  
B19  
B20  
B16  
A16  
R7  
100 kΩ  
pull-up  
JTAG_TCK  
JTAG_TDI  
R9  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TCK  
JTAG_TDI  
Input  
Input  
47 kΩ  
pull-up  
R10  
47 kΩ  
pull-up  
JTAG_TDO  
JTAG_TMS  
R8  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
JTAG_TDO  
JTAG_TMS  
Output  
Input  
Keeper  
T10  
47 kΩ  
pull-up  
JTAG_TRST_B  
KEY_COL0  
T9  
NVCC_JTAG  
NVCC_KEY  
GPIO  
GPIO  
JTAG_TRST_B  
GPIO2_IO10  
Input  
Input  
47 kΩ  
pull-up  
G20  
ALT5  
Keeper  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
174  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
KEY_COL1  
F20  
G18  
E20  
E19  
F16  
E18  
F18  
F19  
G19  
L17  
M20  
L18  
M19  
M18  
N17  
M16  
M15  
L20  
K18  
L16  
L19  
L15  
K16  
K15  
K17  
H16  
H20  
K19  
K20  
J20  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
GPIO2_IO14  
GPIO2_IO15  
GPIO2_IO16  
GPIO2_IO17  
GPIO2_IO18  
GPIO2_IO19  
GPIO3_IO00  
GPIO3_IO01  
GPIO3_IO02  
GPIO3_IO03  
GPIO3_IO04  
GPIO3_IO05  
GPIO3_IO06  
GPIO3_IO07  
GPIO3_IO08  
GPIO3_IO09  
GPIO3_IO10  
GPIO3_IO11  
GPIO3_IO12  
GPIO3_IO13  
GPIO3_IO14  
GPIO3_IO15  
GPIO3_IO16  
GPIO3_IO17  
GPIO3_IO18  
GPIO3_IO19  
GPIO3_IO20  
GPIO3_IO21  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
KEY_COL2  
KEY_COL3  
KEY_COL4  
KEY_ROW0  
KEY_ROW1  
KEY_ROW2  
KEY_ROW3  
KEY_ROW4  
LCD1_CLK  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
LCD1_DATA19  
LCD1_DATA20  
H17  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
175  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
LCD1_DATA21  
G17  
H19  
G16  
J19  
J16  
J18  
J15  
W6  
U7  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3_IO22  
GPIO3_IO23  
GPIO3_IO24  
GPIO3_IO25  
GPIO3_IO26  
GPIO3_IO27  
GPIO3_IO28  
GPIO4_IO00  
GPIO4_IO01  
GPIO4_IO02  
GPIO4_IO03  
GPIO4_IO04  
GPIO4_IO05  
GPIO4_IO06  
GPIO4_IO07  
GPIO4_IO08  
GPIO4_IO09  
GPIO4_IO10  
GPIO4_IO11  
GPIO4_IO12  
GPIO4_IO13  
GPIO4_IO14  
GPIO4_IO15  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
LCD1_DATA22  
LCD1_DATA23  
LCD1_ENABLE  
LCD1_HSYNC  
LCD1_RESET  
LCD1_VSYNC  
NAND_ALE  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
V9  
T8  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
V6  
W8  
Y7  
U5  
W7  
T5  
Y8  
T6  
U8  
Y6  
T7  
V7  
N15  
100 kΩ  
pull-up  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
POR_B  
P19  
P20  
R19  
R20  
P14  
PCIE_VPH  
PCIE_VPH  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
POR_B  
PCIE_VPH  
PCIE_VPH  
VDD_SNVS_IN  
GPIO  
Input  
100 kΩ  
pull-up  
QSPI1A_DATA0  
E15  
NVCC_QSPI  
GPIO  
ALT5  
GPIO4_IO16  
Input  
Keeper  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
176  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1A_DQS  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
QSPI1B_DATA0  
QSPI1B_DATA1  
QSPI1B_DATA2  
QSPI1B_DATA3  
QSPI1B_DQS  
QSPI1B_SCLK  
QSPI1B_SS0_B  
QSPI1B_SS1_B  
RGMII1_RD0  
C15  
D14  
E16  
A13  
D17  
C17  
E17  
B14  
A14  
D13  
C13  
B13  
B15  
C14  
A15  
D8  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO17  
GPIO4_IO18  
GPIO4_IO19  
GPIO4_IO20  
GPIO4_IO21  
GPIO4_IO22  
GPIO4_IO23  
GPIO4_IO24  
GPIO4_IO25  
GPIO4_IO26  
GPIO4_IO27  
GPIO4_IO28  
GPIO4_IO29  
GPIO4_IO30  
GPIO4_IO31  
GPIO5_IO00  
GPIO5_IO01  
GPIO5_IO02  
GPIO5_IO03  
GPIO5_IO04  
GPIO5_IO05  
GPIO5_IO06  
GPIO5_IO07  
GPIO5_IO08  
GPIO5_IO09  
GPIO5_IO10  
GPIO5_IO11  
GPIO5_IO12  
GPIO5_IO13  
GPIO5_IO14  
GPIO5_IO15  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
RGMII1_RD1  
C9  
RGMII1_RD2  
D7  
RGMII1_RD3  
E8  
RGMII1_RX_CTL  
RGMII1_RXC  
RGMII1_TD0  
C10  
E9  
D11  
C12  
E11  
D10  
E10  
C11  
A8  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RGMII1_TX_CTL  
RGMII1_TXC  
RGMII2_RD0  
RGMII2_RD1  
B8  
RGMII2_RD2  
A7  
RGMII2_RD3  
B7  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
177  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
RGMII2_RX_CTL  
RGMII2_RXC  
RGMII2_TD0  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
RGMII2_TX_CTL  
RGMII2_TXC  
RTC_XTALI  
RTC_XTALO  
SD2_CLK  
B9  
A9  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
VDD_SNVS_CAP  
VDD_SNVS_CAP  
NVCC_SD2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5_IO16  
GPIO5_IO17  
GPIO5_IO18  
GPIO5_IO19  
GPIO5_IO20  
GPIO5_IO21  
GPIO5_IO22  
GPIO5_IO23  
RTC_XTALI  
RTC_XTALO  
GPIO6_IO06  
GPIO6_IO07  
GPIO6_IO08  
GPIO6_IO09  
GPIO6_IO10  
GPIO6_IO11  
GPIO7_IO00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
A11  
B11  
A12  
B12  
B10  
A10  
W19  
Y19  
E12  
F12  
E13  
E14  
F10  
F11  
V11  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD2_CMD  
NVCC_SD2  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD3_CLK  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD3_CMD  
T13  
U10  
T11  
U14  
V14  
T14  
U13  
V12  
NVCC_LOW  
NVCC_HIGH  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO7_IO01  
GPIO7_IO02  
GPIO7_IO03  
GPIO7_IO04  
GPIO7_IO05  
GPIO7_IO06  
GPIO7_IO07  
GPIO7_IO08  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
SD3_DATA0  
SD3_DATA1  
SD3_DATA2  
SD3_DATA3  
SD3_DATA4  
SD3_DATA5  
SD3_DATA6  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
178  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)  
Out of Reset Condition  
17x17  
WP  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Input/  
Value  
Function  
Output  
SD3_DATA7  
U11  
NVCC_LOW  
NVCC_HIGH  
GPIO  
ALT5  
GPIO7_IO09  
Input  
100 kΩ  
pull-down  
SD4_CLK  
W11  
W12  
Y9  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO12  
GPIO6_IO13  
GPIO6_IO14  
GPIO6_IO15  
GPIO6_IO16  
GPIO6_IO17  
GPIO6_IO18  
GPIO6_IO19  
GPIO6_IO20  
GPIO6_IO21  
GPIO6_IO22  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD4_CMD  
SD4_DATA0  
SD4_DATA1  
SD4_DATA2  
SD4_DATA3  
SD4_DATA4  
SD4_DATA5  
SD4_DATA6  
SD4_DATA7  
SD4_RESET_B  
SNVS_PMIC_ON_REQ  
W9  
Y13  
W13  
Y12  
Y11  
Y10  
W10  
T12  
N16  
SNVS_PMIC_ON_REQ Output  
100 kΩ  
pull-up  
SNVS_TAMPER  
TEST_MODE  
R14  
N14  
Y5  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_USB_H  
NVCC_USB_H  
GPIO  
SNVS_TAMPER  
TEST_MODE  
GPIO7_IO10  
GPIO7_IO11  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
USB_H_DATA  
USB_H_STROBE  
GPIO  
GPIO  
ALT5  
ALT5  
100 kΩ  
pull-down  
W5  
100 kΩ  
pull-down  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
T17  
W17  
Y17  
W15  
Y15  
V19  
V20  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
NVCC_PLL  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
XTALO  
NVCC_PLL  
XTALO  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
179  
Package Information and Contact Assignments  
6.4.6  
17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map  
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
180  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
181  
Package Information and Contact Assignments  
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
182  
NXP Semiconductors  
Package Information and Contact Assignments  
6.5  
14x14 mm Package Information  
6.5.1  
14x14 mm, 0.65 mm Pitch, 20x20 Ball Matrix  
Figure 87 shows the top, bottom, and side views of the 14×14 mm BGA package.  
Figure 87. 14x14 mm BGA Package—Top, Bottom, and Side Views  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
183  
Package Information and Contact Assignments  
Figure 88. 14x14 mm BGA Package Notes  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
184  
NXP Semiconductors  
Package Information and Contact Assignments  
6.5.2  
14x14 mm Supplies Contact Assignments and Functional Contact  
Assignments  
Table 118 shows supplies contact assignments for the 14x14 mm package and Table 119 shows the  
functional contact assignments.  
Table 118. 14x14 mm Supplies Contact Assignments  
14x14 mm  
Ball Position(s)  
Supply Rail Name  
Comments  
ADC_VREFH  
ADC_VREFL  
DRAM_VREF  
Y15  
V14  
K4  
ADC high reference voltage  
ADC low reference voltage  
DDR voltage reference input. Connect to a voltage source that is 50% of  
NVCC_DRAM.  
DRAM_ZQPAD  
H2  
DDR output buffer driver calibration reference voltage input. Connect  
DRAM_ZQPAD to an external 240 ohm 1% resistor to Vss.  
GPANAIO  
P16  
Analog output for NXP use only. This output must always be left unconnected.  
NVCC_DRAM  
G6, H6, J6, K6, L6, Supply input for the DDR I/O interface  
M6, N6, P6  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
NVCC_HIGH  
NVCC_JTAG  
NVCC_KEY  
K7  
F6  
Supply input for the DDR interface  
Supply input for the ENET interfaces  
Supply input for the GPIO interface  
F15  
R12  
T9  
3.3 V Supply input for the dual-voltage I/Os on the SD3 interface  
Supply input for the JTAG interface  
G15  
H15  
V13  
R6  
Supply input for the Key Pad Port (KPP) interface  
Supply input for the LCD interface  
NVCC_CSI_LCD1  
NVCC_LOW  
1.8 V Supply input for the dual-voltage I/Os on the SD3 interface  
Supply input for the Raw NAND flash memories interface  
Supply input for the PLLs  
NVCC_NAND  
NVCC_PLL  
U18  
F14  
F8  
NVCC_QSPI  
Supply input for the QSPI interface  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_SD1_SD2  
NVCC_SD4  
Supply input for the RGMII1 interface  
Supply input for the RGMII2 interface  
Supply input for the SD2 interface  
E11  
F13  
T12  
V5  
Supply input for the SD4 interface  
NVCC_USB_H  
NGND_KEL0  
PCIE_VP_CAP  
Supply input for the USB HSIC interface  
Ground  
T16  
L18  
PCIe LDO output. Although this package does not support PCIe, this output  
requires a 4.7uF capacitor to ground unless the PCIE LDO is disabled.  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
W20  
U17  
VBUS input for USB_OTG1  
VBUS input for USB_OTG2  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
185  
Package Information and Contact Assignments  
Table 118. 14x14 mm Supplies Contact Assignments (continued)  
14x14 mm  
Ball Position(s)  
Supply Rail Name  
Comments  
VDD_ARM_CAP  
C16, D16, H10, Supply voltage output from internal LDO_ARM. Requires external capacitor(s).  
H11, H12, H13,  
J13, K13, L13  
VDD_ARM_IN  
H18, J10, J11,  
J12, K12, L12  
Supply voltage input for internal LDO_ARM.  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_CAP  
N17, N18  
P17, P18  
T18  
Supply voltage output from internal LDO_2P5. Requires external capacitor(s).  
Supply voltage input to internal LDO_2P5, LDO_1P1 and LDO_SNVS.  
Supply voltage output from internal LDO_SNVS. Requires external capacitor(s).  
Supply voltage input to the SNVS voltage domain  
R18  
H8, H9, J8, K8, L8, Supply voltage output from internal LDO_SOC. Requires external capacitor(s).  
M8, M13, N8, N9,  
N10, N11, N12, V9  
VDD_SOC_IN  
D7, D8, J9, K9, L9, Supply voltage input to internal LDO_SOC and LDO_PCIE  
M9, M10, M11,  
M12  
VDD_USB_CAP  
VDDA_ADC_3P3  
V17  
R13  
Supply voltage output from internal LDO_USB. Requires external capacitor(s).  
Supply voltage input to the ADC. This supply must be provided even if the ADC is  
not used.  
VSS  
A1, A20, C3, C4, Ground  
C18, D6, D9, D12,  
D15, E3, F3, F5,  
F17, G7, G8, G9,  
G10, G11, G12,  
G13, G14, H3, H7,  
H14, J7, J14, J17,  
K3, K10, K11,  
K14, L3, L7, L10,  
L11, L14, M7,  
M14, M17, N3, N7,  
N13, P7, P8, P9,  
P10, P11, P12,  
R3, R5, R17, R19,  
R20, T3, U6, U9,  
U12, U15, U19,  
U20, V3, V4, V18,  
W18, Y1, Y18,  
Y20  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
186  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
BOOT_MODE0  
N14  
T15  
W14  
P13  
W15  
R14  
N15  
R15  
Y16  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDD_SNVS_IN  
ADC1_IN0  
ADC1_IN1  
ADC1_IN2  
ADC1_IN3  
ADC2_IN0  
ADC2_IN1  
ADC2_IN2  
ADC2_IN3  
BOOT_MODE0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
GPIO  
100 kΩ  
pull-down  
BOOT_MODE1  
W16  
VDD_SNVS_IN  
GPIO  
BOOT_MODE1  
Input  
100 kΩ  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
P20  
P19  
V16  
N16  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_SNVS_IN  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_CLK2  
0
CCM_CLK2  
CCM_PMIC_STBY_REQ  
GPIO  
CCM_PMIC_STB Output  
Y_REQ  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
N5  
P5  
M4  
K5  
H5  
F4  
N4  
G5  
J4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_ADDR00 Output 100 kΩ pull-up  
DRAM_ADDR01 Output 100 kΩ pull-up  
DRAM_ADDR02 Output 100 kΩ pull-up  
DRAM_ADDR03 Output 100 kΩ pull-up  
DRAM_ADDR04 Output 100 kΩ pull-up  
DRAM_ADDR05 Output 100 kΩ pull-up  
DRAM_ADDR06 Output 100 kΩ pull-up  
DRAM_ADDR07 Output 100 kΩ pull-up  
DRAM_ADDR08 Output 100 kΩ pull-up  
DRAM_ADDR09 Output 100 kΩ pull-up  
DRAM_ADDR10 Output 100 kΩ pull-up  
DRAM_ADDR11 Output 100 kΩ pull-up  
DRAM_ADDR12 Output 100 kΩ pull-up  
DRAM_ADDR13 Output 100 kΩ pull-up  
DRAM_ADDR14 Output 100 kΩ pull-up  
L2  
H4  
M3  
M5  
J3  
R1  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
187  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
N2  
L4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
DRAM_DATA19  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
K2  
T2  
U2  
U1  
R2  
U3  
R4  
P3  
P4  
F1  
F2  
G3  
E2  
E4  
D1  
E1  
D2  
Y4  
W4  
Y3  
U4  
W3  
Y2  
T4  
W2  
D3  
B3  
A3  
C2  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩpull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
188  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
A2  
C5  
B4  
A4  
N1  
G2  
W1  
C1  
T1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA30  
DRAM_DATA31  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_ODT0  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
Output  
100 kΩ  
pull-down  
DRAM_RAS_B  
DRAM_RESET  
J1  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DRAM_RAS_B  
DRAM_RESET  
Output 100 kΩ pull-up  
D4  
Output  
100 kΩ  
pull-down  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
G4  
M2  
J2  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
Output 100 kΩ pull-up  
L5  
DRAM_SDCKE0 Output  
100 kΩ  
pull-down  
DRAM_SDCKE1  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
J5  
L1  
K1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DRAM_SDCKE1 Output  
100 kΩ  
pull-down  
DDRCLK  
DDRCLK  
DRAM_SDCLK0_  
N
DRAM_SDCLK0_ Output  
P
Low  
DRAM_SDQS0_N  
P2  
P1  
H1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DDRCLK  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS0_P Input  
DRAM_SDQS1_  
N
DRAM_SDQS1_P  
DRAM_SDQS2_N  
G1  
V2  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DRAM_SDQS1_P Input  
DRAM_SDQS2_  
N
DRAM_SDQS2_P  
DRAM_SDQS3_N  
V1  
B1  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK  
DDRCLK  
DRAM_SDQS2_P Input  
DRAM_SDQS3_  
N
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
189  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
DRAM_SDQS3_P  
DRAM_SDWE_B  
ENET1_COL  
ENET1_CRS  
ENET1_MDC  
ENET1_MDIO  
ENET1_RX_CLK  
ENET1_TX_CLK  
ENET2_COL  
ENET2_CRS  
ENET2_RX_CLK  
ENET2_TX_CLK  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
B2  
M1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
DDRCLK  
DDR  
DRAM_SDQS3_P Input  
DRAM_SDWE_B Output 100 kΩ pull-up  
B5  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
GPIO2_IO03  
GPIO2_IO04  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO2_IO08  
GPIO2_IO09  
GPIO1_IO00  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
JTAG_MOD  
JTAG_TCK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Keeper  
Keeper  
C6  
B6  
Keeper  
A6  
Keeper  
A5  
Keeper  
F7  
Keeper  
E7  
Keeper  
E6  
Keeper  
E5  
Keeper  
D5  
Keeper  
B20  
D19  
C19  
D20  
E16  
B18  
D18  
A17  
E17  
A19  
B19  
C20  
D17  
A16  
R8  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
100 kΩ pull-up  
47 kΩ pull-up  
47 kΩ pull-up  
Keeper  
JTAG_TCK  
R9  
JTAG_TDI  
R10  
Y9  
JTAG_TDI  
JTAG_TDO  
JTAG_TDO  
JTAG_TMS  
JTAG_TMS  
W9  
47 kΩ pull-up  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
190  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
JTAG_TRST_B  
KEY_COL0  
V8  
NVCC_JTAG  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_KEY  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
JTAG_TRST_B  
GPIO2_IO10  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
GPIO2_IO14  
GPIO2_IO15  
GPIO2_IO16  
GPIO2_IO17  
GPIO2_IO18  
GPIO2_IO19  
GPIO3_IO00  
GPIO3_IO01  
GPIO3_IO02  
GPIO3_IO03  
GPIO3_IO04  
GPIO3_IO05  
GPIO3_IO06  
GPIO3_IO07  
GPIO3_IO08  
GPIO3_IO09  
GPIO3_IO10  
GPIO3_IO11  
GPIO3_IO12  
GPIO3_IO13  
GPIO3_IO14  
GPIO3_IO15  
GPIO3_IO16  
GPIO3_IO17  
GPIO3_IO18  
GPIO3_IO19  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
47 kΩ pull-up  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
F18  
F19  
G17  
E20  
E19  
F16  
E18  
F20  
G20  
H19  
L19  
M19  
L17  
M18  
N20  
N19  
M15  
M16  
J19  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
KEY_COL1  
KEY_COL2  
KEY_COL3  
KEY_COL4  
KEY_ROW0  
KEY_ROW1  
KEY_ROW2  
KEY_ROW3  
KEY_ROW4  
LCD1_CLK  
LCD1_DATA00  
LCD1_DATA01  
LCD1_DATA02  
LCD1_DATA03  
LCD1_DATA04  
LCD1_DATA05  
LCD1_DATA06  
LCD1_DATA07  
LCD1_DATA08  
LCD1_DATA09  
LCD1_DATA10  
LCD1_DATA11  
LCD1_DATA12  
LCD1_DATA13  
LCD1_DATA14  
LCD1_DATA15  
LCD1_DATA16  
LCD1_DATA17  
LCD1_DATA18  
K18  
L15  
K19  
L16  
K15  
K16  
K17  
H16  
H20  
M20  
L20  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
191  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
LCD1_DATA19  
LCD1_DATA20  
LCD1_DATA21  
LCD1_DATA22  
LCD1_DATA23  
LCD1_ENABLE  
LCD1_HSYNC  
LCD1_RESET  
LCD1_VSYNC  
NAND_ALE  
J20  
H17  
G18  
G19  
G16  
K20  
J15  
J18  
J16  
W6  
U7  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_LCD1  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3_IO20  
GPIO3_IO21  
GPIO3_IO22  
GPIO3_IO23  
GPIO3_IO24  
GPIO3_IO25  
GPIO3_IO26  
GPIO3_IO27  
GPIO3_IO28  
GPIO4_IO00  
GPIO4_IO01  
GPIO4_IO02  
GPIO4_IO03  
GPIO4_IO04  
GPIO4_IO05  
GPIO4_IO06  
GPIO4_IO07  
GPIO4_IO08  
GPIO4_IO09  
GPIO4_IO10  
GPIO4_IO11  
GPIO4_IO12  
GPIO4_IO13  
GPIO4_IO14  
GPIO4_IO15  
ONOFF  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
100 kΩ pull-up  
100 kΩ pull-up  
Keeper  
Keeper  
Keeper  
Keeper  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
T8  
R7  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_RE_B  
V6  
W8  
Y7  
U5  
W7  
T5  
Y8  
T6  
U8  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
Y6  
T7  
V7  
U16  
R16  
E15  
C15  
D14  
A18  
POR_B  
POR_B  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO16  
GPIO4_IO17  
GPIO4_IO18  
GPIO4_IO19  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
192  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
QSPI1A_DQS  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
QSPI1B_DATA0  
QSPI1B_DATA1  
QSPI1B_DATA2  
QSPI1B_DATA3  
QSPI1B_DQS  
QSPI1B_SCLK  
QSPI1B_SS0_B  
QSPI1B_SS1_B  
RGMII1_RD0  
A13  
B16  
C17  
B17  
A15  
A14  
C13  
D13  
B13  
B14  
C14  
B15  
E8  
NVCC_QSPI  
NVCC_QSPI  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4_IO20  
GPIO4_IO21  
GPIO4_IO22  
GPIO4_IO23  
GPIO4_IO24  
GPIO4_IO25  
GPIO4_IO26  
GPIO4_IO27  
GPIO4_IO28  
GPIO4_IO29  
GPIO4_IO30  
GPIO4_IO31  
GPIO5_IO00  
GPIO5_IO01  
GPIO5_IO02  
GPIO5_IO03  
GPIO5_IO04  
GPIO5_IO05  
GPIO5_IO06  
GPIO5_IO07  
GPIO5_IO08  
GPIO5_IO09  
GPIO5_IO10  
GPIO5_IO11  
GPIO5_IO12  
GPIO5_IO13  
GPIO5_IO14  
GPIO5_IO15  
GPIO5_IO16  
GPIO5_IO17  
GPIO5_IO18  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_QSPI  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII1  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
RGMII1_RD1  
A7  
RGMII1_RD2  
C7  
RGMII1_RD3  
C8  
RGMII1_RX_CTL  
RGMII1_RXC  
RGMII1_TD0  
B7  
C10  
E10  
A8  
RGMII1_TD1  
RGMII1_TD2  
F9  
RGMII1_TD3  
E9  
RGMII1_TX_CTL  
RGMII1_TXC  
D10  
B8  
RGMII2_RD0  
C11  
A9  
RGMII2_RD1  
RGMII2_RD2  
A11  
D11  
B9  
RGMII2_RD3  
RGMII2_RX_CTL  
RGMII2_RXC  
RGMII2_TD0  
A12  
A10  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
193  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
RGMII2_TX_CTL  
RGMII2_TXC  
RTC_XTALI  
RTC_XTALO  
SD2_CLK  
C12  
B10  
B12  
C9  
NVCC_RGMII2  
NVCC_RGMII2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5_IO19  
GPIO5_IO20  
GPIO5_IO21  
GPIO5_IO22  
GPIO5_IO23  
RTC_XTALI  
RTC_XTALO  
GPIO6_IO06  
GPIO6_IO07  
GPIO6_IO08  
GPIO6_IO09  
GPIO6_IO10  
GPIO6_IO11  
GPIO7_IO00  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_RGMII2  
NVCC_RGMII2  
NVCC_RGMII2  
VDD_SNVS_CAP  
VDD_SNVS_CAP  
NVCC_SD1_SD2  
NVCC_SD1_SD2  
NVCC_SD1_SD2  
NVCC_SD1_SD2  
NVCC_SD1_SD2  
NVCC_SD1_SD2  
B11  
Y17  
W17  
E12  
F12  
E13  
E14  
F10  
F11  
V11  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD3_CLK  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD3_CMD  
SD3_DATA0  
SD3_DATA1  
SD3_DATA2  
SD3_DATA3  
SD3_DATA4  
SD3_DATA5  
SD3_DATA6  
SD3_DATA7  
T13  
R11  
T11  
Y14  
T14  
U14  
U13  
V12  
U11  
NVCC_LOW  
NVCC_HIGH  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO7_IO01  
GPIO7_IO02  
GPIO7_IO03  
GPIO7_IO04  
GPIO7_IO05  
GPIO7_IO06  
GPIO7_IO07  
GPIO7_IO08  
GPIO7_IO09  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
NVCC_LOW  
NVCC_HIGH  
100 kΩ  
pull-down  
SD4_CLK  
SD4_CMD  
T10  
NVCC_SD4  
NVCC_SD4  
GPIO  
GPIO  
ALT5  
ALT5  
GPIO6_IO12  
GPIO6_IO13  
Input  
Input  
Keeper  
Keeper  
W12  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
194  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 119. 14 x 14 Functional Contact Assignments (continued)  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
SD4_DATA0  
SD4_DATA1  
Y10  
Y11  
Y13  
W13  
Y12  
W10  
U10  
W11  
V10  
P15  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
NVCC_SD4  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO14  
GPIO6_IO15  
GPIO6_IO16  
GPIO6_IO17  
GPIO6_IO18  
GPIO6_IO19  
GPIO6_IO20  
GPIO6_IO21  
GPIO6_IO22  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD4_DATA2  
SD4_DATA3  
SD4_DATA4  
SD4_DATA5  
SD4_DATA6  
SD4_DATA7  
SD4_RESET_B  
SNVS_PMIC_ON_REQ  
SNVS_PMIC_ON Output 100 kΩ pull-up  
_REQ  
SNVS_TAMPER  
TEST_MODE  
P14  
V15  
Y5  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_USB_H  
NVCC_USB_H  
VDD_USB_CAP  
GPIO  
SNVS_TAMPER  
TEST_MODE  
GPIO7_IO10  
GPIO7_IO11  
Input  
Input  
Input  
Input  
100 kΩ  
pull-down  
100 kΩ  
pull-down  
USB_H_DATA  
GPIO  
GPIO  
ALT5  
ALT5  
100 kΩ  
pull-down  
USB_H_STROBE  
USB_OTG1_CHD_B  
W5  
T17  
100 kΩ  
pull-down  
USB_OTG1_CHD  
_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
V19  
V20  
Y19  
W19  
T19  
T20  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
VDD_USB_CAP  
NVCC_PLL  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG2_DN  
USB_OTG2_DP  
XTALI  
XTALO  
NVCC_PLL  
XTALO  
6.5.3  
14 x 14 mm, 0.65 mm pitch, 20 x 20 Ball Map  
Table 120 shows the 14 x14 mm, 0.65 mm pitch, 20 x 20 ball map for the i.MX 6SoloX.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
195  
Package Information and Contact Assignments  
Table 120. 14 x 14 mm Ball Map  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
196  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 120. 14 x 14 mm Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
197  
Package Information and Contact Assignments  
Table 120. 14 x 14 mm Ball Map (continued)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
198  
NXP Semiconductors  
Revision History  
7 Revision History  
Table 121 provides a revision history for this data sheet.  
Table 121. i.MX 6SoloX Data Sheet Document Revision History  
Substantive Change(s)  
Rev.  
Number  
Date  
4
10/2018 Changes for this revision include:  
Table 1, “Part Number Nomenclature—i.MX 6SoloX,” on page 5,  
– Part Differentiator section: Removed VADC column.”  
Section 4.12.6.1.1, “MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)” on page 82, and Section 4.12.6.1.2, “MII Transmit Signal  
Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)” on page 82  
– Removed sentence: Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.”  
Table 6, “Absolute Maximum Ratings,” on page 21,  
– Row VDD_SNVS_IN: Corrected maximum value from 3.4V to 3.6V.  
Table 23, “XTALI and RTC_XTALI DC Parameters,” on page 38,  
– Row: XTALI input leakage current at startup, IXTALI_STARTUP: Changed from “... driven 32KHz  
RTC clock @ 1.1V” to “...driven 24 MHz clock at 1.1V.”  
Table 55, “eMMC4.4/4.41 Interface Timing Specification,” on page 79,  
– Row: SD2, uSDHC Output Delay: Changed tOD from 2.5ns minimum to 2.8ns and 7.1ns  
maximum to 6.8ns.  
Table 66, “LCDIF Display Interface Signal Mapping,” on page 89,  
– Rows LCD_D23 and LCD_D22: Corrected Column 24-bit DOTCLK LCD IF from G[7] to R[7] and  
G[6] to R[6].  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
199  
Revision History  
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)  
Date Substantive Change(s)  
Rev.  
Number  
3
09/2017 • Minor formatting updates and editorial corrections throughout.  
• Removed references of ‘NTSC/PAL analog video input interface’ from features and throughout.  
• Removed support of Video ADC (VADC) and TVDECODE throughout.  
• Replaced ipp_dse with DSE throughout.  
Section 1, “Introduction: Replaced LVDDR3 with DDR3L in text description.  
Table 1: Added orderable part numbers in the Ordering Information table.  
Figure 1:  
– Changed the Part Differentiator table’s ADC column to include channel count.  
– Included Rev 1.4 in Silicon Revision section  
Figure 2: Removed VADC and TV Decoder blocks from the block diagram.  
Section 1.2, “Features”:  
– Modified “Displays” information from Total two interfaces available” to Total three interfaces  
available”. Also added “Two parallel 24-bit display ports, each up to 1080P at 60 Hz” to  
the list. Removed “One Parallel 24-bit display port, up to dual WXGA at 60 Hz“.  
– Clarified the Miscellaneous interfaces from “Two 4-channel …(ADC)” to “Up to two 4-channel  
(ADC)”.  
Table 6:  
– IO Supply for DDR Interface row, added the footnote “The absolute maximum voltage includes an  
allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the allowed  
signal overshoot must be de-rated if NVCC_DRAM exceeds 1.575V.“  
– IO Supply for RGMII Interface row, maximum value from 2.725 V to 3.7 V.  
– Input/Output Voltage Range row, split the row into DDR and non-DDR and added the corresponding  
details.  
– 1.2V supply for video A/D converter row, removed  
– 3.3V supply for video A/D converter row, parameter name changed to 3.3V supply for analog  
circuitry.  
Table 9:  
– GPIO supplies row, added NVCC_NAND to the Symbol column.  
– Video A/D converter supply row, removed  
Table 12:Following rows removed: VDD_AFE_1P2, VDDA_AFE_3P3  
Table 56: SDR50/SDR104 Interface Timing Specification table, changed duplicate SD2 to SD3. Minor  
format changes to minimum and maximum columns for SD2 and SD3 rows.  
• Updated introductory text of the following sections: Section 4.6.4.1, “LPDDR2 Mode I/O DC  
Parameters, Section 4.6.4.2, “DDR3/DDR3L Mode I/O DC Parameters, Section 4.7.2, “DDR I/O AC  
Parameters, Section 4.8.3, “DDR I/O Output Buffer Impedance.  
• Corrected Figure 19, "Asynchronous A/D Muxed Write Access," on page 57  
Table 55: Minimum value of ‘uSDHC Input Setup Time’ corrected to 1.7ns.  
• Added Section 4.12.5.4, “HS200 Mode Timing.  
• Added Section 4.12.9.1, “LCDIF Display Interface Signal Mapping.  
• Removed phrase “Case x” from figure titles of all package diagrams. Also updated the diagrams with  
NXP branding.  
Table 108:  
– Made the following ball positions Reserved: K21, L21, N18.  
Table 109:  
– Made the following balls Reserved: L23, L22, K23, and K22.  
Table 110:  
– Made the following balls Reserved: K21, K22, K23, L21, L22, L23, N18.  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
200  
NXP Semiconductors  
Revision History  
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)  
Date Substantive Change(s)  
Rev.  
Number  
2
06/2016 • Changed throughout:  
- VDD_AFE_3P3 to VDDA_AFE_3P3  
- VDDAD to VDDA_ADC_3P3  
Table 1, changed all instances of “2N19K” to “2N19K or 3N19K”.  
Figure 1, added new row under Silicon Rev, “Rev 1.3 Production...”  
Table 2, i.MX 6SoloX Modules List:  
- BCH, deleted “encryption/decryption” in Brief Description column  
- eCSPI1-eCSPI5: deleted “with data rate...” in Brief Description column  
- uSDHC1-uSDHC4: added “Conforms to the SD...”  
- uSDHC1-uSDHC4: deleted 7th and 8th paragraphs  
- uSDHC1-uSDHC4: added “Each port is placed...”  
Table 3, Special Signal Considerations  
- Signal Name, GPANAIO: updated text to “Analog output for NXP...”  
- Signal Name, POR_B: deleted second sentence  
Section 3.2, “Recommended Connections for Unused Analog Interfaces”, removed text and original  
table, Recommended Connections for Unused Analog Interfaces, and referred reader to the Hardware  
Development Guide.  
Section 4.1.1, “Absolute Maximum Ratings  
- added new CAUTION  
- updated Table 6, Absolute Maximum Ratings  
Section 4.1.2, “Thermal Resistance, added NOTE  
Table 7, 19x19 mm (VM)..., corrected Junction to Package Top value 0.2 to 2  
Table 8, 17x17 mm NP (VO)..., corrected Junction to Package Top value 0.2 to 2  
Table 9, 14x14 mm (VK)..., updated Junction to Package Top value 0.2 to 2  
Table 9, Operating ranges, USB supply voltages: changed 5.25 to 5.5  
Table 12, Maximum Supply Currents  
- added text: Use Maximum IO equation  
- added footnotes  
Section 4.2.1, “Power-Up Sequence, - Removed references to the internal POR function. Internal  
POR is not supported on the i.MX 6SoloX.”  
- Deleted bullets 4 and 5  
Section 4.3.2.3, “LDO_USB, changed 5.25 to 5.5  
Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters, added new NOTE.  
Table 23, XTALI and RTC_XTALI DC Parameters, added new footnote, “This voltage specification...”  
Section 4.10, “Multi-mode DDR Controller (MMDC) this new section added, replacing the original  
section 4.9.4 DDR SRAM Specific Parameters (DDR3/DDR3L and LPDDR2).  
Table 56, SDR50/SDR104 Interface..., changed SD2 Min and max values to 0.46 and 0.54. Changed  
SD5 Max to 0.74.  
Table 63, RGMII Signal Switching Specifications, deleted footnote 1.  
Table 75, Master Mode SAI Timing:  
- changed S1 Min value to 20  
- changed S3 Min value to 2 x S1  
(continued on next page)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
201  
Revision History  
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)  
Date Substantive Change(s)  
Rev.  
Number  
2
06/2016 (continued from previous next page)  
Table 76, Slave Mode SAI Timing:  
- changed title from Master Mode Timing to Slave Mode SAI Timing  
- changed S11 Min value to 20  
- added new row, S19  
- added new footnote  
Figure 62, SAI Timing — Slave Modes: added S19  
Table 90, 12-bit ADC Operating Conditions: changed Supply Voltage Min value to 3.0  
Table 104, SD/MMC boot through USDHC4, changed Signal Names from usdhc3.DATA4 -  
usdhc3.DATA7, to usdhc4.DATA4 - usdhc4.DATA7  
Table 108, 19x19mmSuppliesContactAssignments:changedGPANAIORemarkfromTestsignal...”  
to “Analog output for NXP use...”  
Table 109, 19x19 mm Functional Contact Assignments: DRAM_SDCLK_0, updated “Input” to  
“Output” and Value to “0”  
Table 112, 17x17 mm NP (no PCIe) supplies contact assignments:  
- GPANAIO: changed remark from “Test signal...” to “Analog output for NXP use...”  
- VDD_SOC_CAP: deleted L9  
- VDD_SOC_IN: added L9  
- DRAM_SDCLK0_P: updated “Input” to “Output” and Value to “Low”  
Table 115, 17x17 mm WP (with PCIe) supplies contact assignments:  
- GPANAIO: changed remark from “Test signal...” to “Analog output for NXP use...”  
- VDD_SOC_IN: added L9  
Table 116 17x17 mm WP (with PCIe) Functional Contact Assignments, DRAM_SDCLK0_P: updated  
“Input” to “Output” and Value to “Low”  
Table 118 14x14 mm supplies contact assignments:  
- added rows ADC_VREFL and PCIE_CP_CAP  
- VDD_HIGH_CAP: added N18  
- VDD_HIGH_IN: added P18  
- VDD_SOC_IN: added L9  
Table 119, 14x14 mm Functional Contact Assignments, DRAM_SDCLK0_P: updated “Input” to  
“Output” and Value to “Low”  
- RGMII1_TX_CTL: updated to D10  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
202  
NXP Semiconductors  
Revision History  
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)  
Date Substantive Change(s)  
7/2015 • Throughout:  
Rev.  
Number  
1
– Updated Arm Cortex-M4 core operation speed as 227 MHz  
– Corrected signal name from NVCC_LVDS_2P5 to NVCC_LVDS  
– For supply rail NVCC_LOW, corrected supply input voltage from 3.3 V to 1.8 V  
• On page 2, in the list of i.MX 6SoloX features, updated the first bullet, adding that FreeRTOS can be  
run on the Cortex-M4.  
Table 1, “Ordering Information,” on page 3:  
– Updated Cortex-M4 core operation speed as 227 MHz  
– Added footnote on “Cortex-A9 Speed” column  
• In Section 1.2, “Features”:  
– Corrected second bullet under “External memory interfaces” to say, “16-bit NAND-Flash, including  
support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND,  
LBA-NAND, OneNAND and others. BCH ECC up to 62 bits. 16-bit boot is supported from  
OneNAND. 8-bit boot is supported from other NAND types.”  
– Corrected second bullet under “USB” to say, “One HS-IC USB (High Speed Inter-Chip USB) host”  
– Corrected first bullet under “Miscellaneous IPs and interfaces” to say, “Three SSIs and two SAIs  
supporting up to five I2S or AC97 ports”  
– Updated ninth bullet under “Miscellaneous IPs and interfaces” to say, “Two Gigabit Ethernet  
Controllers (designed to be compatible with IEEE AVB standards and IEEE Std 1588®),  
10/100/1000 Mbps”  
• Updated Section 2.1, “Block Diagram”:  
– In “Shared Peripherals” block, corrected from UART(5) to UART(1) and added ASRC and ESAI. In  
“AP Peripherals” block, added UART(5) and eCSPI(1).  
– Updated note regarding number of module instances  
• Updated Table 2, “i.MX 6SoloX Modules List,” on page 10  
• In Table 3, “Special Signal Considerations,” on page 18:  
– In XTALI/XTALO row, added references to engineering bulletin and reference manual  
– In row for NVCC_LVDS_2P5, corrected signal name to NVCC_LVDS and updated remarks  
• Updated Table 5, “Recommended Connections for Unused Analog Interfaces,” on page 21:  
– Deleted row for RTC  
– Added row for NVCC_USB_H  
– Updated footnote pertaining to PCIe  
• Updated Table 6, “Absolute Maximum Ratings,” on page 21:  
– Added footnote pertaining to “Symbol” column  
– Updated maximum value for VDD_SNVS_IN supply voltage  
• Updated Table 9, “Operating Ranges,” on page 25. Table reformatted since previous release; not a  
specification change.  
• In Section 4.1.4, “External Clock Sources,” added caution about use of the internal RTC oscillator vs.  
an external crystal.  
• Updated Table 13, “Low Power Mode Current and Power Consumption (LDO Bypass Mode),” on page  
30  
• In Section 4.5.2, “OSC32K,”  
– Added caution about use of the internal RTC oscillator vs. an external crystal  
– Updated description of result when the clock monitor determines that the OSC32K is not present  
– Removed text pertaining to ~3 V coin-cell battery  
• Updated Table 23, “XTALI and RTC_XTALI DC Parameters,” on page 38  
(continued on next page)  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
NXP Semiconductors  
203  
Revision History  
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)  
Rev.  
Number  
Date  
7/2015 (continued from previous page)  
Substantive Change(s)  
1
• Updated Table 44, “EIM Asynchronous Timing Parameters Relative to Chip Select,,” on page 58.  
Elaborated to show results of calculations. No specification change.  
• In Table 64, “DDR3/DDR3L Read Cycle,” on page 93, updated minimum value for DDR26  
• Added note regarding ECSPIx_MOSI to Figure 36, "ECSPI Master Mode Timing Diagram," on page  
72  
• Added note regarding ECSPIx_MISO to Figure 37, "ECSPI Slave Mode Timing Diagram," on page 73  
• Updated Figure 42, "SDR50/SDR104 Timing," on page 80  
• In Table 67, “LVDS Display Bridge (LDB) Electrical Specification,” on page 91:  
– Corrected units for VOH values from ‘mV’ to ‘V’  
– Corrected units for VOL values from ‘mV’ to ‘V’  
• In Section 4.12.20, “USB PHY Parameters,” in list of amendments to Rev. 2 of the The USB PHY  
meets the electrical compliance requirements defined in revision 2.0 of the USB On-The-Go and  
Embedded Host Supplement to the USB 2.0 Specification, added “Portable device only” under  
“Battery Charging Specification”  
• Added Table 107, “Signals with Different States During Reset and After Reset,” on page 128  
• In Table 109, “19x19 mm Functional Contact Assignments,” on page 134, corrected GPIO signal  
names  
• In Table 112, “17x17 mm NP (no PCIe) Supplies Contact Assignments,” on page 153, added ball L9  
to the VDD_SOC_CAP row  
• In Table 119, “14 x 14 Functional Contact Assignments,” on page 187, corrected power group for SD2  
ball names to ‘NVCC_SD1_SD2’  
0
2/2015 • Initial public release  
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018  
204  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data  
sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks associated  
with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C?5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C?Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore,  
Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in  
the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,  
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are  
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word  
marks and the Power and Power.org logos and related marks are trademarks and service marks  
licensed by Power.org.  
© 2015-2018 NXP B.V.  
Document Number: IMX6SXIEC  
Rev. 4  
11/2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY