SPC5676RDK2MVU1 [NXP]

MPC5676R Microcontroller Data Sheet;
SPC5676RDK2MVU1
型号: SPC5676RDK2MVU1
厂家: NXP    NXP
描述:

MPC5676R Microcontroller Data Sheet

PC 微控制器
文件: 总111页 (文件大小:2164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5676R  
Rev. 4, 16 Feb 2016  
MPC5676R  
MPC5676R Microcontroller  
Data Sheet  
TEPBGA–416  
27 mm x 27 mm  
TEPBGA–516  
27mm x 27mm  
On-chip modules available within the family include the  
following features:  
– Up to 96 eTPU2 channels (32 channels per eTPU2)  
– total of 36 KB code RAM  
– total of 9 KB parameter RAM  
• Two identical dual issue, 32-bit CPU core complexes  
(e200z7), each with  
• Enhanced modular input output system supporting 32  
unified channels (eMIOS) with each channel capable of  
single action, double action, pulse width modulation  
(PWM) and modulus counter operation  
• Two enhanced queued analog-to-digital converter  
(eQADC) modules with  
– Power Architecture embedded specification compliance  
– Instruction set enhancement allowing variable length  
encoding (VLE), optional encoding of mixed 16-bit and  
32-bit instructions, for code size footprint reduction  
– Signal processing extension (SPE) instruction support  
for digital signal processing (DSP)  
– two separate analog converters per eQADC module  
– support for a total of 64 analog input pins, expandable to  
176 inputs with off-chip multiplexers  
– Single-precision floating point operations (FPU)  
– 16 KB I-Cache and 16 KB D-Cache  
– Hardware cache coherency between cores  
• 16 Hardware semaphores  
• 3 channel CRC module  
• 6MB on-chip flash  
– Supports read during program and erase operations, and  
multiple blocks allowing EEPROM emulation  
• 384KB on-chip general-purpose SRAM including 48KB of  
standby RAM  
• Two multi-channel direct memory access controllers  
(eDMA)  
– one absolute reference ADC channel  
– interface to twelve hardware decimation filters  
– enhanced ‘Tap’ command to route any conversion to two  
separate decimation filters  
– Temperature sensor  
• Five deserial serial peripheral interface (DSPI) modules  
• Three enhanced serial communication interface (eSCI)  
modules  
• Four controller area network (FlexCAN) modules  
• Dual-channel FlexRay controller  
• Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 standard, with some support for 2010 standard.  
• Device and board test support per Joint Test Action Group  
(JTAG) (IEEE 1149.1)  
• On-chip voltage regulator controller regulates supply  
voltage down to 1.2 V for core logic  
– 64 channels per eDMA  
• Dual core Interrupt controller (INTC)  
• Phase-locked loop with FM modulation (FMPLL)  
• Crossbar switch architecture for concurrent access to  
peripherals, flash, or RAM from multiple bus masters  
• External Bus Interface (EBI) for calibration and  
application development  
• Self Test capability  
• System integration unit (SIU) with error correction status  
module (ECSM)  
• Four protected port output pins (PPO)  
• Boot assist module (BAM) supports serial bootload via  
CAN or SCI  
• Three second-generation enhanced time processor units  
(eTPU2)  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2016. All rights reserved.  
Table of Contents  
1
2
3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
4.7.2 I/O Pad VDD33 Current Specifications . . . . . . . 24  
4.7.3 LVDS Pad Specifications . . . . . . . . . . . . . . . . . 25  
4.8 Oscillator and FMPLL Electrical Characteristics . . . . . 27  
4.9 eQADC Electrical Characteristics . . . . . . . . . . . . . . . . 29  
4.10 C90 Flash Memory Electrical Characteristics . . . . . . . 31  
4.11 AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.11.1 Clocking Modes . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.11.2 Pad AC Specifications . . . . . . . . . . . . . . . . . . . 33  
4.12 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.12.1 Generic Timing Diagrams. . . . . . . . . . . . . . . . . 34  
4.12.2 Reset and Configuration Pin Timing. . . . . . . . . 35  
4.12.3 IEEE 1149.1 Interface Timing. . . . . . . . . . . . . . 36  
4.12.4 Nexus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4.12.5 External Bus Interface (EBI) Timing. . . . . . . . . 41  
4.12.6 External Interrupt Timing (IRQ Pin) . . . . . . . . . 46  
4.12.7 eTPU Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.12.8 eMIOS Timing . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4.12.9 DSPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.1 416-Pin Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.2 516-Pin Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
1.1 Orderable Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
MPC5676R Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.1 416-ball TEPBGA Pin Assignments . . . . . . . . . . . . . . . .6  
3.2 516-ball TEPBGA Pin Assignments . . . . . . . . . . . . . . . .7  
3.3 Pin Muxing and Reset States . . . . . . . . . . . . . . . . . . . . .8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
4.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
4.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .9  
4.2.1 General Notes for Specifications at  
4
Maximum Junction Temperature . . . . . . . . . . . .11  
4.3 EMI (Electromagnetic Interference) Characteristics . . .12  
4.4 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.5 PMC/POR/LVI Electrical Specifications . . . . . . . . . . . .13  
4.5.1 Regulator Example . . . . . . . . . . . . . . . . . . . . . .16  
4.6 Power Up/Down Sequencing . . . . . . . . . . . . . . . . . . . .18  
4.6.1 Power-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.6.2 Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.6.3 Power Sequencing and POR Dependent  
5
6
on VDDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.7 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .20  
4.7.1 I/O Pad Current Specifications . . . . . . . . . . . . .23  
Appendix ASignal Properties and Muxing . . . . . . . . . . . . . . . . . . 59  
Appendix BRevision History . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
MPC5676R Microcontroller Data Sheet, Rev. 4  
2
Freescale Semiconductor  
Ordering Information  
1
Ordering Information  
1.1  
Orderable Parts  
Figure 1 and Table 1describe and list the orderable part numbers for the MPC5676R.  
PC 5676R K2 M VU 1  
R
M
D
Qualification status  
Core code  
Device number  
(Optional) Dual-core identifier  
Fab/Revision  
Temperature range  
Package identifier  
Operating frequency  
Tape and reel status  
Temperature Range  
M = –40 °C to 125 °C  
Package Identifier  
VU = 416 TEPBGA  
Pb-Free  
Operating Frequency Tape and Reel Status  
1 = 2 x 180 MHz  
R = Tape and reel  
(blank) = Trays  
VY = 516 TEPBGA  
Pb-Free  
Qualification Status  
P = Pre qualification  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Note: Not all options are available on all devices. Refer to Table 1.  
Figure 1. MPC5676R Orderable Part Number Description  
Table 1. Orderable Part Numbers  
Speed (MHz)2  
Operating Temperature3  
NXP Part Number1  
SPC5676RDK2MVU1R  
SPC5676RDK2MVY1R  
Package Description  
Nominal  
Max4 (fMAX  
)
Min (TL)  
Max (TH)  
MPC5676R 416 package  
Lead-free (Pb-free)  
180  
184  
–40 °C  
125 °C  
MPC5676R 516 package  
Lead-free (Pb-free)  
180  
184  
–40 °C  
125 °C  
1
All packaged devices are PPC5676R, rather than MPC5676R or SPC5676R, until product qualifications are complete. The  
unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.  
Not all configurations are available in the PPC parts.  
2
3
4
For the operating mode frequency of various blocks on the device, see Table 28.  
The lowest ambient operating temperature is referenced by TL; the highest ambient operating temperature is referenced by TH.  
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).  
180 MHz parts allow for 180 MHz system clock + 2% FM.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
3
MPC5676R Blocks  
2
MPC5676R Blocks  
2.1  
Block Diagram  
The following figure shows a top-level block diagram of the MPC5676R. The purpose of the block diagram is to show the  
general interconnection of functional modules through the crossbar switch and from the Dual Interrupt Controller, and provide  
an indication of the modules that connect to external pins. For clarity, the following modules are omitted from the diagram:  
PMU, SWT, STM, PIT, ECSM, DTS, and CRC.  
Power Architecture  
e200z7 Core  
Power Architecture  
e200z7 Core  
JTAG  
MPC5676R  
SPE  
VLE  
SPE  
VLE  
Nexus  
IEEE-ISTO  
5001-2003  
Dual Interrupt  
Controller  
MMU  
MMU  
16K  
16K  
16K  
16K  
eDMA2  
64 Channels  
eDMA2  
64 Channels  
EBI  
(Calibration)  
FlexRay  
I-Cache D-Cache  
I-Cache D-Cache  
Crossbar Switch  
MPU  
384KB  
I/O  
BridgeA  
I/O  
BridgeB  
Boot Assist  
Module  
6MB  
FLASH  
FMPLL  
STCU  
SIUA  
SRAM  
Semaphores  
(48KB S/B)  
eQADC eQADC  
6KB  
Data  
RAM  
3KB  
Data  
RAM  
SIUB  
12 x DECFILT  
eMIOS  
32  
eTPU2  
32  
eTPU2  
32  
Channel  
eTPU2  
32  
Channel  
Channel Channel  
24KB  
Code  
RAM  
12KB  
Code  
RAM  
PPO  
AMux  
LEGEND  
I-Cache – Instruction Cache  
ADC  
– Analog to Digital Convertor  
AMux – Analog Pin Multiplexer  
D-Cache– Data Cache  
DECFILT– Decimation Filter  
DSPI  
EBI  
eDMA2 – Enhanced Direct Memory Access controller version 2  
eMIOS – Enhanced Modular I/O System  
eQADC – Enhanced Queued Analog to Digital Converter  
IRC  
– Internal RC Oscillator  
JTAG  
MMU  
MPU  
PPO  
S/B  
– Joint Test Action Group controller  
– Memory Management Unit  
– Memory Protection Unit  
– Protected Port Output  
– Stand-by  
– Deserial/Serial Peripheral Interface  
– External Bus Interface  
SIUA  
SIUB  
SPE  
– System Integration Unit A  
– System Integration Unit B  
– Signal Processing Engine  
eSCI  
– Enhanced Serial Communications Interface  
eTPU2 – Enhanced Time Processing Unit version 2  
FlexCAN– Flexible Controller Area Network controller  
FMPLL – Frequency Modulated Phase Lock Loop clock generator  
SRAM – Static RAM  
STCU – Self Test Control Unit  
VLE  
– Variable Length instruction Encoding  
Figure 2. MPC5676R Block Diagram  
MPC5676R Microcontroller Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Pin Assignments  
3
Pin Assignments  
3.1  
416-ball TEPBGA Pin Assignments  
Figure 3 shows the 416-ball TEPBGA pin assignments.  
CAUTION  
This ball map is preliminary and subject to change. Do not use it for board design.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
REF–  
REF–  
ANA4  
ANA8  
ANA11  
ANA15 VDDA_A0  
VRL_A VRH_A  
AN28  
AN32  
AN36 VDDA_B0  
AN33 VDDA_B1  
VRL_B VRH_B  
ANB7  
ANB11  
ANB14 ANB17 ANB21 ANB23  
VSS  
A
B
VSS  
VDD  
RSTOUT ANA0  
A
BYPCA1  
BYPCB1  
REF–  
AN24  
REF–  
ANB6  
ANA14 VDDA_A1 VSSA_A1  
AN27  
AN26  
AN25  
AN29  
AN30  
AN31  
ANB8  
ANB5  
ANB9  
ANB10 ANB15 ANB18 ANB22  
VSS  
TCRCLKC  
VDDEH1  
VSS  
VDD  
TEST  
VDD  
ANA1  
ANA2  
VDD  
ANA5  
ANA6  
ANA3  
ANA10  
ANA9  
ANA7  
VSSA_B0  
AN38  
B
BYPCA  
BYPCB  
ANA13 ANA17 ANA19 ANA21 ANA23  
ANA12 ANA16 ANA18 ANA20 ANA22  
AN34  
AN35  
AN37  
AN39  
ANB0  
ANB2  
ANB4  
ANB3  
ANB12 ANB16 ANB19  
VSS  
ETPUC0 ETPUC1  
ETPUC2 ETPUC3  
C
D
E
ETPUA30 ETPUA31 VSS  
C
ANB1  
ANB13 ANB20  
VSS  
VDDEH7  
ETPUA27 ETPUA28 ETPUA29 VSS  
ETPUA23 ETPUA24 ETPUA25 ETPUA26  
ETPUA19 ETPUA20 ETPUA21 ETPUA22  
ETPUA15 ETPUA16 ETPUA17 ETPUA18  
ETPUA11 ETPUA12 ETPUA14 ETPUA13  
ETPUA7 ETPUA8 ETPUA9 ETPUA10  
ETPUA3 ETPUA4 ETPUA5 ETPUA6  
TCRCLKA ETPUA0 ETPUA1 ETPUA2  
D
VDDEH7 ETPUC4 ETPUC5 ETPUC6  
ETPUC7 ETPUC8 ETPUC9 ETPUC10  
ETPUC11 ETPUC12 ETPUC13 ETPUC14  
ETPUC15 ETPUC16 ETPUC17 ETPUC18  
ETPUC19 ETPUC20 ETPUC21ETPUC22  
ETPUC23 ETPUC24ETPUC25ETPUC26  
ETPUC27ETPUC28ETPUC29ETPUC30  
ETPUC31ETPUB15 ETPUB14 VDDEH7  
VDDEH6 ETPUB11 ETPUB12 ETPUB13  
ETPUB7 ETPUB8 ETPUB9 ETPUB10  
ETPUB3 ETPUB4 ETPUB5 ETPUB6  
TCRCLKB ETPUB0 ETPUB1 ETPUB2  
ETPUB19 ETPUB18 ETPUB17 ETPUB16  
ETPUB26 ETPUB22 ETPUB21 ETPUB20  
REGSEL ETPUB25 ETPUB24 ETPUB23  
ETPUB29 ETPUB28 ETPUB27 REGCTL  
VDD33_3 ETPUB30 VDDREG VSSSYN  
E
F
F
MPC5676R 416-ball TEPBGA  
(as viewed from top through the package)  
G
H
J
G
H
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
K
L
L
VDD33_1 TXDA  
RXDA  
VSTBY  
VSS  
M
N
P
M
N
BOOT–  
RXDB  
VDDE2  
WKPCFG VDD  
CFG1  
VDDE2 VDDE2  
VDDE2 VDDE2  
TXDB  
PLLCFG2 VDDEH1  
P
PLLCFG1  
JCOMP RESET PLLCFG0 RDY  
R
T
R
VDDE2 MCKO MSEO1  
EVTO MSEO0 MDO0  
EVTI  
MDO1  
MDO5  
VDDE2 VDDE2 VDDE2  
VDDE2 VDDE2 VDDE2  
T
U
V
U
MDO2  
MDO6  
MDO3  
MDO7  
MDO4  
V
MDO8 VDDE2  
W
Y
W
Y
MDO9 MDO10 MDO11 MDO15  
MDO12 MDO13 MDO14 VDD33_2  
AA  
AB  
AA  
AB  
AC  
AD  
AE  
AF  
VSSFL  
TDO  
TCK  
TDI  
TMS  
VDD  
VSS  
VDD  
VSS  
VDD ETPUB31  
EXTAL  
PCSA1 PCSA2 PCSB4 PCSB1 VDDEH3 VDDEH4  
VDD  
EMIOS8 EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB CNRXD VDDEH5 PCSC1  
VSS  
VDD  
VSS  
VDDEH6 XTAL  
VDD VDDSYN  
AC VDDE2  
VDDE2  
FR_A_ FR_B_  
TX TX  
EMIOS5 EMIOS9 EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30  
RXDC  
SINC  
PCSC3  
AD ENGCLK VDD  
PCSA5 SOUTA  
SCKA  
SCKB  
PCSB0 PCSB3 EMIOS2  
CNTXB CNTXD  
SCKC  
FR_A_ FR_B_  
RX RX  
PCSA4 PCSA0 PCSA3  
SINB  
EMIOS0 EMIOS3 EMIOS6 EMIOS10 EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA CNRXC PCSC0  
PCSC2 PCSC5  
VSS  
VDD  
AE  
AF  
VDD  
VSS  
FR_A_ FR_B_  
TX_EN TX_EN  
EMIOS7 EMIOS11 EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28  
VDDEH4 TXDC  
PCSC4 VDDEH5  
VSS  
26  
VSS  
1
VDDE2  
2
VDDEH3 PCSB5  
SINA  
7
PCSB2 SOUTB EMIOS1 EMIOS4  
10 11  
CNTXA CNTXC SOUTC  
19 20 21  
3
4
5
6
8
9
12  
13  
14  
15  
16  
17  
18  
22  
23  
24  
25  
Figure 3. MPC5676R 416-ball TEPBGA (full diagram)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Pin Assignments  
3.2  
516-ball TEPBGA Pin Assignments  
Figure 4 shows the 516-ball TEPBGA pin assignments.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
REF–  
REF–  
A
B
C
D
E
F
VDD  
RSTOUT ANA0  
ANA4  
ANA9  
ANA11  
ANA15 VDDA_A0  
VRL_A VRH_A  
AN28  
AN29  
AN36 VDDA_B0  
VRL_B VRH_B  
ANB5  
ANB9  
ANB12 ANB18 ANB21  
VSS  
A
B
C
D
E
F
BYPCA1  
BYPCB1  
REF–  
AN24  
REF–  
ANB4  
VDDEH1  
VSS  
VDD  
TEST  
VDD  
ANA1  
ANA2  
VDD  
ANA5  
ANA6  
ANA3  
VDD  
ANA10 ANA14 VDDA_A1 VSSA_A1  
AN27  
AN25  
AN26  
VSS  
AN30  
AN31  
AN33  
VSS  
AN32 VDDA_B1 VSSA_B0  
ANB8  
ANB6  
ANB10 ANB13 ANB19 ANB22  
VSS  
VSS  
BYPCA  
BYPCB  
ETPUA30 ETPUA31 VSS  
ANA7  
ANA8  
VSS  
ANA13 ANA17 ANA19 ANA21 ANA22  
ANA12 ANA16 ANA18 ANA20 ANA23  
AN34  
AN35  
VSS  
AN39  
AN38  
VSS  
AN37  
ANB1  
VSS  
ANB0  
ANB2  
VSS  
ANB7  
ANB3  
ANB11  
ANB15 ANB20  
VSS  
ETPUC0 ETPUC1  
ETPUA27 ETPUA28 ETPUA29 VSS  
ANB14 ANB16 ANB17  
VSS  
VDDEH7 ETPUC2 ETPUC3  
ETPUA23 ETPUA24 ETPUA25 ETPUA26 VSS  
ETPUA19 ETPUA20 ETPUA21 ETPUA22 VSS  
ETPUA11 ETPUA13 ETPUA15 ETPUA17 ETPUA18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ANB23  
VSS  
VSS  
VDDEH7 ETPUC4 ETPUC5 ETPUC6  
VDDE8  
VDDE8  
VDDE8 VDDE8  
VSS  
VSS  
VDDE10 VDDE10  
VDDE10  
VDDE10 TCRCLKC ETPUC7 ETPUC8 ETPUC9 ETPUC10  
ETPUC11 ETPUC12 ETPUC13 ETPUC14 ETPUC15  
G
H
J
G
H
J
MPC5676R 516-ball TEPBGA  
ETPUA5 ETPUA7 ETPUA8 ETPUA3 ETPUA14 ETPUA16  
ETPUA1 ETPUA2 ETPUA9 ETPUA4 ETPUA12  
ETPUC19 ETPUC16 ETPUC17 ETPUC18 ETPUC20 ETPUC21  
ETPUC22 ETPUC23 ETPUC24 ETPUC26 ETPUC27  
(as viewed from top through the package)  
K
L
TXDB  
TXDA  
RXDA TCRCLKA ETPUA6 ETPUA10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ETPUC25 ETPUC28 ETPUC29 ETPUC30 ETPUC31 D_DAT15  
VDD33_6 D_DAT14 D_DAT13 D_DAT12 D_DAT11 D_DAT10  
D_DAT9 D_DAT8 D_DAT7 D_DAT5 VDDEH7  
K
L
BOOT– BOOT–  
RXDB ETPUA0  
PLLCFG1 PLLCFG2  
CFG1  
CFG0  
VSS  
M
N
P
R
T
VDD33_1 D_BDIP PLLCFG0 VSTBY WKPCFG  
M
N
P
R
T
D_WE0 D_WE2 D_WE3  
VDD  
RESET VDDE8  
VDDE2  
VDDE10 D_DAT6 VDDEH6 D_DAT2 D_DAT3 D_DAT4  
D_ADD9 D_ADD10 D_ADD11 VDDEH1 D_WE1 VDD33_1  
D_ADD12 D_ADD13 D_ADD14 D_ADD15 D_ADD16  
VDDE2 VDDE2  
VDDE2 VDDE2  
VDDE10 ETPUB13 D_OE  
D_ALE D_DAT0 D_DAT1  
D_RD_  
ETPUB9 ETPUB12 ETPUB14 ETPUB15  
WR  
VDDE2  
D_ADD18 D_ADD19 D_ADD20 D_ADD17 D_CS3  
VDDE2 VDDE2 VDDE2  
VDDE2 VDDE2 VDDE2  
ETPUB17 ETPUB3 ETPUB7 ETPUB8 ETPUB10 ETPUB11  
ETPUB23 ETPUB1 ETPUB2 ETPUB4 ETPUB5 ETPUB6  
ETPUB21 ETPUB22 ETPUB16 TCRCLKB ETPUB0  
U
V
W
Y
D_CS2 JCOMP  
RDY  
MDO0  
MDO6  
MCKO MSEO1 MSEO0  
U
V
W
Y
EVTI  
MDO4  
MDO7  
EVTO  
MDO5  
MDO2  
MDO3  
MDO8  
VDDE2  
MDO1  
VSS  
ETPUB25 ETPUB29 REGSEL ETPUB20 ETPUB19 ETPUB18  
ETPUB31 ETPUB26 ETPUB27 ETPUB24 REGCTL  
MDO9 MDO10 MDO11 MDO12  
AA MDO13 MDO14 MDO15 VDD33_1 VDDE8  
PCSA5  
SCKA  
SCKB  
SOUTB VDD33_4  
VDDE9 VDD33_4  
EMIOS23 EMIOS31  
CNRXB  
VSS  
VDDE10 VDD33_3 ETPUB28 VDDREG VSSSYN AA  
AB  
TDO  
TCK  
TDI  
TMS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDDE9 VDDE9  
SINB  
D_CS1 D_ADD21 D_ADD29 EMIOS1 EMIOS11 EMIOS17 EMIOS19 EMIOS29 VDDE9 VDDE9 VDDE9 VDDE9  
VSS  
VDD ETPUB30 VSSFL  
EXTAL AB  
EMIOS0 EMIOS8 EMIOS13 EMIOS22 EMIOS24 EMIOS28 CNTXB CNRXD VDDEH5 PCSC1  
VSS  
VDD  
VSS  
VDDEH6 XTAL  
AC VDDE2  
AD ENGCLK  
VDDE2 PCSA1 SOUTA  
FR_B_  
PCSB3 VDDEH3 VDDEH4  
VDD  
AC  
FR_A_  
TX  
VDD  
VSS  
PCSA0 PCSA3 PCSB2 D_CS0 D_ADD22 D_ADD25 D_ADD28 EMIOS2 EMIOS7 EMIOS12 EMIOS16 EMIOS18 EMIOS27 CNRXA CNTXD  
SCKC  
RXDC  
SINC  
PCSC3  
VDD VDDSYN AD  
TX  
FR_A_  
RX  
FR_B_  
RX  
AE  
AF  
VDD  
PCSA4 PCSB5  
SINA  
PCSB1  
D_TS D_ADD23 D_ADD26 D_ADD30 EMIOS3 EMIOS6 EMIOS10 EMIOS15 EMIOS21 EMIOS26 CNTXA CNRXC PCSC0  
PCSC2 PCSC5  
VSS  
VDD  
AE  
AF  
D_  
CLKOUT  
FR_A_  
FR_B_  
VDDE2  
2
VDDEH3 PCSA2 PCSB4 PCSB0  
D_TA D_ADD24 D_ADD27  
EMIOS4 EMIOS5 EMIOS9 EMIOS20 EMIOS14 EMIOS25 EMIOS30 CNTXC SOUTC VDDEH4 TXDC  
PCSC4 VDDEH5  
TX_EN TX_EN  
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Figure 4. MPC5676R 516-ball TEPBGA (full diagram)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Electrical Characteristics  
3.3  
Pin Muxing and Reset States  
See Appendix A, Signal Properties and Muxing, for a listing and description of the pin functions and properties.  
4
Electrical Characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the MPC5676R.  
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon  
these specifications will be met. Finalized specifications will be published after complete characterization and device  
qualifications have been completed.  
4.1  
Maximum Ratings  
1
Table 2. Absolute Maximum Ratings  
Spec  
Characteristic  
1.2 V Core Supply Voltage3  
Symbol  
Min  
Max2  
Unit  
1
2
VDD  
VSTBY  
VDDSYN  
VDD33  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.1  
–0.1  
–3 13  
1.65 4  
V
V
5,6  
SRAM Standby Voltage  
5.5  
3
Clock Synthesizer Voltage  
4.5 6,7  
4.5 6,7  
5.5 5,6  
4.5 6  
5.5 5,6  
5.55,6  
5.5 5,6  
0.1  
V
4
I/O Supply Voltage (I/O buffers and predrivers)  
V
8
9
5
Analog Supply Voltage (reference to VSSA  
)
VDDA  
V
6
I/O Supply Voltage (fast I/O pads)  
VDDE  
VDDEH  
VDDREG  
V
7
I/O Supply Voltage (medium I/O pads)  
Voltage Regulator Input Supply Voltage  
V
8
V
10  
11  
9
Analog Reference High Voltage (reference to VRL  
)
VRH  
V
10  
11  
12  
13  
14  
15  
V
V
SS to VSSA8 Differential Voltage  
VSS – VSSA  
VRH – VRL  
V
REF Differential Voltage  
5.5 5,6  
0.3  
V
VRL to VSSA Differential Voltage  
VRL – VSSA  
VDD33 – VDDSYN  
VSSSYN – VSS  
IMAXD  
V
V
DD33 to VDDSYN Differential Voltage  
SSSYN to VSS Differential Voltage  
0.1  
V
V
0.1  
V
Maximum Digital Input Current 12 (per pin, applies to all  
digital pins)  
3 13  
mA  
16  
Maximum Analog Input Current 14 (per pin, applies to all  
analog pins)  
IMAXA  
–3 9,13  
3 9,13  
mA  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Electrical Characteristics  
Spec  
1
Table 2. Absolute Maximum Ratings (continued)  
Characteristic  
Symbol  
Min  
Max2  
Unit  
17  
Maximum Operating Temperature Range 15 – Die Junction  
Temperature  
TJ  
–40.0  
150.0  
oC  
18  
19  
Storage Temperature Range  
Tstg  
Tsdr  
–55.0  
150.0  
oC  
oC  
Maximum Solder Temperature 16  
Pb-free package  
260.0  
245.0  
SnPb package  
20  
Moisture Sensitivity Level 17  
MSL  
3
1
2
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or  
cause permanent damage to the device.  
Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have  
not yet been determined.  
3
4
5
6
7
8
9
1.2 V ±10% for proper operation. This parameter is specified at a maximum junction temperature of 150 °C.  
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.  
6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.  
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
4.5 V for 10 hours cumulative time, 3.3 V +10% for time remaining.  
MPC5676R has two analog power supply pins on the pinout: VDDA_A and VDDA_B.  
MPC5676R has two analog ground supply pins on the pinout: VSSA_A and VSSA_B.  
10 MPC5676R has two analog low reference voltage pins on the pinout: VRL_A and VRL_B.  
11 MPC5676R has two analog high reference voltage pins on the pinout: VRH_A and VRH_B.  
12 Total injection current for all pins must not exceed 25 mA at maximum operating voltage.  
13 Injection current of ±5 mA allowed for limited duration for analog (ADC) pads and digital 5 V pads. The maximum accumulated  
time at this current shall be 60 hours. This includes an assumption of a 5.25 V maximum analog or VDDEH supply when under  
this stress condition.  
14 Total injection current for all analog input pins must not exceed 15 mA.  
15 Lifetime operation at these specification limits is not guaranteed.  
16 Solder profile per CDF-AEC-Q100.  
17 Moisture sensitivity per JEDEC test method A112.  
4.2  
Thermal Characteristics  
1
Table 3. Thermal Characteristics, 416-pin TEPBGA Package  
Characteristic  
Symbol  
Value  
Unit  
Junction to Ambient 2,3 Natural Convection (Single layer board)  
Junction to Ambient 2,4 Natural Convection (Four layer board 2s2p)  
Junction to Ambient (@200 ft./min., Single layer board)  
RJA  
RJA  
24  
16  
18  
°C/W  
°C/W  
°C/W  
RJMA  
MPC5676R Microcontroller Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Electrical Characteristics  
Table 3. Thermal Characteristics, 416-pin TEPBGA Package (continued)  
1
Characteristic  
Symbol  
Value  
Unit  
Junction to Ambient (@200 ft./min., Four layer board 2s2p)  
Junction to Board 5  
RJMA  
RJB  
RJC  
JT  
13  
8
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Case 6  
4
Junction to Package Top 7 Natural Convection  
3
1
2
Thermal characteristics are targets based on simulation that are subject to change per device  
characterization.  
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting  
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the  
board, and board thermal resistance.  
3
4
5
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
6
7
Indicates the average thermal resistance between the die and the case top surface as measured by the  
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case  
temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2.  
1
Table 4. Thermal Characteristics, 516-pin TEPBGA Package  
Characteristic  
Symbol  
Value  
Unit  
Junction to Ambient 2,3 Natural Convection (Single layer board)  
Junction to Ambient 2,4 Natural Convection (Four layer board 2s2p)  
Junction to Ambient (@200 ft./min., Single layer board)  
Junction to Ambient (@200 ft./min., Four layer board 2s2p)  
Junction to Board 5  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
24  
17  
19  
14  
9
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Case 6  
5
Junction to Package Top 7 Natural Convection  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device  
characterization.  
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting  
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the  
board, and board thermal resistance.  
3
4
5
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
6
Indicates the average thermal resistance between the die and the case top surface as measured by the  
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case  
temperature.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Electrical Characteristics  
7
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2.  
4.2.1  
General Notes for Specifications at Maximum Junction Temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
T = ambient temperature for the package ( C)  
o
A
o
R
= junction to ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value  
obtained on a board with two planes. For packages such as the TEPBGA, these values can be different by a factor of two. Which  
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to  
ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 2  
JA  
JC  
where:  
o
R
R
R
= junction to ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction to case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
JC  
ambient thermal resistance, R  
. For instance, the user can change the size of the heat sink, the air flow around the device, the  
CA  
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit  
board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T = T + (x P )  
Eqn. 3  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm. of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Electrical Characteristics  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic  
Packaging and Production, pp. 53-58, March 1998.  
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
4.3  
EMI (Electromagnetic Interference) Characteristics  
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go  
to www.nxp.com and perform a keyword search for “radiated emissions.” The following tables list the values of the device's  
radiated emissions operating behaviors.  
Table 5. EMC Radiated Emissions Operating Behaviors: 416 BGA  
fOSC  
fSYS  
Frequency  
band (MHz)  
Level  
(max.)  
Symbol  
Description  
Conditions  
Unit Notes  
1
VRE_TEM  
Radiated emissions,  
electric field and  
magnetic field  
VDD = 1.2 V  
VDDE = 3.3 V  
VDDEH = 5 V  
TA = 25 °C  
416 BGA  
EBI off  
40 MHz crystal  
180 MHz  
(fEBI_CAL = 46  
MHz)  
0.15–50  
50–150  
26  
30  
34  
30  
I2  
dBV  
150–500  
500–1000  
1, 3  
CLK off  
FM off  
IEC and SAE level  
1
VRE_TEM  
Radiated emissions,  
electric field and  
magnetic field  
VDD = 1.2 V  
VDDE = 3.3 V  
40 MHz crystal  
180 MHz  
(fEBI_CAL = 46  
MHz)  
0.15–50  
50–150  
24  
25  
25  
21  
K5  
dBV  
VDDEH = 5 V  
TA = 25 °C  
416 BGA  
EBI off  
150–500  
500–1000  
1,3  
CLK off  
IEC and SAE level  
FM on4  
1
Determined according to IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell  
Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM  
(GTEM) Cell Method.  
2
3
I = 36 dBV  
Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated  
Circuits—TEM/Wideband TEM (GTEM) Cell Method.  
4
5
“FM on” = FM depth of ±2%  
K = 30 dBV  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Electrical Characteristics  
4.4  
ESD Characteristics  
1,2  
Table 6. ESD Ratings  
Spec  
Characteristic  
Symbol  
Value  
Unit  
1
2
ESD for Human Body Model (HBM)  
ESD for Charged Device Model (CDM)  
VHBM  
VCDM  
2000  
V
V
750 (corners)  
500 (other)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the  
device specification.  
4.5  
PMC/POR/LVI Electrical Specifications  
Table 7. PMC Operating conditions  
Spec  
Name  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1
VDDREG  
Supply voltage VDDREG LDO5V / SMPS5V mode  
5 V nominal1  
4.5  
5
5.5  
V
2
3
4
VDDREG  
VDD33  
VDD  
Supply voltage VDDREG LDO3V mode  
3 V nominal1  
3.0  
3.0  
3.3  
3.3  
1.2  
3.6  
3.6  
V
V
V
Supply voltage VDDSYN / LDO3V mode  
VDD33 3.3 V nominal2  
Supply voltage VDD  
1.2 V nominal3  
1.14  
1.32  
1
2
Voltage should be higher than maximum VLVDREG to avoid LVD event  
Applies to both VDD33 (flash supply) and VDDSYN (PLL supply) pads. Voltage should be higher than maximum VLVD33  
to avoid LVD event  
3
Voltage should be higher than maximum VLVD12 to avoid LVD event  
NOTE  
In the following table, “untrimmed” means “at reset” and “trimmed” means “after reset”.  
Table 8. PMC Electrical Specifications  
Spec  
Name  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
1
Nominal bandgap reference  
voltage  
VBG  
0.59  
0.620  
0.65  
V
1a Bandgap reference voltage  
during power on reset  
VBG – 5%  
VBG – 2%  
VBG  
VBG + 5%  
VBG + 2%  
V
V
1b Bandgap reference voltage at  
nominal voltage / nominal  
temperature after power on  
reset  
VBG  
MPC5676R Microcontroller Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 8. PMC Electrical Specifications  
Spec  
Name  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
1c Bandgap reference voltage /  
temperature dependence after  
power on reset  
300  
ppm/C  
1d Bandgap reference voltage /  
1500  
1.2  
voltage dependence (VDDREG  
after power on reset  
)
2
Nominal VRC regulated 1.2V  
output VDD1  
VDD12OUT  
V
2a VRC 1.2V output variation at  
reset (unloaded)2  
At POR  
VDD12OUT – 8% VDD12OUT VDD12OUT + 10%  
2b VRC 1.2V output variation after  
reset(REGCTL load max.  
After POR VDD12OUT – 5% VDD12OUT VDD12OUT + 10%  
20mA, VDD load max. 1A)  
2c Trimming step Vdd1p2  
VSTEPV12  
VPORC  
10  
0.7  
mV  
V
3
POR rising VDD 1.2V  
-
VPORC – 30%  
VPORC + 30%  
3a POR VDD 1.2V variation  
3b POR 1.2V hysteresis  
VPORC  
75  
mV  
V
4
Nominal rising LVD 1.2V3  
VLVD12  
1.100  
VLVD12  
4a LVD 1.2V variation before band  
gap trim4  
At POR  
VLVD12 – 6%  
VLVD12 + 6%  
4b LVD 1.2V variation after band  
gap trim4  
After POR  
VLVD12 – 3%  
VLVD12  
VLVD12 + 3%  
4c LVD 1.2V Hysteresis  
15  
20  
10  
25  
20  
mV  
mV  
mA  
4d Trimming step LVD 1.2V  
VLVDSTEP12  
IREGCTL  
5
6
7
VRC 1.2V max DC output  
current  
Voltage regulator 1.2V current  
consumption VDDREG  
3
mA  
V
Nominal Vreg 3.3V output5  
VDD33OUT  
3.3  
7a Vreg 3.3V output variation at  
reset (unloaded)6  
At POR  
VDD33OUT – 6% VDD33OUT VDD33OUT + 10%  
7b Vreg 3.3V output variation after  
reset (max. load 60mA)  
After POR VDD33OUT – 5% VDD33OUT VDD33OUT + 10%  
7c Trimming step VDDSYN  
VSTEPV33  
VLVD33  
30  
mV  
V
8
Nominal rising LVD 3.3V7  
2.950  
VLVD33  
8a LVD 3.3V variation before band  
gap trim6  
At POR  
VLVD33 – 5%  
VLVD33 + 5%  
8b LVD 3.3V variation after bad gap  
trim6  
After POR  
VLVD33 – 3%  
VLVD33  
VLVD33 + 3%  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Electrical Characteristics  
Table 8. PMC Electrical Specifications  
Spec  
Name  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
8c LVD 3.3V Hysteresis  
60  
30  
30  
mV  
mV  
mA  
8d Trimming step LVD 3.3V  
VLVDSTEP33  
IDD33  
9
Vreg 3.3V minimum peak DC  
output current supplied by  
regulator without causing  
8
VLVD33  
10 Voltage regulator 3.3V current  
consumption VDDREG9  
2
mA  
V
11 POR rising on VDDREG  
11a POR VDDREG variation  
11b POR VDDREG hysteresis  
12 Nominal rising LVD VDDREG  
VPORREG  
2.00  
VPORREG – 30% VPORREG VPORREG + 30%  
250  
mV  
V
VLVDREG  
LDO3V /  
LDO5V  
mode  
2.950  
12a LVD VDDREG variation at  
reset10  
At POR  
VLVDREG – 5% VLVDREG VLVDREG + 5%  
12b LVD VDDREG variation after  
reset10  
After POR  
VLVDREG – 3% VLVDREG VLVDREG + 3%  
12c LVD VDDREG Hysteresis  
12d Trimming step LVD VDDREG  
13 Nominal rising LVD VDDREG  
LDO3V /  
LDO5V  
mode  
30  
30  
mV  
mV  
V
VLVDSTEPREG  
LDO3V /  
LDO5V  
mode  
VLVDREG  
SMPS5V  
mode  
4.360  
13a LVD VDDREG variation at  
reset10  
At POR  
After POR  
VLVDREG – 5% VLVDREG VLVDREG + 5%  
13b LVD VDDREG variation after  
reset10  
VLVDREG – 3% VLVDREG VLVDREG + 3%  
14 SMPS regulator output  
resistance11  
15  
25  
Ohm  
15 SMPS regulator clock frequency  
After POR  
1.0  
1.5  
MHz  
V
16 SMPS regulator overshoot at  
start-up12  
GBD/GBC13  
1.32  
1.4  
17 SMPS maximum output current,  
as required by SoC14  
1.0  
A
V
18 Voltage variation on current step  
(20% to 80% of maximum  
current with 4 usec constant  
time)14  
GBD/GBC13  
0.1  
MPC5676R Microcontroller Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Electrical Characteristics  
1
2
3
4
5
6
7
8
9
Nominal internal regulator output voltage is 1.27V  
Voltage should be higher than maximum VLVD12 to avoid LVD event  
~VDD12OUT *0.87  
Rising VDD  
Nominal internal regulator output voltage is 3.4V  
Rising VDDSYN  
~VDD33OUT *0.872  
VDDSYN  
Except IDD33  
10 Rising VDDREG  
11 Pull up to VDDREG when high, pull down to VSSREG when low.  
12 Depends on external device, can be as high as 1.6V for short time (<100 usec each start-up)  
13 GBD — Guaranteed By Design; GBC — Guaranteed by Characterization  
14 Proper external devices required  
4.5.1  
Regulator Example  
VDDREG  
The resistor may or may  
not be required.  
This depends on the  
allowable power dissipation of  
the npn bypass transistor  
device.  
IPP_INA_SMPS_SEL5  
The bypass transistor  
MUST be operated out  
of saturation region.  
VRCCTL  
VDD1p2  
MCU  
Mandatory decoupling capacitor  
network  
VSS  
VRCCTL capacitor: may or  
may not be required  
Figure 5. VRC 1.2 V LDO configuration with external bipolar  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Electrical Characteristics  
VDDREG  
IPP_INA_SMPS_SEL5  
VRCCTL  
MCU  
VDD1p2  
VSS  
Mandatory decoupling capacitor  
network  
No VRCCTL capacitor is allowed  
Figure 6. VRC 1.2V buck SMPS LDO configuration with external MOS - Schottky diode  
Table 9. VRC LDO recommended external devices  
Part Name  
Part Type  
Nominal  
Description  
ON Semiconductor TM  
NJD2873  
Beta (Bf)  
Vbe  
NPN  
From 60 to 550  
From 0.4 V to 1.0 V  
Vce  
From 0.2 V to 0.6 V depends on package / power  
Capacitor 6 x 4.7 uF - 20 V Ceramic low ESR—One for each VDD pin  
Capacitor 6 x 0.1 uF - 20 V Ceramic —One capacitor for each VDD pin  
Capacitor 20 uF  
Capacitor 2.2 uF  
Supply decoupling cap (close to bipolar collector)  
Snubber cap, required with NJD2873 (on bipolar base)  
Optional ESR for snubber cap  
Resistor  
12   
MPC5676R Microcontroller Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 10. VRC SMPS recommended external devices  
Part Name  
Part Type  
Nominal  
Description  
IR7353  
HS nMOS +  
Schottky  
Low threshold n-MOS/Low Vf Schottky diode  
SS8P3L  
Schottky  
Low Vf Schottky diode  
From 0.4V to 0.6 V  
Vf  
SI3460 or equivalent  
Vth  
nMOS  
Low threshold n-MOS  
Less than 2 V  
Ids  
More than 1.5 A  
Vds  
More than 12 V  
Rdson  
Less than 100 Ohms  
Cg  
Less than 5 nF  
Turn on / off delay  
Rise time  
Less than 50 ns  
Less than 90 ns  
LQH66SN2R2M03  
C3225X7R1E106M  
C3225X7R1E225K  
inductor  
2.2 uH—3.2 A  
22 uF — 25 V  
muRata TM shielded coil, preferred fmax > 40 MHz  
TDK high capacitance ceramic SMD (on VDD close to coil)  
TDK ceramic SMD (on VDD close to MCU)  
capacitor  
capacitor 2 to 6 x 2.2 uF  
— 25 V  
capacitor  
6 x 0.1 uF  
— 20 V  
Ceramic -One capacitor for each VDD pin  
C3225X7R1E106M  
capacitor  
resistor  
22 uF — 25 V  
20 K  
Supply decoupling cap—close to n-MOS drain  
Pull down for power n—MOS gate  
4.6  
Power Up/Down Sequencing  
There is no power sequencing required among power sources during power up and power down in order to operate within  
specification as long as the following two rules are met:  
When VDDREG is tied to a nominal 3.3V supply, VDD33 and VDDSYN must be both shorted to VDDREG.  
When VDDREG is tied to a 5V supply, VDD33 and VDDSYN must be tied together and shall be powered by the  
internal 3.3V regulator.  
The recommended power supply behavior is as follows: Use 25 V/millisecond or slower rise time for all supplies. Power up  
each V /V first and then power up V . For power down, drop V to 0 V first, and then drop all V /V  
DDE DDEH  
DD  
DD  
DDE DDEH  
supplies. There is no limit on the fall time for the power supplies.  
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc.,  
the state of the I/O pins during power up/down varies according to Table 11 and Table 12.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Electrical Characteristics  
Table 11. Power Sequence Pin States for MH and AE pads  
VDD  
VDD33  
VDDE  
MH Pad  
MH+LVDS Pads1  
AE/up-down Pads  
High  
High  
Low  
High  
High  
Normal operation  
Normal operation  
Normal operation  
Pin is tri-stated (output buffer,  
input buffer, and weak pulls  
disabled)  
Outputs driven high  
Pull-ups enabled,  
pull-downs disabled  
Low  
Low  
High  
High  
Low  
Output low,  
pin unpowered  
Outputs disabled  
Outputs disabled  
Output low,  
pin unpowered  
High  
Pin is tri-stated (output buffer,  
input buffer, and weak pulls  
disabled)  
Pull-ups enabled,  
pull-downs disabled  
1
MH+LVDS pads are output-only.  
Table 12. Power Sequence Pin States for F and FS pads  
VDD  
VDD33  
VDDE  
F and FS pads  
low  
low  
low  
high  
low  
high  
Outputs drive high  
Outputs Disabled  
Outputs Disabled  
Outputs drive high  
high  
high  
high  
low  
high  
low  
low  
high  
Normal operation - except no drive current  
and input buffer output is unknown.1  
high  
high  
high  
Normal Operation  
1
The pad pre-drive circuitry will function normally but since VDDE is unpowered  
the outputs will not drive high even though the output pmos can be enabled.  
4.6.1  
Power-Up  
If V  
/V  
is powered up first, then a threshold detector tristates all drivers connected to V  
/V  
. There is no limit  
DDE DDEH  
DDE DDEH  
to how long after V  
/V  
powers up before V must power up. If there are multiple V  
/V  
supplies, they can  
DDE DDEH  
DD  
DDE DDEH  
be powered up in any order. For each V  
/V  
supply not powered up, the drivers in that V  
/V  
segment exhibit  
DDE DDEH  
DDE DDEH  
the characteristics described in the next paragraph.  
If V is powered up first, then all pads are loaded through the drain diodes to V  
/V . This presents a heavy load that  
DDE DDEH  
DD  
pulls the pad down to a diode above V . Current injected by external devices connected to the pads must meet the current  
SS  
injection specification. There is no limit to how long after V powers up before V  
/V  
must power up.  
DD  
DDE DDEH  
The rise times on the power supplies are to be no faster than 25 V/millisecond.  
4.6.2  
Power-Down  
If V is powered down first, then all drivers are tristated. There is no limit to how long after V powers down before  
DD  
DD  
V
/V  
must power down.  
DDE DDEH  
If V  
/V  
is powered down first, then all pads are loaded through the drain diodes to V  
/V  
. This presents a heavy  
DDE DDEH  
DDE DDEH  
load that pulls the pad down to a diode above V . Current injected by external devices connected to the pads must meet the  
SS  
current injection specification. There is no limit to how long after V  
/V  
powers down before V must power down.  
DDE DDEH DD  
MPC5676R Microcontroller Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Electrical Characteristics  
There are no limits on the fall times for the power supplies.  
4.6.3  
Power Sequencing and POR Dependent on VDDA  
During power up or down, V  
can lag other supplies (of magnitude greater than V  
/2) within 1 V to prevent any  
DDA  
DDEH  
forward-biasing of device diodes that causes leakage current and/or POR. If the voltage difference between V  
is more than 1 V, the following will result:  
and V  
DDEH  
DDA  
Triggers POR (ADC monitors on V  
segment which powers the RESET pin) if the leakage current path created,  
DDEH1  
when V  
level.  
is sufficiently low, causes sufficient voltage drop on V  
node monitored crosses low-voltage detect  
DDA  
DDEH1  
If V  
out of reset.  
is between 0–2 V, powering all the other segments (especially V  
) will not be sufficient to get the part  
DDEH1  
DDA  
Each V  
up to (V  
will have a leakage current to V  
of a magnitude of ((V  
– V  
– 1 V(diode drop)/200 KOhms)  
DDA  
DDEH  
DDA  
DDEH  
/2 = V  
+ 1 V). .  
DDEH  
DDA  
Each V has the same behavior; however, the leakage will be small even though there is no current limiting resistor  
DD  
since V = 1.32 V max.  
DD  
4.7  
DC Electrical Specifications  
1
Table 13. DC Electrical Specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
1a  
2
Core Supply Voltage (External Regulation)  
Core Supply Voltage (Internal Regulation)4  
I/O Supply Voltage (fast I/O pads)  
I/O Supply Voltage (medium I/O pads)  
3.3 V I/O Buffer Voltage  
VDD  
VDD  
1.14  
1.08  
3.0  
1.322, 3  
1.32  
V
V
V
V
V
V
V
V
V
V
V
VDDE  
3.62  
3
VDDEH  
VDD33  
3.0  
5.252  
3.62  
4
3.0  
5
Analog Supply Voltage  
VDDA  
4.75  
0.955  
2
5.252  
1.2  
6a  
6b  
7
SRAM Standby Voltage low range  
SRAM Standby Voltage high range  
Voltage Regulator Control Input Voltage6  
Clock Synthesizer Operating Voltage8  
VSTBY_LOW  
VSTBY_HIGH  
VDDREG  
VDDSYN  
VIH_F  
6
2.77  
3.0  
5.52  
8
3.62  
9
Fast I/O Input High Voltage  
Hysteresis enabled  
V
DDE + 0.3  
0.65 × VDDE  
0.55 × VDDE  
Hysteresis disabled  
10  
11  
Fast I/O Input Low Voltage  
Hysteresis enabled  
VIL_F  
VSS – 0.3  
V
V
0.35 × VDDE  
0.40 × VDDE  
Hysteresis disabled  
Medium I/O Input High Voltage  
Hysteresis enabled  
VIH_S  
VDDEH + 0.3  
0.65 × VDDEH  
Hysteresis disabled  
0.55 × V  
DDEH  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Electrical Characteristics  
Spec  
1
Table 13. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
12  
Medium I/O Input Low Voltage  
VIL_S  
VSS – 0.3  
V
Hysteresis enabled  
Hysteresis disabled  
0.35 × VDDEH  
0.40 × VDDEH  
13  
14  
15  
16  
17  
18  
19  
Fast I/O Input Hysteresis  
VHYS_F  
VHYS_S  
VINDC  
VOH_F  
VOH_S  
VOL_F  
VOL_S  
0.1 × VDDE  
0.1 × VDDEH  
VSSA – 0.1  
0.8 × VDDE  
0.8 × VDDEH  
V
V
V
V
V
V
V
Medium I/O Input Hysteresis  
Analog Input Voltage  
VDDA + 0.1  
Fast I/O Output High Voltage9  
Medium I/O Output High Voltage10  
Fast I/O Output Low Voltage9  
Medium I/O Output Low Voltage  
0.2 × VDDE  
1
0.2 × VDDEH  
0
0.15 × VDDEH  
11  
20  
Load Capacitance (Fast I/O)12  
DSC(PCR[8:9]) = 0b00  
DSC(PCR[8:9]) = 0b01  
DSC(PCR[8:9]) = 0b10  
DSC(PCR[8:9]) = 0b11  
CL  
10  
20  
30  
50  
pF  
pF  
pF  
pF  
21  
22  
23  
24  
Input Capacitance (Digital Pins)  
CIN  
7
pF  
pF  
pF  
Input Capacitance (Analog Pins)  
CIN_A  
CIN_M  
10  
12  
Input Capacitance (Digital and Analog Pins13  
)
Operating Current 1.2 V Supplies @ fsys = 180 MHz  
VDD (including VDDF current)@1.32 V  
VSTBY14 @1.2 V and 85oC  
VSTBY @6.0 V and 85oC  
VDDF15 (P/E)  
IDD  
IDDSTBY  
1.016  
0.10  
A
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDDSTBY6  
IDDFPE  
IDDFREAD  
IDDFRWW  
IDDplTANDBY  
IDDFDISABLED  
0.15  
3617  
VDDF15 (Read)  
5017  
VDDF15 (RWW)  
9017  
VDDF15 (Standby)  
0.2017  
0.1017  
VDDF15 (Disabled)  
25  
Operating Current 3.3 V Supplies @ fsys = 180 MHz  
note18  
720  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
18  
VDD33  
VDDSYN  
IDD33  
IDDSYN  
IDDFLASHPE  
VFLASH19 (P/E)  
VFLASH19 (Read)  
VFLASH19 (RWW)  
VFLASH19 (Standby)  
VFLASH19 (Disabled)  
3221  
IDDFLASHREADS  
IDDFLASHRWW  
IDDFLASHSTANDBY  
IDDFLASHDISABLED  
6.421  
4021  
3.421  
0.1021  
26  
Operating Current 5.0 V Supplies @ fsys = 180 MHz  
VDDA  
IDDA  
IREF  
IREG  
5022  
1.0  
22  
mA  
mA  
mA  
Analog Reference Supply Current (Transient)  
VDDREG  
MPC5676R Microcontroller Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 13. DC Electrical Specifications (continued)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
27  
Operating Current VDDE/VDDEH23 Supplies  
VDDE2  
IDD2  
IDD1  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDDEH1  
VDDEH3  
VDDEH4  
VDDEH5  
VDDEH6  
VDDEH7  
note23  
28  
29  
Fast I/O Weak Pull Up/Down Current24  
3.0 V–3.6 V  
IACT_F  
IACT_S  
42  
158  
A  
Medium I/O Weak Pull Up/Down Current25  
3.0 V–3.6 V  
4.5 V–5.5 V  
15  
35  
95  
200  
A  
A  
30  
31  
32  
I/O Input Leakage Current26  
DC Injection Current (per pin)  
IINACT_D  
IIC  
–2.5  
–1.0  
–250  
2.5  
1.0  
A  
mA  
nA  
Analog Input Current, Channel Off27, AN[0:7], AN38,  
AN39  
IINACT_A  
250  
Analog Input Current, Channel Off, all other analog  
inputs AN[x] = -/+ 150nA  
–150  
150  
nA  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
V
SS Differential Voltage  
Analog Reference Low Voltage  
RL Differential Voltage  
Analog Reference High Voltage  
VSS – VSSA  
VRL  
VRL – VSSA  
VRH  
–100  
VSSA  
–100  
VDDA – 100  
4.75  
100  
VSSA + 100  
100  
mV  
mV  
mV  
mV  
V
V
VDDA  
5.25  
V
V
REF Differential Voltage  
VRH – VRL  
VSSSYN – VSS  
TA (TL to TH)  
SSSYN to VSS Differential Voltage  
–100  
–40.0  
100  
mV  
C  
Operating Temperature Range—Ambient (Packaged)  
Slew rate on power supply pins  
125.0  
25  
V/ms  
k  
Weak Pull-Up/Down Resistance28,29 200 kOption  
Weak Pull-Up/Down Resistance28,29 100 kOption  
RPUPD200K  
RPUPD100K  
RPUPD5K  
130  
280  
65  
140  
k  
Weak Pull-Up/Down Resistance28 (5 kOption)  
5 V ± 10% supply  
k  
1.4  
1.7  
5.2  
7.7  
3.3 V ± 10% supply  
44  
Pull-Up/Down Resistance Matching Ratios  
(100K/200K)  
RPUPDMATCH  
–2.5  
2.5  
%
(Pull-up and pull-down resistances both enabled and  
settings are equal)  
1
2
3
These specifications are design targets and subject to change per device characterization.  
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Electrical Characteristics  
4
Assumed with DC load.  
5
VSTBY below 0.95 V the RAM will not retain states, but will be operational. VSTBY can be 0 V when bypass standby mode.  
6
Regulator is functional with derated performance, with supply voltage down to 4.0 V for system with VDDREG = 4.5 V (min).  
7
2.7 V minimum operating voltage allowed during vehicle crank for system with VDDREG = 3.0 V (min). Normal operating voltage  
should be either VDDREG = 3.0 V (min) or 4.5 V (min) depending on the user regulation voltage system selected.  
8
Required to be supplied when 3.3 V regulator is disabled. See Section 4.5, “PMC/POR/LVI Electrical Specifications.”  
9
IOH_F = {12,20,30,40} mA and IOL_F = {24,40,50,65} mA for {00,01,10,11} drive mode with VDDE= 3.0 V.  
10  
I
= {11.6} mA and IOL_S = {17.7} mA for {medium} I/O with VDDEH = 4.5 V;  
OH_S  
IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDEH = 3.0 V  
11  
I = 2 mA  
OL_S  
12 Applies to D_CLKOUT, external bus pins, and Nexus pins.  
13 Applies to the FCK, SDI, SDO, and SDS_B pins.  
14  
V
current specified at 1.0 V at a junction temperature of 85 oC. VSTBY current is 700 µA maximum at a junction  
STBY  
temperature of 150 oC.  
15 VDDF pin is shorted to VDD on the package substrate.  
16 Preliminary. Specification pending typical and/or high-use Runidd pattern simulation as well as final silicon characterization.  
1.0 A based on transistor count estimate at Worst Case (wcs) process and temperature condition.  
17 Typical values from the simulation.  
18 Power requirements for the VDD33 supply depend on the frequency of operation and load of all I/O pins, and the voltages on  
the I/O segments. See Section 4.7.2, “I/O Pad VDD33 Current Specifications,” for information on both fast (F, FS) and medium  
(MH) pads. Also refer to Table 15 for values to calculate power dissipation for specific operation.  
19 VFLSH pin is shorted to VDD33 on the package substrate.  
20 This value is a target that is subject to change.  
21 Typical values from the simulation.  
22 These value allows a 5 V 20 mA reference to supply ADC + REF.  
23 Power requirements for each I/O segment depend on the frequency of operation and load of the I/O pins on a particular I/O  
segment, and the voltage of the I/O segment. See Section 4.7.1, “I/O Pad Current Specifications,” for information on I/O pad  
power. Also refer to Table 14 for values to calculate power dissipation for specific operation. The total power consumption of  
an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
24 Absolute value of current, measured at VIL and VIH.  
25 Absolute value of current, measured at VIL and VIH.  
26 Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types F and MH.  
27 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each  
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types AE and AE/up-down.  
28 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics.  
29 When the pull-up and pull-down of the same nominal 200 kor 100 kvalue are both enabled, assuming no interference from  
external devices, the resulting pad voltage will be 0.5*VDDEH ± 2.5%.  
4.7.1  
I/O Pad Current Specifications  
The power consumption of an I/O segment is dependent on the usage of the pins on a particular segment. The power  
consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from  
Table 14 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency,  
and load parameters that fall outside the values given in Table 14.  
The AC timing of these pads are described in the Section 4.11.2, “Pad AC Specifications.”  
MPC5676R Microcontroller Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 14. V  
/V  
I/O Pad Average DC Current  
DDE DDEH  
Frequency  
(MHz)  
Load2  
(pF)  
Voltage  
(V)  
Drive/Slew  
Rate Select  
Spec  
Pad Type  
Symbol  
Current (mA)  
1
2
Medium  
IDRV_MH  
50  
20  
50  
50  
50  
200  
10  
20  
30  
50  
10  
20  
30  
50  
50  
50  
50  
50  
200  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
00  
01  
10  
11  
00  
01  
10  
11  
11  
10  
01  
00  
00  
16.0  
6.3  
3
3.0  
2.0  
66  
1.1  
4
2.4  
5
Fast  
IDRV_FC  
6.5  
6
66  
3.6  
9.4  
7
66  
3.6  
10.8  
33.3  
2.0  
8
66  
3.6  
9
66  
1.98  
1.98  
1.98  
1.98  
3.6  
10  
11  
12  
13  
14  
15  
16  
17  
66  
3.0  
66  
4.4  
66  
15.1  
12.0  
6.2  
Fast w/ Slew  
Control  
IDRV_FSR  
66  
50  
3.6  
33.33  
20  
3.6  
4.0  
3.6  
2.4  
20  
3.6  
8.9  
1
2
These are average IDDE numbers for worst case PVT from simulation. Currents apply to output pins only.  
All loads are lumped.  
4.7.2  
I/O Pad VDD33 Current Specifications  
The power consumption of the VDD33 supply is dependent on the usage of the pins on all I/O segments. The power consumption  
is the sum of all input and output pin VDD33 currents for all I/O segments. The VDD33 current draw on fast speed pads can be  
calculated from Table 15 dependent on the voltage, frequency, and load on all F type pins. The VDD33 current draw on medium  
pads can be calculated from Table 15 dependent on voltage and independent on the frequency and load on all MH type pins.  
Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in  
Table 15.  
The AC timing of these pads are described in the Section 4.11.2, “Pad AC Specifications.”  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Electrical Characteristics  
1
Table 15. V  
Pad Average DC Current  
DD33  
Frequency  
(MHz)  
Load2  
(pF)  
VDD33  
(V)  
VDDE  
(V)  
Drive/Slew  
Rate Select  
Spec  
Pad Type  
Symbol  
Current (mA)  
1
2
Medium  
Fast  
I33_MH  
I33_FC  
66  
10  
20  
30  
50  
10  
20  
30  
50  
50  
50  
50  
50  
200  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
5.5  
3.6  
00  
01  
10  
11  
00  
01  
10  
11  
11  
10  
01  
00  
00  
0.0007  
0.92  
1.14  
1.50  
2.19  
0.70  
0.90  
1.08  
1.52  
0.74  
0.52  
0.36  
0.19  
0.19  
3
66  
3.6  
4
66  
3.6  
5
66  
3.6  
6
66  
1.98  
1.98  
1.98  
1.98  
3.6  
7
66  
8
66  
9
66  
10  
11  
12  
13  
14  
Fast w/  
Slew  
Control  
I33_FSR  
66  
50  
3.6  
33.33  
20  
3.6  
3.6  
20  
3.6  
1
2
These are average IDD33 for worst case PVT from simulation. Currents apply to output pins only for the fast pads and to input  
pins only for the medium pads.  
All loads are lumped.  
4.7.3  
LVDS Pad Specifications  
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol, which is an enhanced feature of the DSPI  
module.  
1, 2  
Table 16. DSPI LVDS Pad Specification  
(VDD33 = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Data Rate  
1
Data Frequency  
fLVDSCLK  
40  
MHz  
mV  
Driver Specs  
2
Differential Output Voltage  
SRC=0b00 or 0b11  
VOD  
215  
170  
260  
400  
320  
480  
SRC=0b01  
SRC=0b10  
3
4
5
Common Mode Voltage (LVDS), VOS  
Rise/Fall Time  
VOS  
tR or tF  
tDZ  
1.075  
1.2  
1.325  
2.5  
V
ns  
ns  
Delay, Z to Normal (High/Low)  
100  
MPC5676R Microcontroller Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Electrical Characteristics  
1, 2  
Table 16. DSPI LVDS Pad Specification  
(continued)  
(VDD33 = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH)  
6
Differential Skew between Positive and Negative  
LVDS Pair  
tSkew  
0.5  
ns  
I tphla – tplhb I or I tplhb – tphla  
I
Termination  
7
8
Termination Resistance3  
Load  
RLoad  
95  
100  
105  
32  
ohm  
pF  
1
2
3
These are typical values that are estimated from simulation.  
These specifications are subject to change per device characterization.  
The termination resistance spec is not meant to specify the receiver termination requirements. They are there to establish the  
measurement criteria for the specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination resistance  
can vary from 90 to 132 .  
4.8  
Oscillator and FMPLL Electrical Characteristics  
1
Table 17. FMPLL Electrical Specifications  
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
PLL Reference Frequency Range2 (Normal Mode)  
Crystal Reference (PLLCFG2 = 0b0)  
Crystal Reference (PLLCFG2 = 0b1)  
External Reference (PLLCFG2 = 0b0)  
External Reference(PLLCFG2 = 0b1)  
MHz  
fref_crystal  
fref_crystal  
fref_ext  
8
40  
8
20  
403  
20  
fref_ext  
40  
40  
2
PLL Frequency 4  
Enhanced Mode  
fPLL  
fLOR  
fSCM  
tLPLL  
tDC  
fvco(min) 64  
fmax  
1000  
16  
MHz  
kHz  
3
4
5
6
7
8
9
Loss of Reference Frequency5  
Self Clocked Mode Frequency6  
PLL Lock Time7  
100  
4
MHz  
s  
<750  
60  
Duty Cycle of Reference 8, 9  
Frequency un-LOCK Range  
Frequency LOCK Range  
40  
%
fUL  
–4.0  
–2.0  
–5  
4.0  
2.0  
5
% fsys  
% fsys  
fLCK  
CJitter  
D_CLKOUT Period Jitter10, 11 Measured at fSYS Max  
Cycle-to-cycle Jitter  
%fclko  
ut  
12,13  
10  
Peak-to-Peak Frequency Modulation Range Limit  
Cmod  
0
4
%fsys  
(fsys Max must not be exceeded)  
11  
12  
13  
14  
FM Depth Tolerance14  
Cmod_err  
fVCO  
–0.25  
192  
0.400  
4
0.25  
600  
1
%fsys  
MHz  
MHz  
MHz  
VCO Frequency  
Modulation Rate Limits15  
Predivider Operating Frequency  
fmod  
fprediv  
10  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Electrical Characteristics  
1
All values given are initial design targets and subject to change.  
2
Crystal and External reference frequency limits depend on device relying on PLL to lock prior to release of reset, default  
PREDIV/EPREDIV, MFD/EMFD default settings, and VCO frequency range. Absolute minimum loop frequency is 4 MHz.  
3
4
5
6
Upper tolerance of less than 1% is allowed on 40MHz crystal.  
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR. This  
frequency is measured at D_CLKOUT with the divider set to divide-by-2 of the system clock. NOTE: in SCM, the PLL is running  
open loop at a centercode 0x4. The MFD has no effect and the RFD is bypassed.  
7
This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal  
startup time.  
8
9
For FlexRay operation, duty cycle requirements are higher.  
Duty cycle can be 20–80% when PLL is used with a pre-divider greater than 1.  
10 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter  
percentage for a given interval. D_CLKOUT divider set to divide-by-2.  
11 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter + Cmod  
12 Modulation depth selected must not result in fpll value greater than the fpll maximum specified value.  
.
13 Maximum and minimum variation from programmed modulation depth is pending characterization. Depth settings available in  
control register are: 1%, 2%, 3%, and 4% peak-to-peak.  
14 Depth tolerance is the programmed modulation depth ±0.25% of Fsys. Initial design target pending silicon evaluation.  
15 Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz  
will result in reduced calibration accuracy.  
1
Table 18. Oscillator Electrical Specifications  
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
| Vextal – Vxtal  
> 0.4 V  
|
1
Crystal Mode Differential Amplitude2  
(Min differential voltage between EXTAL and XTAL)  
V
crystal_diff_amp  
V
2
3
4
Crystal Mode: Internal Differential Amplifier Noise  
Rejection  
Vcrystal_diff_amp_nr  
| Vextal – Vxtal  
< 0.2 V  
|
V
V
V
EXTAL Input High Voltage  
VIHEXT  
((V  
/2) + 0.4 V)  
DD33  
Bypass mode, External Reference  
EXTAL Input Low Voltage  
VILEXT  
(V  
/2) – 0.4 V  
DD33  
Bypass mode, External Reference  
5
6
XTAL Current3  
IXTAL  
1
3
mA  
pF  
Total On-chip stray capacitance on XTAL  
CS_XTAL  
1.5  
MPC5676R Microcontroller Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 18. Oscillator Electrical Specifications (continued)  
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
7
8
Total On-chip stray capacitance on EXTAL  
CS_EXTAL  
CL  
1.5  
pF  
pF  
Crystal manufacturer’s recommended capacitive  
load  
See crystal spec  
See crystal spec  
9
Discrete load capacitance to be connected to EXTAL  
CL_EXTAL  
(2 × C – C  
pF  
pF  
L
S_EXTA  
4
– C  
L
PCB_EXTAL )  
10  
Discrete load capacitance to be connected to XTAL  
CL_XTAL  
(2 × C – C  
L S_XTAL  
4
– C  
PCB_XTAL )  
1
2
All values given are initial design targets and subject to change.  
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In  
that case, Vextal – Vxtal 400 mV criterion has to be met for oscillator’s comparator to produce output clock.  
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
3
4
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
4.9  
eQADC Electrical Characteristics  
Table 19. eQADC Conversion Specifications (Operating)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
ADC Clock (ADCLK) Frequency  
Conversion Cycles  
fADCLK  
CC  
2
2 + 13  
10  
16  
128 + 14  
MHz  
ADCLK cycles  
s  
3
Stop Mode Recovery Time1  
TSR  
4
Resolution2  
1.25  
–44  
–84  
–34  
–34  
04  
mV  
5
INL: 8 MHz ADC Clock3  
INL8  
44  
LSB5  
LSB  
6
INL: 16 MHz ADC Clock3  
INL16  
DNL8  
DNL16  
OFFNC  
OFFWC  
GAINNC  
GAINWC  
IINJ  
84  
7
DNL: 8 MHz ADC Clock3  
34  
LSB  
8
DNL: 16 MHz ADC Clock3  
34  
LSB  
9
Offset Error without Calibration  
Offset Error with Calibration  
Full Scale Gain Error without Calibration  
Full Scale Gain Error with Calibration  
Disruptive Input Injection Current 7, 8, 9, 10  
Incremental Error due to injection current11, 12  
TUE value at 8 MHz 13, 14 (with calibration)  
1004  
44  
LSB  
10  
11  
12  
13  
14  
15  
–44  
–1204  
–44,6  
–1  
LSB  
04  
LSB  
44,6  
1
LSB  
m  
EINJ  
+44  
+44,6  
Counts  
Counts  
TUE8  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Electrical Characteristics  
Table 19. eQADC Conversion Specifications (Operating) (continued)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
16  
17  
TUE value at 16 MHz 13, 14 (with calibration)  
TUE16  
+8  
Counts  
Variable gain amplifier accuracy (gain=1)15  
INL, 8 MHz ADC  
GAINVGA1  
Counts17  
–4  
–8  
4
8
INL, 16 MHz ADC  
DNL, 8 MHz ADC  
DNL, 16 MHz ADC  
–316  
–316  
316  
316  
18  
19  
Variable gain amplifier accuracy (gain=2)15  
INL, 8 MHz ADC  
GAINVGA2  
GAINVGA4  
Counts  
Counts  
–5  
–8  
–3  
–3  
5
8
3
3
INL, 16 MHz ADC  
DNL, 8 MHz ADC  
DNL, 16 MHz ADC  
Variable gain amplifier accuracy (gain=4)15  
INL, 8 MHz ADC  
–7  
–8  
–4  
–4  
7
8
4
4
INL, 16 MHz ADC  
DNL, 8 MHz ADC  
DNL, 16 MHz ADC  
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time  
that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.  
2
3
4
At VRH – VRL = 5.12 V, one count = 1.25 mV without using pregain.  
INL and DNL are tested from VRL + 50 LSB to VRH – 50 LSB.  
New design target. Actual specification will change following characterization. Margin for manufacturing has not been fully  
included.  
5
6
7
At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
The value is valid at 8 MHz, it is ±8 counts at 16 Mhz.  
Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs greater  
than VRH and $000 for values less than VRL. Other channels are not affected by non-disruptive conditions.  
8
9
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit  
do not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = –0.3 V, then use the larger of the  
calculated values.  
10 Condition applies to two adjacent pins at injection limits.  
11 Performance expected with production silicon.  
12  
All channels have same 10 k< Rs < 100 kChannel under test has Rs = 10 k, IINJ=IINJMAX INJMIN.  
,I  
13 The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.  
14 TUE does not apply to differential conversions.  
15 Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or  
4. Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.  
16 Guaranteed 10-bit mono tonicity.  
17 At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Electrical Characteristics  
4.9.1  
ADC Internal Resource Measurements  
Table 20. Power Management Control (PMC) Specification  
Spec  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
PMC Normal Mode  
1
2
3
4
5
6
7
Bandgap 0.62 V  
ADC0 channel 145  
VADC145  
VADC146  
VADC147  
VADC180  
VADC181  
VADC182  
VADC183  
0.59  
0.62  
1.22  
0.65  
V
V
V
V
V
V
V
Bandgap 1.2 V  
ADC0 channel 146  
1.10  
1.34  
Vreg1p2 Feedback  
ADC0 channel 147  
VDD/2.147  
VDD/1.863  
VDD / 2.045  
VDD / 1.774  
VDD/1.943  
VDD/1.685  
LVD 1.2 V  
ADC0 channel 180  
Vreg3p3 Feedback  
ADC0 channel 181  
Vreg3p3 /  
5.733—  
Vreg3p3 / 5.460 Vreg3p3 / 5.187  
LVD 3.3 V  
ADC0 channel 182  
Vreg3p3 / 4.996 Vreg3p3 / 4.758 Vreg3p3 / 4.520  
LVD 5.0 V  
VDDREG / 4.996  
VDDREG / 7.384  
VDDREG / 4.520  
VDDREG / 6.680  
ADC0 channel 183  
— LDO mode  
— SMPS mode  
VDDREG / 4.758  
VDDREG/7.032  
Table 21. Standby RAM Regulator Electrical Specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Normal Mode  
1
Standby Regulator Output  
ADC1 channel 194  
VADC194  
1.2  
V
2
Standby Source Bias  
ADC1 channel 195  
VADC195  
150  
360  
mV  
Table 22. ADC Band Gap Reference / LVI Electrical Specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
1
4.75 LVD (from VDDA  
)
VADC196  
4.75  
V
ADC1 channel 196  
2
ADC Bandgap  
VADC45  
1.220  
V
ADC0 channel 45  
ADC1 channel 45  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Electrical Characteristics  
Table 23. Temperature Sensor Electrical Specifications  
Spec  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
1
1
Slope  
V
5.8  
mV/ C  
SADC128  
–40 C to 100 C ±1.0 C  
100 C to 150 C ±1.6 C  
ADC0 channel 128  
ADC1 channel 128  
2
Accuracy  
-20  
+20  
C  
–40 C to 150 C  
ADC0 channel 128  
ADC1 channel 128  
1
Slope is the measured voltage change per °C.  
4.10 C90 Flash Memory Electrical Characteristics  
Table 24. Flash Program and Erase Specifications (Pending Si characterization)  
Initial  
Max2  
Lifetime  
Spec  
Characteristic  
Symbol  
Typ1  
Unit  
Max3  
1
2
3
4
5
6
7
Double Word (64 bits) Program Time4  
Page (128 bits) Program Time4  
tdwprogram  
tpprogram  
38  
45  
500  
500  
s  
s  
160  
16 KB Block Pre-program and Erase Time  
48 KB Block Pre-program and Erase Time  
64 KB Block Pre-program and Erase Time  
128 KB Block Pre-program and Erase Time  
256 KB Block Pre-program and Erase Time  
t16kpperase  
t48kpperase  
t64kpperase  
t128kpperase  
t256kpperase  
270  
625  
800  
1500  
3000  
1000  
1500  
1800  
2600  
5200  
5000  
5000  
5000  
7500  
15000  
ms  
ms  
ms  
ms  
ms  
1
2
3
4
Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 oC. These values are characterized, but not tested.  
Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100 program/erase  
cycles, nominal supply values and operation at 25 oC. These values are verified at production test.  
Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life. These values  
are characterized, but not tested.  
Program times are actual hardware programming times and do not include software overhead.  
NOTE  
The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1) before  
leaving the factory.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 25. Flash Memory AC Timing Specifications  
Parameter  
Value  
Symbol  
Unit  
Min  
Typ  
Max  
TRES  
TDONE  
TPSRT  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low  
100  
ns  
ns  
s  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared  
5
Time between program suspend resume and the next program  
suspend request.2  
100  
TESRT  
Time between erase suspend resume and the next erase  
suspend request.3  
10  
ms  
1
2
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Repeated suspends at a high frequency may result in the operation timing out, and the flash module will respond by  
completing the operation with a fail code (MCR[PEG] = 0), or the operation not able to finish (MCR[DONE] = 1 during Program  
operation). The minimum time between suspends to ensure this does notoccur is TPSRT  
.
3
If Erase suspend rate is less than TESRT, an increase of slope voltage ramp occurs during erase pulse. This improves erase  
time but reduces cycling figure due to overstress.  
Table 26. Flash EEPROM Module Life  
Spec  
Characteristic  
Symbol  
Min  
Typical1  
Unit  
1
Number of Program/Erase cycles per block for 16 KB and 64  
KB blocks over the operating temperature range (TJ)  
P/E  
100,000  
cycles  
2
3
Number of Program/Erase cycles per block for 128 KB and  
256 KB blocks over the operating temperature range (TJ)  
P/E  
1,000  
100,000  
cycles  
years  
Minimum Data Retention at 85 °C ambient temperature2  
Blocks with 0–1,000 P/E cycles  
Retention  
20  
10  
Blocks with 1,001–10,000 P/E cycles  
Blocks with 10,001–100,000 P/E cycles  
1 – 5  
1
Typical endurance is evaluated at 25 °C. Product qualification is performed to the minimum specification. For additional  
information on the NXP definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance for  
Nonvolatile Memory.  
2
Ambient temperature averaged over duration of application, not to exceed product operating temperature range.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Electrical Characteristics  
Table 27. BIUCR1/BIUCR3 Settings  
Maximum Frequency  
(MHz)  
APC =  
RWSC  
Spec  
WWSC DPFEN1 IPFEN1  
PFLIM2  
BFEN3  
Core  
fsys  
Platform  
fplatf  
1
180 MHz  
90 MHz  
0b010  
0b01  
0b11  
0b0  
0b1  
0b0  
0b1  
0b00  
0b01  
0b1x  
0b0  
0b1  
Default setting after reset:  
0b111  
0b00  
0b00  
0b00  
0b0  
1
2
3
For maximum flash performance, set to 0b1.  
For maximum flash performance, set to 0b10.  
For maximum flash performance, set to 0b1.  
4.11 AC Specifications  
4.11.1 Clocking Modes  
There are two main modes of operating frequency settings:  
Double 2:1 (Core:Platform) Mode—the core is running at the system frequency setting while the platform and eTPU  
are running at half the core frequency (system frequency divided by 2).  
eTPU Mode—the core and eTPU are running at the system frequency setting while the platform is running at half the  
core frequency (system frequency divided by 2).  
Table 28 shows the operating frequencies of various blocks depending on the device’s clocking mode configuration settings.  
1, 2  
Table 28. MPC5676R Block Operating Frequency  
Double Mode Freq eTPU Mode Freq  
Spec  
Blocks  
Symbol  
(MHz)  
(MHz)  
1
Cores  
fsys  
fsys = 180  
fsys = 180  
(tcycsys = 1/fsys  
)
2
Platform  
fplatf  
f
sys / 2  
fsys / 2  
(tcyc = 1/fplatf  
)
3
4
eTPU  
EBI  
feTPU  
fsys / 2  
fsys / 4  
fsys  
febi  
fsys / 4  
1
2
The values in the table are specified at VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.5 V to 5.5 V, VDD33 and  
VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.  
Up to the maximum frequency rating of the device (refer to Table 1). The fsys speed is the nominal maximum frequency.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Electrical Characteristics  
4.11.2 Pad AC Specifications  
1
Table 29. Pad AC Specifications (V  
= 5.0 V, V  
= 3.3 V)  
DDE  
DDEH  
Out Delay2,4  
H/H L (ns)  
Rise/Fall3,4  
Load Drive  
(pF)  
Spec  
Pad  
SRC/DSC  
L
(ns)  
1
2
Medium5  
00  
152/165  
205/220  
28/34  
70/74  
96/96  
12/15  
28/31  
5.3/5.9  
22/22  
50  
200  
50  
3
01  
11  
4
52/59  
200  
50  
5
12/12  
6
32/32  
200  
10  
7
Fast6  
00  
01  
10  
11  
00  
8
20  
2.5  
1.2  
9
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
50  
Fast with Slew Rate  
40/40  
50/50  
13/13  
19/19  
8/8  
16/16  
21/21  
5/5  
50  
200  
50  
01  
10  
11  
8/8  
200  
50  
2.4/2.4  
5/5  
12/12  
5/5  
200  
50  
1.1/1/1  
2.6  
8/8  
200  
50  
Pull Up/Down (3.6 V max)  
Pull Up/Down (5.25 V max)  
7500  
6000  
5000/5000  
50  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.  
2
3
4
5
6
This parameter is supplied for reference and is not guaranteed by design and not tested.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
1
Table 30. Derated Pad AC Specifications (V  
= 3.3 V)  
DDEH  
Out Delay2,3  
H/H L (ns)  
Rise/Fall4,3  
Load Drive  
(pF)  
Spec  
Pad  
SRC/DSC  
L
(ns)  
1
2
3
4
5
6
Medium5  
00  
200/210  
270/285  
37/45  
86/86  
120/120  
15.5/19  
38/43  
50  
200  
50  
01  
11  
69/82  
200  
50  
18/17  
7.6/8.5  
30/34  
46/49  
200  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Electrical Characteristics  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
V
DD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
VDDEn / 2  
VDDEHn / 2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 7. Pad Output Delay  
4.12 AC Timing  
4.12.1 Generic Timing Diagrams  
The generic timing diagrams in Figure 8 and Figure 9 apply to all I/O pins with pad types F and MH. See Table 39 for the pad  
type for each pin.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Electrical Characteristics  
D_CLKOUT  
VDDE / 2  
A
B
I/O Outputs  
VDDEn / 2  
VDDEHn / 2  
A – Maximum Output Delay Time  
Figure 8. Generic Output Delay/Hold Timing  
B – Minimum Output Hold Time  
D_CLKOUT  
VDDE / 2  
B
A
I/O Inputs  
VDDEn / 2  
VDDEHn / 2  
A – Minimum Input Setup Time  
B – Minimum Input Hold Time  
Figure 9. Generic Input Setup/Hold Timing  
4.12.2 Reset and Configuration Pin Timing  
1
Table 31. Reset and Configuration Pin Timing  
Spec  
Characteristic Symbol  
Min  
Max  
Unit  
2
2
2
2
1
2
3
4
RESET Pulse Width  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
RESET Glitch Detect Pulse Width  
PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid  
PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid  
10  
0
1
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.08 V to 1.32 V, TA = TL to TH.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Electrical Characteristics  
2
See Notes on tcyc on Table 28.  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
WKPCFG  
4
Figure 10. Reset and Configuration Pin Timing  
4.12.3 IEEE 1149.1 Interface Timing  
1
Table 32. JTAG Pin AC Electrical Characteristics  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
TCK Cycle Time  
tJCYC  
tJDC  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Clock Pulse Width (Measured at VDDE / 2)  
TCK Rise and Fall Times (40%–70%)  
TMS, TDI Data Setup Time  
3
tTCKRISE  
4
tTMSS, TDIS  
TMSH, tTDIH  
tTDOV  
tTDOI  
t
10  
20  
50  
5
TMS, TDI Data Hold Time  
t
25  
0
6
TCK Low to TDO Data Valid  
7
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
9
10  
11  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
MPC5676R Microcontroller Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
Electrical Characteristics  
Table 32. JTAG Pin AC Electrical Characteristics (continued)  
1
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
12  
13  
14  
15  
TCK Falling Edge to Output Valid out of High Impedance  
TCK Falling Edge to Output High Impedance  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
Boundary Scan Input Valid to TCK Rising Edge  
TCK Rising Edge to Boundary Scan Input Invalid  
1
JTAG timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and  
CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG boundary scan only. See Table 33 for  
functional specifications.  
TCK  
2
3
2
3
1
Figure 11. JTAG Test Clock Input Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
Electrical Characteristics  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 12. JTAG Test Access Port Timing  
TCK  
10  
JCOMP  
9
Figure 13. JTAG JCOMP Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
38  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 14. JTAG Boundary Scan Timing  
4.12.4 Nexus Timing  
1
Table 33. Nexus Debug Port Timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
9
MCKO Cycle Time  
tMCYC  
tMDC  
22  
40  
8
tCYC  
%
MCKO Duty Cycle  
60  
0.2  
0.2  
0.2  
MCKO Low to MDO Data Valid3  
MCKO Low to MSEO Data Valid3  
MCKO Low to EVTO Data Valid3  
EVTI Pulse Width  
tMDOV  
–0.1  
–0.1  
–0.1  
4.0  
1
tMCYC  
tMCYC  
tMCYC  
tTCYC  
tMCYC  
tCYC  
%
tMSEOV  
tEVTOV  
tEVTIPW  
tEVTOPW  
tTCYC  
EVTO Pulse Width  
TCK Cycle Time  
44  
TCK Duty Cycle  
tTDC  
40  
60  
10 TDI, TMS Data Setup Time  
t
NTDIS, tNTMSS  
8
ns  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
39  
Electrical Characteristics  
Spec  
1
Table 33. Nexus Debug Port Timing (continued)  
Characteristic  
Symbol  
TNTDIH, NTMSH  
tNTDOV  
Min  
Max  
Unit  
11 TDI, TMS Data Hold Time  
12 TCK Low to TDO Data Valid  
13 RDY Valid to MCKO5  
t
5
0
10  
ns  
ns  
ns  
1
14 TDO hold time after TCLK low  
tNTDOH  
1
2
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified  
at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with  
DSC = 0b10.  
The Nexus AUX port runs up to 82 MHz (pending characterization). Set NPC_PCR[MKCO_DIV] to correct division depending  
on the system frequency, not to exceed maximum Nexus AUX port frequency.  
3
4
5
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Lower frequency is required to be fully compliant to standard.  
The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.  
1
2
MCKO  
3
4
5
MDO  
Output Data Valid  
7
MSEO  
EVTO  
6
EVTI  
Figure 15. Nexus Timings  
MPC5676R Microcontroller Data Sheet, Rev. 4  
40  
Freescale Semiconductor  
Electrical Characteristics  
8
9
TCK  
10  
11  
TMS, TDI  
14  
12  
TDO  
Figure 16. Nexus TCK, TDI, TMS, TDO Timing  
4.12.5 External Bus Interface (EBI) Timing  
1
Table 34. Bus Operation Timing  
66 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
D_CLKOUT Period  
Symbol  
Unit  
Notes  
Min  
Max  
1
tC  
15.2  
ns Signals are measured at 50% VDDE  
.
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
41  
Electrical Characteristics  
1
Table 34. Bus Operation Timing (continued)  
66 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
2
3
4
5
D_CLKOUT Duty Cycle  
D_CLKOUT Rise Time  
D_CLKOUT Fall Time  
tCDC  
tCRT  
tCFT  
tCOH  
45%  
55%  
tC  
ns  
ns  
4
4
D_CLKOUT Posedge to Output  
Signal Invalid or High Z (Hold Time)  
1.0/1.5  
ns Hold time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0: 1.0 ns  
D_ADD[9:30]  
D_BDIP  
EBTS = 1: 1.5 ns  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
D_RD_WR  
D_TA  
D_TS  
D_WE[0:3]/D_BE[0:3]  
6
D_CLKOUT Posedge to Output  
Signal Valid (Output Delay)  
tCOV  
8.5/9.0  
ns Output valid time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0: 8.5 ns  
D_ADD[9:30]  
D_BDIP  
EBTS = 1: 9.0 ns  
D_CS[0:3]  
D_DAT[0:15]  
D_OE  
D_RD_WR  
D_TA  
D_TS  
D_WE[0:3]/D_BE[0:3]  
7
8
9
Input Signal Valid to D_CLKOUT  
Posedge (Setup Time)  
tCIS  
5.0/4.5  
ns Input setup time selectable via  
SIU_ECCR[EBTS] bit:  
EBTS = 0; 5.0ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
EBTS = 1; 4.5ns  
D_TS  
D_CLKOUT Posedge to Input  
Signal Invalid (Hold Time)  
tCIH  
1.0  
ns  
D_ADD[9:30]  
D_DAT[0:15]  
D_RD_WR  
D_TA  
D_TS  
D_ALE Pulse Width  
tAPW  
tAAI  
6.5  
ns The timing is for Asynchronous  
external memory system.  
10 D_ALE Negated to Address Invalid  
2.0/1.0 5  
ns The timing is for Asynchronous  
external memory system.  
ALE is measured at 50% of VDDE.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
42  
Freescale Semiconductor  
Electrical Characteristics  
1
EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and  
CL = 30 pF with DSC = 0b10.  
2
3
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).  
Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus frequency.  
The maximum external bus frequency is 66 MHz.  
4
5
Refer to Fast pad timing in Table 29 and Table 30.  
ALE hold time spec is temperature dependant. 1.0ns spec applies for temperature range -40 to 0 C. 2.0ns spec applies to  
temperatures > 0 C. This spec has no dependency on SIU_ECCR[EBTS] bit.  
VOH_F  
VDDE / 2  
VOL_F  
D_CLKOUT  
2
3
2
4
1
Figure 17. D_CLKOUT Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
43  
Electrical Characteristics  
VDDE / 2  
D_CLKOUT  
6
5
5
Output  
Bus  
VDDE / 2  
6
5
5
Output  
Signal  
VDDE / 2  
6
Output  
Signal  
VDDE / 2  
Figure 18. Synchronous Output Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
44  
Freescale Semiconductor  
Electrical Characteristics  
D_CLKOUT  
VDDE / 2  
7
8
Input  
Bus  
VDDE / 2  
7
8
Input  
Signal  
VDDE / 2  
Figure 19. Synchronous Input Timing  
ipg_clk  
D_CLKOUT  
D_ALE  
D_TS  
D_ADD/D_DAT  
DATA  
ADDR  
9
10  
Figure 20. ALE Signal Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
45  
Electrical Characteristics  
4.12.6 External Interrupt Timing (IRQ Pin)  
1
Table 35. External Interrupt Timing  
Spec  
Characteristic  
IRQ Pulse Width Low  
Symbol  
Min  
Max  
Unit  
2
1
2
3
tIPWL  
tIPWH  
tICYC  
3
3
6
tcyc  
2
IRQ Pulse Width High  
IRQ Edge to Edge Time3  
tcyc  
2
tcyc  
1
IRQ timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL  
to TH.  
2
3
See Notes on tcyc Table 28.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
2
1
3
Figure 21. External Interrupt Timing  
4.12.7 eTPU Timing  
1
Table 36. eTPU Timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
2
1
2
eTPU Input Channel Pulse Width  
eTPU Output Channel Pulse Width  
tICPW  
4
13  
tcyc  
2
tOCPW  
tcyc  
1
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,  
and CL = 200 pF with SRC = 0b00.  
2
3
See Notes on tcyc Table 28.  
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
MPC5676R Microcontroller Data Sheet, Rev. 4  
46  
Freescale Semiconductor  
Electrical Characteristics  
eTPU Input  
and TCRCLK  
1
2
eTPU  
Output  
Figure 22. eTPU Timing  
4.12.8 eMIOS Timing  
1
Table 37. eMIOS Timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
2
1
2
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
tMIPW  
4
13  
tcyc  
2
tMOPW  
tcyc  
1
eMIOS timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,  
and CL = 50 pF with SRC = 0b00.  
2
3
See Notes on tcyc on Table 28.  
This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
47  
Electrical Characteristics  
eMIOS Input  
1
2
eMIOS  
Output  
Figure 23. eMIOS Timing  
4.12.9 DSPI Timing  
1,2  
Table 38. DSPI Timing  
Peripheral Bus Freq:  
92 MHz  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
1
DSPI Cycle Time3, 4  
Master (MTFE = 0)  
Slave (MTFE = 0)  
Master (MTFE = 1)  
Slave (MTFE = 1)  
tSCK  
23.8  
1800  
ns  
2
3
4
5
PCS to SCK Delay5  
After SCK Delay6  
SCK Duty Cycle  
tCSC  
tASC  
tSDC  
tA  
12  
12  
ns  
ns  
ns  
ns  
0.4 * tSCK  
0.6 * tSCK  
25  
Slave Access Time  
(SS active to SOUT valid)  
6
Slave SOUT Disable Time  
tDIS  
25  
ns  
(SS inactive to SOUT High-Z or invalid)  
7
8
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
4
5
ns  
ns  
MPC5676R Microcontroller Data Sheet, Rev. 4  
48  
Freescale Semiconductor  
Electrical Characteristics  
1,2  
Table 38. DSPI Timing (continued)  
Peripheral Bus Freq:  
92 MHz  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
9
Data Setup Time for Inputs  
Master (MTFE = 0)  
tSUI  
27  
10  
7
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
27  
10  
11  
Data Hold Time for Inputs  
Master (MTFE = 0)  
tHI  
–3  
7
12  
–3  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
tSUO  
10  
30  
20  
10  
5
ns  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (LVDS)  
12  
Data Hold Time for Outputs  
Master (MTFE = 0)  
tHO  
–6  
2.5  
3
–7  
–5  
ns  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (LVDS)  
1
2
DSPI timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, and TA = TL to TH  
Speed is the nominal maximum frequency of platform clock (fplatf). Max speed is the maximum speed allowed including  
frequency modulation (FM).  
3
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated  
based on two devices communicating over a DSPI link.  
4
5
6
7
The actual minimum SCK cycle time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].  
The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].  
This number is calculated assuming the SMPL_PT bit-field in DSPI_MCR is set to 0b10.  
The DSPI in this device can be configured to serialize data to an external device that implements the Microsecond Bus protocol.  
DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) for data and clock signals to improve high  
speed operation.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
49  
Electrical Characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 24. DSPI Classic SPI Timing — Master, CPHA = 0  
2
3
PCSx  
4
1
SCK Output  
(CPOL=0)  
4
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 25. DSPI Classic SPI Timing — Master, CPHA = 1  
MPC5676R Microcontroller Data Sheet, Rev. 4  
50  
Freescale Semiconductor  
Electrical Characteristics  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 26. DSPI Classic SPI Timing — Slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 27. DSPI Classic SPI Timing — Slave, CPHA = 1  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
51  
Electrical Characteristics  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 28. DSPI Modified Transfer Format Timing — Master, CPHA = 0  
3
PCSx  
1
4
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 29. DSPI Modified Transfer Format Timing — Master, CPHA = 1  
MPC5676R Microcontroller Data Sheet, Rev. 4  
52  
Freescale Semiconductor  
Electrical Characteristics  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 30. DSPI Modified Transfer Format Timing — Slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
SOUT  
SIN  
9
First Data  
Data  
Last Data  
Figure 31. DSPI Modified Transfer Format Timing — Slave, CPHA = 1  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
53  
Electrical Characteristics  
8
7
PCSS  
PCSx  
Figure 32. DSPI PCS Strobe (PCSS) Timing  
MPC5676R Microcontroller Data Sheet, Rev. 4  
54  
Freescale Semiconductor  
Package Information  
5
Package Information  
5.1  
416-Pin Package  
The package drawings of the 416-pin TEPBGA package are shown in Figure 33 and Figure 34.  
Figure 33. 416 TEPBGA Package (1 of 2)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
55  
Package Information  
Figure 34. 416 TEPBGA Package (2 of 2)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
56  
Freescale Semiconductor  
Package Information  
5.2  
516-Pin Package  
The package drawings of the 516-pin TEPBGA package are shown in Figure 35 and Figure 36.  
Figure 35. 516 TEPBGA Package (1 of 2)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
57  
Package Information  
Figure 36. 516 TEPBGA Package (2 of 2)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
58  
Freescale Semiconductor  
Product Documentation  
6
Product Documentation  
This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these  
types are available at: http://www.nxp.com.  
The following documents are required for a complete description of the device and are necessary to design properly with the  
parts:  
MPC5676R RM Microprocessor Reference Manual (document number MPC5676RRM)  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
59  
Appendix A Signal Properties and Muxing  
The following table shows the signals properties for each pin on the MPC5676R. For each port pin that has an associated SIU_PCRn register to control its pin  
properties, the supported functions column lists the functions associated with the programming of the SIU_PCRn[PA] bit in the order: Primary function (P),  
Function 2 (F2), Function 3 (F3), and GPIO (G). See Figure 37.  
U
Table 2. Signal Properties and Muxing Summar  
P/  
GPIO/  
PCR1  
F/  
G
Pad  
I/O Type  
Signal Name2  
Function3  
TCRCLKA  
Function Summary  
Primary Functions  
are listed First  
P
113 TCRCLKA_IRQ7_GPIO113  
eTPU A TCR clock  
I
I
5V M  
A1  
A2  
G
IRQ7  
External interrupt request  
Secondary Functions  
are alternate functions  
I/O  
GPIO Functions are  
GPIO113  
GPIO  
listed Last  
Function not implemented on this device  
Figure 37. Supported Functions Example  
Table 39. Signal Properties and Muxing Summary  
Package  
Location  
State  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
eTPU_A  
after  
RESET8  
P
113 TCRCLKA_IRQ7_  
GPIO113  
TCRCLKA  
IRQ7  
eTPU A TCR clock  
I
MH  
MH  
VDDEH1  
—/Up  
—/Up  
L1  
L2  
K4  
L6  
A1  
A2  
G
External interrupt request  
I
I/O  
I/O  
O
GPIO113  
ETPUA0  
ETPUA12  
GPIO  
P
114 ETPUA0_ETPUA12_  
GPIO114  
eTPU A channel  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
eTPU A channel (output only)  
I/O  
GPIO114  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
115 ETPUA1_ETPUA13_  
GPIO115  
ETPUA1  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
L3  
L4  
K1  
K2  
K3  
K4  
J1  
J2  
A1  
A2  
G
ETPUA13  
eTPU A channel (output only)  
GPIO115  
ETPUA2  
ETPUA14  
GPIO  
I/O  
I/O  
O
P
116 ETPUA2_ETPUA14_  
GPIO116  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO116  
ETPUA3  
ETPUA15  
GPIO  
I/O  
I/O  
O
P
117 ETPUA3_ETPUA15_  
GPIO117  
eTPU A channel  
H4  
J4  
A1  
A2  
G
eTPU A channel (output only)  
GPIO117  
ETPUA4  
ETPUA16  
GPIO  
I/O  
I/O  
O
P
118 ETPUA4_ETPUA16_  
GPIO118  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO118  
ETPUA5  
ETPUA17  
GPIO  
I/O  
I/O  
O
P
119 ETPUA5_ETPUA17_  
GPIO119  
eTPU A channel  
H1  
K5  
A1  
A2  
G
eTPU A channel (output only)  
GPIO119  
ETPUA6  
ETPUA18  
GPIO  
I/O  
I/O  
O
P
120 ETPUA6_ETPUA18_  
GPIO120  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO120  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
121 ETPUA7_ETPUA19_  
GPIO121  
ETPUA7  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
J1  
J2  
J3  
J4  
H1  
H2  
H2  
H3  
J3  
A1  
A2  
G
ETPUA19  
eTPU A channel (output only)  
GPIO121  
ETPUA8  
ETPUA20  
GPIO  
I/O  
I/O  
O
P
122 ETPUA8_ETPUA20_  
GPIO122  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO122  
ETPUA9  
ETPUA21  
GPIO  
I/O  
I/O  
O
P
123 ETPUA9_ETPUA21_  
GPIO123  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO123  
ETPUA10  
ETPUA22  
GPIO  
I/O  
I/O  
O
P
124 ETPUA10_ETPUA22_  
GPIO124  
eTPU A channel  
K6  
G1  
J5  
A1  
A2  
G
eTPU A channel (output only)  
GPIO124  
ETPUA11  
ETPUA23  
GPIO  
I/O  
I/O  
O
P
125 ETPUA11_ETPUA23_  
GPIO125  
eTPU A channel  
A1  
A2  
G
eTPU A channel (output only)  
GPIO125  
ETPUA12  
PCSB1  
GPIO  
I/O  
I/O  
O
P
126 ETPUA12_PCSB1_  
GPIO126  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO126  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
127 ETPUA13_PCSB3_  
GPIO127  
ETPUA13  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
H4  
H3  
G1  
G2  
G3  
G4  
G2  
H5  
G3  
H6  
G4  
G5  
A1  
A2  
G
PCSB3  
DSPI B peripheral chip select  
GPIO127  
ETPUA14  
PCSB4  
GPIO  
I/O  
I/O  
O
P
128 ETPUA14_PCSB4_  
GPIO128  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO128  
ETPUA15  
PCSB5  
GPIO  
I/O  
I/O  
O
P
129 ETPUA15_PCSB5_  
GPIO129  
eTPU A channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO129  
ETPUA16  
PCSD1  
GPIO  
I/O  
I/O  
O
P
130 ETPUA16_PCSD1_  
GPIO130  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO130  
ETPUA17  
PCSD2  
GPIO  
I/O  
I/O  
O
P
131 ETPUA17_PCSD2_  
GPIO131  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO131  
ETPUA18  
PCSD3  
GPIO  
I/O  
I/O  
O
P
132 ETPUA18_PCSD3_  
GPIO132  
eTPU A channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO132  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
133 ETPUA19_PCSD4_  
GPIO133  
ETPUA19  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
F1  
F2  
F3  
F4  
E1  
E2  
F1  
F2  
F3  
F4  
E1  
E2  
A1  
A2  
G
PCSD4  
DSPI D peripheral chip select  
I/O  
I/O  
I
GPIO133  
ETPUA20  
IRQ8  
GPIO  
P
134 ETPUA20_IRQ8_  
GPIO134  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO134  
ETPUA21  
IRQ9  
GPIO  
P
135 ETPUA21_IRQ9_  
GPIO135  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO135  
ETPUA22  
IRQ10  
GPIO  
P
136 ETPUA22_IRQ10_  
GPIO136  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO136  
ETPUA23  
IRQ11  
GPIO  
P
137 ETPUA23_IRQ11_  
GPIO137  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO137  
ETPUA24  
IRQ12  
GPIO  
P
138 ETPUA24_IRQ12_  
GPIO138  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
GPIO138  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
139 ETPUA25_IRQ13_  
GPIO139  
ETPUA25  
eTPU A channel  
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
E3  
E4  
D1  
D2  
D3  
C1  
E3  
E4  
D1  
D2  
D3  
C1  
A1  
A2  
G
IRQ13  
External interrupt request  
I/O  
I/O  
I
GPIO139  
ETPUA26  
IRQ14  
GPIO  
P
140 ETPUA26_IRQ14_  
GPIO140  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO140  
ETPUA27  
IRQ15  
GPIO  
P
141 ETPUA27_IRQ15_  
GPIO141  
eTPU A channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
O
GPIO141  
ETPUA28  
PCSC1  
GPIO  
P
142 ETPUA28_PCSC1_  
GPIO142  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
I/O  
O
GPIO142  
ETPUA29  
PCSC2  
GPIO  
P
143 ETPUA29_PCSC2_  
GPIO143  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
I/O  
O
GPIO143  
ETPUA30  
PCSC3  
GPIO  
P
144 ETPUA30_PCSC3_  
GPIO144  
eTPU A channel  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
GPIO144  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
145 ETPUA31_PCSC4_  
GPIO145  
ETPUA31  
eTPU A channel  
I/O  
O
MH  
VDDEH1  
—/WKPCFG  
—/WKPCFG  
C2  
C2  
A1  
A2  
G
PCSC4  
DSPI C peripheral chip select  
GPIO145  
GPIO  
I/O  
eTPU_B  
P
146 TCRCLKB_IRQ6_  
GPIO146  
TCRCLKB  
IRQ6  
eTPU B TCR clock  
I
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/Up  
—/Up  
T23  
T24  
T25  
T26  
R23  
V25  
V26  
U22  
U23  
T22  
A1  
A2  
G
External interrupt request  
I
I/O  
I/O  
O
GPIO146  
ETPUB0  
ETPUB16  
GPIO  
P
147 ETPUB0_ETPUB16_  
GPIO147  
eTPU B channel  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
I/O  
O
GPIO147  
ETPUB1  
ETPUB17  
GPIO  
P
148 ETPUB1_ETPUB17_  
GPIO148  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
I/O  
O
GPIO148  
ETPUB2  
ETPUB18  
GPIO  
P
149 ETPUB2_ETPUB18_  
GPIO149  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
I/O  
O
GPIO149  
ETPUB3  
ETPUB19  
GPIO  
P
150 ETPUB3_ETPUB19_  
GPIO150  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
I/O  
GPIO150  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
151 ETPUB4_ETPUB20_  
GPIO151  
ETPUB4  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
R24  
R25  
R26  
P23  
P24  
P25  
U24  
U25  
U26  
T23  
T24  
R22  
A1  
A2  
G
ETPUB20  
eTPU B channel (output only)  
GPIO151  
ETPUB5  
ETPUB21  
GPIO  
I/O  
I/O  
O
P
152 ETPUB5_ETPUB21_  
GPIO152  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO152  
ETPUB6  
ETPUB22  
GPIO  
I/O  
I/O  
O
P
153 ETPUB6_ETPUB22_  
GPIO153  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO153  
ETPUB7  
ETPUB23  
GPIO  
I/O  
I/O  
O
P
154 ETPUB7_ETPUB23_  
GPIO154  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO154  
ETPUB8  
ETPUB24  
GPIO  
I/O  
I/O  
O
P
155 ETPUB8_ETPUB24_  
GPIO155  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO155  
ETPUB9  
ETPUB25  
GPIO  
I/O  
I/O  
O
P
156 ETPUB9_ETPUB25_  
GPIO156  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO156  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
157 ETPUB10_ETPUB26_  
GPIO157  
ETPUB10  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
P26  
N24  
N25  
N26  
M25  
M24  
T25  
T26  
R23  
P22  
R24  
R25  
A1  
A2  
G
ETPUB26  
eTPU B channel (output only)  
GPIO157  
ETPUB11  
ETPUB27  
GPIO  
I/O  
I/O  
O
P
158 ETPUB11_ETPUB27_  
GPIO158  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO158  
ETPUB12  
ETPUB28  
GPIO  
I/O  
I/O  
O
P
159 ETPUB12_ETPUB28_  
GPIO159  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO159  
ETPUB13  
ETPUB29  
GPIO  
I/O  
I/O  
O
P
160 ETPUB13_ETPUB29_  
GPIO160  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO160  
ETPUB14  
ETPUB30  
GPIO  
I/O  
I/O  
O
P
161 ETPUB14_ETPUB30_  
GPIO161  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO161  
ETPUB15  
ETPUB31  
GPIO  
I/O  
I/O  
O
P
162 ETPUB15_ETPUB31_  
GPIO162  
eTPU B channel  
A1  
A2  
G
eTPU B channel (output only)  
GPIO162  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
163 ETPUB16_PCSA1_  
GPIO163  
ETPUB16  
eTPU B channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
U26  
U25  
U24  
U23  
V26  
V25  
V24  
T21  
A1  
A2  
G
PCSA1  
DSPI A peripheral chip select  
GPIO163  
ETPUB17  
PCSA2  
GPIO  
I/O  
I/O  
O
P
164 ETPUB17_PCSA2_  
GPIO164  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO164  
ETPUB18  
PCSA3  
GPIO  
I/O  
I/O  
O
P
165 ETPUB18_PCSA3_  
GPIO165  
eTPU B channel  
W26  
W25  
W24  
V22  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO165  
ETPUB19  
PCSA4  
GPIO  
I/O  
I/O  
O
P
166 ETPUB19_PCSA4_  
GPIO166  
eTPU B channel  
A1  
A2  
G
DSPI A peripheral chip select  
GPIO166  
ETPUB20  
GPIO  
I/O  
I/O  
P
167 ETPUB20_  
GPIO167  
eTPU B channel  
A1  
A2  
G
GPIO167  
ETPUB21  
GPIO  
I/O  
I/O  
P
168 ETPUB21_  
GPIO168  
eTPU B channel  
A1  
A2  
G
GPIO168  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
169 ETPUB22_  
ETPUB22  
eTPU B channel  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
V24  
W26  
W25  
V23  
U21  
Y25  
GPIO169  
A1  
A2  
G
GPIO169  
ETPUB23  
GPIO  
I/O  
I/O  
P
170 ETPUB23_  
GPIO170  
eTPU B channel  
A1  
A2  
G
GPIO170  
ETPUB24  
GPIO  
I/O  
I/O  
P
171 ETPUB24_  
GPIO171  
eTPU B channel  
A1  
A2  
G
GPIO171  
ETPUB25  
GPIO  
I/O  
I/O  
P
172 ETPUB25_  
GPIO172  
eTPU B channel  
W24 W21  
A1  
A2  
G
GPIO172  
ETPUB26  
GPIO  
I/O  
I/O  
P
173 ETPUB26_  
GPIO173  
eTPU B channel  
V23  
Y25  
Y23  
Y24  
A1  
A2  
G
GPIO173  
ETPUB27  
GPIO  
I/O  
I/O  
P
174 ETPUB27_  
GPIO174  
eTPU B channel  
A1  
A2  
G
GPIO174  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
175 ETPUB28_  
ETPUB28  
eTPU B channel  
I/O  
MH  
MH  
MH  
MH  
VDDEH6  
VDDEH6  
VDDEH6  
VDDEH6  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
Y24 AA24  
GPIO175  
A1  
A2  
G
GPIO175  
ETPUB29  
GPIO  
I/O  
I/O  
P
176 ETPUB29_  
GPIO176  
eTPU B channel  
—/WKPCFG  
Y23  
W22  
A1  
A2  
G
GPIO176  
ETPUB30  
GPIO  
I/O  
I/O  
P
177 ETPUB30_  
GPIO177  
eTPU B channel  
—/WKPCFG AA24 AB24  
A1  
A2  
G
GPIO177  
ETPUB31  
GPIO  
I/O  
I/O  
P
178 ETPUB31_  
GPIO178  
eTPU B channel  
—/WKPCFG AB24 Y22  
A1  
A2  
G
GPIO178  
GPIO  
I/O  
eTPU_C  
P
440 TCRCLKC_  
GPIO440  
TCRCLKC  
eTPU C TCR clock  
I
MH  
MH  
VDDEH7  
—/Up  
—/Up  
B26  
C25  
F22  
C25  
A1  
A2  
G
GPIO440  
ETPUC0  
GPIO  
I/O  
I/O  
P
441 ETPUC0_  
GPIO441  
eTPU C channel  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
A1  
A2  
G
GPIO441  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
442 ETPUC1_  
ETPUC1  
eTPU C channel  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
C26  
D25  
D26  
E24  
E25  
E26  
C26  
D25  
D26  
E24  
E25  
E26  
GPIO442  
A1  
A2  
G
GPIO442  
ETPUC2  
GPIO  
I/O  
I/O  
P
443 ETPUC2_  
GPIO443  
eTPU C channel  
A1  
A2  
G
GPIO443  
ETPUC3  
GPIO  
I/O  
I/O  
P
444 ETPUC3_  
GPIO444  
eTPU C channel  
A1  
A2  
G
GPIO444  
ETPUC4  
GPIO  
I/O  
I/O  
P
445 ETPUC4_  
eTPU C channel  
PCSE1_GPIO445  
A1  
A2  
G
DSPI E peripheral chip select  
I/O  
I/O  
GPIO445  
ETPUC5  
GPIO  
P
446 ETPUC5_  
PCSE2_GPIO446  
eTPU C channel  
A1  
A2  
G
DSPI E peripheral chip select  
I/O  
I/O  
GPIO446  
ETPUC6  
GPIO  
P
447 ETPUC6_  
PCSE3_GPIO447  
eTPU C channel  
A1  
A2  
G
DSPI E peripheral chip select  
GPIO447  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
448 ETPUC7_  
PCSE4_GPIO448  
ETPUC7  
eTPU C channel  
I/O  
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
F23  
F24  
F25  
F26  
G23  
G24  
F23  
F24  
F25  
F26  
G22  
G23  
A1  
A2  
G
DSPI E peripheral chip select  
I/O  
I/O  
GPIO448  
ETPUC8  
GPIO  
P
449 ETPUC8_  
PCSE5_GPIO449  
eTPU C channel  
A1  
A2  
G
DSPI E peripheral chip select  
I/O  
I/O  
I
GPIO449  
ETPUC9  
IRQ0  
GPIO  
P
450 ETPUC9_IRQ0_  
GPIO450  
eTPU C channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO450  
ETPUC10  
IRQ1  
GPIO  
P
451 ETPUC10__IRQ1_  
GPIO451  
eTPU C channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO451  
ETPUC11  
IRQ2  
GPIO  
P
452 ETPUC11_IRQ2_  
GPIO452  
eTPU C channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I
GPIO452  
ETPUC12  
IRQ3  
GPIO  
P
453 ETPUC12_IRQ3_  
GPIO453  
eTPU C channel  
A1  
A2  
G
External interrupt request  
I/O  
GPIO453  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
454 ETPUC13_3_IRQ4_  
GPIO454  
ETPUC13  
eTPU C channel  
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
G25  
G26  
H23  
H24  
H25  
H26  
G24  
G25  
G26  
H22  
H23  
H24  
A1  
A2  
G
IRQ4  
External interrupt request  
I/O  
I/O  
I
GPIO454  
ETPUC14  
IRQ5  
GPIO  
P
455 ETPUC14_4_IRQ5_  
GPIO455  
eTPU C channel  
A1  
A2  
G
External interrupt request  
I/O  
I/O  
I/O  
I/O  
O
GPIO455  
ETPUC15  
GPIO  
P
456 ETPUC15__  
GPIO456  
eTPU C channel  
A1  
A2  
G
GPIO456  
ETPUC16  
FR_A_TX  
GPIO  
P
457 ETPUC16_FR_A_TX_  
GPIO457  
eTPU C channel  
A1  
A2  
G
FlexRay A transfer  
I/O  
I/O  
I
GPIO457  
ETPUC17  
FR_A_RX  
GPIO  
P
458 ETPUC17_FR_A_RX_  
GPIO458  
eTPU C channel  
A1  
A2  
G
FlexRay A receive  
I/O  
I/O  
O
GPIO458  
ETPUC18  
FR_A_TX_EN  
GPIO  
P
459 ETPUC18_FR_A_TX_EN_  
GPIO459  
eTPU C channel  
A1  
A2  
G
FlexRay A transfer enable  
I/O  
GPIO459  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
460 ETPUC19_TXDA_  
GPIO460  
ETPUC19  
eTPU C channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
J23  
J24  
J25  
J26  
K23  
H21  
H25  
H26  
J22  
J23  
A1  
A2  
G
TXDA  
eSCI A transmit  
I/O  
I/O  
I
GPIO460  
ETPUC20  
RXDA  
GPIO  
P
461 ETPUC20_RXDA _  
GPIO461  
eTPU C channel  
eSCI A receive  
A1  
A2  
G
I/O  
I/O  
O
GPIO461  
ETPUC21  
TXDB  
GPIO  
P
462 ETPUC21_TXDB_  
GPIO462  
eTPU C channel  
eSCI B transmit  
A1  
A2  
G
I/O  
I/O  
I
GPIO462  
ETPUC22  
RXDB  
GPIO  
P
463 ETPUC22_RXDB_  
GPIO463  
eTPU C channel  
eSCI B receive  
A1  
A2  
G
I/O  
I/O  
O
GPIO463  
ETPUC23  
PCSD5  
MAA0  
GPIO  
P
464 ETPUC23_PCSD5_  
GPIO464  
eTPU C channel  
DSPI D peripheral chip select  
ADC A Mux Address 0  
ADC B Mux Address 0  
GPIO  
A1  
A2  
A3  
G
O
MAB0  
O
GPIO464  
ETPUC24  
PCSD4  
MAA1  
I/O  
I/O  
O
P
465 ETPUC24_PCSD4_  
GPIO465  
eTPU C channel  
DSPI D peripheral chip select  
ADC A Mux Address 1  
ADC B Mux Address 1  
GPIO  
MH  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
K24  
J24  
A1  
A2  
A4  
G
O
MAB1  
O
GPIO465  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
466 ETPUC25_PCSD3_  
GPIO466  
ETPUC25  
eTPU C channel  
I/O  
O
MH  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
K25  
K21  
A1  
A2  
A3  
G
PCSD3  
MAA2  
DSPI D peripheral chip select  
ADC A Mux Address 2  
O
MAB2  
ADC B Mux Address 2  
O
GPIO466  
ETPUC26  
PCSD2  
GPIO  
I/O  
I/O  
O
P
467 ETPUC26_PCSD2_  
GPIO467  
eTPU C channel  
MH  
MH  
MH  
MH  
MH  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
K26  
L23  
L24  
L25  
L26  
J25  
J26  
K22  
K23  
K24  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO467  
ETPUC27  
PCSD1  
GPIO  
I/O  
I/O  
O
P
468 ETPUC27_PCSD1_  
GPIO468  
eTPU C channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO468  
ETPUC28  
PCSD0  
GPIO  
I/O  
I/O  
O
P
469 ETPUC28_PCSD0_  
GPIO469  
eTPU C channel  
A1  
A2  
G
DSPI D peripheral chip select  
GPIO469  
ETPUC29  
SCKD  
GPIO  
I/O  
I/O  
I/O  
P
470 ETPUC29_SCKD_  
GPIO470  
eTPU C channel  
DSPI D clock  
A1  
A2  
G
GPIO470  
ETPUC30  
SOUTD  
GPIO  
I/O  
I/O  
O
P
471 ETPUC30_SOUTD_  
GPIO471  
eTPU C channel  
DSPI D data output  
A1  
A2  
G
GPIO471  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
472 ETPUC31_SIND_  
ETPUC31  
eTPU C channel  
I/O  
I
MH  
VDDEH7  
—/WKPCFG  
—/WKPCFG  
M23  
K25  
GPIO472  
A1  
A2  
G
SIND  
DSPI D data input  
I/O  
GPIO472  
GPIO  
eMIOS  
P
179 EMIOS0_ETPUA0_  
GPIO179  
EMIOS0  
ETPUA0  
eMIOS channel  
eTPU A channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AE10 AC13  
—/WKPCFG AF10 AB13  
—/WKPCFG AD11 AD13  
—/WKPCFG AE11 AE13  
—/WKPCFG AF11 AF13  
A1  
A2  
G
GPIO179  
EMIOS1  
ETPUA1  
GPIO  
I/O  
I/O  
O
P
180 EMIOS1_ETPUA1_  
GPIO180  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO180  
EMIOS2  
ETPUA2  
GPIO  
I/O  
I/O  
O
P
181 EMIOS2_ETPUA2_  
GPIO181  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO181  
EMIOS3  
ETPUA3  
GPIO  
I/O  
I/O  
O
P
182 EMIOS3_ETPUA3_  
GPIO182  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO182  
EMIOS4  
ETPUA4  
GPIO  
I/O  
I/O  
O
P
183 EMIOS4_ETPUA4_  
GPIO183  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO183  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
184 EMIOS5_ETPUA5_  
GPIO184  
EMIOS5  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AD12 AF14  
—/WKPCFG AE12 AE14  
—/WKPCFG AF12 AD14  
—/WKPCFG AC13 AC14  
—/WKPCFG AD13 AF15  
—/WKPCFG AE13 AE15  
A1  
A2  
G
ETPUA5  
eTPU A channel  
GPIO184  
EMIOS6  
ETPUA6  
GPIO  
I/O  
I/O  
O
P
185 EMIOS6_ETPUA6_  
GPIO185  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO185  
EMIOS7  
ETPUA7  
GPIO  
I/O  
I/O  
O
P
186 EMIOS7_ETPUA7_  
GPIO186  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO186  
EMIOS8  
ETPUA8  
GPIO  
I/O  
I/O  
O
P
187 EMIOS8_ETPUA8_  
GPIO187  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO187  
EMIOS9  
ETPUA9  
GPIO  
I/O  
I/O  
O
P
188 EMIOS9_ETPUA9_  
GPIO188  
eMIOS channel  
eTPU A channel  
A1  
A2  
G
GPIO188  
EMIOS10  
SCKD  
GPIO  
I/O  
I/O  
O
P
189 EMIOS10_SCKD_  
GPIO189  
eMIOS channel  
DSPI D clock  
A1  
A2  
G
GPIO189  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
190 EMIOS11_SIND_  
EMIOS11  
eMIOS channel  
I/O  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AF13 AB14  
—/WKPCFG AF14 AD15  
—/WKPCFG AE14 AC15  
—/WKPCFG AC14 AF17  
—/WKPCFG AD14 AE16  
—/WKPCFG AF15 AD16  
GPIO190  
A1  
A2  
G
SIND  
DSPI D data input  
I/O  
O
GPIO190  
EMIOS12  
SOUTC  
GPIO  
P
191 EMIOS12_SOUTC_  
GPIO191  
eMIOS channel  
DSPI C data output  
A1  
A2  
G
O
I/O  
O
GPIO191  
EMIOS13  
SOUTD  
GPIO  
P
192 EMIOS13_SOUTD_  
GPIO192  
eMIOS channel  
DSPI D data output  
A1  
A2  
G
O
I/O  
O
GPIO192  
EMIOS14  
IRQ0  
GPIO  
P
193 EMIOS14_IRQ0_  
GPIO193  
eMIOS channel  
External interrupt request  
FlexCAN D transmit  
GPIO  
A1  
A2  
G
I
CNTXD  
GPIO193  
EMIOS15  
IRQ1  
O
I/O  
O
P
194 EMIOS15_IRQ1_  
GPIO194  
eMIOS channel  
External interrupt request  
FlexCAN D receive  
GPIO  
A1  
A2  
G
I
CNRXD  
GPIO194  
EMIOS16  
ETPUB0  
FR_DBG[3]  
GPIO195  
I
I/O  
I/O  
O
P
195 EMIOS16_ETPUB0_  
GPIO195  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
196 EMIOS17_ETPUB1_  
GPIO196  
EMIOS17  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AE15 AB15  
—/WKPCFG AC15 AD17  
—/WKPCFG AD15 AB16  
—/WKPCFG AF16 AF16  
—/WKPCFG AE16 AE17  
—/WKPCFG AC16 AC16  
A1  
A2  
G
ETPUB1  
FR_DBG[2]  
GPIO196  
EMIOS18  
ETPUB2  
FR_DBG[1]  
GPIO197  
EMIOS19  
ETPUB3  
FR_DBG[0]  
GPIO198  
EMIOS20  
ETPUB4  
eTPU B channel  
FlexRay debug  
GPIO  
O
I/O  
I/O  
O
P
197 EMIOS18_ETPUB2_  
GPIO197  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
I/O  
O
P
198 EMIOS19_ETPUB3_  
GPIO198  
eMIOS channel  
eTPU B channel  
FlexRay debug  
GPIO  
A1  
A2  
G
O
I/O  
I/O  
O
P
199 EMIOS20_ETPUB4_  
GPIO199  
eMIOS channel  
eTPU B channel  
A1  
A2  
G
I/O  
I/O  
O
GPIO199  
EMIOS21  
ETPUB5  
GPIO  
P
200 EMIOS21_ETPUB5_  
GPIO200  
eMIOS channel  
eTPU B channel  
A1  
A2  
G
I/O  
I/O  
O
GPIO200  
EMIOS22  
ETPUB6  
GPIO  
P
201 EMIOS22_ETPUB6_  
GPIO201  
eMIOS channel  
eTPU B channel  
A1  
A2  
G
I/O  
GPIO201  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
202 EMIOS23_ETPUB7_  
GPIO202  
EMIOS23  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AD16 AA16  
—/WKPCFG AF17 AC17  
—/WKPCFG AE17 AF18  
—/WKPCFG AD17 AE18  
—/WKPCFG AC17 AD18  
—/WKPCFG AF18 AC18  
A1  
A2  
G
ETPUB7  
eTPU B channel  
GPIO202  
EMIOS24  
PCSB0  
GPIO  
I/O  
I/O  
I/O  
P
203 EMIOS24_PCSB0_  
GPIO203  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO203  
EMIOS25  
PCSB1  
GPIO  
I/O  
I/O  
O
P
204 EMIOS25_PCSB1_  
GPIO204  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO204  
EMIOS26  
PCSB2  
GPIO  
I/O  
I/O  
O
P
432 EMIOS26_PCSB2_  
GPIO432  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO432  
EMIOS27  
PCSB3  
GPIO  
I/O  
I/O  
O
P
433 EMIOS27_PCSB3_  
GPIO433  
eMIOS channel  
A1  
A2  
G
DSPI B peripheral chip select  
GPIO433  
EMIOS28  
PCSC0  
GPIO  
I/O  
I/O  
I/O  
P
434 EMIOS28_PCSC0_  
GPIO434  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO434  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
435 EMIOS29_PCSC1_  
GPIO435  
EMIOS29  
eMIOS channel  
I/O  
O
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG  
—/WKPCFG AE18 AB17  
—/WKPCFG AD18 AF19  
—/WKPCFG AC18 AA17  
A1  
A2  
G
PCSC1  
DSPI C peripheral chip select  
GPIO435  
EMIOS30  
PCSC2  
GPIO  
I/O  
I/O  
O
P
436 EMIOS30_PCSC2_  
GPIO436  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO436  
EMIOS31  
PCSC5  
GPIO  
I/O  
I/O  
O
P
437 EMIOS31_PCSC5_  
GPIO437  
eMIOS channel  
A1  
A2  
G
DSPI C peripheral chip select  
GPIO437  
GPIO  
I/O  
eQADC  
ANA09  
ANA19  
ANA29  
ANA39  
ANA49  
ANA59  
ANA69  
ANA79  
eQADC A shared analog input  
I
I
I
I
I
I
I
I
AE/up- VDDA_A1  
down  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
A4  
B5  
C5  
D6  
A5  
B6  
C6  
D7  
A4  
B5  
C5  
D6  
A5  
B6  
C6  
C7  
P
P
P
P
P
P
P
P
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
eQADC A shared analog input  
eQADC A shared analog input  
eQADC A shared analog input  
eQADC A shared analog input  
eQADC A shared analog input  
eQADC A shared analog input  
eQADC A shared analog input  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
AE/up- VDDA_A1  
down  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
ANA8  
ANA9  
ANA8  
eQADC A analog input  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A1  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_A0  
VDDA_B1  
VDDA_B1  
VDDA_B1  
VDDA_B0  
VDDA_B0  
ANA8  
ANA9  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
ANA8  
ANA9  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
A6  
C7  
D7  
A6  
ANA9  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC A analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
ANA10  
ANA11  
ANA12  
ANA13  
ANA14  
ANA15  
ANA16  
ANA17  
ANA18  
ANA19  
ANA20  
ANA21  
ANA22  
ANA23  
AN24  
B7  
B7  
A7  
A7  
D8  
D8  
C8  
C8  
B8  
B8  
A8  
A8  
D9  
D9  
C9  
C9  
D10  
C10  
D11  
C11  
D12  
C12  
B12  
D13  
C13  
B13  
A13  
B14  
C14  
D14  
A14  
B15  
C15  
D10  
C10  
D11  
C11  
C12  
D12  
B12  
C13  
D13  
B13  
A13  
A14  
B14  
C14  
B15  
D14  
C15  
AN25  
AN25  
AN25  
AN25  
AN26  
AN26  
AN26  
AN26  
AN27  
AN27  
AN27  
AN27  
AN28  
AN28  
AN28  
AN28  
AN29  
AN29  
AN29  
AN29  
AN30  
AN30  
AN30  
AN30  
AN31  
AN31  
AN31  
AN31  
AN32  
AN32  
AN32  
AN32  
AN33  
AN33  
AN33  
AN33  
AN34  
AN34  
AN34  
AN34  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
AN35  
eQADC analog input  
I
I
I
I
I
I
AE  
AE  
AE  
AE  
AE  
VDDA_B0  
VDDA_B1  
VDDA_B0  
VDDA_B0  
VDDA_B0  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
AN35  
AN36  
AN37  
AN38  
AN39  
ANB0  
D15  
A15  
C16  
C17  
D16  
C18  
D15  
A15  
C17  
D16  
C16  
C18  
AN36  
AN37  
AN38  
AN39  
ANB0  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC analog input  
eQADC B shared analog input  
AE/up- VDDA_B0  
down  
P
P
P
P
P
P
P
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
eQADC B shared analog input  
eQADC B shared analog input  
eQADC B shared analog input  
eQADC B shared analog input  
eQADC B shared analog input  
eQADC B shared analog input  
eQADC B shared analog input  
I
I
I
I
I
I
I
AE/up- VDDA_B0  
down  
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
D17  
D18  
D19  
C19  
C20  
B19  
A20  
D17  
D18  
D19  
B19  
A20  
C20  
C19  
AE/up- VDDA_B0  
down  
AE/up- VDDA_B0  
down  
AE/up- VDDA_B0  
down  
AE/up- VDDA_B0  
down  
AE/up- VDDA_B0  
down  
AE/up- VDDA_B0  
down  
P
P
P
P
P
P
P
P
P
ANB8  
ANB9  
ANB8  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
eQADC B analog input  
I
I
I
I
I
I
I
I
I
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
AE  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
ANB8  
ANB9  
ANB8  
ANB9  
B20  
D20  
B21  
A21  
C21  
D21  
A22  
B22  
C22  
B20  
A21  
B21  
C21  
A22  
B22  
D20  
C22  
D21  
ANB9  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
ANB10  
ANB11  
ANB12  
ANB13  
ANB14  
ANB15  
ANB16  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
ANB17  
ANB17  
eQADC B analog input  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AE  
AE  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VDDA_B0  
VRH_A  
ANB17  
ANB18  
ANB17  
ANB18  
A23  
B23  
C23  
D22  
A24  
B24  
A25  
A12  
A11  
A19  
A18  
B18  
B11  
A9  
D22  
A23  
B23  
C23  
A24  
B24  
E20  
A12  
A11  
A19  
A18  
B18  
B11  
A9  
ANB18  
ANB18  
eQADC B analog input  
ANB19  
ANB19  
eQADC B analog input  
AE  
ANB19  
ANB19  
ANB20  
ANB20  
eQADC B analog input  
AE  
ANB20  
ANB20  
ANB21  
ANB21  
eQADC B analog input  
AE  
ANB21  
ANB21  
ANB22  
ANB22  
eQADC B analog input  
AE  
ANB22  
ANB22  
ANB23  
ANB23  
eQADC B analog input  
AE  
ANB23  
ANB23  
VRH_A  
VRH_A  
ADC A Voltage reference high  
ADC A Voltage reference low  
ADC B Voltage reference high  
ADC B Voltage reference low  
ADC B Reference bypass capacitor  
ADC A Reference bypass capacitor  
Internal logic supply input  
Internal logic supply input  
ADC A Reference bypass capacitor  
Ground  
VDDINT  
VSSINT  
VDDINT  
VSSINT  
AE  
VRH_A  
VRH_A  
VRL_A  
VRL_A  
VRL_A  
VRL_A  
VRL_A  
VRH_B  
VRH_B  
VRH_B  
VRH_B  
VRH_B  
VRL_B  
VRL_B  
VRL_B  
VRL_B  
VRL_B  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
REFBYPCA1  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
REFBYPCB1  
REFBYPCB  
REFBYPCA  
VDDA_A  
VDDA_A  
REFBYPCA1  
VSSA_A  
VDDA_B  
VDDA_B  
VSSA_B  
REFBYPCB1  
VDDA_B0  
VDDA_A1  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
REFBYPCB  
REFBYPCA  
VDDA_A0  
VDDA_A1  
AE  
VDDE VDDA_A0  
VDDE VDDA_A1  
B9  
B9  
AE  
VDDA_A1 REFBYPCA1 REFBYPCA1  
A10  
B10  
A16  
B16  
B17  
A17  
A10  
B10  
A16  
B16  
B17  
A17  
VSSE  
VSSA_A1  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
VSSA_A1  
VDDA_B0  
VDDA_B1  
VSSA_B0  
Internal logic supply input  
Internal logic supply input  
Ground  
VDDE VDDA_B0  
VDDE VDDA_B1  
VSSE  
AE  
VSSA_B0  
ADC B Reference bypass capacitor  
VDDA_B0 REFBYPCB1 REFBYPCB1  
FlexRay  
P
248 FR_A_TX_  
GPIO248  
FR_A_TX  
FlexRay A transfer  
O
I/O  
FS  
VDDE2  
—/Up  
—/Up  
AD4  
AD4  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
GPIO248  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
249 FR_A_RX_  
FR_A_RX  
FlexRay A receive  
I
FS  
FS  
FS  
FS  
FS  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
—/Up  
—/Up  
AE3  
AF3  
AD5  
AE4  
AF4  
AE3  
AF3  
AD5  
AE4  
AF4  
GPIO249  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
I/O  
O
GPIO249  
GPIO  
P
250 FR_A_TX_EN_  
GPIO250  
FR_A_TX_EN  
FlexRay A transfer enable  
—/Up  
—/Up  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
I/O  
O
GPIO250  
FR_B_TX  
GPIO  
P
251 FR_B_TX_  
GPIO251  
FlexRay B transfer  
—/Up  
—/Up  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
I/O  
I
GPIO251  
FR_B_RX  
GPIO  
P
252 FR_B_RX_  
GPIO252  
FlexRay B receive  
—/Up  
—/Up  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
I/O  
O
GPIO252  
FR_B_TX_EN  
GPIO  
P
253 FR_B_TX_EN_  
GPIO253  
FlexRay B transfer enable  
—/Up  
—/Up  
(–/– for Rev.1 (–/– for Rev.1  
of the device) of the device)  
A1  
A2  
G
I/O  
GPIO253  
GPIO  
FlexCAN  
P
83 CNTXA_TXDA_  
GPIO83  
CNTXA  
TXDA  
FlexCAN A transmit  
O
O
MH  
VDDEH4  
—/Up  
—/Up  
AF19 AE19  
A1  
A2  
G
eSCI A transmit  
I/O  
GPIO83  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
84 CNRXA_RXDA_  
CNRXA  
FlexCAN A receive  
I
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE19 AD19  
AD19 AC19  
AC19 AA19  
AF20 AF20  
AE20 AE20  
AD20 AD20  
GPIO84  
A1  
A2  
G
RXDA  
eSCI A receive  
I
I/O  
O
GPIO84  
CNTXB  
PCSC3  
GPIO  
P
85 CNTXB_PCSC3_  
GPIO85  
FlexCAN B transmit  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
I
GPIO85  
CNRXB  
PCSC4  
GPIO  
P
86 CNRXB_PCSC4_  
GPIO86  
FlexCAN B receive  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
O
GPIO86  
CNTXC  
PCSD3  
GPIO  
P
87 CNTXC_PCSD3_  
GPIO87  
FlexCAN C transmit  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
I
GPIO87  
CNRXC  
PCSD4  
GPIO  
P
88 CNRXC_PCSD4_  
GPIO88  
FlexCAN C receive  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
O
GPIO88  
CNTXD  
GPIO  
P
246 CNTXD_  
GPIO246  
FlexCAN D transmit  
A1  
A2  
G
I/O  
GPIO246  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
247 CNRXD_  
CNRXD  
FlexCAN D receive  
I
MH  
VDDEH4  
—/Up  
—/Up  
AC20 AC20  
GPIO247  
A1  
A2  
G
I/O  
GPIO247  
GPIO  
eSCI  
P
89 TXDA_  
GPIO89  
TXDA  
eSCI A transmit  
O
I/O  
I
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
M2  
M3  
P1  
N1  
K2  
K3  
K1  
L5  
A1  
A2  
G
GPIO89  
RXDA  
GPIO  
P
90 RXDA _  
GPIO90  
eSCI A receive  
A1  
A2  
G
I
GPIO90  
TXDB  
PCSD1  
GPIO  
P
91 TXDB_PCSD1_  
GPIO91  
eSCI B transmit  
O
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
I
GPIO91  
RXDB  
PCSD5  
GPIO  
P
92 RXDB_PCSD5_  
GPIO92  
eSCI B receive  
A1  
A2  
G
DSPI D peripheral chip select  
O
I/O  
O
GPIO92  
TXDC  
ETRIG0  
GPIO  
P
244 TXDC_ETRIG0_  
GPIO244  
eSCI C transmit  
AF23 AF23  
A1  
A2  
G
eQADC trigger input  
I
I/O  
GPIO244  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
245 RXDC_  
RXDC  
eSCI C receive  
I
MH  
VDDEH5  
—/Up  
—/Up  
AD22 AD22  
GPIO245  
A1  
A2  
G
I/O  
GPIO245  
GPIO  
DSPI  
P
93 SCKA_PCSC1_  
GPIO93  
SCKA  
PCSC1  
DSPI A clock  
I/O  
O
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AD8  
AF7  
AD7  
AE6  
AC6  
AB8  
AE7  
AC7  
AD6  
AC6  
A1  
A2  
G
DSPI C peripheral chip select  
I/O  
I
GPIO93  
SINA  
GPIO  
P
94 SINA_PCSC2_  
GPIO94  
DSPI A data input  
A1  
A2  
G
PCSC2  
DSPI C peripheral chip select  
O
I/O  
O
GPIO94  
SOUTA  
PCSC5  
GPIO  
P
95 SOUTA_PCSC5_  
GPIO95  
DSPI A data output  
A1  
A2  
G
DSPI C peripheral chip select  
O
I/O  
I/O  
O
GPIO95  
PCSA0  
PCSD2  
GPIO  
P
96 PCSA0_PCSD2_  
GPIO96  
DSPI A peripheral chip select  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
O
GPIO96  
PCSA1  
GPIO  
P
97 PCSA1_  
DSPI A peripheral chip select  
PCSE0_GPIO97  
A1  
A2  
G
DSPI E peripheral chip select  
GPIO97  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
98 PCSA2_  
SOUTE_GPIO98  
PCSA2  
DSPI A peripheral chip select  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AC7  
AE7  
AE5  
AD6  
AE8  
AE9  
AF6  
AD7  
AE5  
AA8  
AC8  
AB9  
A1  
A2  
G
DSPI E data output  
I/O  
O
GPIO98  
PCSA3  
GPIO  
P
99 PCSA3_  
SINE_GPIO99  
DSPI A peripheral chip select  
A1  
A2  
G
DSPI E data input  
I/O  
O
GPIO99  
PCSA4  
GPIO  
P
100 PCSA4_  
SCKE_GPIO100  
DSPI A peripheral chip select  
A1  
A2  
G
DSPI E clock  
I/O  
O
GPIO100  
PCSA5  
ETRIG1  
GPIO  
P
101 PCSA5_ETRIG1_  
GPIO101  
DSPI A peripheral chip select  
A1  
A2  
G
eQADC trigger input  
I
I/O  
I/O  
I/O  
I
GPIO101  
SCKB  
GPIO  
P
102 SCKB_  
GPIO102  
DSPI B clock  
A1  
A2  
G
GPIO102  
SINB  
GPIO  
P
103 SINB_  
GPIO103  
DSPI B data input  
A1  
A2  
G
I/O  
GPIO103  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
104 SOUTB_  
SOUTB  
DSPI B data output  
O
I/O  
I/O  
O
MH  
MH  
MH  
MH  
MH  
MH  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
VDDEH3  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AF9 AA10  
GPIO104  
A1  
A2  
G
GPIO104  
PCSB0  
PCSD2  
GPIO  
P
105 PCSB0_PCSD2_  
GPIO105  
DSPI B peripheral chip select  
AD9  
AC9  
AF8  
AF8  
AE8  
AD8  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
O
GPIO105  
PCSB1  
PCSD0  
GPIO  
P
106 PCSB1_PCSD0_  
GPIO106  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI D peripheral chip select  
I/O  
I/O  
O
GPIO106  
PCSB2  
SOUTC  
GPIO  
P
107 PCSB2_SOUTC_  
GPIO107  
DSPI B peripheral chip select  
A1  
A2  
G
DSPI C data output  
O
I/O  
O
GPIO107  
PCSB3  
SINC  
GPIO  
P
108 PCSB3_SINC_  
GPIO108  
DSPI B peripheral chip select  
AD10 AC9  
A1  
A2  
G
DSPI C data input  
I
I/O  
O
GPIO108  
PCSB4  
SCKC  
GPIO  
P
109 PCSB4_SCKC_  
GPIO109  
DSPI B peripheral chip select  
AC8  
AF7  
A1  
A2  
G
DSPI C clock  
I/O  
I/O  
GPIO109  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
110 PCSB5_PCSC0_  
PCSB5  
DSPI B peripheral chip select  
O
I/O  
MH  
VDDEH3  
—/Up  
—/Up  
AF6  
AE6  
GPIO110  
A1  
A2  
G
PCSC0  
DSPI C peripheral chip select  
GPIO110  
SCKC  
GPIO  
I/O  
I/O  
O
P
235 SCKC_SCK_C_LVDSP_  
GPIO235  
DSPI C clock  
MH+  
LVDS  
VDDEH4  
—/Up  
—/Up  
AD21 AD21  
AE22 AE22  
AF21 AF21  
AE21 AE21  
AC22 AC22  
A1  
SCK_C_LVDSP  
LVDS+ downstream signal positive  
output clock  
A2  
G
I/O  
I
GPIO235  
SINC  
GPIO  
P
236 SINC_SCK_C_LVDSM_  
GPIO236  
DSPI C data input  
MH+  
LVDS  
VDDEH4  
VDDEH4  
VDDEH4  
VDDEH4  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
A1  
SCK_C_LVDSM  
LVDS– downstream signal negative  
output clock  
O
A2  
G
I/O  
O
GPIO236  
SOUTC  
GPIO  
P
237 SOUTC_SOUT_C_LVDSP_  
GPIO237  
DSPI C data output  
MH+  
LVDS  
A1  
SOUT_C_LVDSP  
LVDS+ downstream signal positive  
output data  
O
A2  
G
I/O  
I/O  
O
GPIO237  
PCSC0  
GPIO  
P
238 PCSC0_SOUT_C_LVDSM_  
GPIO238  
DSPI C peripheral chip select  
MH+  
LVDS  
A1  
SOUT_C_LVDSM  
LVDS– downstream signal negative  
output data  
A2  
G
I/O  
O
GPIO238  
PCSC1  
GPIO  
P
239 PCSC1_  
GPIO239  
DSPI C peripheral chip select  
MH  
A1  
A2  
G
GPIO239  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
240 PCSC2_GPIO240  
PCSC2  
DSPI C peripheral chip select  
O
I/O  
O
MH  
MH  
MH  
MH  
VDDEH5  
VDDEH5  
VDDEH5  
VDDEH5  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE23 AE23  
AD23 AD23  
AF24 AF24  
AE24 AE24  
A1  
A2  
G
GPIO240  
PCSC3  
GPIO  
P
241 PCSC3_GPIO241  
242 PCSC4_GPIO242  
243 PCSC5_GPIO243  
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO241  
PCSC4  
GPIO  
P
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
O
GPIO242  
PCSC5  
GPIO  
P
DSPI C peripheral chip select  
A1  
A2  
G
I/O  
GPIO243  
GPIO  
EBI  
P
256 D_CS0_  
GPIO256  
D_CS0  
EBI chip select 0  
O
F
F
VDDE9  
—/Up  
—/Up  
—/Up  
—/Up  
AD9  
U1  
A1  
A2  
G
GPIO256  
D_CS2  
D_ADD_DAT31  
GPIO  
I/O  
O
P
257 D_CS2_D_ADD_DAT31_  
GPIO257  
EBI chip select 2  
VDDE8  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO257  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
258 D_CS3_D_TEA_  
D_CS3  
EBI chip select 3  
O
I/O  
I/O  
O
F
F
F
F
F
F
VDDE8  
VDDE8  
VDDE8  
VDDE8  
VDDE8  
VDDE8  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
T6  
R1  
R2  
R3  
R4  
R5  
GPIO258  
A1  
A2  
G
D_TEA  
EBI transfer error acknowledge  
GPIO258  
D_ADD12  
GPIO  
P
259 D_ADD12_  
GPIO259  
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO259  
D_ADD13  
GPIO  
P
260 D_ADD13_  
GPIO260  
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO260  
D_ADD14  
GPIO  
P
261 D_ADD14_  
GPIO261  
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO261  
D_ADD15  
GPIO  
P
262 D_ADD15_  
GPIO262  
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO262  
D_ADD16  
D_ADD_DAT16  
GPIO  
P
263 D_ADD16_D_ADD_DAT16_  
GPIO263  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
I/O  
GPIO263  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
264 D_ADD17_D_ADD_DAT17_  
GPIO264  
D_ADD17  
EBI address bus  
O
I/O  
F
F
F
F
F
F
VDDE8  
VDDE8  
VDDE8  
VDDE8  
VDDE9  
VDDE9  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
T5  
T2  
A1  
A2  
G
D_ADD_DAT17  
Address and data in mux mode.  
GPIO264  
D_ADD18  
D_ADD_DAT18  
GPIO  
I/O  
O
P
265 D_ADD18_D_ADD_DAT18_  
GPIO265  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO265  
D_ADD19  
D_ADD_DAT19  
GPIO  
I/O  
O
P
266 D_ADD19_D_ADD_DAT19_  
GPIO266  
EBI address bus  
T3  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO266  
D_ADD20  
D_ADD_DAT20  
GPIO  
I/O  
O
P
267 D_ADD20_D_ADD_DAT20_  
GPIO267  
EBI address bus  
T4  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO267  
D_ADD21  
D_ADD_DAT21  
GPIO  
I/O  
O
P
268 D_ADD21_D_ADD_DAT21_  
GPIO268  
EBI address bus  
AB11  
AD10  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO268  
D_ADD22  
D_ADD_DAT22  
GPIO  
I/O  
O
P
269 D_ADD22_D_ADD_DAT22_  
GPIO269  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO269  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
270 D_ADD23_D_ADD_DAT23_  
GPIO270  
D_ADD23  
EBI address bus  
O
I/O  
F
F
F
F
F
F
VDDE9  
VDDE9  
VDDE9  
VDDE9  
VDDE9  
VDDE9  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE10  
A1  
A2  
G
D_ADD_DAT23  
Address and data in mux mode.  
GPIO270  
D_ADD24  
D_ADD_DAT24  
GPIO  
I/O  
O
P
271 D_ADD24_D_ADD_DAT24_  
GPIO271  
EBI address bus  
AF10  
AD11  
AE11  
AF11  
AD12  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO271  
D_ADD25  
D_ADD_DAT25  
GPIO  
I/O  
O
P
272 D_ADD25_D_ADD_DAT25_  
GPIO272  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO272  
D_ADD26  
D_ADD_DAT26  
GPIO  
I/O  
O
P
273 D_ADD26_D_ADD_DAT26_  
GPIO273  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO273  
D_ADD27  
D_ADD_DAT27  
GPIO  
I/O  
O
P
274 D_ADD27_D_ADD_DAT27_  
GPIO274  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO274  
D_ADD28  
D_ADD_DAT28  
GPIO  
I/O  
O
P
275 D_ADD28_D_ADD_DAT28_  
GPIO275  
EBI address bus  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO275  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
276 D_ADD29_D_ADD_DAT29_  
GPIO276  
D_ADD29  
EBI address bus  
O
F
F
F
VDDE9  
VDDE9  
VDDE10  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AB12  
A1  
A2  
G
D_ADD_DAT29  
Address and data in mux mode.  
I/O  
GPIO276  
D_ADD30  
D_ADD_DAT30  
GPIO  
I/O  
O
P
277 D_ADD30_D_ADD_DAT30_  
GPIO277  
EBI address bus  
AE12  
P25  
A1  
A2  
G
Address and data in mux mode.  
I/O  
GPIO277  
D_ADD_DAT0  
GPIO  
I/O  
I/O  
P
278 D_ADD_DAT0_  
GPIO278  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO278  
D_ADD_DAT1  
GPIO  
I/O  
I/O  
P
279 D_ADD_DAT1_  
GPIO279  
EBI data only in non-mux mode.  
Address and data in mux mode.  
F
F
F
VDDE10  
VDDE10  
VDDE10  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
P26  
N24  
N25  
A1  
A2  
G
GPIO279  
D_ADD_DAT2  
GPIO  
I/O  
I/O  
P
280 D_ADD_DAT2_  
GPIO280  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO280  
D_ADD_DAT3  
GPIO  
I/O  
I/O  
P
281 D_ADD_DAT3_  
GPIO281  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO281  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
282 D_ADD_DAT4_  
D_ADD_DAT4  
EBI data only in non-mux mode.  
Address and data in mux mode.  
I/O  
F
F
F
F
F
VDDE10  
VDDE10  
VDDE10  
VDDE10  
VDDE10  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
N26  
M25  
N22  
M24  
M23  
GPIO282  
A1  
A2  
G
GPIO282  
D_ADD_DAT5  
GPIO  
I/O  
I/O  
P
283 D_ADD_DAT5_  
GPIO283  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO283  
D_ADD_DAT6  
GPIO  
I/O  
I/O  
P
284 D_ADD_DAT6_  
GPIO284  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO284  
D_ADD_DAT7  
GPIO  
I/O  
I/O  
P
285 D_ADD_DAT7_  
GPIO285  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO285  
D_ADD_DAT8  
GPIO  
I/O  
I/O  
P
286 D_ADD_DAT8_  
GPIO286  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO286  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
287 D_ADD_DAT9_  
D_ADD_DAT9  
EBI data only in non-mux mode.  
Address and data in mux mode.  
I/O  
F
F
F
F
F
VDDE10  
VDDE10  
VDDE10  
VDDE10  
VDDE10  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
M22  
L26  
L25  
L24  
L23  
GPIO287  
A1  
A2  
G
GPIO287  
D_ADD_DAT10  
GPIO  
I/O  
I/O  
P
288 D_ADD_DAT10_  
GPIO288  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO288  
D_ADD_DAT11  
GPIO  
I/O  
I/O  
P
289 D_ADD_DAT11_  
GPIO289  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO289  
D_ADD_DAT12  
GPIO  
I/O  
I/O  
P
290 D_ADD_DAT12_  
GPIO290  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO290  
D_ADD_DAT13  
GPIO  
I/O  
I/O  
P
291 D_ADD_DAT13  
_GPIO291  
EBI data only in non-mux mode.  
Address and data in mux mode.  
A1  
A2  
G
GPIO291  
GPIO  
I/O  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
292 D_ADD_DAT14_GPIO292  
D_ADD_DAT14  
EBI data only in non-mux mode.  
Address and data in mux mode.  
I/O  
F
F
VDDE10  
—/Up  
—/Up  
L22  
A1  
A2  
G
GPIO292  
D_ADD_DAT15  
GPIO  
I/O  
I/O  
P
293 D_ADD_DAT15_GPIO293  
EBI data only in non-mux mode.  
Address and data in mux mode.  
VDDE10  
—/Up  
—/Up  
K26  
A1  
A2  
G
I/O  
O
GPIO293  
D_RD_WR  
GPIO  
P
294 D_RD_WR_GPIO294  
295 D_WE0_GPIO295  
296 D_WE1_GPIO296  
297 D_OE_GPIO297  
EBI read/write  
F
F
F
F
VDDE10  
VDDE8  
VDDE8  
VDDE10  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
R26  
N1  
A1  
A2  
G
I/O  
O
GPIO294  
D_WE0  
GPIO  
P
EBI write enable  
A1  
A2  
G
I/O  
O
GPIO295  
D_WE1  
GPIO  
P
EBI write enable  
P5  
A1  
A2  
G
I/O  
O
GPIO296  
D_OE  
GPIO  
P
EBI output enable  
P23  
A1  
A2  
G
I/O  
GPIO297  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
298 D_TS_GPIO298  
D_TS  
EBI transfer start  
O
I/O  
O
F
F
F
F
F
F
VDDE9  
VDDE10  
VDDE9  
VDDE9  
VDDE8  
VDDE8  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
AE9  
P24  
AF9  
AB10  
M2  
A1  
A2  
G
GPIO298  
D_ALE  
GPIO  
P
299 D_ALE_GPIO299  
300 D_TA_GPIO300  
301 D_CS1_GPIO301  
302 D_BDIP_GPIO302  
303 D_WE2_GPIO303  
EBI Address Latch Enable  
A1  
A2  
G
I/O  
I/O  
I/O  
O
GPIO299  
D_TA  
GPIO  
P
EBI transfer acknowledge  
A1  
A2  
G
GPIO300  
D_CS1  
GPIO  
P
EBI chip select  
A1  
A2  
G
I/O  
O
GPIO301  
D_BDIP  
GPIO  
P
EBI burst data in progress  
A1  
A2  
G
I/O  
O
GPIO302  
D_WE2  
GPIO  
P
EBI write enable  
N2  
A1  
A2  
G
I/O  
GPIO303  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
304 D_WE3_GPIO304  
D_WE3  
EBI write enable  
O
I/O  
O
F
F
F
F
VDDE8  
VDDE8  
VDDE8  
VDDE8  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
—/Up  
N3  
P1  
P2  
P3  
A1  
A2  
G
GPIO304  
D_ADD9  
GPIO  
P
305 D_ADD9_GPIO305  
306 D_ADD10_GPIO306  
307 D_ADD11_GPIO307  
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO305  
D_ADD10  
GPIO  
P
EBI address bus  
A1  
A2  
G
I/O  
O
GPIO306  
D_ADD11  
GPIO  
P
EBI address bus  
A1  
A2  
G
I/O  
GPIO307  
GPIO  
Reset and Clocks  
P
P
RESET  
RESET  
External reset input  
External reset output  
I
MH  
MH  
VDDEH1  
RESET/Up  
RESET/Up  
R2  
A3  
N5  
A3  
230 RSTOUT  
RSTOUT  
O
VDDEH1 RSTOUT/Low  
RSTOUT/  
High  
P
211 BOOTCFG0_IRQ2_  
GPIO211  
BOOTCFG0  
IRQ2  
Boot configuration  
I
I
MH  
VDDEH1  
BOOTCFG/  
Down  
—/Down  
L4  
A1  
A2  
G
I/O  
GPIO211  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
P
212 BOOTCFG1_IRQ3_  
GPIO212  
BOOTCFG1  
Boot configuration  
I
I
MH  
MH  
MH  
MH  
MH  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
VDDEH1  
BOOTCFG/  
Down  
—/Down  
N2  
N3  
R3  
P2  
P3  
L3  
M5  
M3  
L1  
A1  
A2  
G
IRQ3  
External interrupt request  
I/O  
I
GPIO212  
WKPCFG  
GPIO  
P
213 WKPCFG_NMI_  
GPIO21310  
Weak pull configuration input  
WKPCFG/Up  
PLLCFG/Up  
PLLCFG/Up  
—/Up  
A1  
A2  
G
GPIO213  
PLLCFG0  
IRQ4  
GPIO  
I
I
P
208 PLLCFG0_IRQ4_  
GPIO208  
FMPLL mode configuration input  
External interrupt request  
—/Up  
A1  
A2  
G
I
I/O  
I
GPIO208  
PLLCFG1  
IRQ5  
GPIO  
P
209 PLLCFG1_IRQ5_GPIO209  
FMPLL mode configuration input  
External interrupt request  
DSPI D data output  
GPIO  
—/Up  
A1  
A2  
G
I
SOUTD  
GPIO209  
PLLCFG2  
O
I/O  
I
P
PLLCFG2  
FMPLL mode configuration input  
PLLCFG/  
Down  
/
L2  
Down  
P
P
P
XTAL  
XTAL  
Crystal oscillator output  
Crystal oscillator input  
EBI system clock output  
O
I
AE  
AE  
F
VDD33  
VDD33  
VDDE9  
XTAL  
XTAL  
AC26 AC26  
AB26 AB26  
EXTAL  
EXTAL  
EXTAL  
EXTAL  
229 D_CLKOUT  
D_CLKOUT  
O
CLKOUT/  
Enabled  
CLKOUT/  
Enabled  
AF12  
P
214 ENGCLK  
ENGCLK  
EBI engineering clock output  
O
F
VDDE2  
ENGCLK/  
Enabled  
ENGCLK/  
Enabled  
AD1  
AD1  
Note: EXTCLK (External clock input)  
selected through SIU register)  
JTAG and Nexus  
(see footnote11 about resets)  
12  
EVTI  
EVTI  
Nexus event in  
I
F
VDDE2  
—/Up  
EVTI/Up  
T4  
V1  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
12  
227 EVTO  
EVTO  
Nexus event out  
O
F
VDDE2  
ABS/Up  
EVTO/HI  
U1  
V2  
(the BAM uses this pin to  
select if auto baud rate is on  
or off)  
12  
12  
219 MCKO  
MCKO  
MDO014  
Nexus message clock out  
O
O
F
F
VDDE2  
VDDE2  
O/Low  
Disabled13  
See Note15  
T2  
U3  
U4  
V3  
220 MDO0_GPIO220  
221 MDO1_GPIO221  
222 MDO2_GPIO222  
223 MDO3_GPIO223  
75 MDO4_GPIO75  
Nexus message data out  
See Note15  
A1  
A2  
G
I/O  
O
GPIO220  
MDO114  
GPIO  
12  
Nexus message data out  
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
—/Down  
—/Down  
—/Down  
—/Down  
U4  
V1  
V2  
V3  
W6  
V4  
A1  
A2  
G
I/O  
O
GPIO221  
MDO214  
GPIO  
12  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO222  
MDO314  
GPIO  
12  
Nexus message data out  
V5  
A1  
A2  
G
I/O  
O
GPIO223  
MDO414  
GPIO  
12  
Nexus message data out  
W1  
A1  
A2  
G
I/O  
GPIO75  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
12  
76 MDO5_GPIO76  
MDO514  
Nexus message data out  
O
I/O  
O
F
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
V4  
W1  
W2  
W3  
Y1  
W2  
W3  
Y1  
A1  
A2  
G
GPIO76  
MDO614  
GPIO  
12  
77 MDO6_GPIO77  
78 MDO7_GPIO78  
79 MDO8_GPIO79  
80 MDO9_GPIO80  
81 MDO10_GPIO81  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO77  
MDO714  
GPIO  
12  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO78  
MDO814  
GPIO  
12  
Nexus message data out  
W5  
Y2  
A1  
A2  
G
I/O  
O
GPIO79  
MDO914  
GPIO  
12  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO80  
MDO1014  
GPIO  
12  
Nexus message data out  
Y2  
Y3  
A1  
A2  
G
I/O  
GPIO81  
GPIO  
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
12  
82 MDO11_GPIO82  
MDO1114  
Nexus message data out  
O
I/O  
O
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
O/Low  
O/Low  
O/Low  
—/Down  
—/Down  
—/Down  
—/Down  
—/Down  
Y3  
AA1  
AA2  
AA3  
Y4  
Y4  
Y5  
A1  
A2  
G
GPIO82  
MDO1214  
GPIO  
12  
231 MDO12_GPIO231  
232 MDO13_GPIO232  
233 MDO14_GPIO233  
234 MDO15_GPIO234  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO231  
MDO1314  
GPIO  
12  
Nexus message data out  
AA1  
AA2  
AA3  
A1  
A2  
G
I/O  
O
GPIO232  
MDO1414  
GPIO  
12  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO233  
MDO1514  
GPIO  
12  
Nexus message data out  
A1  
A2  
G
I/O  
O
GPIO234  
MSEO014  
MSEO114  
RDY  
GPIO  
12  
224 MSEO0  
225 MSEO1  
226 RDY  
Nexus message start/end out  
Nexus message start/end out  
Nexus ready output  
JTAG test clock input  
JTAG test data input  
JTAG test data output  
JTAG test mode select input  
F
F
F
F
F
F
F
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
O/Low  
O/Low  
MSEO/HI  
MSEO/HI  
RDY/HI  
U2  
T3  
U6  
U5  
12  
12  
12  
12  
12  
12  
O
O
O/Low  
R4  
U3  
TCK  
TDI  
TCK  
I
TCK/Down  
TDI/Up  
TCK/Down  
TDI/Up  
AB2  
AC2  
AB1  
AB3  
AB2  
AC2  
AB1  
AB3  
TDI  
I
228 TDO  
TMS  
TDO  
O
TDO/Up  
TMS/Up  
TDO/Up  
TMS/Up  
TMS  
I
Table 39. Signal Properties and Muxing Summary (continued)  
Package  
Location  
State  
after  
Stateduring  
RESET7  
Signal Name2  
Function4  
Function Summary  
RESET8  
12  
JCOMP  
JCOMP  
JTAG TAP controller enable  
I
I
F
F
VDDE2  
JCOMP/Down JCOMP/Down  
R1  
B4  
U2  
B4  
TEST  
TEST  
Test mode select (not for customer  
use)  
VDDEH1  
TEST/Down  
TEST/Down  
VDDSYN  
VSSSYN  
VSTBY  
VDDSYN  
VSSSYN  
VSTBY  
Clock synthesizer power input  
Clock synthesizer ground input  
SRAM standby power input  
I/O VDDE  
VDDSYN  
VDDSYN  
VDDEH1  
VDDREG  
VDDSYN  
VSSSYN  
VSTBY  
VDDSYN  
VSSSYN  
VSTBY  
AD26 AD26  
AA26 AA26  
I
I
I
VSSE  
VHV  
AE  
M4  
M4  
REGSEL  
REGSEL  
Selects regulator mode  
(Linear/Switch mode)  
REGSEL  
REGSEL  
W23 W23  
REGCTL  
REGCTL  
Regulator controller output to  
base/gate of power transistor  
O
AE  
VDDREG  
REGCTL  
REGCTL  
Y26  
Y26  
VSSFL  
VSSFL  
Tie to VSS  
I
I
VSS  
VDDREG  
VSSFL  
VSSFL  
AB25 AB25  
AA25 AA25  
VDDREG  
VDDREG  
Source voltage for on-chip regulators  
and Low voltage detect circuits  
VDDINT VDDREG  
VDDREG  
VDDREG  
1
2
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number in pins that have GPIO functionality. For pins that do not  
have GPIO functionality, this number is the PCR number.  
The primary signal name is used as the pin label on the BGA map for identification purposes. However, the primary signal function is not available on all devices  
and is indicated by a dash in the following table columns: Signal Functions, P/F/G, and I/O Type.  
3
4
P/A/G stands for Primary/Alternate/GPIO . This column indicates which function on a pin is Primary, Alternate 1, Alternate 2, (Alternate n) and GPIO.  
Each line in the Function column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions  
are designated in the PA field of the SIU_PCRn registers except where explicitly noted.  
5
MH = High voltage, medium speed  
F = Fast speed  
FS = Fast speed with slew  
AE = Analog with ESD protection circuitry (up/down = pull up and pull down circuits included in the pad)  
VHV = Very high voltage  
6
7
VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins can connect to a separate 3.3–5.0 V  
(+5%/–10%) power supply input. Each segment of VDDE pins can connect to a separate 1.8–3.3 V (±10%) power supply.  
All pins are sampled after the internal POR is negated. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak  
pulldown enabled, Low – output driven low, High – output driven high, ABS — Auto Baud Select (during Reset or until JCOMP assertion). A dash on the left side  
of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down  
enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled.  
8
The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin  
are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.  
9
During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the  
system clock propagates through the device.  
10 NMI function is selected using the SIU_IREER/SIU_IFEER registers and has priority over any other function on this pin.  
11 Nexus reset is different than system reset; MDO0-11 are enabled in RPM or FPM trace modes, while MDO12-15 are enabled in FPM trace mode only. MSEO  
and MCKO are also dependent on trace (RPM or FPM) being enabled.  
12 The Nexus pins don’t have a “primary” function as they are not configured by the SIU. The pins are selected by asserting JCOMP and configuring the NPC. SIU  
values have no effect on the function of these pins once enabled.  
13 MCKO is disabled from reset; it can be enabled from the tool (controlled by Nexus NPC_PCR register).  
14 Do not connect pin directly to a power supply or ground.  
15 While JCOMP is negated, the MDO0 pad is pulled up because of the default values in its SIU PCR. When JCOMP is asserted, the MDO0 pad is enabled as an  
output and goes low when the system clock is present.  
Revision History  
Appendix B Revision History  
Table 40 describes the changes made to this document between revisions.  
Table 40. Revision History  
Revision  
Date  
Description  
Rev 1  
Rev 2  
5 Aug 2011  
Initial customer release  
21 Dec 2011  
Added information about specs 1a through 1d in the PMC Electrical Specifications table.  
Updated the footnote reference (changed from 13 to 14) of spec 18 of the PMC Electrical  
Specifications table.  
Updated the Operating Current 5.0 V Supplies @ fsys = 180MHz VDDA Max value  
(changed from 30 to 50).  
Updated footnote 1 of the VDD33 Pad Average DC Current table (changed IDDE to  
IDD33).  
Updated the pF value of 11 SRC/DSC Fast with Slew Rate (changed from 2.6 to 200) in  
the Pad AC Specifications (VDDEH = 5.0 V, VDDE = 3.3 V) table.  
Added a footnote for ANA0-ANA7 (9) functions in the “Signal Properties and Muxing  
Summary” table.  
Added a footnote for MDO0-MDO15 (14) and MSEO0 functions in the “Signal Properties  
and Muxing Summary” table.  
Updated figure numbers 25, 27, 29, and 31: Added specs 1-4.  
Changed the title of the “PFCPR1 Settings” table to “BIUCR1/BIUCR3”.  
Added a new row “Load” under “Termination” in the “DSPI LVDS Pad Specification” table.  
Updated the “Max” and “Typical” values of “Delay, Z to Normal”, “Rise/Fall Time”, and “Data  
Frequency” in the “DSPI LVDS Pad Specification” table.  
Changed “VDDE” to “VDDEH” in footnote 10 of the “DC Electrical Specifications” table.  
Made the following changes in the “DSPI Timing” table:  
• Update the minimum peripheral bus frequencies for “Data Setup Time for Inputs” and  
“Data Hold Time for Outputs”.  
• Updated the maximum peripheral bus frequencies for “Data Valid (after SCK edge)”.  
• Added “Master (LVDS)” information for “Data Valid (after SCK edge)” and “Data Hold  
Time for Outputs”.  
Changed the minimum voltage value of the “I/O Supply Voltage (fast I/O pads)” from  
“1.62 V” to “3.0 V” in the “DC Electrical Specifications” table.  
Changed “VDDE” values from “1.62 V to 1.98 V” to “3.0 V to 3.6 V” in footnote 1 of the “Pad  
AC Specifications (VDDEH = 5.0 V, VDDE = 3.3 V)” table.  
Removed voltage ranges “1.62 V–1.98 V” and “2.25 V–2.75 V” from “Fast I/O Weak Pull  
Up/Down Current” in the “DC Electrical Specifications” table.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
109  
Revision History  
Table 40. Revision History (continued)  
Description  
Revision  
Date  
Rev 3  
10 August 2012 Added minimum and maximum “Nominal bandgap reference voltage” values in the “PMC  
Electrical Specifications” table.  
Updated the maximum “Medium I/O Output Low Voltage” value (changed from 0.2 x VDDEH  
to 0.2 x VDDEH and 0.15 x VDDEH ) in the “DC Electrical Specifications” table, moved  
reference to the footnote 10 (IOH_S = {11.6} mA and IOL_S = {17.7} mA for {medium} I/O  
with VDDEH = 4.5 V; IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDEH  
= 3.0 V) to “0.2 x VDDEH”, and added a new footnote 11(IOL_S=2 mA) to “0.15 x VDDEH”.  
Updated footnote9 (IOH_F = {12,20,30,40} mA and IOL_F = {24,40,50,65} mA for  
{00,01,10,11} drive mode with VDDE = 3.0 V): Removed “IOH_F = {7,13,18,25} mA and  
IOL_F = {18,30,35,50} mA for {00,01,10,11} drive mode with VDDE = 2.25 V;  
IOH_F = {3,7,10,16}mA and IOL_F = {12,20,27,35} mA for {00,01,10,11} drive mode with  
VDDE = 1.62 V”.  
Added minimum and maximum values to all rows of the “Power Management Control  
(PMC) Specification” table.  
Updated the “Accuracy” temperature values in the “Temperature Sensor Electrical  
Specifications” table: Changed “–40 C to 100 C to 40 C to 150 C, removed the  
correspnding “Typ” value, removed “100 C to 150 C, and added minimum (10) and  
maximum (+10) values.  
Added a new section “ADC Internal Resource Measurements” and moved “Power  
Management Control (PMC) Specification”, “Standby RAM Regulator Electrical  
Specifications”, “ADC Band Gap Reference / LVI Electrical Specifications”, and  
Temperature Sensor Electrical Specifications” tables to the section.  
Changed “Minimum Data Retention at 25 °C ambient temperature” to “Minimum Data  
Retention at 85 °C ambient temperature” in the “Flash EEPROM Module Life” table.  
Added the following note after “Flash Program and Erase Specifications (Pending Si  
characterization)” table in the “C90 Flash Memory Electrical Characteristics” section:  
“The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1)  
before leaving the factory.  
Updated the “DSPI LVDS Pad Specification” table: Changed maximum “Load” value from  
“25” to “32”; minimum values for “Differential Output Voltage SRC=0b00 or 0b11,  
SRC=0b01, SRC=0b10” from “150, 90, 160” to “215, 170, 260”; “Transmission lines  
(Differential) to “Termination Resistance”; “Zc” to “RLoad”; and added the following  
footnote: “The termination resistance spec is not meant to specify the receiver  
termination requirements. They are there to establish the measurement criteria for the  
specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination  
resistance can vary from 90 to 132 .  
Rev 4  
21 January 2016 Added a table “Flash Memory AC Timing Specifications”.  
Updated the min and max values from -10 and +10 to -20 and +20 for “Accuracy” in the  
Temperature Sensor Electrical Specifications” table.  
MPC5676R Microcontroller Data Sheet, Rev. 4  
110  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following  
address:freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, inc. Reg.  
U.S. Pat. & Tm. Off. the power Architecture and Power.org word marks and the Power  
and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org. All other product or service names are the property of their respective  
owners.  
© Freescale Semiconductor, Inc. 2016. All rights reserved.  
Document Number: MPC5676R  
Rev. 4  
16 Feb 2016  

相关型号:

SPC5676RDK2MVU1R

MPC5676R Microcontroller Data Sheet
NXP

SPC5676RDK2MVY1

MPC5676R Microcontroller Data Sheet
NXP

SPC5676RDK2MVY1R

MPC5676R Microcontroller Data Sheet
NXP

SPC56AP54L5

32-bit Power Architecture® based MCU with 1088 KB Flash memory and 80 KB RAM for automotive chassis and safety applications
STMICROELECTR

SPC56AP54x

Power management
STMICROELECTR

SPC56AP60L3

用于汽车底盘和安全应用的32位Power Architecture MCU
STMICROELECTR

SPC56AP60L5

用于汽车底盘和安全应用的32位Power Architecture MCU
STMICROELECTR

SPC56AP60X

Power management
STMICROELECTR

SPC56EC64L7

用于汽车车身和网关应用的32位Power Architecture MCU
STMICROELECTR

SPC56EC70L7

用于汽车车身和网关应用的32位Power Architecture MCU
STMICROELECTR

SPC56EC74L7

32-bit MCU family built on the Power Architecture® for automotive body electronics applications
STMICROELECTR

SPC56EC74L8

用于汽车车身和网关应用的32位Power Architecture MCU
STMICROELECTR