SCIMX7U3+VK055A [NXP]

i.MX 7ULP Applications Processor-Industrial;
SCIMX7U3+VK055A
型号: SCIMX7U3+VK055A
厂家: NXP    NXP
描述:

i.MX 7ULP Applications Processor-Industrial

文件: 总112页 (文件大小:1954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
IMX7ULPIECB2  
Rev. 1, 07/2021  
i.MX 7ULP Applications  
Processor—Industrial  
MCIMX7U5CVP06SD  
MCIMX7U3CVP06SD  
The i.MX 7ULP product family members are optimized for power-  
sensitive applications benefiting from NXP's Heterogeneous  
Multicore Processing (HMP) architecture. Achieving an efficient  
balance between processing power and deterministic processing  
needs, the i.MX 7ULP is an asymmetric processor consisting of  
two separate processing domains: an application domain and a  
real-time domain. The application domain is built around an  
ARM® Cortex®-A7 processor with an ARM NEON™ SIMD  
engine and floating point unit (FPU) and is optimized for rich OS  
based applications. The real-time domain is built around an ARM  
Cortex-M4 processor (with FPU) optimized for lowest possible  
leakage. Both domains are completely independent, with  
separate power, clocking, and peripheral domains, but the bus  
Plastic package: BGA 14x14mm, 0.5mm pitch  
fabric of each domain is tightly integrated for efficient communication. The part is streamlined to minimize pin  
count, enabling small packages and simple system integration.  
i.MX 7ULP features  
Feature type  
Application processor domain  
Real-time processor domain  
ARM Processor  
Cortex®-A7  
Cortex®-M4  
• Nominal (RUN) frequency: 500 MHz  
• Overdrive (HSRUN) frequency: 650  
MHz  
• Nominal (RUN) frequency: 120 MHz  
• Overdrive (HSRUN) frequency: 200  
MHz  
• Very Low Power Run (VLPR)  
frequency: 48 MHz  
• Very Low Power Run (VLPR)  
frequency: 48 MHz  
Optimized for lowest leakage current  
32 KB instruction and data caches  
256 KB L2 cache  
NEON™ SIMD engine  
FPU  
FPU  
MPU  
On-chip memory  
256 KB of RAM  
256 KB of tightly coupled RAM allocated into  
32 KB switchable blocks  
8 KB of OTP memory  
External memory  
interfaces  
16/32-bit LPDDR2/LPDDR3 interface  
running at 271.5 MHz  
Serial flash interface supporting x4 and x8  
IOs  
eMMC 5.0 interface  
Secure boot  
Security  
Secure boot  
Table continues on the next page...  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
i.MX 7ULP features (continued)  
Feature type  
Application processor domain  
Real-time processor domain  
Signing and encrypt/decrypt engines  
(CAAM)  
Encrypt/decrypt engines (LTC)  
Simple tamper detection  
Four I2C Fast mode plus  
SD 3.0/MMC 5.0  
Serial peripherals  
Four I2C Fast mode plus  
FlexI/O  
Four UARTs with flow control  
Two LPSPI peripherals  
Four UARTs with flow control  
Two LPSPI peripherals  
Timers  
Four 32-bit general-purpose timers with  
capture and compare; one 64-bit timer  
Four 32-bit general purpose-timers with  
capture and compare; one 64-bit timer  
Watchdog timer  
Watchdog timer  
2
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP  
Application Domain  
A7 Connectivity  
Timers  
32 bit Timer x4  
UART x 4  
I2C x4  
Arm Cortex -A7  
System timers  
Watch Dog  
32KB I-cache  
32KB D-cache  
SPI x 2  
3.3V/1.8V GPIO  
256KB L2 cache  
DMA  
USB2.0 OTG  
(w/ PHY)  
USB2.0 HOST  
(w/ HSIC)  
Internal Memory  
FPU  
ETM  
NEON  
256K RAM  
Trust Zone  
32K Secure  
Memory  
Graphics  
FlexIO  
GC320  
Composition  
GC7000  
NanoULTRA  
Security  
Crypto / TRNG  
External Memory  
16/32-bit LPDDR2/3  
Camera  
Display  
HABSecure Boot  
Secure Fuse  
MMC5.0/SDIO x 2  
FlexBUS  
MIPI DSI  
VIU  
Clock and Power  
Management System  
Security Batt Domain  
Key  
Storage  
Tamper  
Detection  
Secure  
RTC  
Power  
Manager  
Clock/Reset  
PLL/OSC  
Real Time Domain  
Timers  
M4 Connectivity  
UART x 4  
32 bit Timer x4  
System timers  
Watch Dog  
I2C x4  
Arm Cortex -  
-
M4  
DSP Extensions  
- cache  
SPI x2  
3.3V/1.8V GPIO  
Access and IPC  
8KB I/D  
XRDC  
I2S x 2  
DAP  
MPU  
FPU  
Secure JTAG  
FlexIO  
SEMA4 / Msg Unit  
External Memory  
Analog  
Security  
uHABSecure Boot  
Quad SPI (OTFAD)  
2x 12 bit ADC 2x 12 -bit DAC  
Analog Comparators  
Internal Memory  
eFuses / OTP  
Crypto / TRNG  
256K RAM  
Figure 1. i.MX 7ULP Block Diagram  
The following table provides examples of orderable sample part numbers covered by this data sheet.  
Ordering information  
Part Number  
Options Cortex- Cortex- Qualification  
Junction  
Temperature  
Range  
Package  
A7  
M4  
Tier  
Speed  
Grade  
Speed  
Grade  
MCIMX7U5CVP06SD GPU-2D, 650 MHz 200 MHz Industrial  
-40 to +105 °C 14 mm x 14 mm, 0.5 mm  
pitch BGA, Package code  
"VP"  
GPU-3D  
supported  
MCIMX7U3CVP06SD No GPU 650 MHz 200 MHz Industrial  
-40 to +105 °C 14 mm x 14 mm, 0.5 mm  
pitch BGA, Package code  
"VP"  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
3
NXP Semiconductors  
The following figure describes the part number nomenclature so users can identify the characteristics of the  
specific part number.  
Figure 2. i.MX 7 Family Part Number Definition  
Related Resources  
Type  
Description  
Reference Manual The i.MX 7ULP Applications Processor Reference Manual contains a comprehensive description of  
the structure and function (operation) of the SoC.  
Data Sheet  
Chip Errata  
The Data Sheet includes electrical characteristics and signal connections.  
The chip mask set errata provides additional or corrective information for a particular device mask  
set.  
Package drawing  
Package dimensions are provided in Package information and contact assignments  
The power mode acronyms used throughout this document are defined as follows.  
Power mode acronym table  
Power mode acronym  
Power mode name  
HSRUN  
RUN  
High-speed run mode  
Nominal speed run mode  
Very low power run mode  
Partial stop mode  
VLPR  
PSTOP  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
4
NXP Semiconductors  
Power mode acronym table (continued)  
Power mode acronym  
Power mode name  
STOP  
VLPS  
LLS  
Stop mode  
Very low power stop mode  
Low leakage stop mode  
VLLS  
Very low leakage stop mode  
For details on each of these operating modes, see the i.MX 7ULP Applications Processor Reference Manual  
(IMX7ULPRM).  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
5
NXP Semiconductors  
Table of Contents  
1
2
i.MX 7ULP modules list.........................................................7  
7.1.4  
7.1.5  
Absolute maximum ratings............................34  
Recommended operating conditions—  
Clocking................................................................................ 21  
2.1 Introduction..................................................................21  
2.2 Clock distribution......................................................... 22  
2.3 External clock sources.................................................23  
2.4 Oscillators....................................................................23  
2.5 Internal clock sources..................................................23  
Application domain (implementing ARM Cortex-A7).............24  
3.1 Memory system—application domain..........................24  
system...........................................................35  
Estimated maximum supply currents............ 39  
7.1.6  
7.2 System clocks..............................................................40  
7.2.1  
7.2.2  
Clock modules...............................................40  
Core, platform, and system bus clock  
3
frequency limitations..................................... 43  
Peripheral clock frequencies.........................44  
PLL PFD output.............................................47  
Audio tunable clock.......................................48  
7.2.3  
7.2.4  
7.2.5  
3.1.1  
3.1.2  
3.1.3  
Internal memory (application domain)...........24  
Multi Mode DDR Controller (MMDC).............24  
eMMC............................................................25  
7.3 Power sequencing—system........................................ 49  
3.2 Peripherals—application domain.................................25  
7.3.1  
7.3.2  
Power-on sequencing................................... 49  
Power-off sequencing................................... 50  
3.2.1  
Graphics processor human machine  
interfaces.......................................................25  
Security—application domain........................26  
Timers—application domain..........................27  
Connectivity and communications—  
7.4 Requirements for unused interfaces............................50  
7.5 Electrical Characteristics and Thermal Specifications.51  
3.2.2  
3.2.3  
3.2.4  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
AC electrical characteristics..........................51  
Nonswitching electrical characteristics..........52  
Switching electrical characteristics................53  
Debug and trace modules.............................55  
Thermal specifications.................................. 59  
applications domain...................................... 27  
4
Real-time domain (implementing ARM Cortex-M4).............. 28  
4.1 Memory system—real-time domain.............................28  
4.1.1  
4.1.2  
Internal memory—real-time domain..............28  
QuadSPI flash...............................................28  
8
Specifications—application domain...................................... 60  
8.1 Peripheral operating requirements and behaviors.......60  
4.2 Peripherals—real-time domain.................................... 28  
8.1.1  
8.1.2  
DDR timing—application domain.................. 60  
Ultra-high-speed SD/SDIO/MMC host  
4.2.1  
4.2.2  
Analog—real-time domain.............................28  
Connectivity and communications—real-  
interface (uSDHC) AC timing—application  
domain.......................................................... 60  
Flexbus switching specifications................... 66  
Display, Video, and Audio Interfaces............ 69  
Timer specifications—application domain.....70  
Connectivity and communications  
time domain...................................................29  
5
System control modules........................................................29  
5.1 JTAG—system control.................................................29  
5.2 JTAG device identification register.............................. 29  
5.3 Oscillators and PLLs....................................................30  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
System oscillator (SYS OSC)........................30  
Real-Time Clock Oscillator (RTC OSC)........30  
USB PLL....................................................... 30  
Fixed Frequency PLL (Fixed-freq PLL).........30  
Fractional-N PLL (FracN PLL).......................31  
specifications—application domain...............70  
9
Specifications—real-time domain..........................................79  
9.1 Power sequencing—real-time domain.........................79  
9.2 Peripheral operating requirements and behaviors—  
real-time domain..........................................................80  
5.4 Power Management.................................................... 31  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
QuadSPI AC specifications...........................80  
Analog modules............................................ 84  
Timer specifications—real-time domain........92  
Connectivity and communications  
5.4.1  
5.4.2  
Digital PMC................................................... 31  
Analog power management controller  
(Analog PMC)................................................31  
6
7
i.MX 7ULP LDO Bypass versus LDO-enabled modes..........32  
6.1 Real-time domain LDO Enabled mode........................32  
6.2 Application domain LDO Enabled mode......................32  
6.3 Application domain LDO BYPASS mode.................... 32  
System specifications............................................................33  
7.1 Ratings........................................................................ 33  
specifications—real-time domain.................. 92  
10 Package information and contact assignments.....................96  
10.1 BGA, 14 x 14 mm, 0.5 mm pitch (VP suffix)................ 96  
10.1.1 14 x 14 mm package case outline.................96  
10.1.2 14 x 14 mm, 0.5 mm pitch, ball map............. 98  
10.1.3 14 x 14 mm power supply and functional  
7.1.1  
7.1.2  
7.1.3  
Thermal handling ratings...............................33  
Moisture handling ratings..............................33  
ESD handling ratings.................................... 33  
contact assignments..................................... 100  
11 Revision History.................................................................... 108  
6
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
1 i.MX 7ULP modules list  
The i.MX 7ULP applications processor contains a variety of digital and analog  
modules. The following table describes these modules in alphabetical order.  
In the Domain column in this table:  
• AD = Application Power Domain (primarily controlled by the Cortex-A7)  
• RT = Real-Time Power Domain (primarily controlled by the Cortex-M4)  
• VBAT = RTC/VBAT power domain Real-Time Domain  
• DGO = “always-on” DGO power domain  
• SYS = system-level functions that are implemented separately from the domains  
listed above.  
Table 1. i.MX 7ULP modules list  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
AMBA Network  
Interconnect  
Crossbar  
NIC0-1  
DMA and Bus Fabrics AD  
The AMBA Network Interconnect  
Crossbar (NIC) is a highly configurable  
and high performance AMBA-compliant  
network infrastructure which arbitrates  
between multiple AXI or AHB masters to  
grant access to internal or external  
memories or other slave devices. It  
supports connectivity between several  
slave and master ports for parallel  
processing. It uses a hybrid round-robin  
arbitration scheme and contains  
frequency converters, data width  
converters, bus protocol converter, and  
AXI channel buffers.  
Analog PMC  
Analog PMC  
Power Management  
SYS  
The Analog PMC consists of voltage/  
current references, core logic supply  
regulators, memory supply regulators,  
Back and Forward Biasing regulators,  
monitors and power switches, etc.  
There are two Analog PMC subsystems  
in i.MX 7ULP, one associated with the  
M4 power domain and the other with the  
A7 power domain.  
Analog-to-Digital  
Converter  
ADC0-1  
Analog  
RT  
Analog-to-Digital Converter (ADC) is a  
12-bit resolution, successive  
approximation analog to digital  
converter. The ADC module supports  
up to 16 single-ended external analog  
inputs. It outputs 12-bit, 10-bit, or 8-bit  
digital signal in right-justified unsigned  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
7
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
format. The ADC can achieve 1  
microsecond conversion rate.  
Asynchronous  
Wakeup Interrupt  
Controller  
AWIC  
BME  
System Control  
RT  
The Asynchronous Wakeup Interrupt  
Controller (AWIC) module is capable of  
interrupt detection and wake-up of a  
processor when it is in low power mode.  
Bit Manipulation  
Engine  
Multicore peripherals RT  
and resource domain  
control submodules  
The Bit Manipulation Engine (BME)  
provides hardware support for atomic  
read-modify-write memory operations to  
the peripheral address space. This  
architectural capability is also known as  
"decorated storage" as it defines a  
mechanism for providing additional  
semantics for load and store operations  
to memory-mapped peripherals beyond  
just the reading and writing of data  
values to the addressed memory  
locations.  
Comparator  
CMP0-1  
Analog  
Debug  
DGO  
The (CMP) module provides a circuit for  
comparing two analog input voltages.  
The comparator circuit is designed to  
operate across the full range of the  
supply voltage (rail to rail operation).  
Cross Trigger Matrix CTM  
RT  
Cross Trigger Matrix (CTM) is a  
component of the Embedded Cross  
Trigger (ECT), which is key in the  
multicore debug strategy. The CTM  
receives signals from various sources  
(i.e. cores and peripherals) and  
propagates or routes them to the  
different debug resources of the SoC.  
Those debug resources can include  
time stamping capability, real-time  
trace, triggers and debug interrupts.  
Cryptographic  
Acceleration and  
Assurance  
CAAM  
Security  
AD  
Cryptographic Acceleration and  
Assurance Module (CAAM) is a  
multifunction accelerator that supports  
the cryptographic functions common in  
many security protocols. This includes  
AES128, AES256, DES, 3DES, SHA1,  
SHA224, SHA256, and a random  
number generator with a true entropic  
seed. CAAM includes a DMA engine  
that is descriptor based to reduce  
processor-accelerator interaction.  
Security feature clear keys and  
memories when on-chip security  
monitor detects tampering. The Secure  
RAM is implemented and provides  
secure storage of sensitive information  
Table continues on the next page...  
8
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
both in on-chip RAM and in off-chip,  
nonvolatile memory. For details, see the  
i.MX 7ULP Security Reference Manual.  
Cyclic Redundancy  
Check  
CRC  
Connectivity and  
Communications  
RT  
The Cyclic Redundancy Check (CRC)  
module is a hardware CRC generator  
circuit using 16/32-bit shift register. The  
CRC module supports error detection  
for all single, double, odd, and most  
multi-bits errors, programmable initial  
seed value, and optional feature to  
transpose input data and CRC result via  
transpose register.  
Debug Access Port  
DAP  
Debug  
RT  
Debug Port Access (DAP) provides  
debugger access to on-chip system  
resources via the SWJ-DP port. The  
DAP provides internal system access to  
A7 Debug Port, M4 Debug Port, System  
Bus, JTAG controller, and SoC Control  
and Status. The DAP also enables  
system access to CoreSight debug  
subsystem through the APBIC port.  
Digital PMC  
Digital PMC  
Power Management  
SYS  
The Digital PMC module allows user  
software to control power modes of the  
chip and to optimize power consumption  
for the level of functionality needed.  
There are two instances of Digital PMC  
on this device, one for each main power  
domain.  
Digital-to-Analog  
Converter  
DAC0-1  
Analog  
RT  
Digital-to-Analog Converter (DAC) is the  
12-bit resolution digital-to-analog  
converters with programmable  
reference generator output. The output  
of the DAC can be placed on an  
external pin or set as one of the inputs  
to the analog comparator or ADC. The  
DAC is capable of achieving 1 ms  
conversion rate for high-speed signals  
and 2 ms conversion rate for low-speed  
signals.  
Direct Memory  
Access  
DMA0-1  
DMA and Bus Fabrics AD, RT  
Direct Memory Access (DMA) is  
capable of performing complex data  
transfers with minimal intervention from  
a host processor. Each DMA module  
supports 32 DMA channels. The  
transfer control descriptors for each of  
the 32 channels locate in system  
memory. DMA0 is in the real-time  
domain. DMA1 is in the application  
domain.  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
9
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
Direct Memory  
Access Multiplexer  
DMAMUX0-1  
DMA and Bus Fabrics AD, RT  
The Direct Memory Access Multiplexer  
(DMAMUX) module routes DMA  
sources, called slots, to any of the  
supported DMA channels. DMAMUX0 is  
in the real-time domain. DMAMUX1 is in  
the application domain.  
Embedded Trace  
FIFO  
ETF  
Debug  
RT  
The Embedded Trace FIFO (ETF)  
consists of a formatter, control, and the  
trace RAM. It is a configuration of the  
Trace Memory Controller (TMC). The  
ETF will have a memory size of  
16Kbytes. The ETF and associated  
memory should be connected in the  
system such that it will retain the  
information though a warm or cold reset  
of the system. This is to allow for debug  
information to be retained for debugging  
problems that may arise and cause a  
reset of the system.  
Embedded Trace  
Router  
ETR  
Debug  
RT  
The ETR is a trace sink that redirects  
the trace stream onto the AXI bus to  
external storage. It can utilize a single  
contiguous region or a scattered  
allocation of blocks for a circular buffer.  
Reading of the AXI based trace buffer  
can either be done directly over AXI  
from a normal bus master. The ETR is a  
configuration option of the TMC as is  
the ETF.  
Extended Resource XRDC  
Domain Controller  
Multicore Peripherals AD, RT  
and Resource Domain  
Control submodules  
The Extended Resource Domain  
Controller (XRDC) provides an  
integrated, scalable architectural  
framework for access control, system  
memory protection and peripheral  
isolation. It allows software to assign  
chip resources (like processor cores,  
non-core bus masters, memory regions  
and slave peripherals) to processing  
domains, to support enforcement of  
robust operational environments. The  
XRDC implementation is distributed  
across multiple submodules instantiated  
throughout the device.  
External Bus  
Interface  
FlexBus  
Memories and  
Memory Controllers  
AD  
The External Bus Interface (FlexBus)  
module provides external memory  
expansion and provides connection to  
external peripherals with a parallel,  
memory-mapped interface. The FlexBus  
supports asynchronous and  
synchronous interface to external ROM,  
NOR flash, SRAM, PSRAM,  
Table continues on the next page...  
10  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
programmable logic devices and other  
memory-mapped slave devices.  
External Watchdog  
Monitor  
EWM  
Timers  
RT  
The External Watchdog Monitor (EWM)  
module is designed to monitor external  
circuits, as well as the software flow.  
This provides a back-up mechanism to  
the internal WDOG that can reset the  
system. The EWM differs from the  
internal WDOG in that it does not reset  
the system. The EWM, if allowed to  
time-out, provides an independent  
trigger pin that when asserted resets or  
places an external circuit into a safe  
mode.  
Fast Internal  
Reference Clock  
FIRC  
Clock Sources and  
Control  
SYS  
SYS  
The Fast Internal Reference Clock  
(FIRC) module is an internal oscillator  
that can generate a reference clock in  
the range from 48 MHz to 60 MHz. The  
FIRC output clock is used as a  
reference to the SCG module, and it is  
also used as a clock option to most on-  
chip modules.  
Fixed-frequency PLL Fixed-Freq PLL  
(PLL0)  
Clock Sources and  
Control  
The Fixed-frequency PLL is the same  
as the USB PLL. In addition to the main  
clock output, this PLL also includes 4  
Phase Fractional Dividers (PFDs) that  
can generate other clock frequencies.  
There is one instance of the Fixed-freq  
PLL (PLL0) provides clocks for M4 core  
and buses and peripherals in the Real-  
time domains.  
Flexible Input/Output FLEXIO0-1  
Connectivity and  
Communications  
AD, RT  
The Flexible Input/Output (FlexIO)  
module is capable of supporting a wide  
range of protocols including, but not  
limited to: UART, I2C, SPI, I2S, camera  
interface, display interface, PWM  
waveform generation, etc. FlexIO0 is in  
the real-time domain. FlexIO1 is in the  
application domain.  
Fractional-N PLL  
Frac-N PLL  
(PLL1-3)  
Clock Sources and  
Control  
SYS  
The Fractional-N (Frac-N) PLL can  
generate an output clock of 528 MHz  
from a supported reference clock. In  
addition to the main clock output, this  
PLL also includes up to 4 Phase  
Fractional Dividers (PFDs) that can  
generate other clock frequencies. This  
PLL also supports tunable clock for  
audio applications.  
GC320 Composition GPU-2D  
Processing Core  
Multimedia  
AD  
Vivante GC320 is a Composition  
Processing Core (CPC) GPU. It  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
11  
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
supports user interface rendering and  
performs functions like blending,  
filtering, rotation, overlay, resizing,  
transparency, and other dynamic  
effects.  
GC7000 Nano Ultra GPU-3D  
Graphic Processing  
Unit  
Multimedia  
AD  
i.MX 7ULP integrates the Vivante  
GC7000 Nano Ultra Graphic Processing  
Unit (GPU-3D). supporting OpenGL  
ES2.0/1.1, Desktop OpenGL 2.1,  
OpenVG1.1, and GLSL shading  
language support.  
Hardware  
Semaphore  
SEMA42_0 and  
SEMA42_1  
Multicore Peripherals AD, RT  
and Resource Domain  
Control submodules  
The Hardware Semaphore (SEMA42)  
module provides the hardware support  
needed in multicore systems for  
implementing semaphores and provide  
a simple mechanism to achieve "lock/  
unlock" operations via a single write  
access. SEMA42_0 is in the real-time  
domain. SEMA42_1 is in the application  
domain.  
Input/Output  
Multiplexing  
Controller  
IOMUXC0-1 &  
IOMUXC_DDR  
System Control  
AD, RT  
The Input/Output Multiplexing Controller  
(IOMUXC) enables the chip to share  
one pad for multiple signals from  
different peripheral interfaces. This pad  
sharing mechanism is done by  
multiplexing the pad's input and output  
signals. The IOMUXC also controls the  
pads setting parameters and digital filter  
functions of the pad. In addition, the  
IOMUXC controls input multiplexing  
logic for input signals multiplexed at  
multiple locations. IOMUXC0 is in the  
real-time domain. IOMUXC1 and  
IOMUXC_DDR are in the application  
domain.  
Internal Reference  
Clock 1kHz  
IRC1K  
Clock Sources and  
Control  
SYS  
RT  
The Internal Reference Clock 1kHz  
(IRC1K) module is an internal oscillator  
that can generate a reference clock of  
1kHz. The IRC1K clock is enabled in all  
modes of operation, including all low  
power modes.  
Joint Test Action  
Group Controller  
JTAGC  
Debug  
Joint Test Action Group Controller  
(JTAGC) provides the means to test  
chip functionality and connectivity while  
remaining transparent to system logic  
when not in test mode. Testing is  
performed via a boundary scan  
technique, as defined in the IEEE  
1149.1-2001 standard.  
Table continues on the next page...  
12  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
LCD Interface  
Controller  
LCDIF  
Multimedia  
AD  
The LCDIF is a general purpose display  
controller used to drive a wide range of  
display devices varying in size and  
capabilities. The LCDIF is used as a  
bridge between the DSI controller and  
the NIC0 crossbar.  
Low-Leakage Wake- LLWU  
Up Unit  
System Control  
DGO  
The Low-Leakage Wake-Up Unit  
(LLWU) module allows user to select up  
to 32 external pin sources and up to 8  
internal modules as a wakeup source  
from low leakage power modes.  
Low Power Inter-  
Integrated Circuit  
LPI2C0-7  
Connectivity and  
Communications  
AD, RT  
The Low Power Inter-Integrated Circuit  
(LPI2C) module implements an efficient  
interface to an I2C bus as a master. The  
LPI2C can continue operating while the  
processor is in stop mode provided an  
appropriate peripheral clock is available.  
This module is designed for low CPU  
overhead with DMA offloading of FIFO  
register accesses. LPI2C0 - LPI2C3 are  
in the real-time domain. LPI2C4 -  
LPI2C7 are in the application domain.  
Low Power Periodic LPIT0-1  
Interrupt Timer  
Timers  
AD, RT  
AD, RT  
RT  
Low Power Periodic Interrupt Timer  
(LPIT) is a multichannel timer module  
that can generate independent pre-  
trigger and trigger outputs. These timer  
channels can operate individually or can  
be chained together. The pre-trigger  
and trigger outputs can be used to  
trigger other modules on the device.  
The LPIT can also operate in low power  
modes. LPIT0 is in the real-time  
domain. LPIT1 is in the application  
domain.  
Low Power Serial  
LPSPI0-3  
Connectivity and  
Communications  
The Low Power Serial Peripheral  
Peripheral Interface  
Interface (LPSPI) module implements  
an efficient interface to an SPI bus as a  
master and/or a slave. The LPSPI can  
continue operating while the processor  
is in stop mode if an appropriate  
peripheral clock is available. This  
module is designed for low CPU  
overhead with DMA offloading of FIFO  
register accesses. LPSPI0 and LPSPI1  
are in the real-time domain. LPSPI2 and  
LPSPI3 are in the application domain.  
Low-power Trusted  
Cryptography  
LTC  
Security  
Low-power Trusted Cryptography is an  
architecture that allows multiple  
cryptographic hardware accelerator  
engines to be instantiated and share  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
13  
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
common registers. This version of LTC  
supports 128-bit AES. For details, see  
the i.MX 7ULP Security Reference  
Manual.  
Low Power Universal LPUART0-7  
Asynchronous  
Receiver/Transmitter  
Connectivity and  
Communications  
AD, RT  
The Low Power Universal  
Asynchronous Receiver/Transmitter  
(LPUART) module provides  
asynchronous, serial communication  
capability with external devices.  
LPUART supports non-return-to-zero  
(NRZ) encoding format and IrDA-  
compatible infrared (low-speed) SIR  
format. The LPUART can continue  
operating while the processor is in stop  
mode if an appropriate peripheral clock  
is available. This module is designed for  
low CPU overhead with DMA offloading  
of FIFO register accesses. LPUART0 –  
LPUART3 are in the real-time domain.  
LPUART4 – LPUART7 are in the  
application domain.  
Low Power Timer  
LPTMR0-1  
MMCAU  
Timers  
DGO  
The Low Power Timer (LPTMR) module  
is a 16-bit timer which operates as real-  
time interrupt or pulse accumulator. This  
LPTMR module can remain functional  
when the chip is in low power modes,  
provided the reference clock to this  
timer is active.  
Memory-Mapped  
Cryptographic  
Acceleration Unit  
Security  
RT  
Memory-Mapped Cryptographic  
Acceleration Unit (MMCAU) is an  
optimized security accelerator that  
supports the cryptographic functions  
common in many security protocols.  
This includes DES, 3DES, AES, MD5,  
SHA-1, SHA-256 algorithms via simple  
C calls to optimized security functions.  
Messaging Unit  
MU  
Multicore Peripherals RT  
and Resource Domain  
Control submodules  
Messaging Unit (MU) is a shared  
peripheral with a 32-bit IP bus interface  
and interrupt request signals to each  
host processor. The MU exposes a set  
of registers to each processor which  
facilitate inter-processor communication  
via 32-bit words, interrupts and flags.  
Interrupts may be independently  
masked by each processor to allow  
polled-mode operation.  
MIPI Display Serial  
Interface Controller  
DSI Controller  
Multimedia  
AD  
The MIPI Display Serial Interface  
Controller (DSI Controller) is  
responsible for serializing display data  
from the GPU. Data can come from  
Table continues on the next page...  
14  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
either the GPU or the processor/DMA  
controller.  
MIPI Display Serial  
Interface Physical  
Layer  
DSI PHY  
Multimedia  
AD  
The MIPI Display Serial Interface  
Physical Layer (DSI PHY) is a two-lane  
interface that supports up to 1 Gbps of  
data on each lane. DSI PHY includes a  
PLL which output clock is dedicated DSI  
uses.  
Multicore System  
Mode Controller  
MSMC  
System Control  
DGO  
Multicore System Mode Controller  
(MSMC) is responsible for sequencing  
the system into and out of all low power  
Stop and Run modes. MSMC monitors  
events to trigger transitions between  
power modes, while controlling the  
power, clocks, and memories of the  
system to achieve the power  
consumption and functionality of that  
mode.  
Multi Mode DDR  
Controller  
MMDC  
Memories and  
Memory Controllers  
AD  
The Multi Mode DDR Controller  
(MMDC) is a configurable DDR  
controller that provides interface to  
LPDDR2 or LPDDR3 memory. The  
MMDC consists of a core and PHY. The  
core is responsible for communication  
with the system through AXI interface,  
DDR commands generation, DDR  
command optimizations, and read/ write  
data path. The PHY performs timing  
adjustment using special calibration  
mechanisms to ensure data capture  
margin at the supported clock rate.  
On-The-Fly AES  
Decryption  
OTFAD  
Security  
RT  
The On-The-Fly AES Decryption  
(OTFAD) module provides an advanced  
hardware implementation that  
minimizes any incremental cycles of  
latency introduced by the decryption in  
the overall external memory access  
time. The OTFAD engine also includes  
complete hardware support for a  
standard AES key unwrap mechanism  
to decrypt a key BLOB data instruction  
containing the parameters needed for  
up to 4 unique AES contexts.  
Peripheral Clock  
Control  
PCC0-3  
Clock Sources and  
Control  
AD, RT  
The Peripheral Clock Control (PCC)  
module is responsible for clock  
selection, optional division and clock  
gating mode for peripherals in their  
respected power domain. PCC0 and  
PCC1 are in the real-time domain.  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
15  
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
PCC2 and PCC3 are in the application  
domain.  
Reset Mode  
Controller  
RMC  
System Control  
System Control  
DGO  
Reset Mode Controller (RMC)  
implements reset modes and reset  
functions of the chip.  
On-Chip One-Time- OCOTP_CTRL  
Programmable  
Controller  
RT  
The On-Chip One-Time-Programmable  
Controller (OCOTP_CTRL) module  
provides an interface for reading,  
programming and/or overriding  
identification and control information  
stored in on-chip fuse elements. The  
module supports electrically-  
programmable poly fuses. The  
OCOTP_CTRL also provides a set of  
volatile software-accessible signals  
which can be used for software control  
of hardware elements, not requiring  
non-volatility.  
Peripheral Trigger  
Multiplexing  
TRGMUX0-1  
PCTL_A-F  
System Control  
System Control  
AD, RT  
AD, RT  
Peripheral Trigger Multiplexing  
(TRGMUX) TRGMUX0 is in the real-  
time domain. TRGMUX1 is in the  
application domain.  
Port Control  
The Port Control (PCTL) module  
provides control for GPIO interrupt  
function. GPIO interrupt can be  
configured independently for each pin in  
the 32-bit port. There is one instance of  
the PCTL module for each port.  
PCTL_A and PCTL_B are in the real-  
time domain. PCTL_C - PCTL_F are in  
the application domain.  
Quad Serial  
Peripheral Interface  
QSPI  
Memories and  
Memory Controllers  
RT  
The Quad Serial Peripheral Interface  
(QSPI) module provides an interface to  
various types of serial flash memory.  
The QSPI interface allows one serial  
flash connection. It supports 1-bit, 4-bit  
and 8-bit SPI bus width.  
Rapid General-  
Purpose Input and  
Output  
RGPIO2P0-1  
System Control  
AD, RT  
The Rapid General-Purpose Input and  
Output with 2 Ports (RGPIO2P) is  
similar to the RGPIO module, except it  
has an AHB-lite port, in addition to the  
IPS port, for faster access. RGPIO2P0  
is in the real-time domain. RGPIO2P1 is  
in the application domain.  
Read-only memory  
Controller  
ROMCP0/1  
Memories and  
Memory Controllers  
AD, RT  
A ROM controller and boot ROM are  
present in for both the A7 and M4 CPU  
cores. ROMCP0 and a 64 kB ROM are  
in the real-time domain. ROMCP1 and a  
96 kB ROM are in the application  
domain.  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
16  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
Real Time Clock  
Oscillator  
RTC OSC  
Clock Sources and  
Control  
VBAT  
The Real Time Clock Oscillator (RTC  
OSC) module provides the clock source  
for the Real-Time Clock module. The  
RTC OSC module, in conjunction with  
an external crystal, generates a 32.678  
kHz reference clock for the RTC.  
Single Wire Output  
SWO  
Debug  
Debug  
RT  
RT  
Single Wire Output (SWO) is a trace  
data drain that acts as bridge between  
the on-chip trace data to a data stream  
that is captured by the Trace Port  
Analyzer. It is a TPIU-like device that  
supports a limited subset of the full  
TPIU functionality for a simple debug  
solution.  
Secure JTAG  
Controller  
SJC  
The Secure JTAG Controller (SJC) is an  
authenticated debug module that  
implements a challenge/response  
mechanism using a standard  
cryptographic algorithm. This allows  
post production silicon debug without  
compromising security requirements.  
The SJC is connected in parallel with  
the JTAGC module, but it is only used  
for authenticated debug.  
Secure Non-Volatile SNVS  
Storage  
Security  
VBAT  
The Secure Non-Volatile Storage  
(SNVS) module is designed to safely  
hold security-related data such as  
cryptographic key, time counter,  
monotonic counter, and general  
purpose security information. A part of  
the SNVS module belongs to the VBAT  
domain that has its own dedicated  
power supply which is always on. This  
enables SNVS to keep this data valid  
and continue to increment the time  
counter when the power goes down in  
the rest of the SoC. SNVS includes the  
Real-Time Clock (RTC) module, which  
provides 64-bit monotonic counter with  
roll-over protection, 32-bit seconds  
counter with roll-over protection and 32-  
bit alarm.  
Slow Internal  
Reference Clock  
SIRC  
Clock Sources and  
Control  
SYS  
The Slow Internal Reference Clock  
(SIRC) module is an internal oscillator  
that can generate a reference clock of  
16 MHz. The SIRC output clock is used  
as a reference to the SCG module, and  
it is also used as a clock option to most  
on-chip modules.  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
17  
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
Synchronous Audio  
Interface  
SAI0-1  
Multimedia  
RT  
The Synchronous Audio Interface (SAI)  
module implements full-duplex serial  
interfaces with frame synchronization  
such as I2S, AC97, and CODEC/DSP  
interfaces.  
System Clock  
Generation  
SCG0-1  
Clock Sources and  
Control  
AD, RT  
The System Clock Generation (SCG)  
module is responsible for clock  
generation and distribution across this  
device. Functions performed by the  
SCG include: clock reference selection,  
generation of clock used to derive  
processor, system, peripheral bus and  
external memory interface clocks;  
source selection for peripheral clocks;  
and, control of power saving clock  
gating mode. SCG0 is in the real-time  
domain. SCG1 is in the application  
domain.  
System Integration  
Module  
SIM  
System Control  
AD, RT  
SYS  
The System Integration Module (SIM)  
provides system control and chip  
configuration registers. The SIM  
includes the TSTMR module.  
System Oscillator  
SYS OSC  
Clock Sources and  
Control  
The System Oscillator (SYS OSC)  
module is a crystal oscillator. The SYS  
OSC, in conjunction with an external  
crystal or resonator, generates a  
reference clock for this device. It also  
optionally supports an external input  
clock provided to EXTAL signal directly.  
Tightly-Coupled  
Memory  
TCM  
Memories and  
Memory Controllers  
RT  
Tightly Coupled Memory (TCM) RAM.  
This RAM is tightly integrated to the M4  
processor. M4 accesses this memory  
with zero wait-state. There is a  
backdoor port that allows M4 DMA and  
other bus masters in the SoC to access  
this memory.  
Timer/Pulse Width  
Modulation  
LPTPM0-7  
Timers  
AD, RT  
The Timer/Pulse Width Modulation  
Module (TPM) is a multichannel timer  
module that supports input capture,  
output compare, and the generation of  
PWM signals. The counter, compare  
and capture registers are clocked by an  
asynchronous clock that can remain  
enabled in low power modes. LPTPM0  
– LPTPM3 are in the real-time domain.  
LPTPM4 – LPTPM7 are in the  
application domain.  
TimeStamp  
Components  
TimeStamp  
Components  
Debug  
RT  
The timestamp components generate  
and distribute a consistent timestamp  
Table continues on the next page...  
18  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
i.MX 7ULP modules list  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
value for multiple processors and other  
blocks in a SoC.  
Timestamp timer  
TSTMR  
Timers  
AD, RT  
The TSTMR module is a free running  
incrementing counter that starts running  
after system reset de-assertion and can  
be read at any time by the software for  
determining the software ticks. The  
TSTMR is a 64-bit clock cycle counter.  
It runs off the 1 MHz clock and resets  
on every system reset. The counter only  
stops when the clock to the TSTMR is  
disabled.  
Trace Funnel  
FUNL  
Debug  
Debug  
RT  
RT  
The Trace Funnel (FUNL) is used when  
there is more than one trace source.  
The Trace Funnel combines multiple  
trace streams onto a single ATB bus.  
The Trace Funnel includes an arbiter  
that determines the priority of the ATB  
inputs.  
Trace Port Interface TPIU  
Unit  
Trace Port Interface Unit (TPIU) acts as  
a bridge between on-chip trace data, ID  
distinguishable, and a TPA. It receives  
ATB trace data and sends it off chip via  
ARM’s standard trace interface. The  
TPIU includes ATB interface, APB  
interface, Formatter, Asynchronous  
FIFO, Register bank, Trace out  
serializer, and a pattern generator.  
Trace Replicator  
Replicator  
Debug  
RT  
RT  
The Trace Replicator (Replicator)  
enables two trace sinks (TPIU and  
TMC) to be wired together and receive  
ATB trace data from the same trace  
source. It takes incoming data from a  
single source and replicates it to two  
master ports.  
True Random  
Number Generator  
TRNG  
Security  
The True Random Number Generator  
(TRNG) module is to generate high  
quality, cryptographically secure,  
random data. The TRNG module is  
capable of generating its own entropy  
using an integrated ring oscillator. In  
addition, the module’s NIST certifiable  
Pseudo-Random Number Generator  
(PRNG) provides accelerated  
processing of pseudo-random data.  
ultra Secured Digital uSDHC0/1  
Host Controller  
Memories and  
Memory Controllers  
AD  
The ultra Secured Digital Host  
Controller (uSDHC) provides the  
interface between the host system and  
SD, SDIO or eMMC cards. The uSDHC  
acts as a bridge, passing host bus  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
19  
NXP Semiconductors  
i.MX 7ULP modules list  
Block Name  
Table 1. i.MX 7ULP modules list (continued)  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
transactions to the cards by sending  
commands and performing data  
accesses to/from the cards or devices.  
It handles SD, SDIO and eMMC  
protocol at transmission level.  
Universal Serial Bus HSIC-PHY  
High-Speed Inter  
Chip Physical Layer  
Connectivity and  
Communications  
AD  
USB High-Speed Inter Chip Physical  
Layer (HSIC-PHY) is a complete digital  
IP designed to implement USB 2.0  
HSIC connectivity interface.  
Universal Serial Bus USB-OTG  
On-The-Go  
Connectivity and  
Communications  
AD  
The Universal System Bus On-The-Go  
(USB-OTG) module is a USB 2.0-  
compliant implementation. The registers  
and data structures of this USB  
controller are based on the Enhanced  
Host Controller Interface Specification  
for Universal Serial Bus (EHCI). This  
module can act as a host, a device or  
an On-The-Go negotiable host/device  
on the USB bus.  
Universal Serial Bus USB PLL  
Phase Locked Loop  
Clock Sources and  
Control  
AD  
USB Phase Locked Loop (USB PLL) is  
embedded in the USB transceiver block.  
This PLL allows an exact 480 MHz to be  
generated from a supported reference  
clock of 24 MHz. The output of this PLL  
is primarily used for PLL operation. The  
USB PLL clock is also made available  
as a clock source for other peripherals  
in the SoC.  
Universal Serial Bus USB-PHY  
Physical Layer  
Connectivity and  
Communications  
AD  
AD  
The Universal System Bus Physical  
Layer (USB-PHY) implements USB  
physical layer connecting to USB host/  
device systems at low-speed, full-  
speed, and high-speed. USB-PHY  
provides a standard UTMI interface for  
connection to the USB-OTG controller.  
Video Input Unit  
VIU  
Multimedia  
The Video Input Unit (VIU) provides a  
parallel interface for digital video. The  
VIU accepts various types of digital  
video input on its parallel interface,  
decodes it and optionally performs  
processes such as down-scaling,  
horizontal up-scaling, brightness and  
contrast adjustment, pixel format  
conversion, deinterlacing and horizontal  
mirroring. The resultant video stream is  
then stored to system memory for  
subsequent post-processing and  
display.  
Wakeup Unit  
WKPU  
System Control  
AD  
Wakeup Unit (WKPU) module is  
capable of interrupt detection and wake-  
Table continues on the next page...  
20  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Clocking  
Table 1. i.MX 7ULP modules list (continued)  
Block Name  
Block Mnemonic  
Subsystem  
Power  
Brief description  
Domain  
up of the Cortex-A processor when it is  
in low power mode.  
Watchdog Timer  
WDOG0-2  
Timers  
AD, RT  
The Watchdog Timer (WDOG) module  
keeps a watch on the system  
functioning and resets it in case of its  
failure. Reasons for failure include run-  
away software code and the stoppage  
of the system clock that in a safety  
critical system can lead to serious  
consequences. In such cases, the  
WDOG brings the system into a safe  
state of operation. The WDOG monitors  
the operation of the system by  
expecting periodic communication from  
the software, generally known as  
servicing or refreshing the WDOG. If  
this periodic refreshing does not occur,  
the WDOG resets the system. WDOG0  
is in the real-time domain. WDOG1 and  
WDOG2 are in the application domain.  
XRDC Manager  
MGR  
Multicore Peripherals RT  
and Resource Domain  
Control submodules  
The XRDC Manager (MGR) submodule  
coordinates all programming model  
reads and writes.  
XRDC Master  
Domain Assignment  
Controller  
MDAC  
Multicore Peripherals AD, RT  
and Resource Domain  
Control submodules  
The XRDC Master Domain Assignment  
Controller (MDAC) submodule handles  
resource assignments and generation of  
the domain identifiers.  
XRDC Memory  
Region Controller  
MRC  
PAC  
Multicore Peripherals AD, RT  
and Resource Domain  
Control submodules  
The XRDC Memory Region Controller  
(MRC) submodule implements the  
access controls for slave memories  
based on the pre-programmed region  
descriptor registers.  
XRDC Peripheral  
Access Controller  
Multicore Peripherals AD, RT  
and Resource Domain  
Control submodules  
The XRDC Peripheral Access Controller  
(PAC) implements the access controls  
for slave peripherals based on the pre-  
programmed domain access control  
registers.  
2 Clocking  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
21  
NXP Semiconductors  
Clocking  
2.1 Introduction  
This section details the clock sources, distribution and management within the i.MX  
7ULP. These functions are under joint control of the System Clock Generation (SCG)  
modules, Peripheral Clock Control (PCC) modules, and Core Mode Controller (CMC)  
blocks.  
NOTE  
References in this chapter to “Core 0” or “Processor A”  
correspond to the Cortex M4 core. References in this chapter  
to “Core 1” or “Processor B” correspond to the Cortex A7  
core.  
The clocking scheme provides clear separation between M4 domain and A7 domain.  
Except for a few clock sources shared between two domains, such as the System  
Oscillator clock, the Slow IRC (SIRC), and the Fast IRC clock (FIRC), clock sources  
and clock management are separated and contained within each domain.  
M4 clock management consists of SCG0, PCC0, PCC1, and CMC0 modules.  
A7 clock management consists of SCG1, PCC2, PCC3, and CMC1 modules.  
2.2 Clock distribution  
The SCG modules generate and distribute clocks on the device. SCG functions include:  
• clock reference selection  
• generation of clock used to derive processor, system, peripheral bus and external  
memory interface clocks  
• source selection for peripheral clocks  
• control of power-saving clock-gating mode  
PCC modules control clock selection, optional division and clock gating mode for  
peripherals.  
NOTE  
• To bypass system oscillator and directly apply clock from  
pin, SCG_SOSCCFG[EREFS] should be set to 0. The  
direct clock should be applied on the EXTAL pin.  
• For using oscillator reference,  
SCG_SOSCCSR[SOSCEN] and  
SCG_SOSCCFG[EREFS] should both be set to 1.  
22  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Clocking  
2.3 External clock sources  
In normal functional mode, this device operates off two primary external reference  
clocks: System oscillator clock (SOSC) and RTC oscillator clock (ROSC):  
• System oscillator clock is a high frequency reference clock with a frequency in  
the range of 16 MHz to 32 MHz. This clock is used as a reference clock to the on-  
chip PLLs which generate all the required high frequency clocks.  
• RTC oscillator clock is the 32.768 kHz constant frequency, real-time clock.  
2.4 Oscillators  
The system oscillator, in conjunction with an external crystal or resonator, generates a  
reference clock for the device. The system oscillator module supports 16-32 MHz  
crystals or resonators. It also provides the option for an external input clock to  
EXTAL signal directly.  
The RTC oscillator is in the VBAT domain. The RTC oscillator module, in  
conjunction with an external crystal, generates a 32.768 kHz real-time reference clock  
for the RTC and will always be enabled and supplying clock to SRTC. This is the  
default clock source.  
2.5 Internal clock sources  
This device is capable of generating these internal reference clocks:  
• The FIRC is the fast IRC clock with nominal frequency in the range from 48 to 60  
MHz. In addition, the FIRC provides a clock selection option for peripherals.  
• The SIRC is the slow IRC clock with nominal frequency of 16 MHz. The SIRC  
provides a clock selection option for peripherals.  
• The IRC1K generates 1 kHz clock that is enabled in all modes of operation,  
including all low power modes.  
• The RTC OSC has the capability to provide nominal 32 kHz (not recommended  
for accurate clock and normal operation) IRC in absence of the external OSC  
reference clock if the VBAT domain is enabled.  
NOTE  
The internal oscillator is automatically multiplexed in the  
clocking system when the system detects a loss of clock.  
The internal oscillator will provide clocks to the same on-  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
23  
NXP Semiconductors  
Application domain (implementing ARM Cortex-A7)  
chip modules as the external 32 kHz oscillator. The internal  
oscillator is not precise relative to a crystal. While it will  
provide a clock to the system, it generally will not be precise  
enough for long-term time keeping. The internal oscillator is  
anticipated to be useful for quicker start-up times and  
tampering prevention, but should not be used as the exclusive  
source for the 32 kHz clocks. An external 32 kHz clock  
source must be used for production systems.  
3 Application domain (implementing ARM Cortex-A7)  
The application domain is built around an ARM Cortex-A7 processor optimized to run  
nominally at 500 MHz, supported by a 32 KB L1 instruction and data cache, a large L2  
cache, and an LPDDR2/LPDDR3 memory interface. The Cortex-A7 processor is a  
high-performance low-power processor that implements the ARMv7-A architecture. It  
uses the generic interrupt controller (GIC), generic 64-bit OS timer, FPU and the ARM  
NEON SIMD engine. Additionally, all the optional debug features are included.  
3.1 Memory system—application domain  
3.1.1 Internal memory (application domain)  
3.1.2 Multi Mode DDR Controller (MMDC)  
The Multi Mode DDR Controller is a dedicated interface to LPDDR2/LPDDR3  
SDRAM.  
The i.MX 7ULP MMDC is compatible with the following JEDEC-compliant memory  
types:  
• LPDDR2 SDRAM compliant to JESD209-2F LPDDR2 JEDEC standard released  
June, 2013  
• LPDDR3 SDRAM compliant to JESD209-3C JEDEC standard released August,  
2015  
24  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Application domain (implementing ARM Cortex-A7)  
MMDC operation with the standards stated above is contingent upon the board DDR  
design adherence to the DDR design and layout requirements stated in the Hardware  
Development Guide for the i.MX 7ULP Applications Processor (IMX7ULPHDG).  
NOTE  
For more information on MMDC, please refer to the  
following Engineering Bulletin: EB00913 - LPDDR2/  
LPDDR3 Parameter Optimizations for i.MX 7ULP.  
The table below shows the supported LPDDR2/LPDDR3 configurations:  
Table 2. i.MX 7ULP supported LPDDR2/LPDDR3 configurations  
Parameter  
Clock frequency  
Bus width  
LPDDR2  
LPDDR3  
up to 271.5 MHz  
x16/x32  
Channel  
Single  
Chip select  
Up to two  
3.1.3 eMMC  
eMMC is a managed NAND device.  
See Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing—  
application domain.  
3.2 Peripherals—application domain  
3.2.1 Graphics processor human machine interfaces  
The i.MX 7ULP Application Domain implements the following graphics processor  
human machine interfaces:  
• 3D graphics processing unit (GPU-3D)  
• 2D graphics processing unit (GPU-2D)  
• MIPI Display Serial Interface Controller (MIPI DSI)  
• Video Interface Unit (VIU)  
See the i.MX 7ULP modules list for more details.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
25  
NXP Semiconductors  
Application domain (implementing ARM Cortex-A7)  
3.2.2 Security—application domain  
3.2.2.1 True Random Number Generator (TRNG)  
The TRNG module is used to generate high quality, cryptographically secure, random  
data. The TRNG module is capable of generating its own entropy using an integrated  
ring oscillator. In addition, the module’s Pseudo-Random Number Generator (PRNG)  
provides accelerated processing of pseudo-random data.  
3.2.2.2 Real-Time Clock (RTC)  
The RTC module provides 64-bit monotonic counter with roll-over protection, 32-bit  
seconds counter with roll-over protection and 32-bit alarm. This timer module is  
extremely low power that allows it to operate on a backup power supply when the main  
power supply is cut off. The RTC remains functional in all low power modes and can  
generate an interrupt to exit any low power mode.  
3.2.2.3 High Assurance Boot (HAB)  
The High Assurance Boot (HAB) component of the ROM protects against the potential  
threat of attackers modifying areas of code or data in programmable memory to make it  
behave in an incorrect manner. The HAB also prevents attempts to gain access to  
features which should not be available.  
The integration of the HAB feature with the ROM code ensures that the chip does not  
enter an operational state if the existing hardware security blocks have detected a  
condition that may be a security threat or areas of memory deemed to be important have  
been modified. The HAB uses RSA digital signatures to enforce these policies.  
26  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Application domain (implementing ARM Cortex-A7)  
CAAM  
Flash  
RAM  
Core Processor  
Figure 3. Secure Boot Components  
NOTE  
NXP provides a reference Code Signing Tool (CST) for key  
generation, certificate generation and code signing for use  
with the HAB library. The CST can be found by searching  
for "IMX_CST_TOOL" at http://www.nxp.com.  
NOTE  
For further details on making use of the secure boot feature  
using HAB, contact your local NXP representative.  
3.2.3 Timers—application domain  
The i.MX 7ULP Application Domain implements the following timers:  
• Low Power Periodic Interrupt Timer (LPIT)  
• Timer/PWM Module (LPTPM)  
• Low Power Timer (LPTMR)  
• External Watchdog Monitor (EWM)  
• Time stamp timer module (TSTMR)  
• WDOG (Watchdog Timer)  
See i.MX 7ULP modules list for more details.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
27  
NXP Semiconductors  
Real-time domain (implementing ARM Cortex-M4)  
3.2.4 Connectivity and communications—applications domain  
The i.MX 7ULP Application Domain implements the following connectivity and  
communications peripherals:  
• Secure Digital (SD) Interface via the uSDHC  
• Low Power Universal Asynchronous Receiver/Transmitter (LPUART)  
• Low Power Inter-Integrated Circuit (LPI2C)  
• Low Power Serial Peripheral Interface (LPSPI)  
• Universal System Bus On-The-Go (USB-OTG)  
• USB High-Speed Inter-Chip Physical Layer (HSIC-PHY)  
See i.MX 7ULP modules list for more details.  
4 Real-time domain (implementing ARM Cortex-M4)  
The real-time domain is built around an ARM Cortex-M4 processor that contains a  
floating-point unit and is optimized for lowest possible leakage.  
4.1 Memory system—real-time domain  
4.1.1 Internal memory—real-time domain  
The real-time domain contains 256 kB of SRAM organized in sub-blocks of 32 kB  
each. Each sub-block can be power-gated under software control to optimize power  
consumption.  
4.1.2 QuadSPI flash  
The Quad Serial Peripheral Interface (QSPI) module provides an interface to various  
types of serial flash memory. It allows one serial flash connection and supports 1-bit, 4-  
bit and 8-bit SPI bus width.  
4.2 Peripherals—real-time domain  
28  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System control modules  
4.2.1 Analog—real-time domain  
The i.MX 7ULP Real-Time Domain implements the following analog peripherals:  
• 12-bit Analog to Digital Converter  
• 12-bit Digital to Analog Converter  
• Comparators  
See i.MX 7ULP modules list for more details.  
4.2.2 Connectivity and communications—real-time domain  
The i.MX 7ULP Real-Time Domain implements the following connectivity and  
communications peripherals:  
• Low Power Universal Asynchronous Receiver/Transmitter (LPUART)  
• Low Power Inter-Integrated Circuit (LPI2C)  
• Low Power Serial Peripheral Interface (LPSPI)  
• Rapid General-Purpose Input and Output with 2 Ports (RGPIO2P)  
• Flexible Input/Output (FlexIO)  
See the i.MX 7ULP modules list for more details.  
5 System control modules  
5.1 JTAG—system control  
Joint Test Action Group Controller (JTAGC) provides the means to test chip  
functionality and connectivity while remaining transparent to system logic when not  
in test mode. Testing is performed via a boundary scan technique, as defined in the  
IEEE 1149.1-2001 standard.  
5.2 JTAG device identification register  
The device identification register (JTAG ID) allows the revision number and part  
number to be read through the TAP. See the device identification register section of  
the i.MX 7ULP Applications Processor Reference Manual for details. This table  
shows the Part Identification Number (PIN) and the Part Revision Number (PRN) for  
each i.MX 7ULP silicon revision.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
29  
NXP Semiconductors  
System control modules  
Table 3. JTAG device identification register information  
Silicon Revision  
Part Identification Number (PIN)  
10'b0011100001  
Part Revision Number (PRN)  
4’b0000  
A0  
B0  
B1  
B2  
10'b0011100001  
4’b0001  
4’b0010  
4’b0011  
10'b0011100001  
10'b0011100001  
The contents of the JTAD ID register are also mirrored in a SIM register called  
JTAG_ID_REG (address 0x410A_308C).  
5.3 Oscillators and PLLs  
5.3.1 System oscillator (SYS OSC)  
The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction  
with an external crystal or resonator, generates a reference clock for this chip. It also  
provides the option for an external input clock to EXTAL signal directly.  
5.3.2 Real-Time Clock Oscillator (RTC OSC)  
The RTC OSC module provides the clock source for the Real-Time Clock module. The  
RTC OSC module, in conjunction with an external crystal, generates a 32.678 kHz  
reference clock for the RTC.  
5.3.3 USB PLL  
The USB PLL is embedded in the USB transceiver block. This PLL allows an exact 480  
MHz to be generated from a supported reference clock of 24 MHz. The output of this  
PLL is primarily used for USB operations. The USB PLL clock is also made available  
as a clock source for other peripherals in the SoC.  
30  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System control modules  
5.3.4 Fixed Frequency PLL (Fixed-freq PLL)  
In addition to the main clock output, this PLL also includes 4 Phase Fractional  
Dividers (PFDs) that can generate other clock frequencies. There is one instance of the  
Fixed-freq PLL (PLL0), which provides clocks for the M4 core, buses, and  
peripherals in the real-time domain.  
5.3.5 Fractional-N PLL (FracN PLL)  
The Fractional-N (Frac-N) PLL can generate an output clock 528 MHz from a  
supported reference clock. In addition to the main clock output, this PLL also includes  
up to four Phase Fractional Dividers (PFDs) that can generate other clock frequencies.  
This PLL also supports a tunable clock for audio applications.  
5.4 Power Management  
The i.MX 7ULP implements multiple options minimizing application power  
consumption:  
• On-chip power management including regulators, drivers and switches for  
flexible power supplies, efficient power consumption and short wake up time  
• Multiple power domains and ultra-low power modes allow flexible power saving  
• Voltage and frequency scaling in dynamic operating modes  
• Software-controlled clock gating for cores and peripherals  
• Dynamic Process Monitor (DPM)  
5.4.1 Digital PMC  
The digital PMC module allows user software to control power modes and of the chip  
and to optimize power consumption for the level of functionality needed. There are  
two instances of digital PMC on this chip, one for each main power domain.  
5.4.2 Analog power management controller (Analog PMC)  
The Analog PMC consists of voltage/current references, core logic supply regulators,  
memory supply regulators, back and forward biasing regulators, monitors and power  
switches, etc. There are two Analog PMC subsystems, one associated with the M4  
power domain and the other with the A7 power domain.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
31  
NXP Semiconductors  
i.MX 7ULP LDO Bypass versus LDO-enabled modes  
6 i.MX 7ULP LDO Bypass versus LDO-enabled modes  
i.MX 7ULP has internal low-dropout (LDO) regulators to power certain sections of the  
core logic. In LDO Enabled mode, the internal LDO is used to regulate the core logic  
voltage under software control. In LDO Bypass mode, the internal LDO is disabled and  
the core logic supply voltage is provided externally.  
The Real-time domain only supports LDO Enabled mode. The Application Domain  
supports either mode. The LDO modes require specific board-level connections. LDO  
Bypass vs. Enabled mode must be chosen prior to board design because the physical  
connection is different.  
6.1 Real-time domain LDO Enabled mode  
A 1.8 V nominal voltage supply is provided externally to the VDD_PMC18_DIG0  
supply. The internal LDO output is routed to VDD_PMC11_DIG0_CAP.  
VDD_PMC11_DIG0_CAP must be routed back to VDD_DIG0 at the board-level with  
appropriate bypass capacitors to VSS. This connection has a maximum board routing  
impedance requirement. See parameter RDIG0 in Table 5.  
See the i.MX 7ULP Hardware Development Guide (IMX7ULPHDG) for details on the  
required bypass capacitors.  
6.2 Application domain LDO Enabled mode  
A 1.2 V nominal voltage supply is provided externally to the VDD_PMC12_DIG1  
supply. The internal LDO output is routed to VDD_PMC11_DIG1_CAP.  
VDD_PMC11_DIG1_CAP must be routed back to VDD_DIG1 at the board-level with  
appropriate bypass capacitors to VSS. This connection has a maximum board routing  
impedance requirement. See parameter RDIG1 in Table 5.  
See the i.MX 7ULP Hardware Development Guide (IMX7ULPHDG) for details on the  
required bypass capacitors.  
32  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
6.3 Application domain LDO BYPASS mode  
The desired core logic supply voltage is provided externally to the  
VDD_PMC12_DIG1, VDD_PMC11_DIG1_CAPand VDD_DIG1 which are all tied  
together.  
See the i.MX 7ULP Hardware Development Guide (IMX7ULPHDG) for details on  
the required bypass capacitors.  
7 System specifications  
7.1 Ratings  
7.1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
-55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
7.1.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
33  
NXP Semiconductors  
System specifications  
7.1.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-1000  
-250  
Max.  
+1000  
+250  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
7.1.4 Absolute maximum ratings  
CAUTION  
Stresses beyond those listed under this table may cause  
permanent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other  
conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect  
device reliability.  
Table 4. Absolute maximum ratings  
Parameter Description  
SNVS domain LDO supply input  
Symbol  
VDD_VBAT42  
Min  
-0.3  
Max  
4.25  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
M4/A7 PMC and PMC IO supply input  
VDD_PMC18  
VDD18_IOREF  
VDD_PMC18_DIG0  
VDD_DIG0  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.98  
1.98  
1.98  
1.155  
1.65  
1.155  
1.155  
3.96  
1.98  
3.96  
3.96  
3.96  
3.96  
1.98  
1.98  
1.8V IO supply reference and A7 supply reference input  
M4 domain LDO and internal memory LDO supply input  
M4 domain core and logic supply input  
A7 domain core and logic supply inputs  
VDD_PMC12_DIG1  
VDD_PMC11_DIG1_CAP1  
VDD_DIG1  
GPIO Port A supply input  
GPIO Port B supply input  
GPIO Port C supply input  
GPIO Port D supply input  
GPIO Port E supply input  
GPIO Port F supply input  
HSIC supply input  
VDD_PTA  
VDD_PTB  
VDD_PTC  
VDD_PTD  
VDD_PTE  
VDD_PTF  
VDD_HSIC  
HSIC 1.8V pre-driver supply input  
VDD18_HSIC  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
34  
NXP Semiconductors  
System specifications  
Table 4. Absolute maximum ratings (continued)  
Parameter Description  
Symbol  
Min  
Max  
1.98  
Unit  
DDR I/O supply input  
VDD_DDR  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
V
V
V
V
V
V
V
V
V
V
V
DDR 1.8V pre-driver supply input  
MIPI DSI 1.1V supply input  
MIPI DSI 1.8V supply input  
USB PHY 3.3V supply input  
USB PHY 1.8V supply input  
USB0 VBUS detection  
VDD18_DDR  
VDD_DSI11  
VDD_DSI18  
VDD_USB33  
VDD_USB18  
USB0_VBUS  
VDD_PLL18  
VREFH_ANA18  
VDD_ANA18  
VDD_ANA33  
1.98  
1.155  
1.98  
3.6  
1.98  
5.6  
PLL analog supply input  
1.98  
1.98  
1.98  
3.96  
ADC high reference supply input  
ADC analog and IO 1.8V supply input  
ADC analog and IO 3.3V supply input  
1. When used as an input in LDO Bypass Mode  
7.1.5 Recommended operating conditions—system  
NOTE  
All supply inputs shown represent the voltage at the package  
ball.  
Table 5. Recommended operating conditions  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Units  
SNVS (Always On) Domain Supply Voltage Requirements  
VDD_VBAT42  
VDD_VBAT18_CAP  
SNVS domain LDO supply  
input  
2.4  
3.0  
1.8  
4.2  
V
V
SNVS domain LDO output  
Real Time Domain (M4 domain) Supply Voltage Requirements (LDO-Enabled Mode only supported)  
VDD_PMC181  
M4/A7 PMC and PMC IO  
supply input  
1.71 1.8  
1.89  
V
V
VDD18_IOREF1  
1.8V IO supply reference  
and A7 supply reference  
input  
1.71 1.8  
1.89  
VDD_PMC18_DIG02  
M4 domain LDO and internal HSRUN mode not  
1.14 1.2  
1.89  
1.89  
1.1  
V
V
V
memory LDO supply input  
supported  
HSRUN mode  
supported  
1.2  
1.8  
VDD_PMC11_DIG0_CAP3, 4 M4 domain LDO supply  
output  
0.65  
Real Time Domain (M4 domain) PMC 0 Register Configuration Requirements  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
35  
NXP Semiconductors  
System specifications  
Table 5. Recommended operating conditions (continued)  
Symbol  
PMC0_HSRUN  
[COREREGVL]  
Description  
Conditions  
HSRUN mode  
Min  
Typ  
Max Units  
PMC0 HSRUN mode LDO  
configuration requirements  
101010b  
(1.05 V)  
FBB= 0.3 V5  
PMC0_RUN [COREREGVL] PMC0 RUN mode LDO  
configuration requirements  
RUN mode No bias  
011100b  
(0.90 V)  
PMC0_VLPR  
PMC0 VLPR mode LDO  
configuration requirements  
VLPR mode  
011100b  
(0.90 V)  
[COREREGVL]  
RBB=+/-1.0 V  
(optional)6  
PMC0_STOP  
[COREREGVL]  
PMC0 STOP mode LDO  
configuration requirements  
STOP mode  
011100b  
(0.90 V)  
PMC0_VLPS  
[COREREGVL]  
PMC0 VLPS mode LDO  
configuration requirements  
VLPS mode  
011100b  
(0.90 V)  
RBB=+/-1.0 V  
(optional)6  
PMC0_LLS [COREREGVL] PMC0 LLS mode LDO  
configuration requirements  
LLS mode  
001101b  
(0.73V)  
RBB=+/-1.0 V  
(optional)6  
RDIG0  
External board routing  
impedance from  
50  
mΩ  
VDD_PMC11_DIG0_CAP to  
VDD_DIG0  
Application Domain (A7 domain) supply voltage requirements for LDO Bypass mode7  
VDD_PMC12_DIG1  
VDD_PMC11_DIG1_CAP  
VDD_DIG1  
A7 domain core and logic  
supply inputs  
HSRUN mode;  
1.09  
1.15  
V
FBB = 0.3V, 9, 10  
MIPI DSI 1.1V supply input  
RUN mode; No Bias 1.00  
1.15  
1.15  
1.15  
1.15  
V
V
V
V
VDD_DSI118.  
VLPR mode  
WAIT mode  
0.87  
1.00  
1.00  
STOP mode (CA7  
halted and  
peripherals running  
at full rated speed)  
STOP mode (CA7  
halted and  
0.87  
1.15  
V
peripherals running  
at VLPR speeds)  
VLPS mode11  
0.73  
0.73  
0.73  
1.15  
1.15  
1.15  
V
V
V
LLS Mode  
VLLS Mode12  
Application Domain (A7 domain) PMC1 register configuration requirements for LDO Enabled mode13  
VDD_PMC12_DIG1  
A7 domain LDO and internal  
memory LDO supply input  
1.14 1.2  
1.32  
V
V
VDD_PMC11_DIG1_CAP14 A7 domain LDO supply  
output  
0.65  
1.15  
Table continues on the next page...  
36  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
Table 5. Recommended operating conditions (continued)  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Units  
PMC1_RUN[LDOVL]  
PMC1 RUN mode LDO  
configuration requirements  
RUN mode; No Bias  
100011b  
(0.95V)  
V
V
V
PMC1_VLPR[LDOVL]  
PMC1_STOP[LDOVL]  
PMC1 VLPR mode LDO  
configuration requirements  
VLPR mode  
011110b  
(0.90V)  
PMC1 STOP mode LDO  
configuration requirements  
STOP mode (CA7  
halted and  
100011b  
(0.95V)  
peripherals running  
at full rated speed)  
PMC1_STOP[LDOVL]  
PMC1 STOP mode LDO  
configuration requirements  
STOP mode (CA7  
halted and  
011110b  
(0.90V)  
V
peripherals running  
at VLPR speeds)  
PMC1_VLPS[LDOVL]  
PMC1_LLS[LDOVL]  
RDIG1  
PMC1 VLPS mode LDO  
configuration requirements  
VLPS mode  
LLS Mode  
011110b  
(0.90V)  
50  
V
PMC1 LLS mode LDO  
configuration requirements  
001011b  
(0.71V)  
V
External board routing  
impedance from  
mΩ  
VDD_PMC11_DIG1_CAP to  
VDD_DIG1  
GPIO Supplies15  
VDD_PTA16, 17  
VDD_PTB1  
VDD_PTC  
GPIO Port A supply input  
GPIO Port B supply input  
GPIO Port C supply input  
GPIO Port D supply input  
GPIO Port E supply input  
GPIO Port F supply input  
1.71 1.8 or 3.3  
1.71 1.8  
3.6  
1.89  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
1.71 1.8 or 3.3  
1.71 1.8 or 3.3  
1.71 1.8 or 3.3  
1.71 1.8 or 3.3  
VDD_PTD  
VDD_PTE  
VDD_PTF18  
Peripheral/Interface Supplies  
VDD_HSIC  
HSIC 1.2V supply input  
1.14 1.2  
1.71 1.8  
1.32  
1.89  
V
V
VDD18_HSIC  
HSIC 1.8V pre-driver supply  
input  
VDD_DDR19  
VDD18_DDR  
DDR I/O supply input  
1.14 1.2  
1.71 1.8  
1.26  
1.89  
V
V
DDR 1.8V pre-driver supply  
input  
VDD_DSI118  
VDD_DSI18  
VDD_USB33  
VDD_USB18  
USB0_VBUS  
MIPI DSI 1.1V supply input  
MIPI DSI 1.8V supply input  
USB PHY 3.3V supply input  
USB PHY 1.8V supply input  
USB0 VBUS detection  
0.8  
1.71 1.8  
3.0 3.3  
1.1  
1.155 V  
1.89  
3.6  
V
V
V
V
1.71 1.8  
1.89  
5.5  
4.020 5.0  
or  
3.0, 21  
Analog Supplies  
VDD_PLL18  
PLL analog supply input  
1.71 1.8  
1.89  
V
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
37  
NXP Semiconductors  
System specifications  
Table 5. Recommended operating conditions (continued)  
Symbol  
VREFH_ANA18  
Description  
Conditions  
Min  
Typ  
Max Units  
ADC high reference supply  
input  
1.71 1.8  
1.89  
V
V
V
V
VREFL_ANA  
VDD_ANA18  
VDD_ANA33  
ADC low reference supply  
input  
0
0
0
ADC analog and IO 1.8V  
supply input  
1.71 1.8  
1.71 1.8 or 3.3  
1.89  
3.6  
ADC analog and IO 3.3V  
supply input  
1. VDD_PMC18, VDD18_IOREF and VDD_PTB are connected internally and, as such, must be driven from the same  
source.  
2. If VDD_PMC18_DIG0 is operated at 1.8 V, it should be tied to VDD_PMC18 at the board level.  
3. Note that the M4 LDO is always enabled, and the VDD_PMC11_DIG0_CAP is internally regulated. There is no LDO  
bypass option. VDD_PMC0_DIG0_CAP is connected to VDD_DIG0 at the board-level. The voltage observed at  
VDD_PMC18_DIG0_CAP differs from the from the programmed voltage on the internal LDO because the sense point  
for the LDO is on-chip.  
4. The table rows under the heading "Real Time Domain (M4 domain) PMC 0 Register Configuration Requirements" define  
the required voltage operating points for each operation mode. The register configurations shown must be used.  
5. FBB=+/- 0.3 V is the only supported FBB voltage level on the i.MX 7ULP. CM4 FBB voltage levels are configured in the  
PMC 0 Biasing Control register (BCTRL) fields FBBPLEVEL and FBBNLEVEL  
6. RBB=+/-1.0 V is the only supported RBB voltage level on the i.MX 7ULP. CM4 RBB voltage levels are configured in the  
PMC 0 Biasing Control register (BCTRL) fields RBBPLEVEL and RBBNLEVEL.  
7. Note that the A7 LDO can be operated in LDO-enabled mode or LDO-bypass mode. In LDO-bypass mode, the internal  
LDO is disabled and the voltage supply for the internal logic in the A7 domain is provided externally to  
VDD_PMC12_DIG1, VDD_PMC11_DIG1_CAP, and VDD_DIG1.  
8. If the MIPI DSI is used, VDD_DSI11 must be connected to VDD_DIG1 at board level. If MIPI DSI is not used,  
VDD_DSI11 can be connected to ground through a 10 KΩ resistor.  
9. CA7 domain HSRUN is limited to 8760 power-on hours over the lifetime of the product. The total power-on hours  
includes all CA7 power modes except VLLS mode and VBAT mode in which the CA7 domain is internally power-gated.  
10. FBB=+/- 0.3 V is the only supported FBB voltage level on the i.MX 7ULP. CA7 FBB voltage levels are configured in the  
PMC 1 Biasing Control register (BCTRL) fields FBBPLEVEL and FBBNLEVEL.  
11. To minimize power consumption in VLPS mode, configure PMC1 register bit SRAMCTRL[SRAM_STDY] to  
RETENTION mode.  
12. In VLLS mode, VDD_DIG1 is internally power gated to the application domain logic. VDD_DIG1 must remain powered if  
the following supplies are powered: VDD_USB18, VDD_USB33, VDD_DSI18 and VDD_DSI11. If the USB and DSI  
supplies are not used/powered, VDD_DIG1 can be turned off at the board level.  
13. Note that the A7 LDO can be operated in LDO-enabled mode or LDO-bypass mode. In LDO-enabled mode, the voltage  
supply to the internal logic in the A7 domain is regulated by the internal LDO.  
14. When using LDO-enabled mode, the voltage at the associated *_CAP ball differs from the programmed voltage  
because the sense point for the LDO is on-chip.  
15. To achieve minimum power consumption, VDD_PTA, VDD_PTB, VDD_PTC, VDD_PTE, and VDD_PTF must remain  
powered in all modes except BAT mode.  
16. VDD_PTA must be powered during a power-on reset (POR) for the SMC0 Mode register (MR) BOOTCFG field to  
properly latch the boot configuration from the PTA signals (GPIO Boot mode).  
17. VDD_ANA33 must be shorted to VDD_PTA at the board level.  
18. VDD_PTF must be powered during a power-on reset (POR) for the SMC1 Mode register (MR) BOOTCFG field to  
properly latch the boot configuration from the PTF signals (GPIO Boot mode). VDD_PTF must also remain powered  
during all A7 power modes except for BAT mode.  
19. VDD_DDR must remain powered while VDD18_DDR is powered.  
20. The 7ULP USB PHY provides two options for reporting VBUS valid back to the USB controller:  
• A programmable internal VBUS_VALID comparator (the default option), or  
• An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V  
38  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID comparator is  
used, USBPHY_USB1_VBUS_DETECTn[VBUSVALID_THRESH] determines the threshold voltage for a valid VBUS.  
The programmable range is 4.0V to 4.4V (default).  
21. The 7ULP USB PHY provides two options for reporting VBUS valid back to the USB controller:  
• A programmable internal VBUS_VALID comparator (the default option), or  
• An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V.  
USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID_3V detector  
is used, the detector voltage is not programmable.  
7.1.6 Estimated maximum supply currents  
This table represents the estimated maximum current on the power supply rails and  
should be used for power supply selection. The data below is based on design  
simulation as well as measured data. Note that some of the data in the table is based  
on internal companion regulator limits and not actual use cases. Maximum currents  
are higher by far than the average power consumption of typical use cases.  
Table 6. Estimated maximum supply currents  
Power rail  
Conditions  
Maximum currents  
Unit  
µA  
mA  
VDD_VBAT42  
VDD_PLL18  
4.2 V  
1.8 V  
1.8 V  
23  
8
VDD18_IOREF + VDD_PMC18 +  
VDD_PTB1  
Use Maximum IO equation 2 + 10 mA  
VDD18_DDR + VDD18_HSIC  
VDD_ANA18 + VREFH_ANA18  
VDD_DSI18  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
15  
16  
0.6  
27  
mA  
µA  
mA  
mA  
VDD_USB18  
High speed mode  
1.8 V, CM4 200 MHz  
1.15 V  
VDD_PMC18_DIG0  
60  
mA  
mA  
VDD_PMC12_DIG1 + VDD_DIG1 +  
VDD_DSI11  
350  
CA7 LDO Bypass Mode  
CA7 500 MHz  
1.15 V  
504  
350  
504  
mA  
mA  
mA  
CA7 LDO Bypass Mode  
CA7 720 MHz  
1.2 V  
VDD_PMC12_DIG1  
CA7 LDO Enabled Mode  
CA7 500 MHz  
1.2 V  
CA7 LDO Enabled Mode  
CA7 720 MHz  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
39  
NXP Semiconductors  
System specifications  
Table 6. Estimated maximum supply currents (continued)  
Power rail  
Conditions  
1.8 V or 3.3 V  
Maximum currents  
Use Maximum IO equation2  
Use Maximum IO equation2  
Use Maximum IO equation2  
Use Maximum IO equation2  
Use Maximum IO equation2  
Use Maximum IO equation2  
Use Maximum IO equation2  
3
Unit  
mA  
VDD_PTA  
VDD_PTC  
VDD_PTD  
VDD_PTE  
VDD_PTF  
VDD_DDR  
VDD_HSIC  
VDD_ANA33  
VDD_USB33  
1.8 V or 3.3 V  
1.8 V or 3.3 V  
1.8 V or 3.3 V  
1.8 V or 3.3 V  
1.2 V  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
1.2 V  
3.3 V  
3.3 V  
28  
mA  
Full speed mode  
1. VDD_PMC18, VDD18_IOREF and VDD_PTB are connected internally and, as such, must be driven from the same  
source.  
2. General equation for estimated, maximum power consumption of an I/O power supply: Imax = N × C × V × (0.5 × F)  
Where:  
N = Number of I/O pins supplied by the power line  
C = Equivalent external capacitive load  
V = I/O voltage  
(0.5 x F) = Data change rate  
In this equation, Imax is in amps, C in farads, V in volts, and F in hertz.  
NOTE  
For additional power information, see the application  
note, AN12573: i.MX 7ULP Power Consumption  
Measurement.  
7.2 System clocks  
7.2.1 Clock modules  
7.2.1.1 Fast IRC (FIRC) specifications  
Table 7. FIRC specifications with 48 MHz internal reference frequency  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
firc48m  
Internal reference frequency  
48  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency  
-1.5  
1.5  
%firc48m  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
40  
NXP Semiconductors  
System specifications  
Table 7. FIRC specifications with 48 MHz internal reference frequency (continued)  
Symbol  
Jcyc_irc48m Period Jitter (RMS)  
tirc48mst Startup time  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
35  
2
150  
3
ps  
μs  
1
1. FIRC startup time is defined as the time between clock enablement and clock availability for system use.  
Table 8. FIRC specifications with 60 MHz internal reference frequency  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
firc60m  
Internal reference frequency  
60  
MHz  
Δfirc60m_ol_lv Open loop total deviation of IRC60M frequency  
-1.5  
35  
2
1.5  
150  
3
%firc60m  
ps  
Jcyc_irc60m Period Jitter (RMS)  
tirc60mst  
Startup time  
μs  
1
1. FIRC startup time is defined as the time between clock enablement and clock availability for system use.  
7.2.1.2 Slow IRC (SIRC) specifications  
Table 9. Slow IRC (SIRC) specifications  
Symbol  
Description  
Min  
15.52  
-3.8%  
Typ  
Max  
16.48  
3.8%  
Unit  
firc16m  
Internal reference frequency  
16  
MHz  
Δfirc16m_ol_lv Open loop total deviation of IRC16M frequency at low  
%firc16m_ol_lv  
voltage (VDD=1.71V-1.89V) over temperature  
7.2.1.3 Oscillator electrical specifications  
7.2.1.3.1 Oscillator DC electrical specifications  
Table 10. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Cx  
Cy  
RF  
EXTAL load capacitance  
1
1
XTAL load capacitance  
Feedback resistor — low-power mode  
(HGO=0)  
MΩ  
MΩ  
Ω
1, 2  
Feedback resistor — high-gain mode  
(HGO=1)  
1
0
RS  
Series resistor — low-power mode (HGO=0)  
Series resistor — high-gain mode (HGO=1)  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
41  
NXP Semiconductors  
System specifications  
Table 10. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
3
Vpp  
Peak-to-peak amplitude of oscillation  
0.8  
V
(oscillator mode) — high-frequency, low-  
power mode (HGO=0)  
Peak-to-peak amplitude of oscillation  
(oscillator mode) — high-frequency, high-  
gain mode (HGO=1)  
0.75 x  
0.8 x  
V
VDD_PMC18 VDD_PMC18  
1. See crystal or resonator manufacturer's recommendation  
2. When low power mode is selected, RF is integrated and must not be attached externally.  
3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
7.2.1.3.2 System oscillator frequency specifications  
Table 11. System oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (SCG_C2[RANGE]=00)  
tdc_extal Input clock duty cycle (external clock mode)  
Min.  
Typ.  
Max.  
Unit  
Notes  
4
32  
MHz  
40  
50  
60  
%
7.2.1.4 32 kHz oscillator electrical specifications  
7.2.1.4.1 32 kHz oscillator DC electrical specifications  
Table 12. 32kHz oscillator DC electrical specifications  
Symbol  
RF  
Description  
Min.  
Typ.  
100  
1.5  
Max.  
Unit  
MΩ  
pF  
Internal feedback resistor  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
2.0  
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
7.2.1.4.2 32 kHz oscillator frequency specifications  
Table 13. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
500  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
42  
NXP Semiconductors  
System specifications  
Table 13. 32 kHz oscillator frequency specifications (continued)  
Symbol Description  
Externally provided input clock  
Min.  
Typ.  
Max.  
Unit  
Notes  
vec_extal32  
700  
VDD_VBAT18_CAP  
mV  
2, 3  
amplitude  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.  
The oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VDD_VBAT18_CAP.  
7.2.2 Core, platform, and system bus clock frequency limitations  
The clock ratio restrictions among the core, platform and IP bus clocks are listed as  
follows:  
• A7 core clock frequency is higher than A7 platform clock frequency.  
• Clock ratio must be integers between A7 fast platform (NIC0) and A7 slow  
platform (NIC1).  
NOTE  
Use A7 SPLL for core clock and A7 APLL for  
DDR/NIC clocks.  
• Clock ratio must be integers between A7 slow platform and A7 system IP bus.  
• Clock ratio must be integers between M4 core/platform and M4 system IP bus.  
• M4 slow clock must be slower and an integer division of M4 system IP bus.  
• A7 Slow platform (NIC1) clock frequency should be higher than A7 System IP  
bus clock (NIC1_BUS clock).  
The following tables show examples of various allowable clock frequencies for the  
cores, platforms, system bus, and DDR in different operating modes.  
NOTE  
The frequencies stated in these tables are typical  
configuration and maximum frequencies in a particular  
mode. However, since there are multiple clock dividers,  
different clock ratios can be achieved.  
Table 14. Maximum A7 system clock frequencies1  
Configuration A7 Core  
(MHz)  
NIC0 (MHz)2  
GPU-3D/  
GPU-2D (MHz)  
DDR (MHz)2 NIC1 (MHz) A7 System IP  
Bus (MHz)  
eMMC  
RUN  
500  
380.16  
400  
271.5  
190  
95  
HS200  
mode  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
43  
NXP Semiconductors  
System specifications  
Table 14. Maximum A7 system clock frequencies1 (continued)  
Configuration A7 Core  
(MHz)  
NIC0 (MHz)2  
GPU-3D/  
GPU-2D (MHz)  
DDR (MHz)2 NIC1 (MHz) A7 System IP  
Bus (MHz)  
eMMC  
HS400  
HSRUN  
650  
400  
48  
400 (GPU-2D)/ 271.5  
650 (GPU-3D)  
200  
100  
mode  
VLPR  
48  
Not operational Not  
48  
24  
Only 24  
MHz  
operational  
(DDR in self-  
refresh  
compliant  
cards  
mode)  
1. The maximum operating frequency of a given clock must also observe the clock ratio restrictions described in this  
section  
2. NIC0 and DDR are derived from the same clock.  
NOTE  
DGO peripherals on the M4 core use the cm4.divslow_clk,  
configured by SCG_xCCR[DIVSLOW] in all the modes, with  
the maximum frequency of 25 MHz.  
.
Table 15. Maximum M4 system clock frequencies1  
Configuration  
M4 Core/ Platform  
(MHz)  
Platform (MHz)  
M4 System IP Bus  
(MHz)  
Slow clock (MHz)  
RUN  
HSRUN  
VLPR  
120  
200  
48  
120  
200  
48  
60  
100  
24  
20  
25  
24  
1. The maximum operating frequency of a given clock must also observe the clock ratio restrictions described in this  
section  
7.2.3 Peripheral clock frequencies  
The following table lists peripheral clock frequencies and the indication of platform and  
IP bus clocks. Some peripherals have a local clock generator that can further divide the  
clock, as required, for the desired serial rate.  
Table 16. Peripheral clock frequencies  
Module  
A7 Fast  
Platform  
Clk  
A7 Slow  
Platform  
Clk  
A7 System M4 Platform M4 System  
Peripheral  
Clock (MHz)  
Notes  
IP Bus Clk  
Clk  
IP Bus Clk  
AIPS-Lite  
--  
--  
--  
Yes  
Yes  
--  
Table continues on the next page...  
44  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
Table 16. Peripheral clock frequencies (continued)  
Module  
A7 Fast  
Platform  
Clk  
A7 Slow  
Platform  
Clk  
A7 System M4 Platform M4 System  
Peripheral  
Clock (MHz)  
Notes  
IP Bus Clk  
Clk  
IP Bus Clk  
AHB-PBridge  
AXBS  
--  
--  
Yes  
--  
Yes  
--  
--  
Yes  
--  
--  
Yes  
--  
--  
--  
NIC0  
Yes  
--  
--  
--  
NIC1  
Yes  
--  
--  
--  
--  
--  
AXI RAMC0  
AXI RAMC1  
AHB RAMC  
A7 ROMC  
M4 ROMC  
MMDC  
Yes  
--  
--  
--  
--  
--  
Yes  
--  
--  
--  
--  
--  
--  
--  
Yes  
--  
--  
--  
--  
--  
Yes  
--  
Yes  
--  
--  
--  
Yes  
--  
Yes  
--  
--  
Yes  
--  
Yes  
400  
200  
FlexBus  
QSPI  
--  
--  
Yes  
--  
Yes  
--  
--  
--  
66.71  
200, 100  
320, 160, 80  
108  
Yes  
Yes  
DTR w/ DQS  
DTR w/o  
DQS  
STR  
DMA1  
--  
--  
Yes  
--  
Yes  
--  
--  
Yes  
--  
--  
Yes  
--  
--  
--  
DMA0  
GPU-3D  
Yes  
Yes  
--  
800, 400  
400, 200  
800, 400  
GPU-2D  
--  
Yes  
--  
--  
--  
400, 200  
LPUART0-3  
LPUART4-7  
LPSPI0-1  
LPSPI2-3  
LPI2C0-3  
LPI2C4-7  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Yes  
--  
60  
60  
Yes  
--  
--  
Yes  
--  
60  
--  
Yes  
--  
100  
60  
--  
Yes  
--  
--  
Yes  
Yes  
60  
USB  
Yes  
--  
60  
Exact  
Controllers  
USB PHY  
USB HSIC  
uSDHC  
--  
--  
--  
--  
--  
Yes  
Yes  
Yes  
--  
--  
--  
--  
--  
--  
480  
480  
50  
Exact  
Exact  
Yes  
Support  
internal clock  
divider  
52  
104  
200  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
45  
NXP Semiconductors  
System specifications  
Table 16. Peripheral clock frequencies (continued)  
Module  
A7 Fast  
Platform  
Clk  
A7 Slow  
Platform  
Clk  
A7 System M4 Platform M4 System  
Peripheral  
Clock (MHz)  
Notes  
IP Bus Clk  
Clk  
IP Bus Clk  
RGPIO2P0  
RGPIO2P1  
FlexIO0  
FlexIO1  
LPIT0  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Yes  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Yes  
--  
--  
--  
--  
Yes  
--  
80  
--  
Yes  
--  
80  
--  
Yes  
--  
60  
LPIT1  
--  
Yes  
--  
60  
TPM0-3  
TPM4-7  
LPTMR  
EWM  
--  
Yes  
--  
60  
--  
Yes  
--  
60  
--  
Yes  
Yes  
--  
30  
--  
--  
--  
DSI  
Yes  
Yes  
Yes  
--  
Yes  
Yes  
Yes  
--  
500  
LCDIF  
VIU  
--  
--  
66.7 2  
--  
SAI0-1  
CAAM3  
SNVS  
Yes  
--  
50  
--  
Yes  
--  
Yes  
--  
Yes  
32.678 (kHz)  
Exact for  
real-time  
clock  
CRC  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
TRNG  
LTC3  
--  
JTAG  
XRDC  
SEM42  
MU  
--  
--  
--  
Yes  
--  
WDOG0  
WDOG1  
Yes  
Yes  
WDOG2  
(Secure  
WDOG)  
--  
ADC0-1  
DAC  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Yes  
Yes  
Yes  
--  
25  
--  
CMP0-1  
TPIU/SWO  
--  
100  
1. Flexbus clock frequency is generated using SCG1_NICCCR[NIC1_DIVEXT] and SCG1_NICCSR[NIC1_DIVEXT] fields  
through the CLKOUT pin  
2. This is the value of pix_clk and not the ipg_clk  
3. See i.MX 7ULP Security Reference Manual for complete chapter  
46  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
7.2.4 PLL PFD output  
All PLLs on i.MX 7ULP either have VCO base frequency of 480 MHz or 528 MHz.  
The following tables show all the possible combination of PFD output supported for  
24 MHz input clock.  
PFD Output = 18/N x FVCO where N = 12 to 35.  
Table 17. PLL PFD output frequencies 1  
PLL VCO (MHz)  
480  
FRAC (N)  
12  
PFD Output (MHz)  
720  
480  
13  
664  
480  
14  
617.142  
576  
480  
15  
480  
16  
540  
480  
17  
508.235  
480  
480  
18  
480  
19  
454.736  
432  
480  
20  
480  
21  
411.428  
392.727  
375.652  
254.117  
345.6  
480  
22  
480  
23  
480  
24  
480  
25  
480  
26  
332.307  
320  
480  
27  
480  
28  
308.571  
297.931  
288  
480  
29  
480  
30  
480  
31  
278.709  
270  
480  
32  
480  
33  
261.818  
254.117  
246.857  
480  
34  
480  
35  
1. This table indicates the maximum frequency achievable by different PFD configurations; typical frequencies will limit  
the PFD Frac values to be programmed  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
47  
NXP Semiconductors  
System specifications  
PLL VCO (MHz)  
FRAC (N)  
PFD Output (MHz)  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
528  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
792  
731.07  
678.8  
633.6  
594  
559.0588235  
528  
500.2105263  
475.2  
452.5714286  
432  
413.217  
396  
380.16  
365.538  
352  
339.428  
327.724  
316.8  
306.580  
297  
288  
279.529  
271.5  
7.2.5 Audio tunable clock  
For audio applications where the data stream is coming from a remote source, the  
device has to locally tune a clock signal to match the remote system clock. The  
Auxiliary PLL, which provides the clock for master audio, has synchronization logic to  
support on-the-fly configuration changes. This allows the device to generate a tunable  
clock for audio stream. The clock from one of the Auxiliary PLLs (PLL1) can be  
divided by the post-dividers in analog and also the dividers in SCG module. The  
divided tunable clock generated should meet the following requirement:  
• Output center frequency of 12.288 MHz or 11.2896 MHz  
• Tunable range of 1000 ppm  
• Tunable resolution of 1 ppm  
48  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
• Settling time of < 100 μsec  
• RMS TIE jitter (long-term jitter) < 100 psec  
• Frequency update must be smooth with no glitches  
7.3 Power sequencing—system  
7.3.1 Power-on sequencing  
The power-on sequencing requirements for the device are described in this section.  
VDD_VBAT42 must be powered and stable before all other supplies begin to ramp  
up.  
The real-time domain supplies must be powered and stable before RESET0_B is  
deasserted. The real-time domain supplies listed below may be powered on in any  
order except for those indicating specific sequencing requirements.  
• VDD_PMC18_DIG0 and VDD_PMC18 must be powered on together, or  
VDD_PMC18 must be powered on first followed by VDD_PMC18_DIG0  
• VDD_PLL_18  
• VDD_PTA  
• VDD_PTB  
• VDD18_IOREF  
• VREFH_ANA18  
• VREFL_ANA  
• VDD_ANA18  
• VDD_ANA33  
The application domain supplies must be powered on and stable before the A7 core  
exits reset. The M4 core controls the release of the A7 from reset. The application  
domain supplies listed below may be powered on in any order except for those  
indicating specific sequencing requirements.  
• VDD_PMC12_DIG1  
• VDD_PMC11_DIG1_CAP (if using A7 LDO bypass mode)  
• VDD_DIG1 (if using A7 LDO bypass mode)  
• VDD_PTC  
• VDD_PTD and VDD18_IOREF must be powered together, or VDD18_IOREF  
powered on first followed by VDD_PTD  
• VDD_PTE  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
49  
NXP Semiconductors  
System specifications  
• VDD_PTF  
• VDD18_DDR  
• DDR_VREF0, DDR_VREF1  
• VDD_HSIC  
• VDD18_HSIC  
• VDD_DSI11  
• VDD_DSI18  
• VDD_USB33  
• VDD_USB18  
• VDD_DDR must be powered and stable before the A7 core exits reset.  
The application domain supplies must not be powered when the real-time supplies are  
off.  
In A7 LDO bypass mode, VDD_USB18 and VDD_DSI18 should not be powered when  
VDD_DIG1 is not powered, or additional leakage current will occur.  
See Table 18 for interfaces and power supplies that are not used.  
7.3.2 Power-off sequencing  
The i.MX 7ULP has no power-off sequencing requirements.  
7.4 Requirements for unused interfaces  
This table shows the required connections for unused interfaces.  
Table 18. Required connections for unused interfaces  
Module  
Supply Name  
VREFH_ANA18  
VREFL_ANA  
Description  
Recommendations if module is unused  
10 kΩ resistor to ground  
ADC  
High Reference supply for ADC  
Low Reference supply for ADC  
10 kΩ resistor to ground  
VDD_ANA18  
1.8 V supply for ADC Analog and 10 kΩ resistor to ground  
IO segment  
VDD_ANA33  
3.3 V supply for ADC Analog and 10 kΩ resistor to ground  
IO segment  
DAC  
DAC0_OUT  
DAC1_OUT  
VDD_DSI11  
VDD_DSI18  
DAC0 output  
Leave unconnected  
DAC1 output  
Leave unconnected  
MIPI DSI  
MIPI 1.1 V supply  
MIPI 1.8 V supply  
10 kΩ resistor to ground  
10 kΩ resistor to ground  
Table continues on the next page...  
50  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
Table 18. Required connections for unused interfaces (continued)  
Module  
Supply Name  
DSI_CLK_N  
Description  
MIPI Negative Clock Signal  
MIPI Positive Clock Signal  
MIPI Negative Data0 Signal  
MIPI Positive Data0 Signal  
MIPI Negative Data1 Signal  
MIPI Positive Data1 Signal  
Port D supply  
Recommendations if module is unused  
Leave unconnected  
DSI_CLK_P  
DSI_DATA0_N  
DSI_DATA0_P  
DSI_DATA1_N  
DSI_DATA1_P  
VDD_PTD  
Leave unconnected  
Leave unconnected  
Leave unconnected  
Leave unconnected  
Leave unconnected  
Port D Signals  
USB0  
10 kΩ resistor to ground  
10 kΩ resistor to ground  
10 kΩ resistor to ground  
VDD_USB33  
VDD_USB18  
USB0_DM  
USB0 PHY 3.3 V supply  
USB0 PHY 1.8 V supply  
USB D- Analog Data Signal on the Leave unconnected  
USB Bus  
USB0_DP  
USB D+ Analog Data Signal on  
the USB Bus  
Leave unconnected  
USB0_VBUS_DETECT USB0 VBUS Detect  
10 kΩ resistor to ground  
7.5 Electrical Characteristics and Thermal Specifications  
7.5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 4. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume all output  
signals:  
• have CL=30pF loads,  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
51  
NXP Semiconductors  
System specifications  
• are slew rate disabled, and  
• are normal drive strength  
7.5.2 Nonswitching electrical characteristics  
7.5.2.1 GPIO DC Electrical Requirements  
Table 19. GPIO DC Electrical Requirements  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vtol  
Fail-safe I/O tolerance VDD_PTx=0  
when pad supply is off  
(PTA, PTB, PTC, PTE  
and PTF)  
3.6  
V
Itol  
I/O current when pad VDD_PTx=0 or floating  
supply is off  
1
µA  
Vih  
Input High  
VDD_PTx= 1.72 - 1.95 V  
VDD_PTx = 2.7 - 3.6 V  
VDD_PTx = 1.72 - 1.95 V  
VDD_PTx = 2.7 - 3.6 V  
VDD_PTx = 1.72 - 1.95 V  
VDD_PTx = 2.7 - 3.6 V  
VDD_PTx = 1.72 - 1.95 V  
VDD_PTx = 2.7 - 3.6 V  
VDD_PTx = 1.72 - 1.95 V  
Vin = VSS  
0.7*VDD_PTx  
V
V
0.7*VDD_PTx  
Vil  
Input Low  
-0.3  
-0.3  
0.15  
0.15  
-1  
0.3*VDD_PTx  
0.7  
V
V
DeltaV  
Input Hysterisis  
V
V
Iih  
High level input  
current  
0.5  
0.5  
1
1
1
µA  
µA  
µA  
-1  
Iil  
Low level input  
current  
-1  
VDD_PTx = 2.7 - 3.6 V  
Vin = VSS  
-1  
1
µA  
V
Voh (Low Drive) High Level Output  
Voltage  
VDD_PTx = 1.72 - 1.95 V  
Ioh = -2.9mA  
0.8*VDD_PTx  
0.8*VDD_PTx  
0.8*VDD_PTx  
0.8*VDD_PTx  
VDD_PTx = 2.7 - 3.6 V  
Ioh = -4mA  
V
Voh (High Drive) High Level Output  
Voltage  
VDD_PTx = 1.72 - 1.95 V  
Ioh = -5.8mA  
V
VDD_PTx = 2.7 - 3.6 V  
Ioh = -8mA  
V
Vol (Low Drive)  
Low Level Output  
Voltage  
VDD_PTx = 1.72 - 1.95 V  
Ioh = 2.9mA  
0.2*VDD_PTx  
0.2*VDD_PTx  
V
VDD_PTx = 2.7 - 3.6 V  
Ioh = 4mA  
V
Table continues on the next page...  
52  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
Table 19. GPIO DC Electrical Requirements (continued)  
Symbol  
Parameter  
Condition  
VDD_PTx = 1.72 - 1.95 V  
Ioh = 5.8mA  
Min  
Typ  
Max  
Unit  
Vol (High Drive) Low Level Output  
Voltage  
0.2*VDD_PTx  
V
VDD_PTx = 2.7 - 3.6 V  
Ioh = 8mA  
0.2*VDD_PTx  
5
V
Ioz  
Output Hi-Z current  
-5  
µA  
7.5.2.1.1 GPIO Pull-up and Pull-Down Resistance  
Table 20. Failsafe GPIO (FSGPIO) pull-up and pull-down resistance (PTA, PTB, PTC, PTE  
and PTF)  
Symbol  
R Pull up  
R Pull down  
Parameter  
Pull-up resistance  
Pulldown resistance  
Min  
Max  
Unit  
25  
25  
50  
50  
kΩ  
kΩ  
Table 21. Standard GPIO (STGPIO) pull-up and pull-down resistance (PTD)  
Symbol  
R Pull up  
Parameter  
Min  
Max  
100  
Unit  
Pull-up resistance, high voltage range (2.7 V – 3.6 V)  
Pull-up resistance, Low voltage range (1.71 V – 1.89 V)  
Pull-down resistance, High voltage range (2.7 V – 3.6 V)  
Pull-down resistance, Low voltage range (1.71 V – 1.89 V)  
10  
20  
10  
20  
kΩ  
kΩ  
kΩ  
kΩ  
50  
R Pull down  
100  
50  
7.5.2.2 Capacitance attributes  
See the device IBIS model for pin capacitance values for the package being used.  
7.5.3 Switching electrical characteristics  
7.5.3.1 General switching timing specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and timer functions.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
53  
NXP Semiconductors  
System specifications  
Table 22. General switching timing specifications  
Symbol  
Parameter  
Min Typ Max  
Unit  
Notes  
tw_GPIO_sync  
GPIO pin interrupt pulse width (Digital Filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
2
2
tw_RESET_async  
tw_GPIO_async  
External RESET and NMI pin interrupt pulse width 30  
— Asynchronous path  
ns  
GPIO pin interrupt pulse width — Asynchronous  
path  
30  
ns  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
7.5.3.2 GPIO rise and fall times  
Table 23. FSGPIO rise and fall time (PTA, PTB, PTC, PTE, and PTF)  
Symbol  
τrf  
Parameter  
Condition  
Min  
Typ Max  
8.3  
Unit  
ns  
Notes  
transition  
time  
Continuous Voltage  
Range Normal  
CL = 25pF Slow Slew  
1
Rate  
Standard Slew  
Rate  
3.4  
7.3  
0.9  
5.4  
0.8  
8.3  
3.4  
5.5  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VDD_PTx = 2.7–3.6 V  
τrf  
τrf  
τrf  
τrf  
transition  
time  
Continuous Voltage  
Range Derated  
CL = 25pF Slow Slew  
Rate  
Standard Slew  
Rate  
VDD_PTx = 1.98–2.7V  
transition  
time  
Continuous Voltage  
Range Derated  
CL = 25pF Slow Slew  
Rate  
Standard Slew  
Rate  
VDD_PTx = 1.71–1.98V  
transition  
time  
High Voltage Range  
VDD_PTx = 3–3.6 V  
CL = 25pF Slow Slew  
Rate  
Standard Slew  
Rate  
transition  
time  
Low Voltage Range  
CL = 25pF Slow Slew  
Rate  
VDD_PTx = 1.71–1.98 V  
Standard Slew  
Rate  
1. VDD1P8 = 1.8V  
Table 24. STGPIO rise and fall time (PTD)  
Symbol  
Parameter  
Condition  
CL = 25pF Slow Slew Rate  
Min Typ Max Unit Notes  
τrf  
transition  
time  
High Voltage Range  
12.0  
4.1  
ns  
ns  
1
Standard Slew  
Rate  
VDD_PTx = 3–3.6 Volts  
Table continues on the next page...  
54  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
System specifications  
Table 24. STGPIO rise and fall time (PTD) (continued)  
Symbol  
τrf  
Parameter  
Condition  
CL = 25pF Slow Slew Rate  
Min Typ Max Unit Notes  
transition  
time  
Low Voltage Range  
7.4  
0.8  
ns  
ns  
Standard Slew  
Rate  
VDD_PTx = 1.71–1.98  
Volts  
1. VDD1P8 = 1.8V  
7.5.3.3 GPIO output buffer maximum frequency  
Table 25. GPIO output buffer maximum frequency  
Symbol  
Parameter  
Condition  
Min Max Unit  
Mfreq (low drive low slew)  
Maximum  
Frequency  
VDD_PTx = 1.65 - 1.95 V, CL = 5pf  
VDD_PTx = 1.65 - 1.95 V, CL = 10pf  
VDD_PTx = 1.65 - 1.95 V, CL = 40pf  
VDD_PTx = 2.7 - 3.6 V, CL = 5pf  
VDD_PTx = 2.7 - 3.6 V, CL = 10pf  
VDD_PTx = 2.7 - 3.6 V, CL = 40pf  
VDD_PTx = 1.65 - 1.95 V, CL = 5pf  
VDD_PTx = 1.65 - 1.95 V, CL = 10pf  
VDD_PTx = 1.65 - 1.95 V, CL = 40pf  
VDD_PTx = 2.7 - 3.6 V, CL = 5pf  
VDD_PTx = 2.7 - 3.6 V, CL = 10pf  
VDD_PTx = 2.7 - 3.6 V, CL = 40pf  
VDD_PTx = 1.65 - 1.95 V, CL = 5pf  
VDD_PTx = 1.65 - 1.95 V, CL = 10pf  
VDD_PTx = 1.65 - 1.95 V, CL = 40pf  
VDD_PTx = 2.7 - 3.6 V, CL = 5pf  
VDD_PTx = 2.7 - 3.6 V, CL = 10pf  
VDD_PTx = 2.7 - 3.6 V, CL = 40pf  
VDD_PTx = 1.65 - 1.95 V, CL = 5pf  
VDD_PTx = 1.65 - 1.95 V, CL = 10pf  
VDD_PTx = 1.65 - 1.95 V, CL = 40pf  
VDD_PTx = 2.7 - 3.6 V, CL = 5pf  
VDD_PTx = 2.7 - 3.6 V, CL = 10pf  
VDD_PTx = 2.7 - 3.6 V, CL = 40pf  
120 MHz  
100 MHz  
50  
MHz  
115 MHz  
95  
40  
MHz  
MHz  
Mfreq (low drive high slew) Maximum  
Frequency  
185 MHz  
145 MHz  
50  
MHz  
170 MHz  
130 MHz  
40  
MHz  
Mfreq (high drive low slew) Maximum  
Frequency  
140 MHz  
125 MHz  
85  
MHz  
130 MHz  
115 MHz  
70  
MHz  
Mfreq (high drive high slew) Maximum  
Frequency  
235 MHz  
200 MHz  
100 MHz  
215 MHz  
185 MHz  
80  
MHz  
7.5.4 Debug and trace modules  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
55  
NXP Semiconductors  
System specifications  
7.5.4.1 JTAG timing specifications  
Table 26. JTAG timing specifications  
Symbol Parameter  
Min  
Max  
Min—  
VLPR  
mode  
Max—  
VLPR  
mode  
Unit  
J1  
TCLK frequency of operation  
• Boundary Scan  
• JTAG  
0
0
10  
25  
0
0
10  
10  
MHz  
MHz  
ns  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
• JTAG  
1000/J1  
1000/J1  
50  
20  
20  
3
50  
20  
20  
3
ns  
ns  
ns  
ns  
J4  
J5  
TCLK rise and fall times  
Boundary scan input data setup time to TCLK  
rise  
J6  
Boundary scan input data hold time after TCLK  
rise  
5
5
ns  
J7  
J8  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
28  
25  
19  
19  
2
28  
25  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J9  
10.5  
2.5  
J10  
J11  
J12  
J13  
J14  
2
TCLK low to TDO high-Z  
2
TRST assert time  
100  
8
100  
8
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 5. Test clock input timing  
56  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
System specifications  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 6. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 7. Test Access Port timing  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
57  
NXP Semiconductors  
System specifications  
TCLK  
TRST  
J14  
J13  
Figure 8. TRST timing  
7.5.4.2 Serial Wire Debug (SWD) timing specifications  
Table 27. SWD timing specificaions  
Symbol Description  
Min  
Max  
Min—  
VLPR  
mode  
Max—  
VLPR  
mode  
Unit  
J1  
SWD_CLK frequency of operation  
0
25  
0
10  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
1000/J1  
1000/J1  
SWD_CLK clock pulse width  
20  
10  
3
20  
19  
3
ns  
ns  
ns  
J4  
J9  
SWD_CLK rise and fall times  
SWD_DIO input data setup time to SWD_CLK  
rise  
J10  
SWD_DIO input data hold time after SWD_CLK  
rise  
0
0
ns  
J11  
J12  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
2
37  
2
37  
ns  
ns  
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 9. SWD clock input timing  
58  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
System specifications  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 10. SWD data timing  
7.5.5 Thermal specifications  
7.5.5.1 Thermal operating requirements  
Table 28. Thermal operating requirements  
Symbol  
Parameter  
Min.  
Typ  
Max.  
Unit  
TJ  
Die junction temperature—Industrial  
-40  
105  
°C  
7.5.5.2 Thermal attributes  
NOTE  
Per JEDEC JESD51-2, the intent of thermal resistance  
measurements is solely for a thermal performance  
comparison of one package to another in a standardized  
environment. This methodology is not meant to and does not  
predict the performance of a package in an application-  
specific environment.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
59  
NXP Semiconductors  
Specifications—application domain  
Table 29. Thermal resistance data  
Rating  
Test Conditions  
Symbol  
14x14 mm (VK)  
Package Value  
Unit  
°C/W  
Notes  
Junction to Ambient Natural Single-layer board (1S) RθJA  
Convection  
49.5  
1,2  
Junction to Ambient Natural Four-layer board (2s2p) RθJA  
30.7  
38.6  
26.0  
°C/W  
°C/W  
°C/W  
1,2,3  
1,3  
Convection  
Junction to Ambient (@ 200 Single-layer board (1S) RθJMA  
ft/min)  
Junction to Ambient (@ 200 Four-layer board (2s2p) RθJMA  
ft/min)  
1,3  
Junction to Board  
RθJB  
RθJC  
ΨJT  
15.6  
11.7  
0.4  
°C/W  
°C/W  
°C/W  
°C/W  
4
5
6
7
Junction to Case  
Junction to Package Top  
Natural Convection  
Junction to Package Bottom Natural Convection  
ΨJB  
10.1  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of the other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as ΨJT.  
7. Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation.  
8 Specifications—application domain  
8.1 Peripheral operating requirements and behaviors  
8.1.1 DDR timing—application domain  
See Multi Mode DDR Controller (MMDC).  
60  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
8.1.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC  
timing—application domain  
This section describes the electrical information of the uSDHC, which includes  
support for eMMC and SD (Secure Digital) interfaces.  
eMMC is designed to be compliant with the eMMC specification 5.0 and supports the  
following modes:  
• Backward Compatibility mode (MMC)  
• High Speed mode  
• HS200  
• HS400  
The SD (Secure Digital) interface is designed to be compliant with the SD 3.0  
specification and supports the following operating modes:  
• SDR12  
• SDR25  
• SDR50  
• SDR104  
• DDR50  
8.1.2.1 SD/eMMC4.3 (single data rate) AC timing  
The following figure shows the AC timing of SD/eMMC4.3, and the table lists the  
SD/eMMC4.3 timing characteristics.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
61  
NXP Semiconductors  
Specifications—application domain  
Figure 11. SD/eMMC4.3 AC timing  
Table 30. SD/eMMC4.3 AC parameters  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1  
Clock Frequency (Low Speed)  
fPP  
0
0
400  
kHz  
2
Clock Frequency (SD/SDIO Full  
Speed/High Speed)  
fPP  
25/50  
MHz  
3
Clock Frequency (MMC Full  
Speed/High Speed)  
fPP  
0
20/52  
400  
MHz  
kHz  
Clock Frequency (Identification  
Mode)  
fOD  
100  
SD2  
SD3  
SD4  
SD5  
Clock Low Time  
Clock High Time  
Clock Rise Time  
Clock Fall Time  
tWL  
tWH  
tTLH  
tTHL  
7
7
3
ns  
ns  
ns  
ns  
3
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD -3.3  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6  
3.6  
ns  
SD7  
SD8  
uSDHC Input Setup Time  
uSDHC Input Hold Time4  
tISU  
tIH  
7.5  
1.0  
ns  
ns  
1. In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
2. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In High-speed  
mode, clock frequency can be any value between 0–50 MHz.  
3. In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In High-speed  
mode, clock frequency can be any value between 0–52 MHz.  
62  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
4. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
8.1.2.2 eMMC4.4/4.41 (dual data rate) AC timing  
The following figure shows the timing of eMMC4.4/4.41, and the table lists the  
eMMC4.4/4.41 timing characteristics. Note that only DATA is sampled on both edges  
of the clock (not applicable to CMD).  
Figure 12. eMMC4.4/4.41 timing  
Table 31. eMMC4.4/4.41 interface timing specifications  
ID  
Parameter  
Symbols  
Card Input Clock  
fPP  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC4.4/4.41  
DDR)  
0
0
52  
50  
MHz  
MHz  
Clock Frequency (SD3.0 DDR)  
fPP  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD -3.3 3.6  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
ns  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
7.3  
1.0  
ns  
ns  
8.1.2.3 HS200 mode timing  
The following figure depicts the timing of HS200 mode, and the subsequent table lists  
the HS200 timing characteristics.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
63  
NXP Semiconductors  
Specifications—application domain  
SD1  
SD2  
SD3  
SCLK  
'
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 13. HS200 timing  
Table 32. HS200 interface timing specifications  
ID  
Parameter  
Symbols  
Min.  
Max.  
Unit  
Card Input clock  
SD1  
SD2  
SD3  
Clock Frequency Period  
Clock Low Time  
tCLK  
5.0  
ns  
ns  
ns  
tCL  
0.46 × tCLK  
0.54 × tCLK  
Clock High Time  
tCH  
0.46 × tCLK  
0.54 × tCLK  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
uSDHC Output Delay tOD -1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
Card Output Data Window tODW 0.5 x tCLK  
SD5  
SD8  
ns  
ns  
1. HS200 is for 8 bits while SDR104 is for 4 bits  
8.1.2.4 HS400 AC timing—eMMC5.0 only  
The following figure depicts the timing of HS400, and the subsequent table lists the  
HS400 timing characteristics. Be aware that only data is sampled on both edges of the  
clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the  
same as CMD input/output timing for SDR104 mode. Check parameters SD5, SD6, and  
SD7 in Table 34 for CMD input/output timing for HS400 mode.  
64  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
SD1  
SD3  
SD2  
SCK  
SD4  
SD5  
SD5  
SD4  
DAT0  
Output from  
DAT1  
...  
uSDHC to eMMC  
DAT7  
Strobe  
DAT0  
SD6  
SD7  
Input from  
eMMC to uSDHC  
DAT1  
...  
DAT7  
Figure 14. HS400 timing  
Table 33. HS400 timing specifications  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input clock  
SD1  
SD2  
SD3  
Clock Frequency  
Clock Low Time  
Clock High Time  
fPP  
tCL  
0
192  
MHz  
0.46 × tCLK  
0.46 × tCLK  
uSDHC Output/Card inputs DAT (Reference to SCK)  
0.54 × tCLK  
ns  
ns  
tCH  
0.54 × tCLK  
SD4  
SD5  
Output Skew from Data of Edge of tOSkew1  
SCK  
0.45  
ns  
ns  
Output Skew from Edge of SCK to tOSkew2  
Data  
0.45  
uSDHC input/Card Outputs DAT (Reference to Strobe)  
SD6  
SD7  
uSDHC input skew  
uSDHC hold skew  
tRQ  
0.45  
0.45  
ns  
ns  
tRQH  
8.1.2.5 SDR50/SDR104 AC timing  
The following figure shows the timing of SDR50/SDR104, and the table lists the  
SDR50/SDR104 timing characteristics.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
65  
NXP Semiconductors  
Specifications—application domain  
Figure 15. SDR50/SDR104 timing  
Table 34. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock Frequency Period  
Clock Low Time  
tCLK  
tCL  
4.8  
ns  
ns  
ns  
0.46*tCLK  
0.46*tCLK  
0.54*CLK  
0.54*tCLK  
Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
uSDHC Output Delay tOD -3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
uSDHC Output Delay tOD -1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4  
SD5  
1
ns  
ns  
SD6  
SD7  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
SD8  
Card Output Data Window tODW 0.5*tCLK  
ns  
1. Data window in SDR100 mode is variable.  
8.1.2.6 Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of  
SDR104/SDR50 mode is 1.8 V.  
66  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
8.1.3 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are  
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK  
frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing parameters indicate when data is latched or driven onto the  
external bus, relative to the Flexbus output clock (FB_CLK). All other timing  
relationships can be derived from these values.  
Table 35. Flexbus switching specifications  
Num  
Parameter  
Min.  
Max.  
Unit  
Notes  
Frequency of operation  
• HSRUN mode  
MHz  
66  
66  
• Normal RUN mode  
FB1  
Clock period  
ns  
15.0  
15.0  
• HSRUN mode  
• Normal RUN mode  
FB2  
FB3  
FB4  
FB5  
Address, data, and control output valid  
Address, data, and control output hold  
Data input setup  
13.0  
ns  
ns  
ns  
ns  
1
1
2
2
1.0  
8.5  
0.0  
Data input hold  
1. Specification is valid for all FB_AD[31:0], FB_BE, FB_CSn_B, FB_OE_B, FB_RW_B, FB_TBST_B, FB_TSIZ[1:0],  
FB_ALE, and FB_TS_B.  
2. Specification is valid for all FB_AD[31:0].  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
67  
NXP Semiconductors  
Specifications—application domain  
Read Timing Parameters  
S0  
S1  
S2  
S3  
S0  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB5  
FB3  
Address  
FB4  
FB2  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
S1  
S0  
S2  
S3  
S0  
Figure 16. FlexBus read timing diagram  
NOTE  
The Transfer Acknowledge Signal (FB_TA) is hard-wired in  
the design of i.MX 7ULP, so this signal is not available.  
68  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Specifications—application domain  
Write Timing Parameters  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB2  
FB3  
Address  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 17. FlexBus write timing diagram  
NOTE  
The Transfer Acknowledge Signal (FB_TA) is hard-wired in  
the design of i.MX 7ULP, so this signal is not available.  
8.1.4 Display, Video, and Audio Interfaces  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
69  
NXP Semiconductors  
Specifications—application domain  
8.1.4.1 MIPI DSI timing—application domain  
The i.MX 7ULP conforms to the MIPI D-PHY electrical specifications MIPI DSI  
Version 1.01 and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version  
2.0, DSC version 1.0a at protocol layer) for MIPI display port x2 lanes.  
8.1.4.2 Video Input Unit timing  
This section provides the timing parameters of the Video Input Unit (VIU) interface.  
VIU_PCLK  
VIU_D[23:0]  
tSU  
tHO  
Figure 18. VIU Timing Parameters  
Table 36. VIU Timing Parameters  
Symbol  
fPIX_CK  
tDSU  
tDHD  
Characteristic  
Min  
_
Max  
66.7  
_
Unit  
MHz  
ns  
VIU pixel clock frequency  
VIU data setup time  
VIU data hold time  
9.0  
1
_
ns  
8.1.5 Timer specifications—application domain  
See General switching timing specifications for EWM, LPTMR, and TPM.  
8.1.6 Connectivity and communications specifications—application  
domain  
70  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
8.1.6.1 LPUART  
See General switching timing specifications.  
8.1.6.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 37. I 2C timing (Standard, Fast, and Fast Plus modes)  
Parameter  
Symbol  
Standard Mode  
Fast Mode  
Fast-mode Plus  
Unit  
Min  
0
Max  
100  
Min  
Max  
400  
Min  
0
Max  
1000  
SCL Clock Frequency  
fSCL  
0
kHz  
µs  
Hold time (repeated) START  
condition. After this period, the  
first clock pulse is generated.  
tHD; STA  
4
0.6  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
0.5  
µs  
µs  
µs  
0.26  
0.26  
Set-up time for a repeated  
START condition  
tSU; STA  
4.7  
Data hold time for I2C bus  
devices  
tHD; DAT  
01  
3.452  
03  
0.91  
0
µs  
Data set-up time  
tSU; DAT  
tr  
2504  
1002, 5  
20  
50  
ns  
ns  
Rise time of SDA and SCL  
signals  
1000  
300  
20  
+0.1Cb  
120  
6
7
5
+0.1Cb  
Fall time of SDA and SCL  
signals  
tf  
300  
20  
+0.1Cb  
300  
20  
+0.1Cb  
120  
ns  
5
Set-up time for STOP condition tSU; STO  
4
0.6  
1.3  
0.26  
0.5  
µs  
µs  
Bus free time between STOP  
and START condition  
tBUF  
4.7  
Pulse width of spikes that must  
be suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and  
SCL lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF  
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
6. Cb = total capacitance of the one bus line in pF.  
7. Cb = total capacitance of the one bus line in pF.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
71  
NXP Semiconductors  
Specifications—application domain  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tHD; STA  
tSU; STO  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 19. Timing definition for standard, fast, and fast plus devices on the I2C bus  
Table 38. I 2C timing (High speed mode)  
Parameter  
Symbol  
fSCLH  
Minimum  
Maximum  
Unit  
MHz  
ns  
SCLH Clock Frequency  
0
3.4  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
160  
LOW period of the SCLH clock  
HIGH period of the SCLH clock  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tLOW  
tHIGH  
160  
60  
160  
0
70  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU; STA  
tHD; DAT  
tSU; DAT  
trCL  
10  
10  
10  
Rise time of SCLH signal  
Rise time of SCLH signal after a repeated START  
condition and after an acknowledge bit  
trCL1  
Fall time of SCLH signal  
Rise time of SDAH signal  
Fall time of SDAH signal  
Set-up time for STOP condition  
tfCL  
trDA  
10  
10  
10  
160  
0
40  
80  
80  
10  
ns  
ns  
ns  
ns  
ns  
tfDA  
tSU; STO  
tSP  
Pulse width of spikes that must be suppressed by  
the input filter  
8.1.6.3 Low Power Serial Peripheral Interface (LPSPI) switching  
specifications—application domain  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable.  
The following tables provide timing characteristics for classic LPSPI timing modes. See  
the LPSPI chapter of the chip reference manual for information about the modified  
transfer formats used for communicating with slower peripheral devices.  
72  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI  
pins.  
Table 39. LPSPI master mode switching specifications  
Num.  
Symbol Description  
Min  
Max  
Unit  
Note  
1
fop  
Frequency of operation:  
MHz  
1
LPSPI0-1  
fperiph/2048  
fperiph/2048  
30  
50  
LPSPI2-3  
2
tSPSCK  
SPSCK period:  
LPSPI0-1  
ns  
2
33.33  
16.67  
1/2  
2048 x tperiph  
LPSPI2-3  
2048 x tperiph  
3
4
5
6
tLead  
tLag  
Enable lead time  
Enable lag time  
tSPSCK  
tSPSCK  
ns  
1/2  
tWSPSCK Clock (SPSCK) high or low time  
(tSPSCK/2) - 2 (tSPSCK/2) + 2  
tSU  
Data setup time (inputs):  
LPSPI0-1  
ns  
16.0  
11.6  
LPSPI2-3  
7
8
tHI  
tv  
Data hold time (inputs)  
Data valid (after SPSCK edge):  
LPSPI0-1  
0
ns  
ns  
17.2  
10.0  
LPSPI2-3  
9
tHO  
Data hold time (outputs)  
-0.7  
ns  
1. Max frequency is also limited to fperiph/2, where fperiph is programmable for each LPSPIn module  
2. tperiph = 1/fperiph  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
73  
NXP Semiconductors  
Specifications—application domain  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 20. LPSPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 21. LPSPI master mode timing (CPHA = 1)  
Table 40. LPSPI slave mode switching specifications  
Num.  
Symbol Description  
fop Frequency of operation:  
Min  
Max  
Unit  
Note  
1
MHz  
1
LPSPI0-1  
LPSPI2-3  
0
0
15  
25  
Table continues on the next page...  
74  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Specifications—application domain  
Table 40. LPSPI slave mode switching specifications  
(continued)  
Num.  
Symbol Description  
tSPSCK SPSCK period:  
Min  
Max  
Unit  
Note  
2
ns  
LPSPI0-1  
LPSPI2-3  
66.6  
40  
1
3
4
5
6
tSS2SPSCK SPI_SS valid to SPI_SPSCK delay  
tSPSCK2SS SPI_SPSCK to SPI_SS invalid delay  
tWSPSCK Clock (SPSCK) high or low time  
tperiph  
tperiph  
ns  
2
2
1
(tSPSCK/2) - 2 (tSPSCK/2) + 2  
tSU  
Data setup time (inputs):  
LPSPI0-1  
ns  
9
LPSPI2-3  
4.2  
7
8
tHI  
Data hold time (inputs):  
LPSPI0-1  
ns  
ns  
6
LPSPI2-3  
3.9  
tSPSCK2DV SPI_SPSCK to SPI_MISO data valid (output  
data valid):  
LPSPI0-1  
LPSPI2-3  
20.0  
15.5  
9
tSPSCK2DH SPI_SPSCK to SPI_MISO data invalid (output  
data hold):  
ns  
LPSPI0-1  
2.0  
2.0  
18.1  
18  
LPSPI2-3  
10  
11  
tSS2DRV SPI_SS active to SPI_MISO driven  
tSS2HIZ SPI_SS inactive to SPI_MISO not driven  
ns  
ns  
1. Max frequency is also limited to fperiph/4, where fperiph is programmable for each LPSPIn module  
2. tperiph = 1/fperiph  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
75  
NXP Semiconductors  
Specifications—application domain  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 22. LPSPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 23. LPSPI slave mode timing (CPHA = 1)  
8.1.6.4 USB Full Speed Transceiver and High Speed PHY specifications  
This section describes the High Speed USB PHY parameters. The high speed PHY is  
capable of full and low speed signaling as well.  
The USB PHY meets the electrical compliance requirements defined in the Universal  
Serial Bus Revision 2.0 Specification with the amendments below.  
76  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—application domain  
• USB ENGINEERING CHANGE NOTICE  
• Title: 5V Short Circuit Withstand Requirement Change  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
• USB ENGINEERING CHANGE NOTICE  
• Title: Pull-up/Pull-down resistors  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• USB ENGINEERING CHANGE NOTICE  
• Title: Suspend Current Limit Changes  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0  
Specification  
• Revision 2.0 plus errata and ecn June 4, 2010  
• Battery Charging Specification (available from USB-IF)  
• Revision 1.2, December 7, 2010  
USB0_VBUS pin is a detector function which is 5v tolerant and complies with the  
above specifications without needing any external voltage division components.  
8.1.6.5 USB HSIC timings  
This section describes the electrical information of the USB HSIC port.  
NOTE  
HSIC is a DDR signal. The following timing specifications  
are for both rising and falling edges.  
8.1.6.5.1 USB HSIC transmit timing  
Figure 24. USB HSIC transmit waveform  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
77  
NXP Semiconductors  
Specifications—application domain  
Table 41. USB HSIC transmit parameters  
Name  
Parameter  
strobe period  
Min  
4.166  
0
Max  
4.167  
4.1  
Unit  
ns  
Comment  
Tstrobe  
Todelay  
Tslew  
data output delay time  
ns  
Measured at 50% point  
strobe/data rising/falling time  
1.2  
V/ns  
Average of 30% and  
70% voltage levels  
8.1.6.5.2 USB HSIC receive timing  
Figure 25. USB HSIC receive waveform  
Table 42. USB HSIC receive parameters  
Name  
Tstrobe  
Parameter  
Min  
4.166  
0.3  
Max  
4.167  
Unit  
ns  
Comment  
strobe period  
data hold time  
Thold  
Tsetup  
Tslew  
ns  
Measured at 50% point  
data setup time  
0.367  
1.2  
ns  
Measured at 50% point  
strobe/data rising/falling time  
V/ns  
Average of 30% and 70%  
voltage levels  
8.1.6.6 Parallel interface (ULPI interface)  
Electrical characteristics and timing parameters for the parallel interface are presented  
in the subsequent sections. The following table lists the parallel interface signal  
definitions.  
Table 43. USB signal definitions—Parallel (ULPI) interface  
Name  
Direction  
Signal description  
USB_CLK  
In  
Interface clock. All interface signals are synchronous to  
clock.  
USB_DAT[7:0]  
I/O  
Bidirectional data bus, driven low by the link during Idle. Bus  
ownership is determined by Direction.  
Table continues on the next page...  
78  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
Table 43. USB signal definitions—Parallel (ULPI) interface  
(continued)  
Name  
Direction  
Signal description  
USB_DIR  
USB_STP  
In  
Direction. Controls the direction of the Data bus.  
Out  
Stop. The link asserts this signal for 1 clock cycle to stop the  
data stream currently on the bus.  
USB_NXT  
In  
Next. The PHY asserts this signal to throttle the data.  
The following figure shows the USB transmit/receive timing diagram in parallel  
mode.  
Figure 26. USB Transmit and Receive timing diagram—Parallel (ULPI) mode  
The following table lists the USB Transmit and Receive timing parameters in Parallel  
(ULPI) mode.  
Table 44. USB Transmit and Receive Timing Parameters—Parallel (ULPI) Mode  
ID  
Parameter  
Min  
Max  
Unit  
Conditions/  
reference signal  
US15  
US16  
US17  
Setup time (DIR and NXT in, DAT in)  
Hold time (DIR and NXT in, DAT in)  
Output delay time (STP out, DAT out)  
6.0  
0
ns  
ns  
ns  
14 pF  
14 pF  
14 pF  
0
9.0  
9 Specifications—real-time domain  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
79  
NXP Semiconductors  
Specifications—real-time domain  
9.1 Power sequencing—real-time domain  
See Power sequencing—system.  
9.2 Peripheral operating requirements and behaviors—real-time  
domain  
9.2.1 QuadSPI AC specifications  
• All data is based on a negative edge data launch from the device and a positive  
edge data capture, as shown in the timing diagrams in this section.  
• Measurements are with a load of 10 pF on output pins. Input slew: 2 ns  
• Timings assume a setting of 0x0004_000x for QuadSPI _SMPR register (see the  
reference manual for details).  
SDR mode  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tih  
Tis  
Data in  
Figure 27. QuadSPI input timing (SDR mode) diagram  
NOTE  
• The timing values below are with default settings for  
sampling registers like QuadSPI_SMPR.  
• A negative time indicates the actual capture edge inside  
the device is earlier than clock appearing at pad.  
• Frequency calculator guidelines (Max read frequency) for  
any frequency: SCR > (Flash access time)max + (Tis)max  
80  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Specifications—real-time domain  
• All board delays need to be added appropriately  
• Input hold time being negative does not have any  
implication or max achievable frequency  
Table 45. QuadSPI input timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
6
Max  
Tis  
Tih  
Setup time for incoming data  
ns  
ns  
Hold time requirement for incoming data  
1
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Toh  
Tov  
Data out  
Figure 28. QuadSPI output timing (SDR mode) diagram  
Table 46. QuadSPI output timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
3
Max  
2
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
ns  
ns  
Toh  
Tck  
5
99  
MHz  
ns  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
5
ns  
NOTE  
For any frequency, setup and hold specifications of the  
memory should be met.  
DDR Mode  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
81  
NXP Semiconductors  
Specifications—real-time domain  
1
2
3
Clock  
Tck  
SFCK  
Tcss  
Tcsh  
CS  
Tih  
Tis  
Data in  
Figure 29. QuadSPI input timing (DDR mode) diagram  
NOTE  
• Parameters assume a load of 10 pf  
• The parameters are for setting of hold condition in  
register QuadSPI_SMPR[DDRSMP]  
• Read frequency calculations should be: SCK/2 > (flash  
access time) + Setup (Tis) - (edge number) x SCK/4  
Table 47. QuadSPI input timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
6
Max  
Tis  
Tih  
Setup time for incoming data  
Hold time requirement for incoming data  
ns  
ns  
1
1
2
3
Clock  
Tck  
SFCK  
CS  
Tcss  
Tcsh  
Tov  
Toh  
Data out  
Figure 30. QuadSPI output timing (DDR mode) diagram  
82  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Specifications—real-time domain  
Table 48. QuadSPI output timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
-
2
1.75  
ns  
ns  
Toh  
Tck  
-
60  
-
-
MHz  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
2.7  
5.62  
Clk(sck)  
Clk(sck)  
-
Hyperflash mode  
QSPI_SCLK  
TsMIN  
ThMIN  
DI[7:0]  
Figure 31. QuadSPI input timing (Hyperflash mode) diagram  
Table 49. QuadSPI input timing (Hyperflash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
6
Max  
TsMIN  
ThMIN  
Setup time for incoming data  
-
-
ns  
ns  
Hold time requirement for incoming data  
1
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
83  
NXP Semiconductors  
Specifications—real-time domain  
QSPI_SCLK  
QSPI_SCLK_B  
TclkSKMAX  
TclkSKMIN  
THO  
TDVO  
Output Invalid Data  
Figure 32. QuadSPI output timing (Hyperflash mode) diagram  
Table 50. QuadSPI output timing (Hyperflash mode) specifications  
Symbol  
Characteristic  
Output Data Valid  
Min  
Max  
Unit  
ns  
TdvMAX  
Tho  
4.3  
Output Data Hold  
Ck to DQS skew max  
Ck to DQS skew min  
CK clock period  
1.3  
ns  
TclkSKMAX  
TclkSKMIN  
Tck  
CK/2 + 0.8  
ns  
-(CK/2 + 1.2)  
ns  
70  
MHz  
NOTE  
Maximum QSPI clock frequency = 70 MHz.  
9.2.2 Analog modules  
9.2.2.1 12-bit ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
Table 51. ADC Electrical Specifications (VREFH=VDD_ANA_18 and VADINmax≤VREFH)  
Symbol  
VADIN  
Description  
Min  
Typ  
Max  
Unit  
Notes  
Input voltage  
VREFL  
VREFH  
V
CADIN  
RADIN  
Input capacitance  
Input resistance  
4.5  
pF  
500  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
84  
NXP Semiconductors  
Specifications—real-time domain  
Table 51. ADC Electrical Specifications (VREFH=VDD_ANA_18 and VADINmax≤VREFH)  
(continued)  
Symbol  
RAS  
Description  
Analog source resistance  
Min  
Typ  
Max  
Unit  
KΩ  
Notes  
5
1
2
fADCK  
ADC Conversion clock frequency  
Sample cycles  
8
66  
MHz  
Csample  
Ccompare  
Cconversion  
3.5  
131.5  
Fixed compare cycles  
Conversion cycles  
17.5  
cycles  
cycles  
Cconversion= Csample +  
Ccompare  
TUE  
DNL  
INL  
Total unadjusted Error  
Differential nonlinearity  
Integral nonlinearity  
Effective number of bits  
Single-ended mode  
Avg = 1  
-14 to -2  
1.2  
LSB  
LSB  
LSB  
3
3,4  
3,4  
5
1.2  
ENOB  
10.5  
10.8  
11.4  
Avg = 2  
Avg = 16  
Differential mode  
Avg = 1  
11.4  
Avg = 2  
Avg = 16  
SINAD  
EFS  
EZS  
EIL  
Signal to noise plus distortion  
Full-scale error  
Zero-scale error  
Input leakage error  
SINAD=6.02 x ENOB + 1.76  
dB  
-4  
0.05  
LSB  
LSB  
mV  
3
3
RAS * Iin  
1. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low  
as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
2. See Sample time vs. RAS.  
3. 1 LSB = (VREFH - VREFL)/2N, N=12  
4. ADC conversion clock at max frequency and using linear histogram.  
5. Input data used for test was 1 kHz sine wave.  
Table 52. ADC electrical specifications (VREFH=1.68 V and  
VADINmax≤VDD_PTAmax)1  
Symbol  
VADIN  
Description  
Min  
Typ2  
Max  
Unit  
Notes  
Input voltage— VREFL  
Port A  
VDD_PTAmax  
V
Input voltage—  
Port B  
VDD_PTBmax  
CADIN  
Input  
4.5  
pF  
capacitance  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
85  
NXP Semiconductors  
Specifications—real-time domain  
Table 52. ADC electrical specifications (VREFH=1.68 V and VADINmax≤VDD_PTAmax)1  
(continued)  
Symbol  
RADIN  
Description  
Min  
Typ2  
Max  
Unit  
Notes  
Input resistance  
1
KΩ  
KΩ  
RAS  
Analog source  
resistance  
5
3
4
fADCK  
ADC  
conversion  
clock frequency  
8
66  
MHz  
Csample  
Sample cycles 3.5  
131.5  
Ccompare  
Fixed compare  
cycles  
17.5  
Cycles  
Cycles  
LSB  
Cconversion  
TUE  
Conversion  
cycles  
Cconversion= Csample + Ccompare  
-14 to -2  
Total  
5
unadjusted  
error  
DNL  
INL  
Differential  
nonlinearity  
1.2  
1.2  
LSB  
LSB  
5,6  
5,6  
7
Integral  
nonlinearity  
ENOB  
Effective Number of Bits  
Single-ended mode  
Avg = 1  
10.3  
10.6  
11.3  
Avg = 2  
Avg = 16  
Differential mode  
Avg = 1  
11.2  
Avg = 2  
Avg = 16  
SINAD  
Signal to noise SINAD=6.02 x ENOB + 1.76  
plus distortion  
dB  
EFS  
EZS  
EIL  
Full-scale error  
Zero-scale error  
-4  
LSB  
LSB  
mV  
5
5
0.05  
Input leakage  
error  
RAS * Iin  
1. Values in this table are based on design simulations.  
2. Typical values assume VDD_ANA_18 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are  
for reference only, and are not tested in production.  
3. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. See Sample time vs. RAS.  
5. 1 LSB = (VREFH - VREFL)/2N, N=12  
6. ADC conversion clock at max frequency and using linear histogram.  
7. Input data used for test was 1 kHz sine wave.  
86  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
Table 53. ADC electrical specifications (1V≤VREFH<VDD_ANA18MIN and  
VADINMAX≤VREFH)1  
Symbol  
Description  
Min  
Typ2  
Max  
VREFH  
Unit  
Notes  
VADIN  
CADIN  
Input voltage VREFL  
V
Input  
4.5  
pF  
capacitance  
RADIN  
RAS  
Input  
resistance  
500  
Analog  
source  
resistance  
5
KΩ  
3
4
fADCK  
ADC  
conversion  
clock  
8
44  
MHz  
frequency  
Csample  
Sample  
cycles  
3.5  
131.5  
Ccompare  
Fixed  
17.5  
Cycles  
compare  
cycles  
Cconversion  
TUE  
Conversion  
cycles  
Cconversion= Csample + Ccompare  
-14 to -2  
Cycles  
LSB  
Total  
5
unadjusted  
error  
DNL  
INL  
Differential  
nonlinearity  
1.2  
1.2  
LSB  
LSB  
5,6  
5,6  
7
Integral  
nonlinearity  
ENOB  
Effective number of bits  
Single-ended mode  
Avg = 1  
9.8  
Avg = 2  
10.2  
11.1  
Avg = 16  
Differential mode  
Avg = 1  
10.7  
Avg = 2  
Avg = 16  
SINAD  
Signal to  
noise plus  
distortion  
SINAD=6.02 x ENOB + 1.76  
dB  
EFS  
EZS  
EIL  
Full-scale  
error  
-4  
LSB  
LSB  
mV  
5
5
Zero-scale  
error  
0.05  
Input leakage RAS * Iin  
error  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
87  
NXP Semiconductors  
Specifications—real-time domain  
1. Values in this table are based on design simulations.  
2. Typical values assume VDD_ANA_18 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are  
for reference only, and are not tested in production.  
3. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. See Sample time vs. RAS.  
5. 1 LSB = (VREFH - VREFL)/2N, N=12  
6. ADC conversion clock at max frequency and using linear histogram.  
7. Input data used for test was 1 kHz sine wave.  
The following figure shows a plot of the ADC sample time versus RAS.  
Figure 33. Sample time vs. RAS  
88  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
9.2.2.1.1 12-bit ADC operating conditions  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
Pad  
leakage  
ZAS  
CHANNEL SELECT  
CIRCUIT  
ADC SAR  
ENGINE  
RADIN  
RAS  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
RADIN  
CADIN  
Figure 34. ADC input impedance equivalency diagram  
9.2.2.2 12-bit DAC electrical characteristics  
9.2.2.2.1 12-bit DAC operating requirements  
Table 54. 12-bit DAC operating conditions  
Symbol  
Description  
Output load capacitance  
Output load current  
Min  
Typ  
Max  
Unit  
Notes  
CL  
IL  
50  
100  
1
pF  
1
2
mA  
1. The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements.  
50pF CL provides the best dynamic performance, while 100pF provides the best DC performance.  
2. Sink or source current ability.  
Table 55. DAC characteristics  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
0.15  
Units  
Notes  
VDACOUTL DAC low level output VREFH_ANA18 selected,  
VSS  
V
1
voltage  
Rload=18k, Cload=50pF  
VDACOUTH DAC high level output  
voltage  
VDD_ANA18 —  
-0.15  
VDD_  
ANA18  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
89  
NXP Semiconductors  
Specifications—real-time domain  
Table 55. DAC characteristics (continued)  
Symbol  
DNL  
Description  
Test Conditions  
Min  
Typ  
Max  
Units  
LSB  
Notes  
Differential non-  
linearity error  
Code 100h F00h best fit  
0.5  
1
curve  
INL  
Integral non-linearity  
error  
Code 100h F00h best fit  
curve  
1
2
2
3
EO  
Offset error  
Code 100h  
Code 100h  
0.6  
30  
%FSR  
µV/°C  
TEO  
Offset error  
temperature coefficient  
EG  
Gain error  
Code F00h  
0.4  
%FSR  
TEG  
Gain error temperature Code F00h  
coefficient  
10  
ppm of  
FSR/°C  
TFS_LS  
TFS_MS  
TFS_HS  
TCC_LS  
TCC_MS  
TCC_HS  
SR_LS  
SR_MS  
SR_HS  
90  
Full scale setting time Code F00h or F00h 100h  
5
µs  
4
in Low Speed mode  
@ ZTC current  
Code 100h F00h or F00h →  
100h @ PTAT current  
5
Full scale setting time Code 100h F00h or F00h →  
in Middle Speed mode 100h @ ZTC current  
1
Code 100h F00h or F00h →  
100h @ PTAT current  
1
Full scale setting time Code 100h F00h or F00h →  
0.5  
0.5  
1
in High Speed mode  
100h @ ZTC current  
Code 100h F00h or F00h →  
100h @ PTAT current  
Code to code setting  
time in Low Speed  
mode  
Code 7F7h 807h or 807h →  
7F7h @ ZTC current  
Code 7F7h 807h or 807h →  
1
7F7h @ PTAT current  
Code to code setting  
Code 7F7h 807h or 807h →  
0.5  
0.5  
0.3  
0.3  
0.24  
0.24  
1.2  
1.2  
2.4  
time in Middle Speed 7F7h @ ZTC current  
mode  
Code 7F7h 807h or 807h →  
7F7h @ PTAT current  
Code to code setting  
time in High Speed  
mode  
Code 7F7h 807h or 807h →  
7F7h @ ZTC current  
Code 7F7h 807h or 807h →  
7F7h @ PTAT current  
Slew rate in Low  
Speed mode  
Code 100h F00h or F00h →  
100h @ ZTC current  
V/µs  
5
Code 100h F00h or F00h →  
100h @ PTAT current  
Slew rate in Middle  
Speed mode  
Code 100h F00h or F00h →  
100h @ ZTC current  
Code 100h F00h or F00h →  
100h @ PTAT current  
Slew rate in High  
Speed mode  
Code 100h F00h or F00h →  
100h @ ZTC current  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
Table 55. DAC characteristics (continued)  
Symbol  
Description  
Test Conditions  
Min  
Typ  
2.4  
Max  
Units  
Notes  
Code 100h F00h or F00h →  
100h @ PTAT current  
PSRR  
Power supply rejection Code 800h,  
70  
dB  
6
ratio  
ΔVDD_ANA18=100mV,  
VREFH_ANA12 selected  
Code 100h F00h 100h  
Code 7FFh 800h 7FFh  
Glitch  
Glitch energy  
30  
30  
nV-s  
CT  
Channel to channel  
crosstalk  
-80  
dB  
7
8
ROP  
Output resistance  
Code 100h F00h and  
200  
Rload=18kΩ  
1. It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDD_ANA18 - 0.15 V) for  
best accuracy. Linearity of the output voltage outside this range will be affected as current load increases.  
2. When VREFH_ANA18 is selected as the reference (DAC_CR[DACRFS]=1b).  
3. When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS]=1b).  
4. The DAC output remains within 0.5 LSB of the final measured value for digital input code change. Noise on the  
power supply can cause this performance to degrade to 1 LSB. This parameter represents both rising edge and  
falling edge settling time.  
5. Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge).  
6. PSRR=20*log{∆VDD_ANA18 /∆VDAC_OUT}  
7. If two DACs are used and sharing the same VREFH.  
8. Based on design simulation.  
9.2.2.3 CMP electrical specifications  
Table 56. CMP Operating Conditions  
Symbol  
VREFH_EXT  
VREFH_INT1  
Description  
External reference voltage  
Internal reference voltage  
Min  
1
Typ  
Max  
1.98  
Unit  
V
1.3  
V
1. This is an internally generated voltage reference generated by PMC0.  
Table 57. CMP Characteristics  
Symbol  
VAIN  
Description  
Condition  
Min  
Typ  
Max  
VDD_PTx, 1  
20  
Unit  
V
Analog input voltage  
0
VAIO  
Analog input offset  
voltage  
mV  
VH  
Analog comparator  
hysteresis  
Hysctrl[1:0]=00  
Hysctrl[1:0]=01  
Hysctrl[1:0]=10  
Hysctrl[1:0]=11  
5
mV  
mV  
mV  
mV  
10  
20  
30  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
91  
NXP Semiconductors  
Specifications—real-time domain  
Table 57. CMP Characteristics (continued)  
Symbol  
TDHS  
Description  
Condition  
Min  
Typ  
Max  
Unit  
Propagation delay,  
high-speed mode  
Nominal supply  
50  
ns  
TDHS  
Propagation delay,  
low-speed mode  
5
20  
1
µs  
µs  
Analog comparator  
initialization delay  
INL  
8B DAC integral non-  
linearity  
-1  
-1  
LSB  
LSB  
DNL  
8B DAC differential  
non-linearity  
1
1. The maximum input voltage for CMP analog inputs associated with Port A (PTA) is VDD_PTA. The maximum input  
voltage for CMP analog inputs associated with Port B (PTB) is VDD_PTB.  
9.2.3 Timer specifications—real-time domain  
See General switching timing specifications.  
9.2.4 Connectivity and communications specifications—real-time  
domain  
9.2.4.1 LPUART  
See General switching timing specifications.  
9.2.4.2 Inter-Integrated Circuit Interface (I2C) timing—real-time domain  
See Inter-Integrated Circuit Interface (I2C) timing.  
9.2.4.3 LPSPI switching specifications—real-time domain  
See Low Power Serial Peripheral Interface (LPSPI) switching specifications—  
application domain.  
9.2.4.4 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial  
clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync  
92  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
(TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync  
have been inverted, all the timing remains valid by inverting the bit clock signal  
(BCLK) and/or the frame sync (FS) signal shown in the following figures.  
Table 58. I2S/SAI master mode timing  
Num.  
Parameter  
Min  
20  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
MCLK period  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
40  
55%  
45%  
55%  
7.5  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS  
output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS  
output invalid  
0
ns  
S7  
I2S_TX_BCLK to I2S_TXD valid  
1
15.9  
ns  
ns  
ns  
ns  
S8  
I2S_TX_BCLK to I2S_TXD invalid  
S9  
I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
21.3  
0
S10  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 35. I2S/SAI timing — master modes  
Table 59. I2S/SAI slave mode timing  
Num.  
Parameter  
Min  
40  
Max  
Unit  
ns  
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)  
45%  
55%  
MCLK period  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
93  
NXP Semiconductors  
Specifications—real-time domain  
Table 59. I2S/SAI slave mode timing (continued)  
Num.  
Parameter  
Min  
Max  
Unit  
S13  
I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/  
I2S_RX_BCLK  
13  
ns  
S14  
I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/  
I2S_RX_BCLK  
1
ns  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
1
22.8  
ns  
ns  
ns  
ns  
ns  
12  
1
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
17.0  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 36. I2S/SAI timing — slave modes  
9.2.4.5 VLPR, VLPW, and VLPS mode performance  
This section provides the operating performance for the device in VLPR, VLPW, and  
VLPS modes.  
Table 60. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
Num.  
Parameter  
Min  
60  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
MCLK period  
ns  
I2S_MCLK pulse width high/low  
45%  
100  
45%  
55%  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS  
output valid  
Table continues on the next page...  
94  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Specifications—real-time domain  
Table 60. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (continued)  
Num.  
Parameter  
Min  
Max  
Unit  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS  
output invalid  
0
ns  
S7  
I2S_TX_BCLK to I2S_TXD valid  
0
25  
ns  
ns  
ns  
ns  
S8  
I2S_TX_BCLK to I2S_TXD invalid  
S9  
I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
25  
0
S10  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 37. I2S/SAI timing — master modes  
Table 61. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes  
Num.  
Parameter  
Min  
100  
45%  
30  
Max  
Unit  
S11  
S12  
S13  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)  
ns  
MCLK period  
ns  
55%  
I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/  
I2S_RX_BCLK  
S14  
I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/  
I2S_RX_BCLK  
2
ns  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
1
40  
27  
ns  
ns  
ns  
ns  
ns  
30  
5
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
95  
NXP Semiconductors  
Package information and contact assignments  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 38. I2S/SAI timing — slave modes  
9.2.4.6 FlexIO specifications—real-time domain  
See General switching timing specifications  
10 Package information and contact assignments  
This section contains package information and contact assignments for the following  
packages:  
• BGA 14 x 14 mm, 0.5 mm pitch (VP suffix)  
10.1 BGA, 14 x 14 mm, 0.5 mm pitch (VP suffix)  
This section includes the following information for the 14 x 14 mm, 0.5 mm pitch  
package:  
• Case outline  
• Ball map  
• Contact assignments  
10.1.1 14 x 14 mm package case outline  
The following figure shows the top, bottom, and side views of the 14 × 14 mm BGA  
package.  
96  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Package information and contact assignments  
Figure 39. 14 x 14 mm case outline  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
97  
NXP Semiconductors  
Package information and contact assignments  
Figure 40. Notes on 14 x 14 mm case outline  
10.1.2 14 x 14 mm, 0.5 mm pitch, ball map  
The following page shows the 14 × 14 mm, 0.5 mm pitch, ball map.  
98  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Package information and contact assignments  
14 x 14 mm, 0.5 mm pitch, ballmap  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆ  
ꢀꢇ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢁꢆ  
ꢋꢌꢌ  
ꢍꢎꢏꢅ  
ꢋꢐꢐꢀꢇꢑꢒꢌꢓꢔ  
ꢍꢎꢕꢀꢄ  
ꢍꢎꢕꢀꢀ  
ꢍꢎꢕꢄ  
ꢍꢎꢕꢀ  
ꢍꢎꢔꢀꢁ  
ꢍꢎꢔꢇ  
ꢍꢎꢐꢀꢀ  
ꢍꢎꢐꢆ  
ꢍꢎꢐꢃ  
ꢍꢎꢐꢉ  
ꢐꢐꢖꢑꢐꢗꢀꢅ  
ꢋꢌꢌ  
ꢍꢎꢏꢄ  
ꢍꢎꢏꢀ  
ꢍꢎꢏꢁ  
ꢍꢎꢏꢂ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢍꢎꢕꢀꢃ  
ꢋꢌꢌ  
ꢍꢎꢕꢀꢂ  
ꢍꢎꢕꢀꢁ  
ꢋꢌꢌ  
ꢍꢎꢕꢃ  
ꢋꢌꢌ  
ꢍꢎꢕꢂ  
ꢍꢎꢕꢁ  
ꢋꢌꢌ  
ꢍꢎꢔꢀꢀ  
ꢋꢌꢌ  
ꢍꢎꢔꢀꢉ  
ꢍꢎꢔꢈ  
ꢋꢌꢌ  
ꢍꢎꢐꢀꢉ  
ꢋꢌꢌ  
ꢍꢎꢐꢈ  
ꢍꢎꢐꢇ  
ꢋꢌꢌ  
ꢍꢎꢐꢂ  
ꢋꢌꢌ  
ꢍꢎꢐꢁ  
ꢍꢎꢐꢀ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢀꢇ  
ꢐꢐꢖꢑꢐꢗꢀꢈ  
ꢐꢐꢖꢑꢐꢗꢁꢉ  
ꢐꢐꢖꢑꢐꢗꢀꢆ  
ꢐꢐꢖꢑꢐꢗꢁꢀ  
ꢐꢐꢖꢑꢐꢗꢌꢁ  
ꢐꢐꢖꢑꢐꢗꢀ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢍꢎꢏꢈ  
ꢍꢎꢏꢉ  
ꢍꢎꢏꢃ  
ꢍꢎꢏꢆ  
ꢒꢌꢓꢔꢑꢐꢊꢎꢊ  
ꢒꢌꢓꢔꢑꢌꢎꢖꢙꢘꢕ  
ꢋꢐꢐꢑꢒꢌꢓꢔ  
ꢍꢎꢕꢀꢉ  
ꢍꢎꢕꢆ  
ꢋꢌꢌ  
ꢍꢎꢕꢅ  
ꢋꢐꢐꢑꢍꢎꢕ  
ꢍꢎꢕꢇ  
ꢋꢐꢐꢑꢍꢎꢕ  
ꢍꢎꢕꢉ  
ꢍꢎꢔꢀꢂ  
ꢍꢎꢔꢀꢃ  
ꢍꢎꢔꢀꢄ  
ꢍꢎꢔꢀꢅ  
ꢋꢐꢐꢑꢍꢎꢔ  
ꢍꢎꢔꢅ  
ꢍꢎꢔꢄ  
ꢍꢎꢔꢀ  
ꢍꢎꢔꢁ  
ꢍꢎꢔꢂ  
ꢍꢎꢔꢉ  
ꢋꢐꢐꢑꢍꢎꢐ  
ꢋꢐꢐꢑꢍꢎꢐ  
ꢋꢌꢌ  
ꢍꢎꢐꢄ  
ꢋꢌꢌ  
ꢍꢎꢐꢅ  
ꢐꢐꢖꢑꢐꢗꢁꢁ  
ꢐꢐꢖꢑꢐꢗꢁꢂ  
ꢋꢐꢐꢀꢇꢑꢐꢐꢖ  
ꢍꢎꢔꢀꢈ  
ꢍꢎꢔꢀꢇ  
ꢍꢎꢔꢀꢆ  
ꢋꢐꢐꢑꢍꢎꢔ  
ꢍꢎꢔꢃ  
ꢍꢎꢏꢇ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢍꢎꢏ  
ꢋꢐꢐꢑꢍꢎꢏ  
ꢍꢎꢏꢀꢄ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢌꢁꢑꢘ  
ꢐꢐꢖꢑꢐꢗꢛꢁ  
ꢐꢐꢖꢑꢐꢗꢉ  
ꢍꢎꢏꢀꢉ  
ꢍꢎꢏꢀꢃ  
ꢍꢎꢏꢀꢀ  
ꢍꢎꢏꢀꢂ  
ꢍꢎꢕꢈ  
ꢍꢎꢔꢆ  
ꢋꢌꢌ  
ꢍꢎꢏꢀꢅ  
ꢍꢎꢏꢀꢆ  
ꢍꢎꢏꢀꢇ  
ꢍꢎꢏꢀꢈ  
ꢋꢌꢌ  
ꢍꢎꢏꢀꢁ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢐꢐꢖꢑꢔꢊꢃ  
ꢐꢐꢖꢑꢋꢖꢕꢏꢉ  
ꢐꢐꢖꢑꢔꢊꢂ  
ꢐꢐꢖꢑꢐꢗꢁ  
ꢐꢐꢖꢑꢐꢗꢂ  
ꢐꢐꢖꢑꢐꢗꢃ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢖꢕꢌꢕꢎꢀꢑꢘ  
ꢐꢌꢓꢑꢔꢞꢝꢑꢍ  
ꢐꢌꢓꢑꢐꢊꢎꢊꢉꢑꢍ  
ꢠꢌꢘꢉꢑꢐꢍ  
ꢍꢛꢓꢔꢑꢙꢟꢑꢖꢕꢗ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢅ  
ꢐꢐꢖꢑꢐꢗꢆ  
ꢐꢐꢖꢑꢐꢗꢌꢉ  
ꢐꢐꢖꢑꢐꢗꢄ  
ꢐꢌꢓꢑꢐꢊꢎꢊꢀꢑꢟ  
ꢐꢌꢓꢑꢐꢊꢎꢊꢀꢑꢍ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢌꢓꢀꢀ  
ꢋꢐꢐꢀꢇꢑꢓꢙꢖꢕꢏ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢐꢌꢓꢑꢔꢞꢝꢑꢟ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢌꢓꢀꢇ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢐꢐꢖꢑꢔꢊꢀ  
ꢐꢐꢖꢑꢔꢊꢁ  
ꢐꢐꢖꢑꢔꢊꢉ  
ꢐꢐꢖꢑꢐꢗꢛꢉ  
ꢐꢐꢖꢑꢔꢌꢀꢑꢘ  
ꢐꢐꢖꢑꢔꢝꢕꢀ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢌꢉꢑꢘ  
ꢐꢐꢖꢑꢔꢌꢉꢑꢘ  
ꢐꢐꢖꢑꢐꢗꢛꢀ  
ꢐꢐꢖꢑꢐꢗꢈ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢐꢌꢓꢑꢐꢊꢎꢊꢉꢑꢟ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢔꢝꢕꢉ  
ꢐꢐꢖꢑꢔꢞꢝꢉ  
ꢋꢐꢐꢑꢠꢌꢘꢂꢂ  
ꢋꢐꢐꢑꢋꢘꢊꢎꢃꢁ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢠꢌꢘꢀꢇ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢐꢐꢑꢐꢓꢚꢀ  
ꢋꢌꢌ  
ꢠꢌꢘꢉꢑꢋꢘꢠꢌꢑꢐꢕꢎꢕꢔ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢀꢑꢐꢓꢚꢀ  
ꢑꢔꢊꢍ  
ꢠꢌꢘꢉꢑꢐꢛ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢋꢘꢊꢎꢀꢇꢑꢔꢊꢍ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢔꢊꢅ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢐꢐꢖꢑꢔꢊꢄ  
ꢐꢐꢖꢑꢔꢊꢆ  
ꢐꢐꢖꢑꢐꢗꢌꢀꢑꢘ  
ꢐꢐꢖꢑꢐꢗꢌꢀ  
ꢐꢐꢖꢑꢐꢗꢇ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢔꢞꢝꢉꢑꢘ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢀꢑꢐꢓꢚꢀ  
ꢑꢔꢊꢍ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢀꢑꢐꢓꢚꢉ  
ꢑꢔꢊꢍ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢀꢑꢐꢓꢚꢉ  
ꢑꢔꢊꢍ  
ꢌꢎꢊꢟꢐꢘꢡꢑꢖꢕꢗ  
ꢋꢌꢌꢑꢊꢟꢊ  
ꢎꢊꢛꢍꢕꢖ  
ꢕꢣꢎꢊꢞꢂꢁ  
ꢣꢎꢊꢞꢂꢁ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢇꢑꢐꢓꢚꢉ ꢋꢐꢐꢑꢍꢛꢔꢀꢇꢑꢐꢓꢚꢉ ꢋꢐꢐꢑꢍꢛꢔꢀꢇꢑꢐꢓꢚꢉ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢓꢚꢉ  
ꢋꢐꢐꢑꢐꢓꢚꢉ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢀꢉ  
ꢐꢐꢖꢑꢐꢗꢀꢀ  
ꢐꢐꢖꢑꢐꢗꢀꢁ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢍꢞꢞꢀꢇ  
ꢙꢟꢙꢏꢏ  
ꢣꢎꢊꢞꢉ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢎꢕꢌꢎꢔꢞꢝꢑꢟ  
ꢎꢕꢌꢎꢔꢞꢝꢑꢍ  
ꢍꢎꢘꢀꢁ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢐꢐꢖ  
ꢐꢐꢖꢑꢔꢊꢈ  
ꢐꢐꢖꢑꢙꢐꢎ  
ꢐꢐꢖꢑꢋꢖꢕꢏꢀ  
ꢐꢐꢖꢑꢔꢊꢇ  
ꢐꢐꢖꢑꢐꢗꢀꢄ  
ꢐꢐꢖꢑꢐꢗꢛꢂ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢀꢃ  
ꢐꢐꢖꢑꢐꢗꢀꢂ  
ꢐꢐꢖꢑꢐꢗꢌꢂꢑꢘ  
ꢐꢐꢖꢑꢐꢗꢁꢅ  
ꢐꢐꢖꢑꢐꢗꢁꢇ  
ꢊꢊ  
ꢊꢘ  
ꢊꢔ  
ꢊꢐ  
ꢊꢕ  
ꢊꢏ  
ꢊꢚ  
ꢋꢐꢐꢑꢍꢎꢘ  
ꢋꢐꢐꢑꢊꢟꢊꢀꢇ  
ꢖꢕꢌꢕꢎꢉꢑꢤ  
ꢋꢐꢐꢑꢊꢟꢊꢂꢂ  
ꢋꢖꢕꢏꢞꢑꢊꢟꢊ  
ꢋꢐꢐꢑꢍꢎꢊ  
ꢍꢎꢊꢅ  
ꢋꢌꢌ  
ꢍꢎꢊꢇ  
ꢍꢎꢊꢈ  
ꢍꢎꢊꢀꢉ  
ꢋꢌꢌ  
ꢋꢐꢐꢑꢍꢎꢊ  
ꢍꢎꢊꢀꢈ  
ꢊꢊ  
ꢊꢘ  
ꢊꢔ  
ꢊꢐ  
ꢊꢕ  
ꢊꢏ  
ꢊꢚ  
ꢋꢌꢌ  
ꢕꢣꢎꢊꢞꢉ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢇ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢁꢑꢐꢓꢚꢀ  
ꢍꢎꢘꢀꢀ  
ꢍꢎꢘꢀꢉ  
ꢍꢎꢘꢈ  
ꢍꢎꢊꢁꢀ  
ꢍꢎꢊꢁꢁ  
ꢍꢎꢊꢁꢂ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢌꢂ  
ꢐꢐꢖꢑꢐꢗꢁꢃ  
ꢐꢐꢖꢑꢐꢗꢁꢆ  
ꢋꢐꢐꢑꢍꢛꢔꢀꢁꢑꢐꢓꢚꢀ  
ꢋꢖꢕꢏꢒꢑꢊꢟꢊꢀꢇ  
ꢋꢌꢌꢑꢊꢐꢔꢑꢊꢟꢊ  
ꢐꢊꢔꢀꢑꢙꢠꢎ  
ꢍꢎꢊꢄ  
ꢍꢎꢊꢀꢇ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢍꢎꢘꢂ  
ꢍꢎꢘꢄ  
ꢋꢐꢐꢑꢍꢎꢘ  
ꢋꢌꢌ  
ꢍꢎꢘꢀꢂ  
ꢍꢎꢘꢀꢈ  
ꢋꢌꢌ  
ꢐꢊꢔꢉꢑꢙꢠꢎ  
ꢍꢎꢊꢆ  
ꢍꢎꢊꢉ  
ꢍꢎꢊꢂ  
ꢍꢎꢊꢃ  
ꢍꢎꢊꢀꢀ  
ꢋꢌꢌ  
ꢍꢎꢊꢀꢆ  
ꢍꢎꢊꢁꢉ  
ꢋꢌꢌ  
ꢍꢎꢊꢁꢈ  
ꢍꢎꢊꢂꢉ  
ꢋꢌꢌ  
ꢋꢌꢌ  
ꢍꢎꢘꢁ  
ꢋꢌꢌ  
ꢐꢐꢖꢑꢐꢗꢂꢉ  
ꢐꢐꢖꢑꢐꢗꢂꢀ  
ꢋꢌꢌ  
ꢍꢎꢘꢀ  
ꢍꢎꢘꢅ  
ꢍꢎꢘꢆ  
ꢍꢎꢘꢀꢄ  
ꢍꢎꢘꢀꢅ  
ꢍꢎꢘꢀꢆ  
ꢋꢌꢌꢑꢊꢐꢔꢑꢊꢟꢊ  
ꢍꢎꢊꢀ  
ꢍꢎꢊꢀꢂ  
ꢍꢎꢊꢀꢃ  
ꢍꢎꢊꢀꢄ  
ꢍꢎꢊꢁꢃ  
ꢍꢎꢊꢁꢅ  
ꢍꢎꢊꢁꢆ  
ꢍꢎꢊꢂꢀ  
ꢐꢐꢖꢑꢐꢗꢁꢄ  
ꢋꢌꢌ  
ꢍꢎꢘꢉ  
ꢍꢎꢘꢃ  
ꢍꢎꢘꢇ  
ꢍꢎꢘꢀꢃ  
ꢍꢎꢘꢀꢇ  
ꢀꢉ  
ꢋꢌꢌꢑꢊꢐꢔꢑꢊꢟꢊ  
ꢀꢁ  
ꢍꢎꢊꢁ  
ꢀꢃ  
ꢍꢎꢊꢀꢁ  
ꢀꢅ  
ꢍꢎꢊꢀꢅ  
ꢀꢇ  
ꢍꢎꢊꢁꢄ  
ꢁꢉ  
ꢍꢎꢊꢁꢇ  
ꢁꢁ  
ꢐꢐꢖꢑꢥꢗꢉ  
ꢁꢃ  
ꢐꢐꢖꢑꢐꢗꢁꢈ  
ꢁꢅ  
ꢋꢌꢌ  
ꢁꢆ  
ꢀꢀ  
ꢀꢂ  
ꢀꢄ  
ꢀꢆ  
ꢀꢈ  
ꢁꢀ  
ꢁꢂ  
ꢁꢄ  
99  
NXP Semiconductors  
i.  
MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Package information and contact assignments  
10.1.3 14 x 14 mm power supply and functional contact  
assignments  
The following table shows the power supply contact assignments for the 14 × 14 mm  
package.  
Table 62. 14 x 14 mm power supply contact assignments  
Supply Name  
14x14 mm VP Package Ball  
Position  
Remarks  
DDR_ODT  
AA22  
DDR on-die termination  
DDR_VREF0  
DDR_VREF1  
DDR_ZQ0  
H23  
DDR voltage reference input. Connect to a voltage  
source that is 50% of VDD_DDR.  
Y23  
DDR voltage reference input. Connect to a voltage  
source that is 50% of VDD_DDR.  
AG24  
Connect DDR_ZQ0 to an external 240Ω 1% resistor to  
Vss. This is a reference used during DDR output  
buffer driver calibration.  
TESTCLK_N  
TESTCLK_P  
AA8  
AB8  
Test function for NXP use only. This output must  
remain unconnected.  
Test function for NXP use only. This output must  
remain unconnected.  
USB0_VBUS  
VDD_ANA18  
VDD_ANA33  
VDD_DDR  
T4  
USB0 VBUS detection  
AB11  
AA12  
ADC analog and IO 1.8V supply input  
ADC analog and IO 3.3V supply input  
H22, J21, M22, N21, T21, U22, Y21 DDR I/O supply input  
VDD_DIG0  
VDD_DIG1  
V16, V17  
M4 domain core and logic supply input  
K11, K12, K13, K15, K16, K17, L10, A7 domain core and logic supply input  
L14, L18, M10, M18, N10, N18, P11,  
P17, R10, R18, T18, U18  
VDD_DSI11  
L6  
MIPI DSI 1.1V supply input  
MIPI DSI 1.8V supply input  
HSIC 1.2V supply input  
VDD_DSI18  
M5  
VDD_HSIC  
D6  
VDD_PLL18  
W7  
PLL analog supply input  
VDD_PMC11_DIG0_CAP  
VDD_PMC11_DIG1_CAP  
VDD_PMC12_DIG1  
U14, V15  
T10, U10  
AB4, AC4  
M4 domain LDO supply output  
A7 domain LDO supply output  
A7 domain LDO and internal memory LDO supply  
input  
VDD_PMC18  
AB3  
M4/A7 PMC and PMC IO supply input  
VDD_PMC18_DIG0  
V11, V12, V13  
M4 domain LDO and internal memory LDO supply  
input  
VDD_PTA  
VDD_PTB  
AA15, AA19  
AA11, AD6  
GPIO Port A supply input  
GPIO Port B supply input  
Table continues on the next page...  
100  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Package information and contact assignments  
Table 62. 14 x 14 mm power supply contact assignments (continued)  
Supply Name  
14x14 mm VP Package Ball  
Position  
Remarks  
VDD_PTC  
D14, E16  
GPIO Port C supply input  
VDD_PTD  
D20, E20  
D10, E9  
F4, G4  
R7  
GPIO Port D supply input  
GPIO Port E supply input  
GPIO Port F supply input  
USB PHY 1.8V supply input  
USB PHY 3.3V supply input  
SNVS domain LDO output  
SNVS domain LDO supply input  
DDR 1.8V pre-driver supply input  
HSIC 1.8V supply input  
VDD_PTE  
VDD_PTF  
VDD_USB18  
VDD_USB33  
VDD_VBAT18_CAP  
VDD_VBAT42  
VDD18_DDR  
VDD18_HSIC  
VDD18_IOREF  
R5  
T6  
T5  
F24  
A4  
L7  
1.8V IO supply reference and A7 supply reference  
input  
VREFH_ANA18  
VREFL_ANA  
VSS  
AC12  
AB12  
ADC high reference supply input  
ADC low reference supply input  
A1, A27, B4, C4, C6, C8, C10, C12, Ground  
C14, C16, C18, C20, C22, C24, C25,  
D3, D25, E21, F3, F8, F20, F21,  
F25, G20, H3, H8, H20, H25, K3, K4,  
K10, K14, K18, K25L5, L11, L12,  
L13, L15, L16, L17, M3, M6, M7,  
M11, M14, M17, M21, M25, N2, N11,  
N14, N17, P3, P4, P10, P12, P13,  
P14, P15, P16, P18, P25, R4, R7,  
R11, R14, R17, T3, T7, T11, T4,  
T17, T25, U2, U11, U12, U13, U15,  
U16, U17, U21, V3, V10, V14, V18,  
V25, W5, W6, Y1, Y3, Y5, Y6, Y20,  
AA16, AB1, AB24, AB25, AD1, AD2,  
AD3, AD4, AD25, AE2, AE6, AE8,  
AE10, AE16, AE18, AE20, AE22,  
AE24, AF1, AG1, AG27  
VSS_ADC_ANA  
AD12, AF12, AG12  
ADC analog ground  
The following table shows functional contact assignments for the 14 x 14 mm  
package.  
Table 63. 14 x 14 mm functional contact assignments  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
DAC0_OUT  
AD11  
VDD_ANA18 Analog  
-
DAC0_OUT  
-
-
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
101  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
DAC1_OUT  
AD12  
N23  
N22  
M23  
J23  
VDD_ANA18 Analog  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DAC1_OUT  
DDR_CA0  
-
-
DDR_CA0  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output  
Output  
Output/PD  
Output/PD  
PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Output  
Output  
Output/PD  
Output/PD  
PD  
DDR_CA1  
DDR_CA1  
DDR_CA2  
DDR_CA2  
DDR_CA3  
DDR_CA3  
DDR_CA4  
J22  
DDR_CA4  
DDR_CA5  
T23  
T22  
U23  
AA23  
Y22  
P26  
P24  
R26  
T26  
P27  
N24  
H26  
H27  
V26  
W26  
Y26  
Y27  
Y25  
Y24  
A26  
B27  
B26  
C26  
H24  
D26  
D27  
D24  
E24  
AC26  
AF26  
DDR_CA5  
DDR_CA6  
DDR_CA6  
DDR_CA7  
DDR_CA7  
DDR_CA8  
DDR_CA8  
DDR_CA9  
DDR_CA9  
DDR_CKE0  
DDR_CKE1  
DDR_CLK0  
DDR_CLK0_B  
DDR_CS0_B  
DDR_CS1_B  
DDR_DQ0  
DDR_DQ1  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DQ16  
DDR_DQ17  
DDR_DQ18  
DDR_DQ19  
DDR_DQ2  
DDR_DQ20  
DDR_DQ21  
DDR_DQ22  
DDR_DQ23  
DDR_DQ24  
DDR_DQ25  
DDR_CKE0  
DDR_CKE1  
DDR_CLK0  
DDR_CLK0_B  
DDR_CS0_B  
DDR_CS1_B  
DDR_DQ0  
DDR_DQ1  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DQ16  
DDR_DQ17  
DDR_DQ18  
DDR_DQ19  
DDR_DQ2  
DDR_DQ20  
DDR_DQ21  
DDR_DQ22  
DDR_DQ23  
DDR_DQ24  
DDR_DQ25  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
102  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
DDR_DQ26  
AD27  
AD26  
AF27  
AG26  
J24  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
VDD_DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DDR_DQ26  
DDR_DQ27  
DDR_DQ28  
DDR_DQ29  
DDR_DQ3  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
DDR_DQ27  
DDR_DQ28  
DDR_DQ29  
DDR_DQ3  
PD  
PD  
PD  
PD  
DDR_DQ30  
DDR_DQ31  
DDR_DQ4  
AE25  
AF25  
K24  
DDR_DQ30  
DDR_DQ31  
DDR_DQ4  
PD  
PD  
PD  
DDR_DQ5  
K27  
DDR_DQ5  
PD  
DDR_DQ6  
K26  
DDR_DQ6  
PD  
DDR_DQ7  
L26  
DDR_DQ7  
PD  
DDR_DQ8  
V24  
DDR_DQ8  
PD  
DDR_DQ9  
V27  
DDR_DQ9  
PD  
DDR_DQM0  
DDR_DQM1  
DDR_DQM2  
DDR_DQM3  
DDR_DQS0  
DDR_DQS0_B  
DDR_DQS1  
DDR_DQS1_B  
DDR_DQS2  
DDR_DQS2_B  
DDR_DQS3  
DDR_DQS3_B  
DSI_CLK_N  
M24  
T27  
DDR_DQM0  
DDR_DQM1  
DDR_DQM2  
DDR_DQM3  
DDR_DQS0  
DDR_DQS0_B  
DDR_DQS1  
DDR_DQS1_B  
DDR_DQS2  
DDR_DQS2_B  
DDR_DQS3  
DDR_DQS3_B  
DSI_CLK_N  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Hi-Z  
Output/PD  
Output/PD  
Output/PD  
Output/PD  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
-
G26  
AA24  
M26  
M27  
U24  
T24  
Hi-Z  
Hi-Z  
Hi-Z  
F27  
Hi-Z  
F26  
Hi-Z  
AB26  
AB27  
M2  
Hi-Z  
Hi-Z  
VDD_DSI18 MIPI DSI  
PHY  
-
DSI_CLK_P  
DSI_DATA0_N  
DSI_DATA0_P  
DSI_DATA1_N  
DSI_DATA1_P  
EXTAL  
M1  
P2  
VDD_DSI18 MIPI DSI  
PHY  
-
-
-
-
-
-
DSI_CLK_P  
DSI_DATA0_N  
DSI_DATA0_P  
DSI_DATA1_N  
DSI_DATA1_P  
EXTAL  
-
-
-
-
-
-
-
-
-
-
-
-
VDD_DSI18 MIPI DSI  
PHY  
P1  
VDD_DSI18 MIPI DSI  
PHY  
L4  
VDD_DSI18 MIPI DSI  
PHY  
M4  
AB2  
VDD_DSI18 MIPI DSI  
PHY  
VDD_PMC18 Analog  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
103  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
EXTAL32  
W4  
VDD_VBAT1 Analog  
8_CAP  
-
EXTAL32  
-
-
HSIC_DATA  
HSIC_STROBE  
ONOFF  
D4  
D5  
Y2  
VDD_HSIC  
VDD_HSIC  
DDR  
DDR  
-
-
-
HSIC_DATA  
HSIC_STROBE  
ONOFF  
Input/PD  
Input/PD  
Input/PU  
Input/PD  
Input/PD  
Input/PU  
VDD_VBAT1 SNVS  
8_CAP  
PMIC_ON_REQ V1  
VDD_VBAT1 SNVS  
8_CAP  
-
PMIC_ON_REQ Output/High Output/High  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
AE14  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
CMP0_IN1_3V  
CMP0_IN2_3V  
CMP1_IN2_3V  
CMP1_IN4_3V  
ADC1_CH3A  
ADC1_CH3B  
Input  
Input  
Input  
Input  
Input  
Input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
AF13  
AG14  
AF14  
AD15  
AC15  
AB15  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
ADC1_CH4A/5A/ Input  
6A/7A/8A  
PTA7  
AD14  
AB16  
AC16  
AD16  
AD18  
AG16  
AF16  
AF17  
AF18  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
ADC1_CH4B/5B/ Input  
6B/7B/8B  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
PTA8  
ADC1_CH4A/5A/ Input  
6A/7A/8A  
PTA9  
ADC1_CH4B/5B/ Input  
6B/7B/8B  
PTA10  
PTA11  
PTA12  
PTA13  
PTA14  
PTA15  
ADC1_CH4A/5A/ Input  
6A/7A/8A  
ADC1_CH4B/5B/ Input  
6B/7B/8B  
ADC1_CH4A/5A/ Input  
6A/7A/8A  
ADC1_CH4B/5B/ Input  
6B/7B/8B  
ADC1_CH4A/5A/ Input  
6A/7A/8A  
ADC1_CH4B/5B/ Input  
6B/7B/8B  
PTA16  
PTA17  
PTA18  
PTA19  
PTA20  
AG18  
AD19  
AC19  
AB19  
AD22  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
CMP1_IN5_3V  
CMP1_IN6_3V  
CMP1_IN1_3V  
CMP1_IN3_3V  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADC0_CH8A/9A/ Hi-Z  
10A  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
104  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
PTA21  
AB20  
AC20  
AD20  
AF20  
AG20  
AF21  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
VDD_PTA  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
1010b  
ADC0_CH8B/9B/ Hi-Z  
10B  
Hi-Z  
PTA22  
PTA23  
PTA24  
PTA25  
PTA26  
ADC0_CH8A/9A/ Hi-Z  
10A  
Hi-Z  
ADC0_CH8B/9B/ Hi-Z  
10B  
Hi-Z  
ADC0_CH8A/9A/ Hi-Z  
10A  
Hi-Z  
ADC0_CH8B/9B/ Hi-Z  
10B  
Hi-Z  
JTAG_TMS/  
SWD_DIO  
Input/PU  
Input/PU  
PTA27  
PTA28  
PTA29  
AF22  
AG22  
AD23  
VDD_PTA  
VDD_PTA  
VDD_PTA  
FSGPIO  
FSGPIO  
FSGPIO  
1010b  
1010b  
1010b  
JTAG_TDO  
JTAG_TDI  
Hi-Z  
Hi-Z  
Input/PU  
Input/PD  
Input/PU  
Input/PD  
JTAG_TCLK/  
SWD_CLK  
PTA30  
PTA31  
PTB0  
PTB1  
PTB2  
AD24  
AF24  
AG2  
AF2  
VDD_PTA  
VDD_PTA  
VDD_PTB  
VDD_PTB  
VDD_PTB  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
1010b  
0000b  
0000b  
0000b  
0000b  
JTAG_TRST_B  
ADC0_CH1B  
ADC0_CH0A  
ADC0_CH0B  
Input/PU  
Hi-Z  
Input/PU  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
AE3  
ADC0_CH4A/5A/ Hi-Z  
6A  
Hi-Z  
PTB3  
AE4  
VDD_PTB  
FSGPIO  
0000b  
ADC0_CH4B/5B/ Hi-Z  
6B  
Hi-Z  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
AG4  
AF4  
AF5  
AF6  
AG6  
VDD_PTB  
VDD_PTB  
VDD_PTB  
VDD_PTB  
VDD_PTB  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
BT_MODE0  
BT_MODE1  
ADC1_CH1A  
ADC1_CH1B  
Input/PD  
PD  
Input/PD  
Hi-Z  
PD  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADC0_CH14A/  
CMP0_IN0  
Hi-Z  
PTB9  
AD7  
VDD_PTB  
FSGPIO  
0000b  
ADC0_CH14B/  
CMP0_IN2  
Hi-Z  
Hi-Z  
PTB10  
PTB11  
PTB12  
AC7  
AB7  
AC8  
VDD_PTB  
VDD_PTB  
VDD_PTB  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
CMP0_IN1  
CMP0_IN3  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ADC1_CH13A/  
CMP1_IN0  
PTB13  
AD8  
VDD_PTB  
FSGPIO  
0000b  
ADC1_CH13B/  
CMP1_IN1  
Hi-Z  
Hi-Z  
PTB14  
PTB15  
AG8  
AF8  
VDD_PTB  
VDD_PTB  
FSGPIO  
FSGPIO  
0000b  
0000b  
ADC1_CH2A  
ADC1_CH2B  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
105  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
PTB16  
AF9  
VDD_PTB  
VDD_PTB  
VDD_PTB  
VDD_PTB  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
ADC0_CH4A/5A/ Hi-Z  
6A  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
PTB17  
PTB18  
PTB19  
AF10  
AG10  
AD10  
ADC0_CH4B/5B/ Hi-Z  
6B  
ADC0_CH4A/5A/ Hi-Z  
6A  
ADC0_CH4B/5B/ Hi-Z  
6B  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTC8  
PTC9  
PTC10  
PTC11  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC17  
PTC18  
PTC19  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD8  
D18  
E17  
F17  
G17  
F16  
D17  
D16  
G16  
A16  
B16  
B15  
B14  
A14  
D13  
E13  
F13  
G13  
G12  
F12  
E12  
A24  
B24  
B23  
B22  
A22  
B21  
B22  
A20  
B20  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTC  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTD  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
STGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Table continues on the next page...  
106  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
NXP Semiconductors  
Package information and contact assignments  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
PTD9  
B19  
B18  
A18  
D12  
A12  
B12  
B11  
B10  
A10  
D9  
E8  
VDD_PTD  
VDD_PTD  
VDD_PTD  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTE  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTF  
STGPIO  
STGPIO  
STGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
FSGPIO  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
0000b  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
PTD10  
PTD11  
PTE0  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
PTE6  
PTE7  
PTE8  
PTE9  
PTE10  
PTE11  
PTE12  
PTE13  
PTE14  
PTE15  
PTF0  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Hi-Z  
F9  
G9  
D8  
A8  
B8  
B7  
B6  
A6  
D2  
B2  
PTF1  
PTF2  
B3  
PTF3  
C3  
E2  
PTF4  
PTF5  
B1  
PTF6  
A2  
PTF7  
F2  
PTF8  
F1  
PTF9  
D1  
G5  
G6  
H7  
H6  
H5  
H4  
H1  
PTF10  
PTF11  
PTF12  
PTF13  
PTF14  
PTF15  
PTF16  
Table continues on the next page...  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
107  
NXP Semiconductors  
Revision History  
Table 63. 14 x 14 mm functional contact assignments (continued)  
Ball Name  
14 x 14 mm  
VP Package  
Ball  
Power  
Group  
Signal Type Default  
Default  
State  
During  
Reset3  
State After  
Reset1, 3  
1, 2  
MUX_  
Function1  
MODE1  
Position  
PTF17  
H2  
VDD_PTF  
VDD_PTF  
VDD_PTF  
VDD_PTB  
VDD_PTF  
FSGPIO  
FSGPIO  
FSGPIO  
RESET  
RESET  
0000b  
-
-
-
Hi-Z  
Hi-Z  
PTF18  
J2  
0000b  
Hi-Z  
Hi-Z  
PTF19  
K2  
0000b  
Hi-Z  
Hi-Z  
RESET0_B  
RESET1_B  
AC11  
K1  
-
-
-
RESET0_B  
RESET1_B  
Output/OD  
Output/OD  
Input/PU  
Input/PU  
STANDBY_REQ V2  
VDD_VBAT1 SNVS  
8_CAP  
STANDBY_REQ Output/Low Output/Low  
TAMPER  
V4  
VDD_VBAT1 SNVS  
8_CAP  
-
TAMPER  
Hi-Z4  
Input  
TESTCLK_N  
TESTCLK_P  
USB0_DM  
AA8  
AB8  
T2  
VDD_PTB  
VDD_PTB  
-
-
-
-
-
-
-
TESTCLK_N  
TESTCLK_P  
USB0_DM  
-
-
-
-
-
-
-
-
-
VDD_USB33 USB PHY  
VDD_USB33 USB PHY  
VDD_USB33 USB PHY  
USB0_DP  
T1  
USB0_DP  
USB0_VBUS_DE T4  
TECT  
USB0_VBUS_DE -  
TECT  
XTAL  
AA2  
Y4  
VDD_PMC18 Analog  
-
-
XTAL  
-
-
-
-
XTAL32  
VDD_VBAT1 Analog  
8_CAP  
XTAL32  
1. The state immediately after RESET and before ROM firmware or software has executed.  
2. FSGPIO = Failsafe GPIOs; STGPIO - Standard GPIOs  
3. PD = internal pull-down enabled; PU = internal pull-up enabled; OD = open-drain  
4. TAMPER is Hi-Z during VBAT domain POR and an input otherwise.  
11 Revision History  
The following table provides a revision history for this document.  
The changes shown below represent the changes between the i.MX 7ULP datasheet for  
silicon revision B1 (IMX7ULPIEC) and silicon revision B2 (IMX7ULPB2IEC).  
Table 64. Revision History  
Rev. No.  
Date  
Substantial Changes  
0
04/2021  
• Updated orderable part number for B2 silicon on the front page and this table  
• Updated Figure 2.  
• In this table, updated Nominal and Overdrive frequency for CM4.  
• Added this table  
• Added a row for B2 silicon revision in Table 3.  
• Added i.MX 7ULP LDO Bypass versus LDO-enabled modes  
Table continues on the next page...  
108  
NXP Semiconductors  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
Revision History  
Table 64. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• In Table 5, updated parameters for real Time Domain (M4 domain) PMC 0 Register  
Configuration Requirements and Application Domain (A7 domain) supply voltage  
requirements for LDO Bypass modes .  
• Updated value for open loop total deviation of IRC16M frequency at low voltage in  
Table 9  
• Added the section HS200 mode timing.  
• Removed external channel leakage current spec from the section 12-bit ADC  
electrical specifications  
• Removed the section "Fuse definition of Speed Grading"  
• Minor editorial changes  
• Updated DDR frequency from 380.16 to 271.5 MHz throughout.  
1
07/2021  
• Updated the power-on hours from 2190 to 8760 in the footnote 9 of Table 5.  
i.MX 7ULP Applications Processor—Industrial, Rev. 1, 07/2021  
109  
NXP Semiconductors  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up  
to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation  
conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are  
no post-packing tests performed on individual die or wafers.  
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.  
Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems  
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and  
qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering  
into a written die sale agreement with NXP Semiconductors through its legal department.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,  
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,  
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved.  
©
NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 07/2021 Document  
identifier: IMX7ULPIECB2  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY