SPC56EC74L8 [STMICROELECTRONICS]

用于汽车车身和网关应用的32位Power Architecture MCU;
SPC56EC74L8
型号: SPC56EC74L8
厂家: ST    ST
描述:

用于汽车车身和网关应用的32位Power Architecture MCU

文件: 总118页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPC564Bxx  
SPC56ECxx  
32-bit MCU family built on the Power Architecture® for automotive  
body electronics applications  
Target specification  
Communication interfaces  
Features  
– Up to 6 FlexCAN with 64 buffers each  
®
e200z4d, 32-bit Power Architecture  
– Up to 10 LINFlex/UART channels  
– up to 120 MHz and 200 MIPs operation  
– Up to 8 buffered DSPI channels  
2
e200z0h, 32-bit Power Architecture  
– I C interface  
– up to 80 MHz and 75 MIPs operation  
– One FleyRay (dual-ch.) with 128 buffers  
Memory  
– Up to 3 MByte on-chip Flash with ECC  
– Fast Ethernet Controller  
Cryptographic Services Engine (CSE)  
– AES-128 en/decryption, CMAC auth.  
– Secured device boot mode  
– Up to 256 KByte on-chip SRAM with ECC  
– 64KByte on-chip Data Flash with ECC  
– 16-entry memory protection unit (MPU)  
– User selectable Memory BIST  
32-ch. eDMA with multiple request sources  
Clock generation  
Interrupts  
– 4 to 40 MHz main oscillator  
– 16 MHz internal RC oscillator  
– Software-controlled FMPLL  
– 128 kHz internal RC oscillator  
– 32 kHz auxiliary oscillator  
– Clock Monitoring Unit (CMU)  
– 255 interrupt sources with 16 priority levels  
– Up to 54 ext. IRQ including 30 wake-up  
GPIOs: from 147 (QFP176) to 199 (BGA256)  
System timer units  
– 8-ch. 32-bit periodic interrupt timer (PIT)  
– 4-channel 32-bit system timer (STM)  
– Safety System Watchdog Timer (SWT)  
– Real-time clock timer (RTC/API)  
Low power capabilities  
– Ultra low power STANDBY  
– CAN Sampler to store CAN ID in STBY  
– Fast wake-up and exectute from RAM  
eMIOS, 16-bit counter timed I/O units  
– Up to 64 channels with PWM/MC/IC/OC  
Exhaustive debugging capability  
– Nexus 3+ interface on LBGA256 only  
– Nexus 1 on all devices  
Two ADC (10-bit and 12-bit)  
– Up to 62 channels extendable to 90 ch.  
– Multiple Analog Watchdog  
Voltage supply  
Dedicated diagnostic features for lighting  
– Advanced shiffted PWM generation  
– ADC conversion synchronized on PWM  
– Single 5 V or 3.3 V supply  
– On-chip Vreg with external ballast transitor  
Operating temperature range -40 to 125 °C  
Table 1.  
Device summary  
Part number  
Package  
1.5 MByte  
2 MByte  
3 MByte  
SPC564B64L7  
SPC56EC64L7  
SPC564B64L8  
SPC56EC64L8  
SPC56EC64B3  
SPC564B70L7  
SPC56EC70L7  
SPC564B70L8  
SPC56EC70L8  
SPC56EC70B3  
SPC564B74L7  
SPC56EC74L7  
SPC564B74L8  
SPC56EC74L8  
SPC56EC74B3  
LQFP176  
LQFP208  
BGA256  
December 2011  
Doc ID 17478 Rev 4  
1/118  
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.  
www.st.com  
1
 
Contents  
SPC564Bxx - SPC56ECxx  
Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1  
1.2  
Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.1  
4.2  
Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.2.1  
4.2.2  
NVUSRO [PAD3V5V(0)] field description . . . . . . . . . . . . . . . . . . . . . . . 49  
NVUSRO [PAD3V5V(1)] field description . . . . . . . . . . . . . . . . . . . . . . . 49  
4.3  
4.4  
4.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4.5.1  
4.5.2  
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4.6  
I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.7  
4.8  
RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 64  
4.8.1  
4.8.2  
4.8.3  
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 64  
VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 66  
4.9  
Low voltage domain power consumption . . . . . . . . . . . . . . . . . . . . . . . . . 67  
2/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Contents  
4.10 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
4.10.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
4.10.2 Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 71  
4.10.3 Flash memory start-up/switch-off timings . . . . . . . . . . . . . . . . . . . . . . . 72  
4.11 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 72  
4.11.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 72  
4.11.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4.11.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 73  
4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics . . . . 74  
4.13 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 76  
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 79  
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 80  
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
4.18 Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) . 92  
4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) . . . . 92  
4.18.3 MII Async Inputs Signal Timing (CRS and COL) . . . . . . . . . . . . . . . . . . 93  
4.18.4 MII Serial Management Channel Timing (MDIO and MDC) . . . . . . . . . 94  
4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
4.19.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
4.19.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
4.19.4 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.1  
5.2  
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.2.1  
5.2.2  
5.2.3  
LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 107  
LQFP208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 109  
LBGA256 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 111  
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Doc ID 17478 Rev 4  
3/118  
Contents  
SPC564Bxx - SPC56ECxx  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
4/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SPC564Bxx and SPC56ECxx family comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SPC564Bxx and SPC56ECxx series block summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
PAD3V5V(0) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PAD3V5V(1) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
LBGA256 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
I/O input DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57  
MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 58  
FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 58  
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
I/O supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Low voltage power domain electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Code flash memory—Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Data flash memory—Program and erase specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 75  
Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 78  
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 80  
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 81  
ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
ADC conversion characteristics (10-bit ADC_0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Conversion characteristics (12-bit ADC_1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
MII Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
MII transmit signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
MII Async Inputs Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
MII serial management channel timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Doc ID 17478 Rev 4  
5/118  
List of tables  
SPC564Bxx - SPC56ECxx  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
On-chip peripherals current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Nexus debug port timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LQFP208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
LBGA256 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
SPC564Bxx and SPC56ECxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
176-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
208-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
256-pin BGA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Low voltage monitor vs. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 10. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 75  
Figure 12. Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 13. lEquivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 78  
Figure 15. ADC_0 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 16. Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 17. Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 18. Transient behavior during sampling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 19. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 20. ADC_1 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 21. MII receive signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 22. MII transmit signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 23. MII async inputs timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 24. MII serial management channel timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 25. DSPI classic SPI timing–master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 26. DSPI classic SPI timing–master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 27. DSPI classic SPI timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 28. DSPI classic SPI timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 29. DSPI modified transfer format timing–master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 30. DSPI modified transfer format timing–master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 31. DSPI modified transfer format timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 32. DSPI modified transfer format timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 33. DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 34. Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 35. Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 36. Timing diagram - JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 37. LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 38. LQFP208 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 39. LBGA256 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 40. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Doc ID 17478 Rev 4  
7/118  
Introduction  
SPC564Bxx - SPC56ECxx  
1
Introduction  
1.1  
1.2  
Document Overview  
This document describes the features of the family and options available within the family  
members, and highlights important electrical and physical characteristics of the SPC564Bxx  
and SPC56ECxx device. To ensure a complete understanding of the device functionality,  
refer also to the SPC564Bxx and SPC56ECxx Reference Manual.  
Description  
The SPC564Bxx and SPC56ECxx is a new family of next generation microcontrollers built  
on the Power Architecture embedded category. This document describes the features of the  
family and options available within the family members, and highlights important electrical  
and physical characteristics of the device.  
The SPC564Bxx and SPC56ECxx family expands the range of the CSPC560B  
microcontroller family. It provides the scalability needed to implement platform approaches  
and delivers the performance required by increasingly sophisticated software architectures.  
The advanced and cost-efficient host processor core of the SPC564Bxx and SPC56ECxx  
automotive controller family complies with the Power Architecture embedded category,  
which is 100 percent user-mode compatible with the original Power Architecture user  
instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high  
performance processing optimized for low power consumption. It also capitalizes on the  
available development infrastructure of current Power Architecture devices and is supported  
with software drivers, operating systems and configuration code to assist with users  
implementations.  
8/118  
Doc ID 17478 Rev 4  
(1)  
Table 2.  
Feature  
SPC564Bxx and SPC56ECxx family comparison  
SPC564B64 SPC56EC64  
LQFP LQFP LQFP LQFP  
176 208 176 208  
e200z4d  
SPC564B70  
SPC56EC70  
SPC564B74  
SPC56EC74  
LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP  
BGA LQFP1  
BGA  
256  
Package  
256  
76  
208  
176  
208  
256  
176  
208  
176  
208  
CPU  
e200z4d + e200z0h  
e200z4d  
e200z4d + e200z0h  
e200z4d  
e200z4d + e200z0h  
Up to 120 MHz  
Up to 120 MHz  
Up to 120 MHz  
(e200z4d)  
(e200z4d)  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Up to 120 MHz  
(e200z4d)  
Execution speed(2)  
Up to 80 MHz  
(e200z0h)(3)  
Up to 80 MHz  
(e200z0h)(3)  
Up to 80 MHz  
(e200z0h)(3)  
Code flash memory  
Data flash memory  
SRAM  
1.5 MB  
2 MB  
3 MB  
4 x16 KB  
128 KB  
192 KB  
160 KB  
256 KB  
192 KB  
256 KB  
MPU  
16-entry  
32 ch  
eDMA(4)  
10-bit ADC  
dedicated(5),  
(6)  
27 ch 33 ch 27 ch  
33 ch  
27 ch 33 ch 27 ch  
33 ch  
27 ch 33 ch 27 ch  
33 ch  
shared with  
12-bit ADC(7)  
19 ch  
10 ch  
12-bit ADC  
dedicated(8)  
shared with  
10-bit ADC(7)  
19 ch  
64 ch  
CTU  
Total timer I/O(9) eMIOS  
64 ch, 16-bit  
SCI (LINFlexD)  
10  
8
SPI (DSPI)  
CAN (FlexCAN)(10)  
6
(1)  
Table 2.  
Feature  
SPC564Bxx and SPC56ECxx family comparison (continued)  
SPC564B64 SPC56EC64 SPC564B70  
LQFP LQFP LQFP LQFP LQFP LQFP LQFP BGA LQFP LQFP LQFP LQFP  
SPC56EC70  
SPC564B74  
SPC56EC74  
BGA LQFP1  
BGA  
256  
Package  
256  
76  
176  
208  
176  
208  
Yes  
177  
208  
176  
Yes  
Yes  
208  
Yes  
177  
256  
176  
208  
176  
208  
Yes  
177  
FlexRay  
STCU(11)  
Ethernet  
No  
No  
No  
I2C  
1
32 kHz oscillator (SXOSC)  
GPIO(12)  
Yes  
147  
147  
177  
147  
199  
147  
177  
199  
147  
177  
147  
199  
Nexus3  
+
Nexus  
3+  
Nexus  
3+  
Debug  
JTAG  
JTAG  
Optional  
JTAG  
Cryptographic Services  
Engine (CSE)  
1. Feature set dependent on selected peripheral multiplexing; table shows example.  
2. Based on 125 °C ambient operating temperature and subject to full device characterisation.  
3. The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system  
frequency. There is a configurable e200z0 system clock divider for this purpose.  
4. DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.  
5. Not shared with 12-bit ADC, but possibly shared with other alternate functions.  
6. There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels.  
7. 16x precision channels (ANP) and 3x standard (ANS).  
8. Not shared with 10-bit ADC, but possibly shared with other alternate functions.  
9. As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on  
the channel configuration and functions.  
10. CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.  
11. STCU controls MBIST activation and reporting.  
12. Estimated I/O count for proposed packages based on multiplexing with peripherals.  
SPC564Bxx - SPC56ECxx  
Block diagram  
2
Block diagram  
Figure 1 shows the detailed block diagram of the SPC564Bxx and  
SPC56ECxx.  
Doc ID 17478 Rev 4  
11/118  
Block diagram  
SPC564Bxx - SPC56ECxx  
Figure 1.  
SPC564Bxx and SPC56ECxx block diagram  
FEC  
JTAGC  
CSE  
SRAM  
Code Flash Data Flash  
1.5 MB 64 KB  
JTAG Port  
Nexus Port  
2
2
×
128 KB  
2 ×  
FlexRay  
Instructions  
Nexus 3+  
e200z0h  
Nexus  
(Master)  
×
SRAM  
NMI0  
NMI1  
Flash memory  
controller  
Data  
(Master)  
controller  
Instructions  
(Master)  
Data  
Voltage  
regulator  
e200z4d  
(Master)  
(Slave)  
Nexus 3+  
NMI0  
NMI1  
Clocks  
(Slave)  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
DMAMUX  
MPU  
registers  
INTC  
eDMA  
CMU  
CAN  
Sampler  
STCU  
( Master)  
FMPLL  
8
×
16 x  
Semaphores  
MC_RGM MC_CGM MC_ME MC_PCU  
Peripheral Bridge  
WKPU  
PIT RTI  
ECSM  
SSCM  
RTC/API 4  
× STM  
BAM  
SWT  
(2)  
(1)  
10  
LINFlexD  
×
SIUL  
Reset Control  
27 ch or 33 ch  
10-bit  
ADC  
10 ch  
12-bit  
ADC  
8
×
6 ×  
FlexCAN  
2
32 ch  
×
2
CTU  
I C  
1
×
1
×
DSPI  
eMIOS  
Interrupt  
Request  
External  
Interrupt  
Request  
IMUX  
GPIO &  
Pad Control  
(3)  
(3)  
I/O  
ADC  
BAM  
CSE  
CAN  
CMU  
CTU  
Analog-to-Digital Converter  
Boot Assist Module  
Cryptographic Services Engine  
Controller Area Network (FlexCAN)  
Clock Monitor Unit  
Legend:  
JTAGC  
JTAG controller  
LINFlexD Local Interconnect Network Flexible with DMA support  
MC_ME Mode Entry Module  
MC_CGM Clock Generation Module  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
MPU  
Nexus  
NMI  
Cross Triggering Unit  
DMAMUX DMA Channel Multiplexer  
DSPI  
eDMA  
FlexCAN Controller Area Network controller modules  
FEC  
Memory Protection Unit  
Nexus Development Interface  
Non-Maskable Interrupt  
Deserial Serial Peripheral Interface  
enhanced Direct Memory Access  
PIT_RTI Periodic Interrupt Timer with Real-Time Interrupt  
RTC/API Real-Time Clock/ Autonomous Periodic Interrupt  
Fast Ethenet Controller  
eMIOS  
ECSM  
FMPLL  
FlexRay  
I2C  
Enhanced Modular Input Output System  
Error Correction Status Module  
Frequency-Modulated Phase-Locked Loop  
FlexRay Communication Controller  
Inter-integrated Circuit Bus  
SIUL  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Software Watchdog Timer  
Self Test Control Unit  
SRAM  
SSCM  
STM  
SWT  
STCU  
WKPU  
IMUX  
INTC  
Internal Multiplexer  
Interrupt Controller  
Wakeup Unit  
1) 10 dedicated channels plus up to 19 shared channels  
2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table.  
. See the device-comparison table.  
Notes:  
3)  
16 x precision channels (ANP) are mapped on input only I/O cells.  
Table 3 summarizes the functions of the blocks present on the SPC564Bxx and  
SPC56ECxx.  
12/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Block diagram  
Table 3.  
SPC564Bxx and SPC56ECxx series block summary  
Block Function  
Analog-to-digital converter (ADC) Converts analog voltages to digital values  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Boot assist module (BAM)  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Cryptographic Security Engine  
(CSE)  
Supports the encoding and decoding of any kind of data  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width  
Crossbar (XBAR) switch  
DMA Channel Multiplexer  
(DMAMUX)  
Allows to route DMA sources (called slots) to DMA channels  
Deserial serial peripheral  
interface (DSPI)  
Provides a synchronous serial interface for communication with external  
devices  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset  
status register, wakeup control for exiting sleep modes, and optional features  
such as information on memory errors reported by error-correcting codes  
Error Correction Status Module  
(ECSM)  
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host  
(eDMA)  
processor via “n” programmable channels.  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Provides non-volatile storage for program code, constants and variables  
Supports the standard CAN communications protocol  
Flash memory  
FlexCAN (controller area  
network)  
FMPLL (frequency-modulated  
phase-locked loop)  
Generates high-speed system clocks and supports programmable frequency  
modulation  
FlexRay (FlexRay communication  
controller)  
Provides high-speed distributed control for advanced automotive applications  
Ethernet Media Access Controller (MAC) designed to support both 10 and 100  
Mbps Ethernet/IEEE 802.3 networks  
Fast Ethernet Controller (FEC)  
Internal multiplexer (IMUX) SIUL  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Inter-integrated circuit (I2C™) bus  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests for both  
e200z0h and e200z4d cores  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
Doc ID 17478 Rev 4  
13/118  
Block diagram  
SPC564Bxx - SPC56ECxx  
Table 3.  
SPC564Bxx and SPC56ECxx series block summary (continued)  
Block Function  
LinFlexD (Local Interconnect  
Network Flexible with DMA  
support)  
Manages a high number of LIN (Local Interconnect Network protocol)  
messages efficiently with a minimum of CPU load  
Provides hardware access control for all memory references generated in a  
device  
Memory protection unit (MPU)  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Power control unit (MC_PCU)  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the  
device  
Provides a mechanism for controlling the device operational mode and  
modetransition sequences in all functional states; also manages the power  
control unit, reset generation module and clock generation module, and holds  
the configuration, control and status registers accessible for applications  
Mode entry module (MC_ME)  
Handles external events that must produce an immediate response, such as  
power down detection  
Non-Maskable Interrupt (NMI)  
Nexus Development Interface  
(NDI)  
Provides real-time development capabilities for e200z0h and e200z4d core  
processor  
Periodic interrupt timer/ Real  
Time Interrupt Timer (PIT_RTI)  
Produces periodic interrupts and triggers  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode). Supports autonomous  
periodic interrupt (API) function to generate a periodic wakeup request to exit a  
low power mode or an interrupt request  
Real-time counter (RTC/API)  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
Provides control over all the electrical pad controls and up 32 ports with 16 bits  
System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
Provides system configuration and status data (such as memory size and  
System status and configuration  
status, device mode and security status), device identification data, debug  
module (SSCM)  
status port enable and selection, and bus and peripheral abort enable/disable  
Provides a set of output compare events to support AutoSAR and operating  
System timer module (STM)  
system tasks  
Provides the hardware support needed in multi-core systems for sharing  
resources and provides a simple mechanism to achieve lock/unlock operations  
Semaphores  
via a single write access.  
Supports external sources that can generate interrupts or wakeup events, of  
which can cause non-maskable interrupt requests or wakeup events.  
Wake Unit (WKPU)  
14/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
3
Package pinouts and signal descriptions  
The available LQFP pinouts and the LBGA ballmaps are provided in the following figures.  
For functional port pin description, see Table 6.  
Figure 2.  
176-pin LQFP configuration  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PJ[4]  
PA[11]  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PA[10]  
2
PA[9]  
3
PA[8]  
4
PA[7]  
5
PE[13]  
PF[14]  
VDD_HV_A  
VSS_HV  
PH[15]  
PH[13]  
PH[14]  
PI[6]  
6
7
PF[15]  
8
VDD_HV_B  
VSS_HV  
PG[0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PG[1]  
PI[7]  
PH[3]  
PG[5]  
PH[2]  
PG[4]  
PH[1]  
PG[3]  
PH[0]  
PG[2]  
PG[12]  
PG[13]  
PA[3]  
PA[2]  
PE[0]  
PA[1]  
PI[13]  
PE[1]  
PI[12]  
PE[8]  
LQFP176  
Top view  
PI[11]  
PE[9]  
VDD_LV  
VSS_LV  
PI[8]  
PEp[10]  
A[0]  
PE[11]  
VSS_HV  
VDD_HV_A  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VRC_CTRL  
PG[9]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
98  
97  
PD[11]  
PD[10]  
PD[9]  
96  
PG[6]  
95  
PB[0]  
94  
PB[7]  
PB[1]  
93  
PB[6]  
PF[9]  
92  
PB[5]  
PF[8]  
91  
VDD_HV_ADC0  
VSS_HV_ADC0  
PF[12]  
PC[6]  
90  
89  
NOTE  
1) VDD_HV_B supplies the IO voltage domain for the  
pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7],  
PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2],  
PH[1], PH[0], PG[12], PG[13], and PA[3].  
2)Availability of port pin alternate functions depends  
on product selection.  
Doc ID 17478 Rev 4  
15/118  
 
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Figure 3.  
208-pin LQFP configuration  
PB[3]  
PC[9]  
1
2
3
4
5
6
7
8
9
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
PA[11]  
PA[10]  
PA[9]  
PC[14]  
PC[15]  
PJ[4]  
PA[8]  
PA[7]  
VDD_HV_A  
VSS_HV  
PH[15]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV_B  
VSS_HV  
PG[0]  
PH[13]  
PH[14] 10  
P[I6] 11  
P[I7] 12  
PG[1]  
PG[5] 13  
PG[4] 14  
PG[3] 15  
PG[2] 16  
PA[2] 17  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PE[0] 18  
PA[1] 19  
PE[1] 20  
PE[8] 21  
PE[9] 22  
PE[10] 23  
PA[0] 24  
PG[13]  
PA[3]  
PI[13]  
PI[12]  
PI[11]  
LQFP208  
Top view  
PI[10]  
VDD_LV  
VSS_LV  
PI[9]  
PE[11] 25  
VSS_HV 26  
VDD_HV_A 27  
VSS_HV 28  
RESET 29  
VSS_LV 30  
VDD_LV 31  
VRC_CTRL 32  
PG[9] 33  
PG[8] 34  
PC[11] 35  
PC[10] 36  
PG[7] 37  
PG[6] 38  
PB[0] 39  
PB[1] 40  
PK[1] 41  
PK[2] 42  
PK[3] 43  
PK[4] 44  
PK[5] 45  
PK[6] 46  
PK[7] 47  
PK[8] 48  
PF[9] 49  
PI[8]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
VDD_HV_A  
VSS_HV  
PD[12]  
VDD_HV_ADC1  
VSS_HV_ADC1  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PJ[5]  
PJ[6]  
PJ[7]  
PJ[8]  
PB[7]  
PB[6]  
PF[8] 50  
PF[12] 51  
PC[6] 52  
PB[5]  
VDD_HV_ADC0  
VSS_HV_ADC0  
NOTE  
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14],  
PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].  
2) Availability of port pin alternate functions depends on product selection.  
16/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Figure 4.  
256-pin BGA configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PC[15]  
PB[2]  
PC[13]  
PI[1]  
PE[7]  
PH[8]  
PE[2]  
PE[4]  
PC[4]  
PE[3]  
PH[9]  
PI[4]  
PH[11]  
PE[14]  
PA[10]  
PG[11]  
A
B
C
D
E
F
A
B
C
D
E
F
PH[13]  
PH[14]  
PG[5]  
PG[3]  
PA[2]  
PC[14]  
PC[8]  
PC[9]  
PJ[4]  
PC[12]  
PL[0]  
PI[3]  
PI[0]  
PE[6]  
PH[7]  
PH[5]  
PH[6]  
PH[4]  
PK[10]  
PL[1]  
PE[5]  
PC[5]  
PC[0]  
PA[5]  
PC[2]  
PC[3]  
PA[6]  
PH[12]  
PE[15]  
PI[5]  
PG[10]  
PG[14]  
PG[15]  
PG[0]  
PA[11]  
PE[12]  
PF[14]  
PG[1]  
PH[3]  
PA[9]  
PA[7]  
PA[8]  
PE[13]  
PH[2]  
VDD_HV  
_A  
VSS_LV VDD_HV  
_A  
PI[6]  
PI[7]  
PB[3]  
PG[2]  
PE[1]  
PA[0]  
PK[15]  
VDD_LV  
PL[2]  
PI[2]  
VDD_LV  
PK[9]  
PC[1]  
PM[1]  
PM[5]  
PH[10]  
PM[0]  
PL[13]  
PF[15]  
PH[0]  
PH[15]  
PA[1]  
VSS_LV  
PM[6]  
PL[15]  
PL[12]  
PL[14]  
PM[2]  
PK[12]  
PK[13]  
PK[14]  
PM[3]  
PM[4]  
PL[11]  
PJ[5]  
VDD_HV  
_A  
PG[4]  
PE[0]  
PK[11]  
PH[1]  
PG[12]  
PI[12]  
VSS_LV  
PI[9]  
PG[13]  
PA[3]  
PE[8]  
PE[9]  
PE[10]  
PE[11]  
PL[3]  
VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV  
VDD_HV  
_B  
PI[13]  
G
H
J
G
H
J
VDD_HV  
_A  
PK[1]  
PG[9]  
PC[11]  
PK[2]  
PF[9]  
PC[7]  
PA[14]  
PJ[15]  
PJ[14]  
PL[4]  
VSS_LV  
VSS_LV  
VSS_LV  
VSS_LV  
PK[6]  
VSS_LV  
VSS_LV  
VSS_LV  
VSS_LV  
PK[7]  
VSS_HV VSS_HV VSS_HV VSS_HV  
VDD_HV VDD_LV  
_A  
PI[11]  
PI[10]  
PB[15]  
VSS_HV VRC_CT VDD_LV  
RL  
PL[5]  
VSS_LV  
VSS_LV  
VSS_LV  
PK[8]  
VSS_HV VSS_HV VSS_HV  
PD[15]  
PD[14]  
PD[12]  
PB[11]  
PB[5]  
PI[8]  
PD[13]  
PB[12]  
PD[10]  
PB[6]  
RESET  
PC[10]  
PG[6]  
VSS_LV  
PG[7]  
PB[1]  
PG[8]  
PB[0]  
PK[4]  
PC[6]  
PF[13]  
PJ[11]  
PK[0]  
PL[6]  
VSS_LV  
VSS_LV  
PL[8]  
VDD_LV  
VDD_LV  
PL[9]  
VDD_LV  
VDD_LV  
PL[10]  
PD[2]  
PB[14]  
PB[13]  
PD[11]  
PJ[6]  
K
L
K
L
PL[7]  
VDD_HV  
_ADC1  
PK[5]  
PJ[13]  
PJ[9]  
VSS_HV_  
ADC1  
M
N
P
R
T
M
N
P
R
T
PK[3]  
PF[8]  
VDD_HV  
_A  
PB[10]  
PF[0]  
PF[6]  
VDD_HV  
_A  
PJ[1]  
PD[9]  
PJ[7]  
PB[7]  
PB[4]  
PF[12]  
PF[11]  
PJ[12]  
PF[10]  
PA[15]  
PA[4]  
PA[12]  
PF[2]  
PF[1]  
PF[5]  
PF[7]  
PJ[3]  
PI[15]  
PD[4]  
PD[0]  
PI[14]  
PD[7]  
PD[8]  
PD[6]  
PD[5]  
PJ[8]  
PA[13]  
PJ[10]  
PF[3]  
PF[4]  
VDD_LV  
VSS_LV  
PJ[2]  
PJ[0]  
PD[3]  
VDD_HV  
_ADC0  
XTAL  
EXTAL  
PB[9]  
PB[8]  
PD[1]  
VSS_HV_  
ADC0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Notes:  
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14],  
PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].  
2)Availability of port pin alternate functions depends on product selection.  
3.1  
Pad types  
In the device the following types of pads are available for system pins and functional port  
pins:  
(a)  
S = Slow  
(a), (b)  
M = Medium  
(a), (b)  
F = Fast  
(a)  
I = Input only with analog feature  
A = Analog  
Doc ID 17478 Rev 4  
17/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
3.2  
System pins  
The system pins are listed in Table 4.  
Table 4.  
Port pin  
System pin descriptions  
Function  
Pin number  
I/O  
Pad  
RESET  
config.  
direction type  
Input, weak  
pull-up only  
after  
Bidirectional reset with Schmitt-Trigger  
characteristics and noise filter.  
RESET  
I/O  
I
M
29  
58  
29  
74  
K1  
T8  
PHASE2  
Analog input of the oscillator amplifier  
EXTAL circuit. Needs to be grounded if oscillator  
bypass mode is used.  
A(1)  
Analog output of the oscillator amplifier  
circuit, when the oscillator is not in bypass  
mode.  
XTAL  
I/O  
A(1)  
56  
72  
T7  
Analog input for the clock generator when  
the oscillator is in bypass mode.  
1. For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range voltage.  
3.3  
Functional ports  
The functional port pins are listed in Table 5.  
a. See the I/O pad electrical characteristics in the device datasheet for details.  
b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium.  
For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by  
default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference  
manual, Pad Configuration Registers (PCR0—PCR198)).  
18/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[0]  
E0UC[0]  
SIUL  
I/O  
I/O  
O
eMIOS_0  
MC_CGM  
eMIOS_0  
WKPU  
CLKOUT  
E0UC[13]  
WKPU[19]  
CAN1RX  
PA[0]  
PA[1]  
PA[2]  
PA[3]  
PCR[0]  
M/S Tristate  
24  
19  
24  
19  
G4  
I/O  
I
I
FlexCAN_1  
AF0  
AF1  
AF2  
AF3  
GPIO[1]  
E0UC[1]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
PCR[1]  
PCR[2]  
PCR[3]  
S
S
Tristate  
Tristate  
F3  
WKPU[2]  
CAN3RX  
NMI[0](3)  
WKPU  
FlexCAN_3  
WKPU  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
I
17  
17  
F1  
MA[2]  
ADC_0  
WKPU  
WKPU  
WKPU[3]  
NMI[1](3)  
I
AF0  
AF1  
AF2  
AF3  
GPIO[3]  
E0UC[3]  
SIUL  
eMIOS_0  
LINFlexD_5  
DSPI_1  
FEC  
I/O  
I/O  
O
O
I
LIN5TX  
CS4_1  
M/S Tristate  
114  
138  
G16  
RX_ER_CLK  
EIRQ[0]  
SIUL  
I
ADC1_S[0]  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPIO[4]  
E0UC[4]  
SIUL  
eMIOS_0  
I/O  
I/O  
I/O  
I
PA[4]  
PA[5]  
PCR[4]  
PCR[5]  
S
Tristate  
51  
61  
T2  
CS0_1  
LIN5RX  
WKPU[9]  
DSPI_1  
LINFlexD_5  
WKPU  
I
AF0  
AF1  
AF2  
GPIO[5]  
E0UC[5]  
LIN4TX  
SIUL  
I/O  
eMIOS_0  
LINFlexD_4  
I/O M/S Tristate  
O
146  
170  
C10  
Doc ID 17478 Rev 4  
19/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[6]  
E0UC[6]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
I
PA[6]  
PA[7]  
PCR[6]  
S
Tristate  
147  
128  
171  
152  
D11  
C15  
CS1_1  
LIN4RX  
EIRQ[1]  
DSPI_1  
LINFlexD_4  
SIUL  
I
AF0  
AF1  
AF2  
AF3  
GPIO[7]  
E0UC[7]  
LIN3TX  
SIUL  
eMIOS_0  
LINFlexD_3  
I/O  
I/O  
O
I
PCR[7]  
M/S Tristate  
RXD[2]  
EIRQ[2]  
ADC1_S[1]  
FEC  
SIUL  
I
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPIO[8]  
E0UC[8]  
E0UC[14]  
SIUL  
eMIOS_0  
eMIOS_0  
I/O  
I/O  
I/O  
Input,  
weak  
pull-up  
PA[8]  
PCR[8]  
M/S  
129  
153  
B16  
RXD[1]  
EIRQ[3]  
ABS[0]  
LIN3RX  
FEC  
I
I
I
I
SIUL  
MC_RGM  
LINFlexD_3  
AF0  
AF1  
AF2  
AF3  
GPIO[9]  
E0UC[9]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
I
Pull-  
down  
PA[9]  
PCR[9]  
M/S  
130  
131  
154  
155  
B15  
A15  
CS2_1  
RXD[0]  
FAB  
DSPI1  
FEC  
MC_RGM  
I
AF0  
AF1  
AF2  
AF3  
GPIO[10]  
E0UC[10]  
SDA  
SIUL  
eMIOS_0  
I2C  
I/O  
I/O  
I/O  
O
I
PA[10]  
PCR[10]  
LIN2TX  
COL  
LINFlexD_2  
FEC  
M/S Tristate  
ADC1_S[2]  
SIN_1  
ADC_1  
DSPI_1  
I
I
20/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
eMIOS_0  
I2C  
I/O  
I/O  
I/O  
PA[11]  
PA[12]  
PCR[11]  
M/S Tristate  
132  
156  
B14  
RX_ER  
EIRQ[16]  
LIN2RX  
ADC1_S[3]  
FEC  
I
I
I
I
SIUL  
LINFlexD_2  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[12]  
SIUL  
I/O  
I/O  
O
I
E0UC[28]  
CS3_1  
EIRQ[17]  
SIN_0  
eMIOS_0  
DSPI1  
SIUL  
PCR[12]  
S
Tristate  
53  
69  
P6  
DSPI_0  
I
AF0  
AF1  
AF2  
AF3  
GPIO[13]  
SOUT_0  
E0UC[29]  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
PA[13]  
PA[14]  
PCR[13]  
PCR[14]  
M/S Tristate  
52  
50  
66  
58  
R5  
P4  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[14]  
SCK_0  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
SIUL  
I/O  
I/O  
CS0_0  
I/O M/S Tristate  
E0UC[0]  
EIRQ[4]  
I/O  
I
AF0  
AF1  
AF2  
AF3  
GPIO[15]  
CS0_0  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
WKPU  
I/O  
I/O  
PA[15]  
PB[0]  
PCR[15]  
PCR[16]  
SCK_0  
I/O M/S Tristate  
48  
39  
56  
39  
R2  
L3  
E0UC[1]  
WKPU[10]  
I/O  
I
AF0  
AF1  
AF2  
AF3  
GPIO[16]  
CAN0TX  
E0UC[30]  
LIN0TX  
SIUL  
I/O  
FlexCAN_0  
eMIOS_0  
LINFlexD_0  
O
M/S Tristate  
I/O  
I
AF0  
AF1  
AF2  
GPIO[17]  
SIUL  
I/O  
E0UC[31]  
LIN0RX  
WKPU[4]  
CAN0RX  
eMIOS_0  
LINFlexD_0  
WKPU  
I/O  
PB[1]  
PCR[17]  
S
Tristate  
40  
40  
M2  
I
I
I
FlexCAN_0  
Doc ID 17478 Rev 4  
21/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlexD_0  
I2C  
I/O  
O
PB[2]  
PB[3]  
PCR[18]  
M/S Tristate  
176  
208  
A2  
D4  
I/O  
I/O  
E0UC[30]  
eMIOS_0  
AF0  
AF1  
AF2  
AF3  
GPIO[19]  
E0UC[31]  
SCL  
SIUL  
eMIOS_0  
I2C  
I/O  
I/O  
I/O  
I
PCR[19]  
PCR[20]  
PCR[21]  
PCR[22]  
PCR[23]  
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
1
1
WKPU[11]  
LIN0RX  
WKPU  
LINFlexD_0  
I
AF0  
AF1  
AF2  
AF3  
GPI[20]  
SIUL  
I
I
PB[4]  
PB[5]  
PB[6]  
PB[7]  
I
88  
91  
92  
93  
104  
107  
108  
109  
T16  
N13  
N14  
R16  
ADC0_P[0]  
ADC1_P[0]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[21]  
SIUL  
I
I
I
ADC0_P[1]  
ADC1_P[1]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[22]  
SIUL  
I
I
I
ADC0_P[2]  
ADC1_P[2]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[23]  
SIUL  
I
I
I
ADC0_P[3]  
ADC1_P[3]  
ADC_0  
ADC_1  
I
22/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPI[24]  
SIUL  
I
PB[8]  
PCR[24]  
I
61  
77  
T11  
ADC0_S[0]  
ADC1_S[4]  
WKPU[25]  
OSC32k_XTAL(4)  
ADC_0  
ADC_1  
WKPU  
SXOSC  
I
I
I
I
AF0  
AF1  
AF2  
AF3  
GPI[25]  
SIUL  
I
I
PB[9](5) PCR[25]  
I
60  
76  
T10  
ADC0_S[1]  
ADC1_S[5]  
WKPU[26]  
OSC32k_EXTAL4  
ADC_0  
ADC_1  
WKPU  
SXOSC  
I
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[26]  
SOUT_1  
CAN3TX  
SIUL  
DSPI_1  
FlexCAN_3  
I/O  
O
I
PB[10] PCR[26]  
S
Tristate  
62  
78  
N7  
ADC0_S[2]  
ADC1_S[6]  
WKPU[8]  
ADC_0  
ADC_1  
WKPU  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[27]  
E0UC[3]  
SIUL  
eMIOS_0  
I/O  
I/O  
I/O  
I
PB[11] PCR[27]  
PB[12] PCR[28]  
PB[13] PCR[29]  
S
S
S
Tristate  
Tristate  
Tristate  
97  
117  
123  
125  
M13  
L14  
L15  
CS0_0  
DSPI_0  
ADC_0  
ADC0_S[3]  
AF0  
AF1  
AF2  
AF3  
GPIO[28]  
E0UC[4]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
101  
103  
CS1_0  
DSPI_0  
ADC_0  
ADC0_X[0]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[29]  
E0UC[5]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
CS2_0  
DSPI_0  
ADC_0  
ADC0_X[1]  
I
Doc ID 17478 Rev 4  
23/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[30]  
E0UC[6]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
PB[14] PCR[30]  
PB[15] PCR[31]  
S
Tristate  
Tristate  
105  
107  
127  
129  
K15  
K16  
CS3_0  
DSPI_0  
ADC_0  
ADC0_X[2]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[31]  
E0UC[7]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
S
CS4_0  
DSPI_0  
ADC_0  
ADC0_X[3]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[32]  
SIUL  
I/O  
I
Input,  
weak  
pull-up  
TDI  
PC[0](6) PCR[32]  
PC[1](6) PCR[33]  
M/S  
154  
149  
178  
173  
B10  
D9  
JTAGC  
AF0  
AF1  
AF2  
AF3  
GPIO[33]  
SIUL  
I/O  
O
F/M Tristate  
M/S Tristate  
TDO  
JTAGC  
AF0  
AF1  
AF2  
AF3  
GPIO[34]  
SCK_1  
CAN4TX  
SIUL  
DSPI_1  
FlexCAN_4  
I/O  
I/O  
O
PC[2]  
PC[3]  
PCR[34]  
PCR[35]  
145  
144  
169  
168  
B11  
C11  
I
EIRQ[5]  
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[35]  
CS0_1  
MA[0]  
SIUL  
DSPI_1  
ADC_0  
I/O  
I/O  
O
S
Tristate  
CAN1RX  
CAN4RX  
EIRQ[6]  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[36]  
E1UC[31]  
SIUL  
eMIOS_1  
I/O  
I/O  
PC[4]  
PCR[36]  
M/S Tristate  
159  
183  
A9  
FR_B_TX_EN  
SIN_1  
Flexray  
DSPI_1  
FlexCAN_3  
SIUL  
O
I
CAN3RX  
EIRQ[18]  
I
I
24/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[37]  
SOUT_1  
CAN3TX  
SIUL  
DSPI_1  
FlexCAN_3  
I/O  
O
O
PC[5]  
PC[6]  
PC[7]  
PC[8]  
PC[9]  
PCR[37]  
PCR[38]  
PCR[39]  
PCR[40]  
PCR[41]  
M/S Tristate  
158  
44  
45  
175  
2
182  
52  
53  
207  
2
B9  
N3  
N4  
B3  
C3  
L1  
O
I
FR_A_TX  
EIRQ[7]  
Flexray  
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[38]  
LIN1TX  
E1UC[28]  
SIUL  
LINFlexD_1  
eMIOS_1  
I/O  
O
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[39]  
SIUL  
I/O  
I/O  
I
E1UC[29]  
eMIOS_1  
LIN1RX  
WKPU[12]  
LINFlexD_1  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
GPIO[40]  
LIN2TX  
E0UC[3]  
SIUL  
LINFlexD_2  
eMIOS_0  
I/O  
O
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[41]  
SIUL  
I/O  
I/O  
I
E0UC[7]  
eMIOS_0  
LIN2RX  
WKPU[13]  
LINFlexD_2  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
GPIO[42]  
CAN1TX  
CAN4TX  
MA[1]  
SIUL  
I/O  
O
FlexCAN_1  
FlexCAN_4  
ADC_0  
PC[10] PCR[42]  
PC[11] PCR[43]  
M/S Tristate  
36  
36  
35  
O
O
AF0  
AF1  
AF2  
AF3  
GPIO[43]  
SIUL  
I/O  
O
I
MA[2]  
ADC_0  
FlexCAN_1  
FlexCAN_4  
WKPU  
S
Tristate  
35  
K4  
CAN1RX  
CAN4RX  
WKPU[5]  
I
I
Doc ID 17478 Rev 4  
25/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[44]  
E0UC[12]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
205  
PC[12] PCR[44]  
M/S Tristate  
173  
B4  
FR_DBG[0]  
SIN_2  
Flexray  
DSPI_2  
SIUL  
I
EIRQ[19]  
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
206  
PC[13] PCR[45]  
PC[14] PCR[46]  
M/S Tristate  
M/S Tristate  
174  
A3  
B2  
O
FR_DBG[1]  
Flexray  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
O
3
3
FR_DBG[2]  
EIRQ[8]  
Flexray  
SIUL  
I
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
O
AF0  
AF1  
AF2  
AF3  
ALT4  
4
PC[15] PCR[47]  
M/S Tristate  
4
A1  
FR_DBG[3]  
EIRQ[20]  
Flexray  
SIUL  
I
AF0  
AF1  
AF2  
AF3  
GPI[48]  
SIUL  
I
I
PD[0]  
PCR[48]  
I
Tristate  
Tristate  
77  
93  
R12  
ADC0_P[4]  
ADC1_P[4]  
WKPU[27]  
ADC_0  
ADC_1  
WKPU  
I
I
AF0  
AF1  
AF2  
AF3  
GPI[49]  
SIUL  
I
I
PD[1]  
PCR[49]  
I
78  
94  
T13  
ADC0_P[5]  
ADC1_P[5]  
WKPU[28]  
ADC_0  
ADC_1  
WKPU  
I
I
26/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPI[50]  
SIUL  
I
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
PCR[50]  
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
79  
80  
81  
82  
83  
84  
95  
96  
N11  
R13  
P12  
T14  
R14  
P13  
ADC0_P[6]  
ADC1_P[6]  
ADC_0  
ADC_1  
I
I
AF0  
AF1  
AF2  
AF3  
GPI[51]  
SIUL  
I
I
PCR[51]  
PCR[52]  
PCR[53]  
PCR[54]  
PCR[55]  
ADC0_P[7]  
ADC1_P[7]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[52]  
SIUL  
I
I
97  
ADC0_P[8]  
ADC1_P[8]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[53]  
SIUL  
I
I
98  
ADC0_P[9]  
ADC1_P[9]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[54]  
SIUL  
I
I
99  
ADC0_P[10]  
ADC1_P[10]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[55]  
SIUL  
I
I
100  
ADC0_P[11]  
ADC1_P[11]  
ADC_0  
ADC_1  
I
Doc ID 17478 Rev 4  
27/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPI[56]  
SIUL  
I
I
PD[8]  
PD[9]  
PCR[56]  
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
87  
94  
95  
96  
103  
P14  
N16  
M14  
M15  
ADC0_P[12]  
ADC1_P[12]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[57]  
SIUL  
I
I
PCR[57]  
114  
115  
ADC0_P[13]  
ADC1_P[13]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[58]  
SIUL  
I
I
PD[10] PCR[58]  
ADC0_P[14]  
ADC1_P[14]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPI[59]  
SIUL  
I
I
116  
PD[11] PCR[59]  
ADC0_P[15]  
ADC1_P[15]  
ADC_0  
ADC_1  
I
AF0  
AF1  
AF2  
AF3  
GPIO[60]  
CS5_0  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
PD[12] PCR[60]  
PD[13] PCR[61]  
E0UC[24]  
I/O  
I
S
S
Tristate  
Tristate  
100  
102  
120  
124  
L13  
K14  
ADC0_S[4]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[61]  
CS0_1  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
I/O  
I/O  
I
E0UC[25]  
ADC0_S[5]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[62]  
CS1_1  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
E0UC[26]  
I/O  
O
PD[14] PCR[62]  
S
Tristate  
104  
126  
K13  
FR_DBG[0]  
ADC0_S[6]  
Flexray  
ADC_0  
I
28/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[63]  
CS2_1  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
E0UC[27]  
I/O  
PD[15] PCR[63]  
S
S
Tristate  
Tristate  
106  
128  
18  
J13  
O
I
FR_DBG[1]  
ADC0_S[7]  
Flexray  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
PE[0]  
PE[1]  
PCR[64]  
PCR[65]  
18  
20  
G2  
F4  
CAN5RX  
WKPU[6]  
FlexCAN_5  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
GPIO[65]  
E0UC[17]  
CAN5TX  
SIUL  
eMIOS_0  
FlexCAN_5  
I/O  
I/O  
O
M/S Tristate  
M/S Tristate  
20  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[66]  
E0UC[18]  
SIUL  
eMIOS_0  
I/O  
I/O  
O
180  
PE[2]  
PCR[66]  
156  
A7  
FR_A_TX_EN  
SIN_1  
Flexray  
DSPI_1  
SIUL  
I
EIRQ[21]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
181  
184  
PE[3]  
PE[4]  
PCR[67]  
PCR[68]  
M/S Tristate  
157  
160  
A10  
FR_A_RX  
WKPU[29]  
Flexray  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
I/O  
O
M/S Tristate  
A8  
FR_B_TX  
EIRQ[9]  
Flexray  
SIUL  
I
Doc ID 17478 Rev 4  
29/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0  
DSPI_1  
ADC_0  
Flexray  
WKPU  
I/O  
I/O  
I/O  
O
185  
PE[5]  
PE[6]  
PCR[69]  
PCR[70]  
M/S Tristate  
M/S Tristate  
161  
167  
B8  
B6  
MA[2]  
FR_B_RX  
WKPU[30]  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[70]  
E0UC[22]  
CS3_0  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O  
I/O  
O
191  
MA[1]  
O
EIRQ[22]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[71]  
E0UC[23]  
CS2_0  
SIUL  
eMIOS_0  
DSPI_0  
ADC_0  
SIUL  
I/O  
I/O  
O
192  
21  
PE[7]  
PE[8]  
PCR[71]  
PCR[72]  
M/S Tristate  
M/S Tristate  
168  
21  
A5  
G1  
MA[0]  
O
EIRQ[23]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[72]  
CAN2TX  
E0UC[22]  
CAN3TX  
SIUL  
I/O  
O
FlexCAN_2  
eMIOS_0  
FlexCAN_3  
I/O  
O
AF0  
AF1  
AF2  
AF3  
GPIO[73]  
SIUL  
I/O  
I/O  
I
E0UC[23]  
eMIOS_0  
22  
PE[9]  
PCR[73]  
S
Tristate  
22  
H1  
WKPU[7]  
CAN2RX  
CAN3RX  
WKPU  
FlexCAN_2  
FlexCAN_3  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[74]  
LIN3TX  
SIUL  
LINFlexD_3  
DSPI_1  
eMIOS_1  
SIUL  
I/O  
O
23  
25  
PE[10] PCR[74]  
CS3_1  
O
S
S
Tristate  
Tristate  
23  
25  
G3  
H3  
E1UC[30]  
EIRQ[10]  
I/O  
I
AF0  
AF1  
AF2  
AF3  
GPIO[75]  
E0UC[24]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
PE[11] PCR[75]  
LIN3RX  
WKPU[14]  
LINFlexD_3  
WKPU  
I
30/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[76]  
SIUL  
I/O  
E1UC[19]  
eMIOS_1  
I/O  
157  
151  
PE[12] PCR[76]  
M/S Tristate  
133  
127  
C14  
C16  
CRS  
FEC  
I
I
I
I
SIN_2  
DSPI_2  
SIUL  
EIRQ[11]  
ADC1_S[7]  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[77]  
SOUT_2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1  
I/O  
O
PE[13] PCR[77]  
I/O M/S Tristate  
I
RXD[3]  
FEC  
AF0  
AF1  
AF2  
AF3  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1  
I/O  
I/O  
160  
161  
79  
PE[14] PCR[78]  
PE[15] PCR[79]  
I/O M/S Tristate  
136  
137  
63  
A14  
C12  
P7  
I
EIRQ[12]  
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[79]  
CS0_2  
SIUL  
I/O  
DSPI_2  
eMIOS_1  
DSPI_6  
I/O  
M/S Tristate  
I/O  
E1UC[22]  
SCK_6  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
PF[0]  
PF[1]  
PF[2]  
PCR[80]  
PCR[81]  
PCR[82]  
O
I
S
S
S
Tristate  
Tristate  
Tristate  
ADC0_S[8]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
80  
81  
64  
65  
T6  
R6  
I
ADC0_S[9]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
I/O  
I
ADC0_S[10]  
ADC_0  
Doc ID 17478 Rev 4  
31/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
82  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PCR[83]  
PCR[84]  
PCR[85]  
PCR[86]  
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
66  
67  
68  
69  
R7  
R8  
P8  
N8  
I
ADC0_S[11]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
83  
84  
I
ADC0_S[12]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0  
DSPI_2  
I/O  
I/O  
O
I
ADC0_S[13]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[86]  
E0UC[23]  
CS1_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
85  
86  
50  
49  
I
ADC0_S[14]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[87]  
SIUL  
I/O  
O
PF[7]  
PF[8]  
PCR[87]  
PCR[88]  
CS2_1  
DSPI_1  
70  
42  
P9  
N2  
I
ADC0_S[15]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[88]  
CAN3TX  
CS4_0  
SIUL  
I/O  
O
FlexCAN_3  
DSPI_0  
M/S Tristate  
O
CAN2TX  
FlexCAN_2  
O
AF0  
AF1  
AF2  
AF3  
GPIO[89]  
E1UC[1]  
CS5_0  
SIUL  
eMIOS_1  
DSPI_0  
I/O  
I/O  
O
I
PF[9]  
PCR[89]  
S
Tristate  
41  
46  
M4  
P2  
CAN2RX  
CAN3RX  
WKPU[22]  
FlexCAN_2  
FlexCAN_3  
WKPU  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[90]  
CS1_0  
SIUL  
I/O  
O
DSPI_0  
54  
PF[10] PCR[90]  
M/S Tristate  
LIN4TX  
E1UC[2]  
LINFlexD_4  
eMIOS_1  
O
I/O  
32/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[91]  
CS2_0  
SIUL  
DSPI_0  
eMIOS_1  
I/O  
O
E1UC[3]  
I/O  
I
55  
51  
PF[11] PCR[91]  
PF[12] PCR[92]  
PF[13] PCR[93]  
S
Tristate  
47  
43  
49  
R1  
P1  
P3  
LIN4RX  
WKPU[15]  
LINFlexD_4  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
GPIO[92]  
E1UC[25]  
LIN5TX  
SIUL  
eMIOS_1  
LINFlexD_5  
I/O  
I/O  
O
M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
57  
S
Tristate  
LIN5RX  
WKPU[16]  
LINFlexD_5  
WKPU  
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[94]  
CAN4TX  
E1UC[27]  
CAN1TX  
MDIO  
SIUL  
FlexCAN_4  
eMIOS_1  
FlexCAN_1  
FEC  
I/O  
O
150  
PF[14] PCR[94]  
I/O M/S Tristate  
126  
125  
122  
D14  
D15  
E13  
O
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[95]  
E1UC[4]  
SIUL  
eMIOS_1  
I/O  
I/O  
149  
146  
PF[15] PCR[95]  
M/S Tristate  
I
RX_DV  
CAN1RX  
CAN4RX  
EIRQ[13]  
FEC  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[96]  
CAN5TX  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1  
I/O  
O
PG[0]  
PCR[96]  
I/O  
O
F
Tristate  
MDC  
FEC  
Doc ID 17478 Rev 4  
33/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[97]  
SIUL  
I/O  
I/O  
I
E1UC[24]  
eMIOS_1  
PG[1]  
PCR[97]  
M
Tristate  
121  
145  
E14  
TX_CLK  
CAN5RX  
EIRQ[14]  
FEC  
FlexCAN_5  
SIUL  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[98]  
E1UC[11]  
SOUT_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
O
PG[2]  
PG[3]  
PCR[98]  
PCR[99]  
M/S Tristate  
16  
15  
14  
16  
15  
14  
E4  
E1  
F2  
AF0  
AF1  
AF2  
AF3  
GPIO[99]  
E1UC[12]  
CS0_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
I/O  
I
S
Tristate  
WKPU[17]  
WKPU  
AF0  
AF1  
AF2  
AF3  
GPIO[100]  
E1UC[13]  
SCK_3  
SIUL  
eMIOS_1  
DSPI_3  
I/O  
I/O  
I/O  
PG[4] PCR[100]  
PG[5] PCR[101]  
PG[6] PCR[102]  
PG[7] PCR[103]  
M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
S
Tristate  
13  
38  
37  
13  
38  
37  
D1  
M1  
L2  
WKPU[18]  
SIN_3  
WKPU  
DSPI_3  
I
AF0  
AF1  
AF2  
AF3  
GPIO[102]  
E1UC[15]  
LIN6TX  
SIUL  
eMIOS_1  
LINFlexD_6  
I/O  
I/O  
O
M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[103]  
E1UC[16]  
E1UC[30]  
SIUL  
eMIOS_1  
eMIOS_1  
I/O  
I/O  
I/O  
I
S
Tristate  
LIN6RX  
WKPU[20]  
LINFlexD_6  
WKPU  
I
34/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[104]  
E1UC[17]  
LIN7TX  
SIUL  
eMIOS_1  
LINFlexD_7  
DSPI_2  
SIUL  
I/O  
I/O  
PG[8] PCR[104]  
PG[9] PCR[105]  
O
I/O  
I
S
S
S
Tristate  
Tristate  
Tristate  
34  
33  
34  
33  
K3  
J4  
CS0_2  
EIRQ[15]  
AF0  
AF1  
AF2  
AF3  
GPIO[105]  
E1UC[18]  
SIUL  
eMIOS_1  
I/O  
I/O  
I/O  
I
SCK_2  
DSPI_2  
LINFlexD_7  
WKPU  
LIN7RX  
WKPU[21]  
I
AF0  
AF1  
AF2  
AF3  
GPIO[106]  
E0UC[24]  
E1UC[31]  
SIUL  
eMIOS_0  
eMIOS_1  
I/O  
I/O  
I/O  
I
PG[10] PCR[106]  
PG[11] PCR[107]  
PG[12] PCR[108]  
138  
139  
116  
162  
163  
140  
B13  
A16  
F15  
SIN_4  
DSPI_4  
AF0  
AF1  
AF2  
AF3  
GPIO[107]  
E0UC[25]  
CS0_4  
SIUL  
I/O  
I/O  
I/O  
I/O  
eMIOS_0  
DSPI_4  
DSPI_6  
M/S Tristate  
M/S Tristate  
CS0_6  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[108]  
E0UC[26]  
SOUT_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O  
I/O  
O
O
TXD[2]  
FEC  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[109]  
E0UC[27]  
SCK_4  
SIUL  
eMIOS_0  
DSPI_4  
I/O  
I/O  
PG[13] PCR[109]  
PG[14] PCR[110]  
PG[15] PCR[111]  
I/O M/S Tristate  
115  
134  
135  
139  
158  
159  
F16  
C13  
O
TXD[3]  
FEC  
AF0  
AF1  
AF2  
AF3  
GPIO[110]  
E1UC[0]  
LIN8TX  
SIUL  
eMIOS_1  
LINFlexD_8  
I/O  
I/O  
O
I
S
Tristate  
SIN_6  
DSPI_6  
AF0  
AF1  
AF2  
AF3  
GPIO[111]  
E1UC[1]  
SOUT_6  
SIUL  
eMIOS_1  
DSPI_6  
I/O  
I/O  
O
M/S Tristate  
D13  
I
LIN8RX  
LINFlexD_8  
Doc ID 17478 Rev 4  
35/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[112]  
E1UC[2]  
SIUL  
eMIOS_1  
I/O  
I/O  
O
PH[0] PCR[112]  
M/S Tristate  
M/S Tristate  
117  
141  
E15  
TXD[1]  
SIN_1  
FEC  
DSPI_1  
I
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[113]  
E1UC[3]  
SOUT_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
O
PH[1] PCR[113]  
PH[2] PCR[114]  
118  
119  
142  
143  
F13  
D16  
O
TXD[0]  
FEC  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
I/O M/S Tristate  
O
TX_EN  
FEC  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1  
DSPI_1  
I/O  
I/O  
PH[3] PCR[115]  
PH[4] PCR[116]  
PH[5] PCR[117]  
PH[6] PCR[118]  
PH[7] PCR[119]  
I/O M/S Tristate  
120  
162  
163  
164  
165  
144  
186  
187  
188  
189  
F14  
D7  
B7  
O
TX_ER  
FEC  
AF0  
AF1  
AF2  
AF3  
GPIO[116]  
E1UC[6]  
SOUT_7  
SIUL  
eMIOS_1  
DSPI_7  
I/O  
I/O  
M/S Tristate  
O
AF0  
AF1  
AF2  
AF3  
GPIO[117]  
E1UC[7]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
S
Tristate  
SIN_7  
DSPI_7  
AF0  
AF1  
AF2  
AF3  
GPIO[118]  
E1UC[8]  
SCK_7  
SIUL  
eMIOS_1  
DSPI_7  
ADC_0  
I/O  
I/O  
I/O  
O
M/S Tristate  
M/S Tristate  
C7  
C6  
MA[2]  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[119]  
E1UC[9]  
CS3_2  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
DSPI_7  
I/O  
I/O  
O
MA[1]  
O
CS0_7  
I/O  
36/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1  
DSPI_2  
ADC_0  
I/O  
I/O  
PH[8] PCR[120]  
PH[9](6) PCR[121]  
PH[10](6  
M/S Tristate  
Input,  
166  
155  
190  
179  
A6  
O
O
MA[0]  
AF0  
AF1  
AF2  
AF3  
GPIO[121]  
SIUL  
I/O  
I
S
weak  
A11  
pull-up  
TCK  
JTAGC  
AF0  
AF1  
AF2  
AF3  
GPIO[122]  
SIUL  
I/O  
I
Input,  
weak  
PCR[122]  
M/S  
148  
172  
D10  
)
pull-up  
TMS  
JTAGC  
AF0  
AF1  
AF2  
AF3  
GPIO[123]  
SOUT_3  
CS0_4  
SIUL  
I/O  
O
DSPI_3  
DSPI_4  
eMIOS_1  
PH[11] PCR[123]  
PH[12] PCR[124]  
PH[13] PCR[125]  
PH[14] PCR[126]  
PH[15] PCR[127]  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
140  
141  
9
164  
165  
9
A13  
B12  
B1  
I/O  
I/O  
E1UC[5]  
AF0  
AF1  
AF2  
AF3  
GPIO[124]  
SCK_3  
SIUL  
I/O  
I/O  
O
DSPI_3  
DSPI_4  
eMIOS_1  
CS1_4  
E1UC[25]  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[125]  
SOUT_4  
CS0_3  
SIUL  
I/O  
O
DSPI_4  
DSPI_3  
eMIOS_1  
I/O  
I/O  
E1UC[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[126]  
SCK_4  
SIUL  
I/O  
I/O  
O
DSPI_4  
DSPI_3  
eMIOS_1  
10  
8
10  
8
C1  
CS1_3  
E1UC[27]  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[127]  
SOUT_5  
SIUL  
DSPI_5  
I/O  
O
E3  
E1UC[17]  
eMIOS_1  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[128]  
E0UC[28]  
LIN8TX  
SIUL  
eMIOS_0  
LINFlexD_8  
I/O  
I/O  
O
PI[0]  
PCR[128]  
S
Tristate  
172  
196  
C5  
Doc ID 17478 Rev 4  
37/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[129]  
E0UC[29]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
PI[1]  
PI[2]  
PI[3]  
PCR[129]  
PCR[130]  
PCR[131]  
S
S
S
Tristate  
Tristate  
Tristate  
171  
170  
169  
195  
194  
193  
A4  
D6  
B5  
WKPU[24]  
LIN8RX  
WKPU  
LINFlexD_8  
I
AF0  
AF1  
AF2  
AF3  
GPIO[130]  
E0UC[30]  
LIN9TX  
SIUL  
eMIOS_0  
LINFlexD_9  
I/O  
I/O  
O
AF0  
AF1  
AF2  
AF3  
GPIO[131]  
E0UC[31]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
WKPU[23]  
LIN9RX  
WKPU  
LINFlexD_9  
I
AF0  
AF1  
AF2  
AF3  
GPIO[132]  
E1UC[28]  
SOUT_4  
SIUL  
eMIOS_1  
DSPI_4  
I/O  
I/O  
O
PI[4]  
PI[5]  
PCR[132]  
PCR[133]  
M/S Tristate  
143  
142  
167  
166  
A12  
D12  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[133]  
E1UC[29]  
SCK_4  
SIUL  
I/O  
I/O  
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
I/O M/S Tristate  
CS2_5  
O
O
CS2_6  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[134]  
E1UC[30]  
CS0_4  
SIUL  
I/O  
I/O  
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
PI[6]  
PI[7]  
PCR[134]  
PCR[135]  
PCR[136]  
I/O  
I/O  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
11  
12  
11  
12  
D2  
E2  
CS0_5  
CS0_6  
AF0  
AF1  
AF2  
AF3  
ALT4  
GPIO[135]  
E1UC[31]  
CS1_4  
SIUL  
I/O  
I/O  
O
eMIOS_1  
DSPI_4  
DSPI_5  
DSPI_6  
CS1_5  
O
CS1_6  
O
AF0  
AF1  
AF2  
AF3  
GPIO[136]  
SIUL  
I/O  
I
PI[8]  
108  
130  
J14  
ADC0_S[16]  
ADC_0  
38/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[137]  
SIUL  
I/O  
PI[9]  
PCR[137]  
I
S
S
Tristate  
Tristate  
131  
134  
J15  
J16  
ADC0_S[17]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[138]  
SIUL  
I/O  
I
PI[10] PCR[138]  
PI[11] PCR[139]  
ADC0_S[18]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[139]  
SIUL  
I/O  
I
S
Tristate  
111  
135  
H16  
ADC0_S[19]  
SIN_3  
ADC_0  
DSPI_3  
I
AF0  
AF1  
AF2  
AF3  
GPIO[140]  
CS0_3  
SIUL  
DSPI_3  
DSPI_2  
I/O  
I/O  
I/O  
I
PI[12] PCR[140]  
PI[13] PCR[141]  
CS0_2  
S
S
Tristate  
Tristate  
112  
113  
136  
137  
G15  
G14  
ADC0_S[20]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[141]  
CS1_3  
SIUL  
DSPI_3  
DSPI_2  
I/O  
O
O
I
CS1_2  
ADC0_S[21]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[142]  
SIUL  
I/O  
I
PI[14] PCR[142]  
PI[15] PCR[143]  
S
S
Tristate  
Tristate  
76  
75  
92  
91  
T12  
P11  
ADC0_S[22]  
SIN_4  
ADC_0  
DSPI_4  
I
AF0  
AF1  
AF2  
AF3  
GPIO[143]  
CS0_4  
SIUL  
DSPI_4  
DSPI_2  
I/O  
I/O  
O
CS2_2  
I
ADC0_S[23]  
ADC_0  
Doc ID 17478 Rev 4  
39/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[144]  
CS1_4  
SIUL  
DSPI_4  
DSPI_2  
I/O  
O
O
I
PJ[0]  
PJ[1]  
PJ[2]  
PCR[144]  
CS3_2  
S
S
Tristate  
Tristate  
74  
73  
72  
90  
89  
88  
R11  
N10  
R10  
ADC0_S[24]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[145]  
SIUL  
I/O  
I
PCR[145]  
PCR[146]  
——  
ADC0_S[25]  
SIN_5  
ADC_0  
DSPI_5  
I
AF0  
AF1  
AF2  
AF3  
GPIO[146]  
CS0_5  
SIUL  
I/O  
I/O  
I/O  
I/O  
I
DSPI_5  
DSPI_6  
DSPI_7  
ADC_0  
CS0_6  
S
S
Tristate  
Tristate  
CS0_7  
ADC0_S[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[147]  
CS1_5  
SIUL  
I/O  
O
O
O
I
DSPI_5  
DSPI_6  
DSPI_7  
ADC_0  
PJ[3]  
PJ[4]  
PJ[5]  
PCR[147]  
PCR[148]  
PCR[149]  
CS1_6  
71  
5
87  
5
P10  
D3  
CS1_7  
ADC0_S[27]  
AF0  
AF1  
AF2  
AF3  
GPIO[148]  
SCK_5  
E1UC[18]  
SIUL  
DSPI_5  
eMIOS_1  
I/O  
I/O  
I/O  
M/S Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[149]  
SIUL  
I/O  
I
S
S
S
Tristate  
Tristate  
Tristate  
113  
N12  
ADC0_S[28]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[150]  
SIUL  
I/O  
I
PJ[6]  
PCR[150]  
PCR[151]  
112  
111  
N15  
P16  
ADC0_S[29]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[151]  
SIUL  
I/O  
I
PJ[7]  
ADC0_S[30]  
ADC_0  
40/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[152]  
SIUL  
I/O  
PJ[8]  
PJ[9]  
PCR[152]  
PCR[153]  
I
S
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
110  
68  
67  
60  
59  
P15  
P5  
T5  
ADC0_S[31]  
ADC_0  
AF0  
AF1  
AF2  
AF3  
GPIO[153]  
SIUL  
I/O  
I
ADC1_S[8]  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[154]  
SIUL  
I/O  
I
PJ[10] PCR[154]  
PJ[11] PCR[155]  
PJ[12] PCR[156]  
ADC1_S[9]  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[155]  
SIUL  
I/O  
I
R3  
T1  
ADC1_S[10]  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[156]  
SIUL  
I/O  
I
ADC1_S[11]  
ADC_1  
AF0  
AF1  
AF2  
AF3  
GPIO[157]  
SIUL  
I/O  
O
I
CS1_7  
DSPI_7  
PJ[13] PCR[157]  
S
Tristate  
65  
64  
N5  
T4  
CAN4RX  
ADC1_S[12]  
CAN1RX  
WKPU[31]  
FlexCAN_4  
ADC_1  
FlexCAN_1  
WKPU  
I
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[158]  
CAN1TX  
CAN4TX  
CS2_7  
SIUL  
I/O  
O
FlexCAN_1  
FlexCAN_4  
DSPI_7  
PJ[14] PCR[158]  
M/S Tristate  
O
O
Doc ID 17478 Rev 4  
41/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[159]  
SIUL  
I/O  
O
PJ[15] PCR[159]  
PK[0] PCR[160]  
PK[1] PCR[161]  
PK[2] PCR[162]  
CS1_6  
DSPI_6  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
63  
62  
41  
42  
R4  
T3  
H4  
L4  
I
CAN1RX  
FlexCAN_1  
AF0  
AF1  
AF2  
AF3  
GPIO[160]  
CAN1TX  
CS2_6  
SIUL  
FlexCAN_1  
DSPI_6  
I/O  
O
O
AF0  
AF1  
AF2  
AF3  
GPIO[161]  
CS3_6  
SIUL  
DSPI_6  
I/O  
O
I
CAN4RX  
FlexCAN_4  
AF0  
AF1  
AF2  
AF3  
GPIO[162]  
CAN4TX  
SIUL  
I/O  
O
FlexCAN_4  
AF0  
AF1  
AF2  
AF3  
GPIO[163]  
E1UC[0]  
SIUL  
eMIOS_1  
I/O  
I/O  
I
PK[3] PCR[163]  
PK[4] PCR[164]  
PK[5] PCR[165]  
PK[6] PCR[166]  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
43  
44  
45  
46  
N1  
M3  
M5  
M6  
CAN5RX  
LIN8RX  
FlexCAN_5  
LINFlexD_8  
I
AF0  
AF1  
AF2  
AF3  
GPIO[164]  
LIN8TX  
SIUL  
I/O  
O
LINFlexD_8  
FlexCAN_5  
eMIOS_1  
CAN5TX  
E1UC[1]  
O
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[165]  
SIUL  
I/O  
I
CAN2RX  
LIN2RX  
FlexCAN_2  
LINFlexD_2  
I
AF0  
AF1  
AF2  
AF3  
GPIO[166]  
CAN2TX  
LIN2TX  
SIUL  
FlexCAN_2  
LINFlexD_2  
I/O  
O
O
42/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[167]  
SIUL  
I/O  
PK[7] PCR[167]  
M/S Tristate  
47  
M7  
CAN3RX  
LIN3RX  
FlexCAN_3  
LINFlexD_3  
I
I
AF0  
AF1  
AF2  
AF3  
GPIO[168]  
CAN3TX  
LIN3TX  
SIUL  
FlexCAN_3  
LINFlexD_3  
I/O  
O
PK[8] PCR[168]  
PK[9] PCR[169]  
M/S Tristate  
M/S Tristate  
48  
M8  
E8  
O
AF0  
AF1  
AF2  
AF3  
GPIO[169]  
SIUL  
I/O  
I
197  
SIN_4  
DSPI_4  
AF0  
AF1  
AF2  
AF3  
GPIO[170]  
SOUT_4  
SIUL  
DSPI_4  
I/O  
O
PK[10] PCR[170]  
PK[11] PCR[171]  
PK[12] PCR[172]  
M/S Tristate  
M/S Tristate  
M/S Tristate  
198  
199  
200  
E7  
F8  
AF0  
AF1  
AF2  
AF3  
GPIO[171]  
SCK_4  
SIUL  
DSPI_4  
I/O  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[172]  
CS0_4  
SIUL  
DSPI_4  
I/O  
I/O  
G12  
AF0  
AF1  
AF2  
AF3  
GPIO[173]  
CS3_6  
SIUL  
DSPI_6  
I/O  
O
PK[13] PCR[173]  
PK[14] PCR[174]  
CS2_7  
DSPI_7  
O
M/S Tristate  
M/S Tristate  
201  
202  
H12  
J12  
SCK_1  
DSPI_1  
I/O  
I
CAN3RX  
FlexCAN_3  
AF0  
AF1  
AF2  
AF3  
GPIO[174]  
CAN3TX  
CS3_7  
SIUL  
FlexCAN_3  
DSPI_7  
I/O  
O
O
CS0_1  
DSPI_1  
I/O  
Doc ID 17478 Rev 4  
43/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[175]  
SIUL  
I/O  
I
PK[15] PCR[175]  
M/S Tristate  
203  
D5  
SIN_1  
SIN_7  
DSPI_1  
DSPI_7  
I
AF0  
AF1  
AF2  
AF3  
GPIO[176]  
SOUT_1  
SOUT_7  
SIUL  
DSPI_1  
DSPI_7  
I/O  
O
PL[0]  
PL[1]  
PL[2]  
PL[3]  
PL[4]  
PL[5]  
PL[6]  
PL[7]  
PCR[176]  
PCR[177]  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
204  
C4  
F7  
F5  
G5  
H5  
J5  
O
AF0  
AF1  
AF2  
AF3  
GPIO[177]  
SIUL  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[178]  
MDO0(8)  
SIUL  
I/O  
O
PCR[178]  
(7)  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[179]  
SIUL  
I/O  
O
PCR[179]  
PCR[180]  
PCR[181]  
PCR[182]  
PCR[183]  
MDO1  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[180]  
SIUL  
I/O  
O
MDO2  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[181]  
SIUL  
I/O  
O
MDO3  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[182]  
SIUL  
I/O  
O
K5  
L5  
MDO4  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[183]  
SIUL  
I/O  
O
MDO5  
Nexus  
44/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[184]  
SIUL  
I/O  
PL[8]  
PL[9]  
PCR[184]  
PCR[185]  
I
S
Pull-up  
M9  
EVTI  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[185]  
SIUL  
I/O  
O
M/S Tristate  
F/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M10  
M11  
M12  
F11  
F10  
E12  
E11  
E10  
MSEO0  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[186]  
SIUL  
I/O  
O
PL[10] PCR[186]  
PL[11] PCR[187]  
PL[12] PCR[188]  
PL[13] PCR[189]  
PL[14] PCR[190]  
PL[15] PCR[191]  
PM[0] PCR[192]  
MCKO  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[187]  
SIUL  
I/O  
O
MSEO1  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[188]  
SIUL  
I/O  
O
EVTO  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[189]  
SIUL  
I/O  
O
MDO6  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[190]  
SIUL  
I/O  
O
MDO7  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[191]  
SIUL  
I/O  
O
MDO8  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[192]  
SIUL  
I/O  
O
MDO9  
Nexus  
Doc ID 17478 Rev 4  
45/118  
Package pinouts and signal descriptions  
SPC564Bxx - SPC56ECxx  
Pin number  
Table 5.  
Functional port pin descriptions (continued)  
Port  
pin  
PCR  
Function  
AF0  
AF1  
AF2  
AF3  
GPIO[193]  
SIUL  
I/O  
O
PM[1] PCR[193]  
PM[2] PCR[194]  
PM[3] PCR[195]  
PM[4] PCR[196]  
PM[5] PCR[197]  
PM[6] PCR[198]  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
M/S Tristate  
E9  
F12  
K12  
L12  
F9  
MDO10  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[194]  
SIUL  
I/O  
O
MDO11  
Nexus  
AF0  
AF1  
AF2  
AF3  
GPIO[195]  
SIUL  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[196]  
SIUL  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[197]  
SIUL  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[198]  
SIUL  
I/O  
F6  
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA =  
000 AF0; PCR.PA = 001 AF1; PCR.PA = 010 AF2; PCR.PA = 011 AF3; PCR.PA = 100 ALT4. This is  
intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless  
of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported  
as “—”.  
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the  
values of the PSMIO.PADSELx bitfields inside the SIUL module.  
3. NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.  
4. SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other  
functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the  
corresponding PCR to "1".  
5. If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10]  
can induce coupling on PB[9] and disturb oscillator frequency.  
6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
It is up to the user to configure these pins as GPIO when needed.  
7. When MBIST is enabled to run ( STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before  
the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When  
MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.  
46/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package pinouts and signal descriptions  
8. These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface  
"Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO[1:0], and MCKO  
ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI  
((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).  
Doc ID 17478 Rev 4  
47/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
4
Electrical Characteristics  
This section contains electrical characteristics of the device as well as temperature and  
power considerations.  
This product contains devices to protect the inputs against damage due to high static  
voltages. However, it is advisable to take precautions to avoid application of any voltage  
higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V  
DD  
or V  
). This could be done by the internal pull-up and pull-down, which is provided by  
SS_HV  
the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and  
its demands on the system.  
In the tables where the device logic provides signals with their respective timing  
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol  
column.  
In the tables where the external system must provide signals with their respective timing  
characteristics to the device, the symbol “SR” for System Requirement is included in the  
Symbol column.  
4.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To  
give the customer a better understanding, the classifications listed in Table 6 are used and  
the parameters are tagged accordingly in the tables where appropriate.  
Table 6.  
Parameter classifications  
Classification tag  
Tag description  
P
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
C
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical  
column are within this category.  
T
D
Those parameters are derived mainly from simulations.  
Note:  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.2  
NVUSRO register  
Portions of the device configuration, such as high voltage supply is controlled via bit values  
in the Non-Volatile User Options Register (NVUSRO). For a detailed description of the  
NVUSRO register, see SPC564Bxx and SPC56ECxx Reference Manual.  
48/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
4.2.1  
NVUSRO [PAD3V5V(0)] field description  
Table 7 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for V  
DD_HV_A  
domain.  
Table 7.  
PAD3V5V(0) field description  
Value(1)  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.  
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.  
NVUSRO [PAD3V5V(1)] field description  
4.2.2  
Table 8 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device  
configuration for V domain.  
DD_HV_B  
Table 8.  
PAD3V5V(1) field description  
Value(1)  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.  
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.  
4.3  
Absolute maximum ratings  
Table 9.  
Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Digital ground on VSS_HV  
pins  
VSS_HV  
SR  
0
0
V
V
Voltage on VDD_HV_A pins  
VDD_HV_A  
SR with respect to ground  
(VSS_HV  
–0.3  
–0.3  
6.0  
6.0  
)
Voltage on VDD_HV_B pins  
SR with respect to common  
(1)  
VDD_HV_B  
V
V
ground (VSS_HV  
)
Voltage on VSS_LV (low  
voltage digital supply) pins  
with respect to ground  
VSS_LV  
SR  
VSS_HV 0.1  
VSS_HV + 0.1  
(VSS_HV  
)
Doc ID 17478 Rev 4  
49/118  
 
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 9.  
Symbol  
Absolute maximum ratings (continued)  
Value  
Unit  
Parameter  
Conditions  
Min  
Max  
Base control voltage for  
external BCP68 NPN device  
(2)  
VRC_CTRL  
Relative to VDD_LV  
0
VDD_LV + 1  
V
V
Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC  
reference) pin with respect to  
VSS_ADC  
SR  
VSS_HV 0.1  
VSS_HV + 0.1  
ground (VSS_HV  
)
Voltage on VDD_HV_ADC0  
–0.3  
6.0  
VDD_HV_ADC0 SR with respect to ground  
(VSS_HV  
V
(3)  
Relative to VDD_HV_A  
VDD_HV_A 0.3 VDD_HV_A+0.3  
)
Voltage on VDD_HV_ADC1  
SR with respect to ground  
–0.3  
6.0  
VDD_HV_ADC1  
V
V
(4)  
(2)  
Relative to VDD_HV_A  
VDD_HV_A0.3  
VDD_HV_A+0.3  
(VSS_HV  
)
Voltage on any GPIO pin with Relative to  
VDD_HV_A/HV_B VDD_HV_A/HV_B  
VIN  
SR  
SR  
respect to ground (VSS_HV  
)
VDD_HV_A/HV_B  
0.3  
+0.3  
Injected input current on any  
pin during overload condition  
IINJPAD  
–10  
10  
mA  
Absolute sum of all injected  
IINJSUM  
SR input currents during overload  
condition  
–50  
50  
70  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
Sum of all the static I/O  
current within a supply  
segment  
(5)  
IAVGSEG  
SR  
mA  
°C  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
64  
(VDD_HV_A or VDD_HV_B  
)
TSTORAGE  
SR Storage temperature  
–55(6)  
150  
1. VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order. Design is robust  
against any supply order.  
2. This voltage is internally generated by the device and no external voltage should be supplied.  
3. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is  
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
4. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within 300 mV of VDD_HV_B when these channels are used for ADC_1.  
5. Any temperature beyond 125 °C should limit the current to 50 mA (max).  
6. This is the storage temperature for the flash memory.  
Note:  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability. During overload conditions (V > V  
or  
IN  
DD_HV_A/HV_B  
V
< V  
), the voltage on pins with respect to ground (V  
) must not exceed the  
IN  
SS_HV  
SS_HV  
recommended values.  
50/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
4.4  
Recommended operating conditions  
Table 10. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_HV  
SR Digital ground on VSS_HV pins  
0
0
V
V
Voltage on VDD_HV_A pins with  
SR  
(1)  
(1)  
VDD_HV_A  
3.0  
3.0  
3.6  
respect to ground (VSS_HV  
)
Voltage on VDD_HV_B pins with  
VDD_HV_B  
SR  
3.6  
V
V
V
respect to ground (VSS_HV  
)
Voltage on VSS_LV (low  
SR voltage digital supply) pins with  
(2)  
VSS_LV  
VSS_HV 0.1  
VSS_HV + 0.1  
respect to ground (VSS_HV  
)
Base control voltage for  
external BCP68 NPN device  
(3)  
VRC_CTRL  
Relative to VDD_LV  
0
VDD_LV + 1  
Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC  
reference) pin with respect to  
VSS_ADC  
SR  
VSS_HV 0.1  
VSS_HV + 0.1  
V
ground (VSS_HV  
)
3.0(5)  
VDD_HV_A 0.1  
3.0  
3.6  
VDD_HV_A + 0.1  
3.6  
Voltage on VDD_HV_ADC0  
SR with respect to ground  
(VSS_HV  
VDD_HV_ADC0  
V
V
V
(4)  
Relative to  
VDD_HV_A  
(6)  
)
Voltage on VDD_HV_ADC1  
SR with respect to ground  
VDD_HV_ADC1  
(7)  
Relative to  
VDD_HV_A  
VDD_HV_A 0.1  
VSS_HV 0.1  
VDD_HV_A + 0.1  
(6)  
(VSS_HV  
)
VDD_HV_A/HV_B  
Voltage on any GPIO pin with  
VIN  
SR  
SR  
Relative to  
VDD_HV_A/HV_B  
respect to ground (VSS_HV  
)
+ 0.1  
Injected input current on any  
pin during overload condition  
IINJPAD  
5  
5
mA  
Absolute sum of all injected  
SR input currents during overload  
condition  
IINJSUM  
50  
50  
0.5  
V/µs  
V
DD_HV_A slope to ensure  
TVDD  
SR  
correct power up(8)  
0.5  
V/min  
Ambient temperature under  
bias  
fCPU up to  
120 MHz + 2ꢀ  
TA  
TJ  
SR  
SR  
–40  
125  
150  
°C  
Junction temperature under  
bias  
40  
1. 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each VDD/VSS_HV pair.  
2. 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each of the four VDD_LV/VSS_LV supply  
pairs. For details refer to the Power Management chapter of the SPC564Bxx and SPC56ECxx Reference Manual.  
3. This voltage is internally generated by the device and no external voltage should be supplied.  
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Doc ID 17478 Rev 4  
51/118  
 
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is  
reset.  
6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is  
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within 100 mV of VDD_HV_B when these channels are used for ADC_1.  
8. Guaranteed by the device validation.  
Table 11.  
Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS_HV  
SR Digital ground on VSS_HV pins  
0
0
V
V
V
Voltage drop(2)  
4.5  
3.0  
3.0  
5.5  
5.5  
5.5  
Voltage on VDD_HV_A pins with  
SR  
(1)  
VDD_HV_A  
respect to ground (VSS_HV  
)
Generic GPIO functionality  
Ethernet/3.3 V functionality  
(See the notes in all figures in  
Section 3: Package pinouts and  
signal descriptions” for the list of  
channels operating in VDD_HV_B  
domain)  
VDD_HV_B  
SR  
3.0  
3.6  
V
Voltage on VSS_LV (Low voltage  
(3)  
VSS_LV  
SR digital supply) pins with respect to  
ground (VSS_HV  
VSS_HV – 0.1  
VSS_HV + 0.1  
V
V
)
Base control voltage for external  
BCP68 NPN device  
Relative to  
VDD_LV  
(4)  
VRC_CTRL  
0
VDD_LV + 1  
Voltage on VSS_HV_ADC0,  
VSS_HV_ADC1 (ADC reference)  
pin with respect to ground  
VSS_ADC  
SR  
SR  
VSS_HV – 0.1  
VSS_HV + 0.1  
V
V
(VSS_HV  
)
4.5  
3.0  
5.5  
5.5  
VDD_HV_ADC0  
Voltage on VDD_HV_ADC0 with Voltage drop(2)  
respect to ground (VSS_HV  
(5)  
)
Relative to  
VDD_HV_A  
VDD_HV_A – 0.1 VDD_HV_A + 0.1  
(6)  
4.5  
3.0  
5.5  
5.5  
Voltage on VDD_HV_ADC1 with  
respect to ground (VSS_HV  
VDD_HV_ADC1  
Voltage drop(2)  
Relative to  
)
SR  
SR  
V
V
(7)  
VDD_HV_A 0.1 VDD_HV_A + 0.1  
(6)  
VDD_HV_A  
V
SS_HV –0.1  
Voltage on any GPIO pin with  
respect to ground (VSS_HV  
VIN  
Relative to  
VDD_HV_A/HV_B  
VDD_HV_A/HV_B  
+ 0.1  
)
52/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 11.  
Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Injected input current on any pin  
during overload condition  
IINJPAD  
IINJSUM  
SR  
SR  
–5  
5
mA  
Absolute sum of all injected input  
currents during overload condition  
–50  
50  
0.5  
V/µs  
V
DD_HV_A slope to ensure correct  
TVDD  
SR  
power up(8)  
0.5  
V/min  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
40  
40  
40  
40  
40  
40  
85  
110  
105  
130  
125  
150  
°C  
1. 100 nF EMI capacitance and 10 µF bulk capacitance needs to be provided between each VDD_HV_A/HV_B/VSS_HV pair.  
2. Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC electrical characteristics (startup time, IDD, negative  
resistance, ESR and duty cycle) will not be guaranteed to stay within the stated limits when operating below 4.5 V and  
above 3.6 V. However, OSC functionality is guaranteed within the entire range (3.0 V–5.5 V).  
3. 100 nF EMI capacitance and 40 µF bulk capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
4. This voltage is internally generated by the device and no external voltage should be supplied.  
5. 100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair.  
6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is  
6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V.  
7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within 100 mV of VDD_HV_B when these channels are used for ADC_1.  
8. Guaranteed by device validation.  
Note:  
SRAM retention guaranteed to LVD levels.  
4.5  
Thermal characteristics  
4.5.1  
Package thermal characteristics  
(1)  
Table 12. LQFP thermal characteristics  
Value(3)  
Pin  
count  
Symbol  
C
Parameter  
Conditions(2)  
Unit  
Min  
Typ  
Max  
Thermal resistance,  
junction-to-ambient  
natural convection  
176  
208  
176  
208  
44.4(4) °C/W  
Single-layer  
board—1s  
RθJA  
CC  
CC  
D
D
TBD  
36.1  
TBD  
°C/W  
°C/W  
°C/W  
Thermal resistance,  
junction-to-ambient  
natural convection  
Four-layer  
RθJA  
board—2s2p(5)  
Doc ID 17478 Rev 4  
53/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
2. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C.  
3. All values need to be confirmed during device validation.  
4. 1s board as per standard Jedec (JESD51-7) in natural convection  
5. 2s2p board as per standard JEDEC (JESD51-7) in natural convection.  
(1)  
Table 13. LBGA256 thermal characteristics  
Symbol  
C
Parameter  
Conditions  
Value  
Unit  
Single-layer board—1s  
Four-layer board—2s2p  
TBD  
TBD  
Thermal resistance, junction-to-ambient  
natural convection  
RθJA CC  
°C/W  
1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
4.5.2  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using  
J
Equation 1:  
Equation 1 T = T + (P  
×
R
)
θJA  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
INT I/O  
D
INT  
I/O  
D
P
is the product of I and V , expressed in watts. This is the chip internal  
DD DD  
INT  
power.  
P
represents the power dissipation on input and output pins; user determined.  
I/O  
Most of the time for the applications, P < P  
and may be neglected. On the other hand,  
INT  
I/O  
P
may be significant, if the device is configured to continuously drive external modules  
I/O  
and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
Equation 2 P = K / (T + 273 °C)  
D
J
Therefore, solving equations Equation 1 and Equation 2:  
2
Equation 3 K = P  
×
(T + 273 °C) + R  
× P  
D
A
θJA D  
Where:  
K is a constant for the particular part, which may be determined from Equation 3  
by measuring P (at equilibrium) for a known T Using this value of K, the values  
D
A.  
of P and T may be obtained by solving equations Equation 1 and Equation 2  
D
J
iteratively for any value of T .  
A
54/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
4.6  
I/O pad electrical characteristics  
4.6.1  
I/O pad types  
The device provides four main I/O pad types depending on the associated alternate  
functions:  
Slow pads—These pads are the most common pads, providing a good compromise  
between transition time and low electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication  
channels with controlled current to reduce electromagnetic emission.  
Fast pads—These pads provide maximum speed. These are used for improved Nexus  
debugging capability.  
Input only pads—These pads are associated to ADC channels and 32 kHz low power  
external crystal oscillator providing low input leakage.  
Low power pads—These pads are active in standby mode for wakeup source.  
Also, medium/slow and fast/medium pads are available in design which can be configured to  
behave like a slow/medium and medium/fast pads depending upon the slew-rate control.  
Medium and fast pads can use slow configuration to reduce electromagnetic emission, at  
the cost of reducing AC performance.  
4.6.2  
I/O input DC characteristics  
Table 14 provides input DC electrical characteristics as described in Figure 5.  
Figure 5.  
I/O input DC electrical characteristics definition  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1  
(GPDI register of SIUL)  
PDIx = ‘0’  
Doc ID 17478 Rev 4  
55/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 14. I/O input DC electrical characteristics  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Input high level CMOS (Schmitt  
Trigger)  
VIH SR P  
VIL SR P  
0.65VDD  
VDD + 0.4  
Input low level CMOS (Schmitt  
Trigger)  
0.3  
0.35VDD  
V
Input hysteresis CMOS (Schmitt  
Trigger)  
VHYS CC C  
P
0.1VDD  
TA = 40 °C  
2
2
No injection  
on adjacent  
pin  
P
ILKG CC  
D
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
Digital input leakage  
nA  
12  
70  
500  
1000  
P
Width of input pulse rejected by  
analog filter(3)  
WFI SR P  
40(4)  
ns  
ns  
Width of input pulse accepted by  
analog filter(3)  
WNFI SR P  
1000(4)  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.  
3. Analog filters are available on all wakeup lines.  
4. The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on  
silicon sample to sample variation.  
4.6.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 15 provides weak pull figures. Both pull-up and pull-down resistances are  
supported.  
Table 16 provides output driver characteristics for I/O pads when in SLOW  
configuration.  
Table 17 provides output driver characteristics for I/O pads when in MEDIUM  
configuration.  
Table 18 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 15. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Typ  
Max  
P
C
PAD3V5V = 0  
10  
150  
VIN = VIL, VDD  
5.0 V 10ꢀ  
=
=
Weak pull-up  
current absolute  
value  
PAD3V5V =  
1(3)  
10  
10  
250  
150  
|IWPU  
|
CC  
µA  
VIN = VIL, VDD  
3.3 V 10ꢀ  
P
PAD3V5V = 1  
56/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 15. I/O pull-up/pull-down DC electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Max  
P
C
PAD3V5V = 0  
10  
10  
150  
250  
VIN = VIH, VDD  
5.0 V 10ꢀ  
=
=
Weak pull-down  
current absolute  
value  
PAD3V5V = 1  
PAD3V5V = 1  
|IWPD  
|
CC  
µA  
VIN = VIH, VDD  
3.3 V 10ꢀ  
P
10  
150  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and  
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 16. SLOW configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Typ  
Max  
IOH = 3 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
P
0.8VDD  
Output high level  
IOH = 3 mA,  
VOH CC C SLOW  
configuration  
Push Pull VDD = 5.0 V 10ꢀ, PAD3V5V =  
0.8VDD  
V
1(3)  
IOH = 1.5 mA,  
P
P
VDD 0.8  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
IOL = 3 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
0.1VDD  
Output low level  
VOL CC C SLOW  
configuration  
IOL = 3 mA,  
Push Pull VDD = 5.0 V 10ꢀ, PAD3V5V =  
0.1VDD  
0.5  
V
1(3)  
IOL = 1.5 mA,  
P
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and  
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Doc ID 17478 Rev 4  
57/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 17. MEDIUM configuration output buffer electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions(1) (2)  
,
Unit  
Min  
Max  
IOH = 3 mA,  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
C
C
C
C
C
C
0.8VDD  
Output high level  
MEDIUM  
configuration  
IOH = 1.5 mA,  
VOH CC  
Push Pull VDD = 5.0 V 10ꢀ,  
0.8VDD  
PAD3V5V = 1(3)  
V
I
OH = 2 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
VDD 0.8  
IOL = 3 mA,  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
0.2VDD  
0.1VDD  
0.5  
Output low level  
MEDIUM  
configuration  
IOL = 1.5 mA,  
VOL CC  
Push Pull VDD = 5.0 V 10ꢀ,  
PAD3V5V = 1(3)  
V
IOL = 2 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and  
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 18. FAST configuration output buffer electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Typ  
Max  
IOH = 14 mA,  
P
C
C
VDD = 5.0 V 10ꢀ,  
0.8VDD  
PAD3V5V = 0  
Output high  
level  
FAST  
I
OH = 7 mA,  
VOH  
CC  
Push Pull VDD = 5.0 V 10ꢀ,  
0.8VDD  
V
PAD3V5V = 1(3)  
configuration  
I
OH = 11 mA,  
VDD = 3.3 V 10ꢀ, VDD 0.8  
PAD3V5V = 1  
58/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 18. FAST configuration output buffer electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Typ  
Max  
IOL = 14 mA,  
P
C
C
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
0.1VDD  
Output low level  
FAST  
configuration  
IOL = 7 mA,  
VOL  
CC  
Push Pull VDD = 5.0 V 10ꢀ,  
0.1VDD  
0.5  
V
PAD3V5V = 1(3)  
I
OL = 11 mA,  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and  
Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
4.6.4  
Output pin transition times  
Table 19. Output pin transition times  
Value(3)  
Typ  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
Min  
Max  
D
T
CL = 25 pF  
50  
100  
125  
40  
50  
75  
10  
20  
40  
12  
25  
40  
4
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
Output transition time  
output pin(4)  
SLOW configuration  
D
D
T
Ttr CC  
ns  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
D
D
T
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
Output transition time  
output pin(4)  
MEDIUM  
SIUL.PCRx.SRC = 1  
D
D
T
Ttr CC  
ns  
VDD = 3.3 V 10ꢀ,  
configuration  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
D
VDD = 5.0 V 10ꢀ,  
6
PAD3V5V = 0  
Output transition time  
output pin(4)  
FAST configuration  
12  
4
Ttr CC  
D
ns  
VDD = 3.3 V 10ꢀ,  
7
PAD3V5V = 1  
12  
Doc ID 17478 Rev 4  
59/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. All values need to be confirmed during device validation.  
4. CL includes device and package capacitances (CPKG < 5 pF).  
4.6.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated  
to a V /V supply pair as described in Table 20.  
DD SS_HV  
Table 21 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment  
should remain below the I  
maximum value.  
AVGSEG  
In order to ensure device functionality, the sum of the dynamic and static current of the I/O  
on a single segment should remain below the I  
maximum value.  
DYNSEG  
Table 20. I/O supplies  
Package  
I/O Supplies  
LBGA256  
pin6  
Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11  
pin73  
pin132  
pin147  
pin174  
pin27  
pin101  
(VSS_HV  
)
(VSS_HV  
)
(VSS_HV  
)
(VSS_HV)  
(VDD_HV_A) (VDD_HV_A  
)
(VDD_HV_A  
pin102  
)
LQFP208  
pin7  
pin28  
pin75  
pin133  
pin148  
pin175  
(VSS_HV  
)
(VSS_HV  
)
(VSS_HV  
)
(VDD_HV_A  
)
(VDD_HV_A) (VDD_HV_B) (VDD_HV_A)  
pin6  
pin27  
pin57  
pin85  
(VDD_HV_A) (VSS_HV  
pin86 pin124  
pin123  
pin150  
(VSS_HV  
pin151  
(VDD_HV_A) (VDD_HV_A  
pin7  
)
(VSS_HV  
pin59  
)
)
)
LQFP176  
pin28  
(VDD_HV_A) (VSS_HV  
)
(VDD_HV_B) (VDD_HV_A)  
(VSS_HV  
)
(VSS_HV)  
Table 21. I/O consumption  
Value(3)  
Min Typ Max  
Symbol  
C
Parameter  
Conditions(1),(2)  
Unit  
V
DD = 5.0 V 10ꢀ,  
19.9  
15.5  
28.8  
16.3  
113.5  
52.1  
PAD3V5V = 0  
Peak I/O current for  
SLOW configuration  
(4)  
ISWTSLW  
CC D  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
VDD = 3.3 V 10ꢀ,  
mA  
mA  
mA  
PAD3V5V = 1  
VDD = 5.0 V 10ꢀ,  
Peak I/O current for  
CC D MEDIUM  
configuration  
PAD3V5V = 0  
(4)  
ISWTMED  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
Peak I/O current for  
FAST configuration  
(4)  
ISWTFST  
CC D  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
60/118  
Doc ID 17478 Rev 4  
 
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 21. I/O consumption (continued)  
Value(3)  
Unit  
Symbol  
C
Parameter  
Conditions(1),(2)  
Min Typ Max  
CL = 25 pF, 2 MHz  
2.22  
3.13  
6.54  
1.51  
2.14  
4.33  
6.5  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 40 MHz  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
Root mean square  
CC D I/O current for SLOW  
configuration  
IRMSSLW  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
mA  
mA  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
13.32  
18.26  
4.91  
8.47  
10.94  
21.05  
33  
Root mean square  
I/O current for  
MEDIUM  
IRMSMED CC D  
configuration  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
VDD = 5.0 V 10ꢀ,  
PAD3V5V = 0  
Root mean square  
CC D I/O current for FAST  
configuration  
55.77  
14  
IRMSFST  
mA  
mA  
VDD = 3.3 V 10ꢀ,  
PAD3V5V = 1  
20  
34.89  
70  
Sum of all the static VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
SR D I/O current within a  
supply segment  
IAVGSEG  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
65(4)  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B  
.
3. All values need to be confirmed during device validation.  
4. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
4.7  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
Doc ID 17478 Rev 4  
61/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 6.  
Start-up reset requirements  
V
DD_HV_A  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 7.  
Noise filtering on reset signal  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Table 22. Reset electrical characteristics  
Value(2)  
Typ  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Max  
Input High Level CMOS  
(Schmitt Trigger)  
VIH  
VIL  
SR P  
SR P  
0.65VDD  
VDD + 0.4  
V
V
V
Input low Level CMOS  
(Schmitt Trigger)  
0.3  
0.35VDD  
Input hysteresis CMOS  
(Schmitt Trigger)  
VHYS CC C  
0.1VDD  
62/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 22. Reset electrical characteristics (continued)  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
VOL CC P Output low level  
0.1VDD  
0.5  
V
VDD = 5.0 V 10ꢀ, PAD3V5V = 1(3)  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
(recommended)  
CL = 25 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
10  
20  
40  
12  
25  
CL = 50 pF,  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
CL = 100 pF,  
Output transition time  
CC D output pin(4)  
MEDIUM configuration  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
Ttr  
ns  
CL = 25 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
40  
40  
WFRST SR P Reset input filtered pulse  
ns  
ns  
Reset input not filtered  
WNFRST SR P  
pulse  
1000  
VDD = 3.3 V 10ꢀ, PAD3V5V = 1  
10  
10  
10  
150  
150  
250  
Weak pull-up current  
absolute value  
|IWPU  
|
CC P  
VDD = 5.0 V 10ꢀ, PAD3V5V = 0  
µA  
VDD = 5.0 V 10ꢀ, PAD3V5V = 1(5)  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.  
3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the  
device Reference Manual).  
4. CL includes device and package capacitance (CPKG < 5 pF).  
5. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and  
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Doc ID 17478 Rev 4  
63/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
4.8  
Power management electrical characteristics  
4.8.1  
Voltage regulator electrical characteristics  
The device implements an internal voltage regulator to generate the low voltage core supply  
V
from the high voltage supply V  
. The following supplies are involved:  
DD_LV  
DD_HV_A  
HV: High voltage external power supply for voltage regulator module. This must be  
provided externally through V power pin.  
DD_HV_A  
LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is  
generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is  
further split into four main domains to ensure noise isolation between critical LV  
modules within the device:  
LV_COR: Low voltage supply for the core. It is also used to provide supply for  
FMPLL through double bonding.  
LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is  
shorted with LV_COR through double bonding.  
LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR  
through double bonding.  
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double  
bonding.  
Figure 8.  
Voltage regulator capacitance connection  
100 nf  
100 nf  
100 nf  
VSS_LV  
VDD_LV  
VDD_LV  
VSS_LV  
VSS_LV  
VDD_LV  
40  
(4  
μf  
PD0 (always on domain)  
×
10  
μ
f)  
PD1 Switchable Domain  
(FMPLL, Flash)  
8 KB  
Split  
32 KB  
Split  
56 KB  
Split  
(C  
)
REGn  
CTRL  
CTRL  
CTRL  
VDD_LV  
HPVDD  
VSS_LV  
Off chip  
BCP68  
NPN driver  
sw1 (<0.1Ω)  
VRC_CTRL  
HPREG  
LPVDD  
10 μf  
LPREG  
Chip Boundary  
(C  
)
DEC2  
VDD_BV  
VSS_HV  
VDD_HV_A  
100 nf  
HPVDD  
LPVDD  
64/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
The internal voltage regulator requires external bulk capacitance (C  
) to be connected  
REGn  
to the device to provide a stable low voltage digital supply to the device. Also required for  
stability is the C capacitor at ballast collector. This is needed to minimize sharp  
DEC2  
injection current when ballast is turning ON. Apart from the bulk capacitance, user should  
connect EMI/decoupling cap (C  
) at each V  
/V  
pin pair.  
REGP  
DD_LV SS_LV  
Recommendations  
The external NPN driver must be BCP68 type.  
should be implemented as a power plane from the emitter of the ballast  
V
DD_LV  
transistor.  
10 μF capacitors should be connected to the 4 pins closest to the outside of the  
package and should be evenly distributed around the package. For BGA packages, the  
balls should be used are D8, H14, R9, J3–one cap on each side of package.  
There should be a track direct from the capacitor to this pin (pin also connects to  
plane). The tracks ESR should be less than 100 mΩ.  
V
DD_LV  
The remaining V  
pins (exact number will vary with package) should be  
DD_LV  
decoupled with 0.1 μF caps, connected to the pin as per 10 μF.  
(see Section 4.4: Recommended operating conditions).  
4.8.2  
V
options  
DD_BV  
Option 1: V  
shared with V  
DD_HV_A  
DD_BV  
V
must be star routed from V  
from the common source. This is to  
DD_HV_A  
DD_BV  
eliminate ballast noise injection on the MCU.  
Option 2: V independent of the MCU supply  
DD_BV  
V
> 2.6 V for correct functionality. The device is not monitoring this supply hence  
DD_BV  
the external component must meet the 2.6 V criteria through external monitoring if  
required.  
Table 23. Voltage regulator electrical characteristics  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — External ballast stability capacitance  
40  
60  
μF  
Stability capacitor equivalent serial  
SR —  
0.2  
W
resistance  
VDD_HV_A/HV_B/VSS_HV  
pair  
100  
100  
nF  
nF  
Decoupling capacitance (Close to  
the pin)  
CREGP  
SR —  
VDD_LV/VSS_LV pair  
Stability capacitance regulator  
SR — supply (Close to the ballast  
collector)  
CDEC2  
VDD_HV_A/VSS_HV  
10  
40  
μF  
Before trimming  
After trimming  
1.32  
1.28  
VMREG  
CC P Main regulator output voltage  
V
Main regulator current provided to  
VDD_LV domain  
IMREG  
SR —  
350  
mA  
Doc ID 17478 Rev 4  
65/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 23. Voltage regulator electrical characteristics (continued)  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
Main regulator module current  
consumption  
IMREGINT CC D  
VLPREG  
ILPREG  
mA  
CC P Low power regulator output voltage After trimming  
Low power regulator current  
1.23  
V
SR —  
20  
50  
600  
mA  
provided to VDD_LV domain  
ILPREG = 15 mA;  
TA = 55 °C  
D
Low power regulator module current  
consumption  
ILPREGINT CC  
μA  
I
LPREG = 0 mA;  
TA = 55 °C  
Main LVDs and reference current  
IVREGREF CC D consumption (low power and main TA = 55 °C  
regulator switched off)  
2
μA  
μA  
Main LVD current consumption  
(switch-off during standby)  
IVREDLVD12 CC D  
TA = 55 °C  
1
(3)  
In-rush current on VDD_HV_A  
during power-up  
IDD_HV_A CC D  
600(4) mA  
1. VDD_HV_A = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. Assumption is VDD_HV_A is now supplying the external ballast. This current is the ballast inrush current.  
4. Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps  
to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA  
4.8.3  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset module to ensure correct power-up initialization,  
as well as four low voltage detectors to monitor the V  
device is supplied:  
and the V  
voltage while  
DD_HV_A  
DD_LV  
POR monitors V  
during the power-up phase to ensure device is maintained in  
DD_HV_A  
a safe reset state  
LVDHV3 monitors V  
LVDHV5 monitors V  
to ensure device is reset below minimum functional supply  
when application uses device in the 5.0 V 10ꢀ range  
DD_HV_A  
DD_HV_A  
LVDLVCOR monitors power domain No. 1 (PD1)  
LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.  
Note:  
When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.  
66/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 9.  
Low voltage monitor vs. Reset  
V
DDHV/LV  
V
V
LVDHVxH/LVxH  
LVDHVxL/LVxL  
RESET  
Table 24. Low voltage monitor electrical characteristics  
Symbol Parameter  
Value(2)  
Unit  
C
Conditions(1)  
Min  
Typ  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
1.0  
1.5  
2.7  
2.6  
4.3  
4.2  
5.5  
2.6  
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC T LVDHV3 low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC T LVDHV5 low voltage detector low threshold  
2.85  
2.74  
4.5  
4.4  
V
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold TA = 25 °C,  
1.14(3)  
after trimming  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
1.14(3)  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. The min. and max variation across process voltage and temperature will be available after device characterization.  
Expected to be within 10 mV.  
4.9  
Low voltage domain power consumption  
Table 25 provides DC electrical characteristics for significant application modes. These  
values are indicative values; actual consumption depends on the application.  
Doc ID 17478 Rev 4  
67/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 25. Low voltage power domain electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions(1)  
Min Typ(2) Max(3)  
RUN mode maximum  
average current  
(4)  
IDDMAX  
CC D  
210 300(5),(6) mA  
175(8), 240(9),  
T
at 120 MHz  
at 80 MHz  
TA = 25 °C  
TA = 25 °C  
mA  
(9)  
(10)  
RUN mode typical average  
current(7)  
IDDRUN  
CC  
T
110(8) 150(10) mA  
IDDHALT  
CC P HALT mode current(11)  
25  
35  
mA  
µA  
1200(9),  
P
TA = 25 °C  
400(9)  
(13)  
IDDSTOP CC  
STOP mode current(12)  
No clocks active  
P
P
TA = 150 °C  
TA = 25 °C  
10(9)  
60  
30(9)  
175  
mA  
µA  
IDDSTDBY3  
(96 KBRAM CC  
retained)  
STANDBY3 mode  
current(14)  
No clocks active  
No clocks active  
No clocks active  
P
P
P
T
P
TA = 150 °C  
TA = 25 °C  
TA = 150 °C  
TA = 25 °C  
TA = 150 °C  
1000  
45  
3000  
135  
µA  
µA  
µA  
µA  
µA  
IDDSTDBY2  
(64 KBRAM CC  
retained)  
STANDBY2 mode  
current(15)  
800  
25  
2000  
75  
IDDSTDBY1  
(8 KB RAM CC  
retained)  
STANDBY1 mode  
current(16)  
500  
1000  
32 kHz OSC  
4–40 MHz OSC  
16 MHz IRC  
128 kHz IRC  
TA = 25 °C  
TA = 25 °C  
TA = 25 °C  
TA = 25 °C  
5
3
µA  
mA  
µA  
µA  
Adders in  
LP mode  
CC T  
500  
5
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified All temperatures are based on an  
ambient temperature.  
2. Target typical current consumption for the following typical operating conditions and configuration. Process = typical,  
Voltage = 1.2 V.  
3. Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage =  
1.32 V.  
4. Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os  
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all  
cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be  
noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce  
peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.  
5. Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 23.  
6. Maximum “allowed” current is package dependent.  
7. Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL  
as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer  
reset enabled. RUN current measured with typical application with accesses on both code flash and RAM.  
8. Subject to change, Configuration: 1  
125 kbit/s), 10 LINFlexD (20 kbit/s), 8  
Input, 1 CTU (40 ch.), 1 FlexRay (2 ch., 10 Mbit/s), 1  
×
e200z4d + 4 kbit/s Cache, 1  
DSPI (4 2 Mbit/s, 3 4 Mbit/s, 1  
RTC, 4 PIT, 1  
×
eDMA (32 ch), 4  
10 Mbit/s), 40  
SWT, 1 STM. Ethernet and e200z0h  
×
FlexCAN (2  
× 500 kbit/s, 2 ×  
×
×
×
×
×
×
PWM (200 Hz), 40  
× ADC  
×
×
×
×
×
×
disabled. Also reduced timed I/O channels for smaller packages. RUN current measured with typical application with  
accesses on both code flash and RAM.  
9. This value is obtained from limited sample set  
68/118  
Doc ID 17478 Rev 4  
 
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
10. Subject to change, Configuration: 1  
×
e200z4d + 4 kbit/s Cache, 1  
125 kbit/s), 4 LINFlexD (20 kbit/s), 6  
ADC Input, 1 FlexRay (2 ch., 10 Mbit/s), 1  
×
e200z0h (1/2 system frequency), CSE, 1  
DSPI (2 2 Mbit/s, 3 4 Mbit/s,  
FEC (100 Mbit/s), 1 RTC, 4  
×
e
DMA  
(10 ch.), 6  
×
FlexCAN (4  
×
500 kbit/s, 2  
×
×
×
×
×
1
1
×
10 Mbit/s), 16  
SWT, 1  
×
Timed I/O, 16  
×
×
×
×
×
PIT,  
×
×
STM. For lower pin count packages reduce the amount of timed I/O’s and ADC channels. RUN current  
measured with typical application with accesses on both code flash and RAM.  
11. Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock. FlexCAN:  
instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2  
ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]-  
PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication,  
instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.  
12. Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON. All  
possible peripherals off and clock gated. Flash in power down mode.  
13. This current is the maximum value at room temperature for any sample. The condition is same as note 11.  
14. Only for the “P” classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption, all  
possible modules switched-off.  
15. Only for the “P” classification: LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption, all  
possible modules switched-off.  
16. LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched OFF.  
4.10  
Flash memory electrical characteristics  
4.10.1  
Program/Erase characteristics  
Table 26 shows the code flash memory program and erase characteristics.  
Table 26. Code flash memory—Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
Min  
Typ(1)  
Max(3)  
max(2)  
Tdwprogram  
T16Kpperase  
T32Kpperase  
T128Kpperase  
Teslat  
Double word (64 bits) program time(4)  
16 KB block pre-program and erase time  
32 KB block pre-program and erase time  
128 KB block pre-program and erase time  
20  
18  
200  
300  
600  
50  
500  
600  
1300  
30  
500  
5000  
5000  
5000  
30  
µs  
ms  
ms  
ms  
µs  
C
D Erase Suspend Latency  
C Erase Suspend Request Rate  
D Program Abort Latency  
D Erase Abort Latency  
tESRT  
ms  
µs  
CC  
tPABT  
10  
10  
tEAPT  
30  
30  
µs  
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change  
pending device characterization.  
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values  
are characterized but not guaranteed.  
4. Actual hardware programming times. This does not include software overhead.  
Doc ID 17478 Rev 4  
69/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 27 shows the data flash memory program and erase characteristics.  
Table 27. Data flash memory—Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
Max(3)  
max(2)  
Min  
Typ(1)  
Twprogram  
T16Kpperase  
Teslat  
Word (32 bits) program time(4)  
10  
30  
700  
70  
800  
30  
500  
5000  
30  
µs  
ms  
µs  
C
16 KB block pre-program and erase time  
D Erase Suspend Latency  
C Erase Suspend Request Rate  
D Program Abort Latency  
D Erase Abort Latency  
tESRT  
ms  
µs  
tPABT  
12  
12  
CC  
tEAPT  
30  
30  
µs  
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change  
pending device characterization.  
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values  
are characterized but not guaranteed.  
4. Actual hardware programming times. This does not include software overhead.  
Table 28. Flash memory module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Number of program/erase cycles per  
block for 16 Kbyte blocks over the  
operating temperature range (TJ)  
100000  
100000 cycles  
100000 cycles  
100000 cycles  
Number of program/erase cycles per  
CC C block for 32 Kbyte blocks over the  
operating temperature range (TJ)  
P/E  
10000  
1000  
Number of program/erase cycles per  
block for 128 Kbyte blocks over the  
operating temperature range (TJ)  
Blocks with 0–1000 P/E  
cycles  
20  
10  
5
years  
years  
years  
Minimum data retention at 85 °C  
Blocks with 10000 P/E  
cycles  
Retention CC  
C
average ambient temperature(1)  
Blocks with 100000 P/E  
cycles  
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature  
range.  
ECC circuitry provides correction of single bit faults and is used to improve further  
automotive reliability results. Some units will experience single bit corrections throughout  
the life of the product with no impact to product reliability.  
70/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 29. Flash memory read access timing  
Conditions(1)  
Symbol  
C
Parameter  
Max  
Unit  
Code flash  
memory  
Data flash  
memory  
P
C
D
C
5 wait states  
3 wait state  
3 wait states(2)  
13 wait states  
9 wait state  
120 + 2ꢀ  
80 + 2ꢀ  
Maximum frequency for Flash  
reading  
fREAD  
CC  
MHz  
64 + 2ꢀ  
7 wait states  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. Wait states are subject to change per device characterization.  
4.10.2  
Flash memory power supply DC characteristics  
Table 30 shows the flash memory power supply DC characteristics on external supply.  
Table 30. Flash memory power supply DC electrical characteristics  
Value(2)  
Symbol  
Parameter  
Conditions(1)  
Unit  
Min Typ Max  
Code flash  
memory  
(3)  
ICFREAD  
33  
13  
52  
13  
Sum of the current consumption Flash memory module read  
on VDD_HV_A on read access  
CC  
CC  
mA  
fCPU = 120 MHz + 2ꢀ(4)  
Data flash  
memory  
(3)  
IDFREAD  
Code flash  
memory  
(3)  
(3)  
Program/Erase on-going  
Sum of the current consumption while reading flash memory  
ICFMOD  
IDFMOD  
mA  
on VDD_HV_A (program/erase)  
registers  
Data flash  
memory  
fCPU = 120 MHz + 2ꢀ (4)  
Sum of the current consumption  
CC on VDD_HV_A during flash  
memory low power mode  
Code flash  
memory  
(3)  
ICFLPW  
1.1 mA  
Code flash  
memory  
(3)  
ICFPWD  
150  
µA  
Sum of the current consumption  
CC on VDD_HV_A during flash  
memory power down mode  
Data flash  
memory  
(3)  
IDFPWD  
150  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = –40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. Data based on characterization results, not tested in production.  
4. fCPU 120 MHz + 2ꢀ can be achieved over full temperature 125 °C ambient, 150 °C junction temperature.  
Doc ID 17478 Rev 4  
71/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
4.10.3  
Flash memory start-up/switch-off timings  
Table 31. Start-up time/Switch-off time  
Value  
Min Typ Max  
Conditions  
Symbol  
C
Parameter  
Unit  
(1)  
Code flash  
memory  
Delay for flash memory module to exit  
reset mode  
TFLARSTEXIT CC D  
125  
0.5  
30  
Data flash  
memory  
Delay for flash memory module to exit Code flash  
TFLALPEXIT  
CC T  
low-power mode  
memory  
Code flash  
memory  
Delay for flash memory module to exit  
power-down mode  
TFLAPDEXIT CC T  
Data flash  
memory  
µs  
Delay for flash memory module to enter Code flash  
TFLALPENTRY CC T  
0.5  
low-power mode  
memory  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
4.11  
Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.11.1  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user apply EMC software optimization and pre-  
qualification tests in relation with the EMC level requested for the application.  
Software recommendations The software flowchart must include the management of  
runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers)  
Pre-qualification trials Most of the common failures (unexpected reset and program  
counter corruption) can be reproduced by manually forcing a low state on the reset pin  
or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When  
unexpected behavior is detected, the software can be hardened to prevent  
unrecoverable errors occurring (see application note Software Techniques For  
Improving Microcontroller EMC Performance (AN1015)).  
72/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
4.11.2  
Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission  
test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI  
measurements.  
(1)(2)  
Table 32. EMI radiated emission measurement  
Symbol Parameter  
Value  
C
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
1000 MHz  
fCPU SR — Operating frequency  
VDD_LV SR — LV operating voltages  
120  
MHz  
V
1.28  
No PLL frequency  
modulation  
VDD = 5 V, TA = 25 °C,  
LQFP176 package  
Test conforming to IEC 61967-2,  
fOSC = 40 MHz/fCPU = 120 MHz  
18 dBµV  
SEMI CC T Peak level  
2ꢀ PLL frequency  
modulation  
14(3) dBµV  
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.  
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local  
marketing representative.  
3. All values need to be confirmed during device validation.  
4.11.3  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pin). This test  
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the  
application note Electrostatic Discharge Sensitivity Measurement (AN1181).  
(1)(2)  
Table 33. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class  
Max value(3)  
Unit  
Electrostatic discharge voltage  
(Human Body Model)  
TA = 25 °C  
conforming to AEC-Q100-002  
VESD(HBM)  
H1C  
2000  
Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
VESD(MM)  
M2  
200  
V
500  
Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
VESD(CDM)  
C3A  
750 (corners)  
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at  
room temperature followed by hot temperature, unless specified otherwise in the device specification.  
3. Data based on characterization results, not tested in production.  
Doc ID 17478 Rev 4  
73/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply over-voltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 34. Latch-up results  
Symbol  
Parameter  
Conditions  
Class  
TA = 125 °C  
conforming to JESD 78  
LU  
Static latch-up class  
II level A  
4.12  
Fast external crystal oscillator (4–40 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 10 describes a simple model of  
the internal oscillator driver and provides an example of a connection for an oscillator or a  
resonator.  
Table 35 provides the parameter description of 4 MHz to 40 MHz crystals used for the  
design simulations.  
Figure 10. Crystal oscillator and resonator connection scheme  
EXTAL  
C1  
XTAL  
XTAL  
R
D
C2  
DEVICE  
V
DD  
I
R
EXTAL  
EXTAL  
DEVICE  
XTAL  
DEVICE  
74/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Note:  
XTAL/EXTAL must not be directly used to drive external circuits.  
Table 35. Crystal description  
Shunt  
Crystal  
equivalent  
series  
resistance  
ESR Ω  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
xtalin/xtalout  
C1 = C2  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
(pF)(1)  
and xtalin  
C0(2) (pF)  
4
NX8045GB  
300  
300  
150  
120  
120  
50  
2.68  
2.46  
2.93  
3.11  
3.90  
6.18  
591.0  
160.7  
86.6  
56.5  
25.3  
2.56  
21  
17  
15  
15  
10  
8
2.93  
3.01  
2.91  
2.93  
3.00  
3.49  
8
10  
12  
16  
40  
NX5032GA  
NX5032GA  
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all  
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,  
etc.).  
Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
S_MTRANS bit (ME_GS register)  
1
0
V
XTAL  
1/f  
MXOSC  
V
FXOSC  
90ꢀ  
10ꢀ  
V
FXOSCOP  
T
valid internal clock  
MXOSCSU  
Table 36. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Fast external crystal  
oscillator frequency  
fFXOSC  
SR —  
4.0  
40.0  
MHz  
Doc ID 17478 Rev 4  
75/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 36. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics (continued)  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Fast external crystal VDD = 3.3 V 10ꢀ  
oscillator  
transconductance  
8.699  
9.440  
13.159  
13.159  
15.846  
16.859  
CC C  
gmFXOSC  
mA/V  
VDD = 5.0 V 10ꢀ  
fOSC = 40 MHz  
Oscillation  
amplitude at EXTAL  
For both VDD = 3.3 V  
10ꢀ, VDD = 5.0 V  
10ꢀ  
VFXOSC  
CC T  
0.95  
V
V
Oscillation  
operating point  
VFXOSCOP CC P  
1.8  
2
VDD = 3.3 V 10ꢀ,  
fOSC = 40 MHz  
2.2  
2.5  
1.5  
1.8  
V
DD = 5.0 V 10ꢀ,  
fOSC = 40 MHz  
DD = 3.3 V 10ꢀ,  
fOSC = 16 MHz  
DD = 5.0 V 10ꢀ,  
fOSC = 16 MHz  
OSC = 40 MHz  
2.3  
1.3  
1.6  
Fast external crystal  
consumption  
(3)  
IFXOSC  
CC T oscillator  
V
mA  
ms  
V
f
Fast external crystal  
TFXOSCSU CC T oscillator start-up  
time  
For both VDD = 3.3 V  
10ꢀ, VDD = 5.0 V  
10ꢀ  
5
Input high level  
SR P CMOS  
(Schmitt Trigger)  
Oscillator bypass  
mode  
VIH  
0.65VDD_HV_A  
VDD_HV_A + 0.4  
V
V
Input low level  
SR P CMOS  
(Schmitt Trigger)  
Oscillator bypass  
mode  
VIL  
0.3  
0.35VDD_HV_A  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled  
peripherals).  
4.13  
Slow external crystal oscillator (32 kHz) electrical  
characteristics  
The device provides a low power oscillator/resonator driver.  
76/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 12. Crystal oscillator and resonator connection scheme  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
R
P
OSC32K_XTAL  
OSC32K_XTAL  
C2  
DEVICE  
DEVICE  
Note:  
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
Figure 13. lEquivalent circuit of a quartz crystal  
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
(1)  
Table 37. Crystal motional characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Lm  
Motional inductance  
11.796  
2
KH  
fF  
Cm  
Motional capacitance  
Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground(2)  
C1/C2  
18  
28  
pF  
Doc ID 17478 Rev 4  
77/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
(1)  
Table 37. Crystal motional characteristics (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
AC coupled @ C0 = 2.85  
pF(4)  
65  
AC coupled @ C0 = 4.9 pF(4)  
AC coupled @ C0 = 7.0 pF(4)  
AC coupled @ C0 = 9.0 pF(4)  
50  
35  
30  
(3)  
Rm  
Motional resistance  
kW  
1. The crystal used is Epson Toyocom MC306.  
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It  
includes all the parasitics due to board traces, crystal and package.  
3. Maximum ESR (Rm) of the crystal is 50 kΩ.  
4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.  
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
LPXOSC32K  
V
LPXOSC32K  
90ꢀ  
10ꢀ  
T
valid internal clock  
LPXOSC32KSU  
Table 38. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Slow external crystal oscillator  
frequency  
fSXOSC  
SR —  
32  
32.768  
40  
kHz  
VDD = 3.3 V 10ꢀ,  
17.45  
17.79  
1.2  
28.23  
29.91  
1.7  
Slow external crystal oscillator  
transconductance  
gmSXOSC CC —  
µA/V  
VDD = 5.0 V 10ꢀ  
VSXOSC  
CC T Oscillation amplitude  
1.4  
V
ISXOSCBIAS CC T Oscillation bias current  
1.2  
4.4  
µA  
78/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 38. Slow external crystal oscillator (32 kHz) electrical characteristics (continued)  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Slow external crystal oscillator  
consumption  
ISXOSC  
CC T  
7
µA  
s
Slow external crystal oscillator  
start-up time  
TSXOSCSU CC T  
2(3)  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
4.14  
FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to  
generate a fast system clock from the main oscillator driver.  
Table 39. FMPLL electrical characteristics  
Symbol Parameter  
Value(2)  
C
Conditions(1)  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock(3)  
4
64  
MHz  
FMPLL reference clock duty  
ΔPLLIN SR —  
40  
16  
60  
cycle(3)  
FMPLL output clock  
fPLLOUT CC P  
120  
MHz  
frequency  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
120 + 2ꢀ(4) MHz  
20  
150  
100  
MHz  
µs  
Stable oscillator (fPLLIN = 16  
MHz)  
tLOCK CC P FMPLL lock time  
40  
f
PLLIN = 40 MHz (resonator),  
6
ΔtLTJIT CC — FMPLL long term jitter  
fPLLCLK @ 120 MHz, 4000  
cycles  
ns  
(for < 1ppm)  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
3
mA  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator is used  
in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
.
4. fCPU 120 + 2ꢀ MHz can be achieved at 125 °C.  
4.15  
Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock  
at the power-up of the device and can also be used as input to PLL.  
Doc ID 17478 Rev 4  
79/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 40. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value(2)  
Unit  
Symbol  
C
Parameter  
Conditions(1)  
Min  
Typ  
Max  
CC P  
SR —  
TA = 25 °C, trimmed  
16  
Fast internal RC oscillator high  
frequency  
fFIRC  
MHz  
µA  
12  
20  
Fast internal RC oscillator high  
(3)  
IFIRCRUN  
CC T frequency current in running  
mode  
TA = 25 °C, trimmed  
200  
D
TA = 25 °C  
TA = 55 °C  
100  
200  
1
nA  
nA  
µA  
Fast internal RC oscillator high  
IFIRCPWD CC D frequency current in power  
down mode  
D
TA = 125 °C  
sysclk = off  
500  
600  
700  
900  
1250  
2.0  
5
sysclk = 2 MHz  
TA = 25 °C sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
Fast internal RC oscillator high  
IFIRCSTOP CC T frequency and system clock  
current in stop mode  
µA  
µs  
C
V
V
V
DD = 5.0 V 10ꢀ  
DD = 3.3 V 10ꢀ  
DD = 5.0 V 10ꢀ  
TA = 55 °C  
Fast internal RC oscillator start-  
up time  
TFIRCSU CC  
2.0  
5
TA = 125 °C  
VDD = 3.3 V 10ꢀ  
Fast internal RC oscillator  
ΔFIRCPRE CC C precision after software  
trimming of fFIRC  
TA = 25 °C  
TA = 25 °C  
1  
+1  
+5  
Fast internal RC oscillator  
ΔFIRCTRIM CC C  
1.6  
trimming step  
Fast internal RC oscillator  
variation over temperature and  
ΔFIRCVAR CC C supply with respect to fFIRC at  
TA = 25 °C in high-frequency  
5  
configuration  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.  
4.16  
Slow internal RC oscillator (128 kHz) electrical  
characteristics  
The device provides a 128 kHz low power internal RC oscillator. This can be used as the  
reference clock for the RTC module.  
80/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 41. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value(2)  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min Typ Max  
CC P  
SR —  
TA = 25 °C, trimmed  
128  
Slow internal RC oscillator low  
frequency  
fSIRC  
kHz  
100  
150  
Slow internal RC oscillator low  
frequency current  
(3)  
ISIRC  
CC C  
TA = 25 °C, trimmed  
2  
8
5
µA  
µs  
Slow internal RC oscillator start-up  
time  
TSIRCSU CC P  
ΔSIRCPRE CC C  
ΔSIRCTRIM CC C  
TA = 25 °C, VDD = 5.0 V 10ꢀ  
12  
+2  
Slow internal RC oscillator precision  
after software trimming of fSIRC  
TA = 25 °C  
2.7  
Slow internal RC oscillator trimming  
step  
Slow internal RC oscillator variation  
in temperature and supply with  
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
ΔSIRCVAR CC C  
High frequency configuration 10  
+10  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. All values need to be confirmed during device validation.  
3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.  
4.17  
ADC electrical characteristics  
4.17.1  
Introduction  
The device provides two Successive Approximation Register (SAR) analog-to-digital  
converters (10-bit and 12-bit).  
Note:  
Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time  
i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done,  
neither of the ADCs can guarantee their conversion accuracies.  
Doc ID 17478 Rev 4  
81/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 15. ADC_0 characteristic and error definitions  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
5
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
(4)  
3
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
Vin(A) (LSBideal  
)
Offset Error OSE  
Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is  
considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have  
low AC impedance. Placing a capacitor with good high frequency characteristics at the input  
pin of the device can be effective: the capacitor should be as large as possible, ideally  
infinite. This capacitor contributes to attenuating the noise present on the input pin;  
furthermore, it sources charge during the sampling phase, when the analog signal source is  
a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the  
input pin (simple RC filter). The RC filtering may be limited according to the value of source  
82/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
impedance of the transducer or circuit supplying the analog signal to be measured. The filter  
at the input pins must be designed taking into account the dynamic characteristics of the  
input signal (bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the  
sampling capacitance: C being substantially a switched capacitance, with a frequency  
S
equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For  
instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330  
S
kΩ is obtained (R = 1 / (fc  
× C ), where fc represents the conversion rate at the  
considered channel). To minimize the error induced by the voltage partitioning between this  
EQ  
S
resistance (sampled voltage on C ) and the sum of R + R + R + R  
+ R , the external  
S
S
F
L
SW  
AD  
circuit must be designed to respect the Equation 4:  
Equation 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
--------------------------------------------------------------------------  
V •  
< -- LSB  
2
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path.  
Internal switch resistances (R  
resistances.  
and R ) can be neglected with respect to external  
SW  
AD  
Figure 16. Input equivalent circuit (precise channels)  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R
Source Impedance  
Filter Resistance  
S
F
F
L
R
C
R
R
R
C
C
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
SW1  
Sampling Switch Impedance  
AD  
Pin Capacitance (two contributions, C and C  
P1  
)
P
S
P2  
Sampling Capacitance  
Doc ID 17478 Rev 4  
83/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 17. Input equivalent circuit (extended channels)  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Filter  
Current Limiter  
R
R
R
R
L
R
AD  
SW2  
S
F
SW1  
C
S
C
V
C
C
C
P2  
A
F
P1  
P3  
R
R
C
R
R
R
C
C
Source Impedance  
Filter Resistance  
S
F
Filter Capacitance  
F
Current Limiter Resistance  
L
Channel Selection Switch Impedance (two contributions R  
and R  
)
SW2  
SW  
SW1  
Sampling Switch Impedance  
AD  
Pin Capacitance (three contributions, C , C and C )  
P3  
P
S
P1  
P2  
Sampling Capacitance  
A second aspect involving the capacitance network shall be considered. Assuming the three  
capacitances C , C and C are initially charged at the source voltage V (refer to the  
F
P1  
P2  
A
equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when  
the sampling phase is started (A/D switch close).  
Figure 18. Transient behavior during sampling phase  
Voltage Transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << TS  
V
A1  
τ2 = RL (CS + CP1 + CP2)  
T
t
S
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the  
P1  
P2  
sampling capacitance C occurs (C is supposed initially completely discharged):  
S
S
considering a worst case (since the time constant in reality would be faster) in which  
C
is reported in parallel to C (call C = C + C ), the two capacitances C and  
P2  
P1 P P1 P2 P  
C are in series, and the time constant is  
S
Equation 5  
C C  
P
S
---------------------  
τ = (R  
+ R  
) •  
1
SW  
AD  
C + C  
P
S
84/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Equation 5 can again be simplified considering only C as an additional worst  
S
condition. In reality, the transient is faster, but the A/D converter circuitry has been  
designed to be robust also in the very worst case: the sampling time T is always much  
S
longer than the internal time constant:  
Equation 6  
τ < (R  
+ R  
) C « T  
S S  
1
SW  
AD  
The charge of C and C is redistributed also on C , determining a new value of the  
P1  
P2  
S
voltage V on the capacitance according to Equation 7:  
A1  
Equation 7  
V
(C + C + C ) = V (C + C )  
P1 P2 P1 P2  
A1  
S
A
2. A second charge transfer involves also C (that is typically bigger than the on-chip  
F
capacitance) through the resistance R : again considering the worst case in which C  
L
P2  
and C were in parallel to C (since the time constant in reality would be faster), the  
S
P1  
time constant is:  
Equation 8  
τ < R (C + C + C )  
P2  
2
L
S
P1  
In this case, the time constant depends on the external circuit: in particular imposing  
that the transient is completed well before the end of sampling time T , a constraints on  
S
R sizing is obtained:  
L
Equation 9  
10 τ = 10 R (C + C + C ) < T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in  
L
combination with R (source impedance) and R (filter resistance). Being C  
S
F
F
definitively bigger than C , C and C , then the final voltage V (at the end of the  
P1  
P2  
S
A2  
charge transfer transient) will be much higher than V . Equation 10 must be respected  
A1  
(charge balance assuming now C already charged at V ):  
S
A1  
Equation 10  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence  
of the R C filter, is not able to provide the extra charge to compensate the voltage drop on  
F
F
C with respect to the ideal source V ; the time constant R C of the filter is very high with  
S
A
F F  
respect to the sampling time (T ). The filter is typically designed to act as anti-aliasing.  
S
Doc ID 17478 Rev 4  
85/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 19. Spectral representation of input signal  
Analog source bandwidth (VA)  
TC < 2 RFCF (Conversion rate vs. filter pole)  
Noise  
fF = f0 (Anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = Conversion rate)  
fF  
f0  
fC  
f
f
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of  
0
the anti-aliasing filter, f ), according to the Nyquist theorem the conversion rate f must be at  
F
C
least 2f ; it means that the constant time of the filter is greater than or at least equal to twice  
0
the conversion period (T ). Again the conversion period T is longer than the sampling time  
C
C
T , which is just a portion of it, even when fixed channel continuous conversion mode is  
S
selected (fastest conversion rate at a specific channel): in conclusion it is evident that the  
time constant of the filter R C is definitively much higher than the sampling time T , so the  
F
F
S
charge level on C cannot be modified by the analog signal source during the time in which  
S
the sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce  
the accuracy error due to the voltage drop on C ; from the two charge balance equations  
S
above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C :  
S
Equation 11  
V
C
+ C + C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
C
F
S
V
+ C + C  
P2 F  
A2  
P1  
From this formula, in the worst case (when V is maximum, that is for instance 5 V),  
A
assuming to accept a maximum error of half a count, a constraint is evident on C value:  
F
Equation 12 ADC_0 (10-bit)  
C
C
> 2048 C  
> 8192 C  
F
F
S
S
Equation 13 ADC_1 (12-bit)  
86/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
ADC electrical characteristics  
Table 42. ADC input leakage current  
Value  
Unit  
Symbol C  
Parameter  
Conditions  
Min  
Typ  
Max  
C
TA = 40 °C  
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
1
1
C
ILKG CC  
C
Input leakage current  
No current injection on adjacent pin  
nA  
8
200  
400  
P
45  
Table 43. ADC conversion characteristics (10-bit ADC_0)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Max  
Voltage on  
VSS_HV_ADC0  
VSS_ADC0 SR — (ADC_0 reference)  
0.1  
0.1  
V
pin with respect to  
(2)  
ground (VSS_HV  
)
Voltage on  
VDD_HV_ADC0 pin  
VDD_ADC0 SR — (ADC_0 reference)  
with respect to  
VDD_HV_A 0.1  
VDD_HV_A + 0.1  
V
ground (VSS_HV  
)
Analog input  
voltage(3)  
VAINx  
SR —  
VSS_ADC0 0.1  
VDD_ADC0 + 0.1  
32 + 2ꢀ  
1.5  
V
ADC_0 analog  
frequency  
fADC0 SR —  
6
MHz  
ADC_0 power up  
delay  
tADC0_PU SR —  
µs  
ns  
tADC0_S CC  
tADC0_C CC  
T
P
Sample time(4)  
Conversion time(5),(6)  
ADC_0 input  
fADC = 32 MHz  
fADC = 32 MHz  
fADC = 30 MHz  
500  
0.625  
0.700  
µs  
pF  
CS  
CC D sampling  
capacitance  
3
ADC_0 input pin  
capacitance 1  
CP1  
CP2  
CP3  
CC  
CC  
CC  
D
D
D
3
1
1
pF  
pF  
pF  
ADC_0 input pin  
capacitance 2  
ADC_0 input pin  
capacitance 3  
Doc ID 17478 Rev 4  
87/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 43. ADC conversion characteristics (10-bit ADC_0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Internal resistance of  
analog source  
RSW1 CC  
RSW2 CC  
D
D
D
3
kΩ  
kΩ  
kΩ  
Internal resistance of  
analog source  
5  
2
2
5
Internal resistance of  
analog source  
RAD  
CC  
Current  
VDD =  
3.3 V 10ꢀ  
injection on  
one ADC_0  
input, different  
from the  
IINJ  
SR — Input current Injection  
Absolute value for  
mA  
VDD  
=
5  
5
5.0 V 10ꢀ  
converted one  
| INL | CC  
T
No overload  
No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
integral non-linearity  
Absolute differential  
non-linearity  
| DNL | CC  
T
| OFS | CC  
| GNE | CC  
T
T
P
Absolute offset error  
Absolute gain error  
2  
0.5  
0.6  
0.6  
2
LSB  
LSB  
Total unadjusted  
error(7) for precise  
channels, input only  
pins  
Without current injection  
TUEP CC  
TUEX CC  
LSB  
LSB  
T
With current injection  
3  
3
T
T
Total unadjusted  
error(7) for extended  
channel  
Without current injection  
With current injection  
3  
4  
1
3
4
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. Analog and digital VSS_HV must be common (to be tied together externally).  
3. VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the end of  
the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tADC0_S depend on programming.  
5. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.  
6. Refer to ADC conversion table for detailed calculations.  
7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
88/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 20. ADC_1 characteristic and error definitions  
Offset Error OSE  
Gain Error GE  
4095  
4094  
4093  
4092  
4091  
1 LSB ideal = AVDD / 4096  
4090  
(2)  
code out  
7
(1)  
6
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
5
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
(4)  
3
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Doc ID 17478 Rev 4  
89/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Table 44. Conversion characteristics (12-bit ADC_1)  
Value  
Symbol  
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Voltage on  
VSS_HV_ADC1  
VSS_ADC1 SR (ADC_1 reference) —  
0.1  
0.1  
V
pin with respect to  
(2)  
ground (VSS_HV  
)
Voltage on  
VDD_HV_ADC1  
pin (ADC_1  
reference) with  
respect to ground  
3
VDD_ADC1  
SR  
VDD_HV_A 0.1  
VDD_HV_A + 0.1  
V
(VSS_HV  
)
Analog input  
voltage(5)  
(3),(4)  
VAINx  
fADC1  
tADC1_PU  
SR  
SR  
SR  
VSS_ADC1 0.1  
VDD_ADC1 + 0.1  
32 + 2ꢀ  
V
MHz  
µs  
ADC_1 analog  
frequency  
8 + 2ꢀ  
ADC_1 power up  
delay  
1.5  
Sample time(6)  
VDD=5.0 V  
440  
530  
tADC1_S  
CC  
ns  
Sample time(6)  
VDD=3.3 V  
Conversion time(7),  
(8)  
fADC1 = 32 MHz  
2
2.1  
3
VDD=5.0 V  
Conversion time(7),  
(6)  
fADC 1= 30 MHz  
fADC 1= 20 MHz  
fADC1 = 15 MHz  
VDD =5.0 V  
tADC1_C  
CC  
Conversion time(7),  
(6)  
µs  
VDD=3.3 V  
Conversion time(7),  
(6)  
3.01  
VDD =3.3 V  
ADC_1 input  
CS  
CC sampling  
capacitance  
5
pF  
ADC_1 input pin  
capacitance 1  
CP1  
CP2  
CP3  
CC  
CC  
CC  
3
1
pF  
pF  
pF  
ADC_1 input pin  
capacitance 2  
ADC_1 input pin  
capacitance 3  
1.5  
90/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 44. Conversion characteristics (12-bit ADC_1) (continued)  
Value  
Symbol  
Parameter  
Conditions(1)  
Unit  
Min  
Typ  
Max  
Internal resistance  
of analog source  
RSW1  
RSW2  
RAD  
CC  
CC  
CC  
1
kΩ  
kΩ  
kΩ  
Internal resistance  
of analog source  
2
0.3  
5
Internal resistance  
of analog source  
Current  
VDD = 3.3  
V 10ꢀ  
5  
5  
injection  
on one  
ADC_1  
input,  
Input current  
Injection  
IINJ  
SR  
mA  
VDD = 5.0  
V
different  
from the  
converted  
one  
5
10ꢀ  
Absolute Integral  
INLP  
INLS  
DNL  
CC non-linearity-  
Precise channels  
No overload  
No overload  
No overload  
1
3
5
1
LSB  
LSB  
LSB  
Absolute Integral  
CC non-linearity-  
Standard channels  
1.5  
0.5  
Absolute  
CC Differential non-  
linearity  
Absolute Offset  
error  
OFS  
GNE  
CC  
2
2
LSB  
LSB  
Absolute Gain  
error  
CC  
Total Unadjusted  
Error for precise  
channels, input  
only pins  
Without current  
injection  
TUEP(9)  
TUES(9)  
CC  
6  
8  
6
8
With current injection  
Total Unadjusted  
CC Error for standard  
channel  
Without current  
injection  
10  
12  
10  
12  
LSB  
LSB  
With current injection  
1. VDD = 3.3 V 10ꢀ / 5.0 V 10ꢀ, TA = 40 to 125 °C, unless otherwise specified.  
2. Analog and digital VSS_HV must be common (to be tied together externally).  
3. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be  
within 100 mV of VDD_HV_B when these channels are used for ADC_1.  
4. VDD_HV_ADC1 can operate at 5V condition while VDD_HV_B can operate at 3.3V provided that ADC_1 channels coming  
from VDD_HV_B domain are limited in max swing as VDD_HV_B  
.
Doc ID 17478 Rev 4  
91/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
5. VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
6. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of  
the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tADC1_S depend on programming.  
7. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.  
8. Refer to ADC conversion table for detailed calculations.  
9. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
4.18  
Fast Ethernet Controller  
MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are  
not TTL compatible. They follow the CMOS electrical characteristics.  
4.18.1  
MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1ꢀ.  
There is no minimum frequency requirement. In addition, the system clock frequency must  
exceed four times the RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency  
in 1:1 mode.  
Table 45. MII Receive Signal Timing  
Spec  
Characteristic  
Min  
Max  
Unit  
RXD[3:0], RX_DV, RX_ER to  
RX_CLK setup  
M1  
5
ns  
RX_CLK to RXD[3:0], RX_DV,  
RX_ER hold  
M2  
5
ns  
M3  
M4  
RX_CLK pulse width high  
RX_CLK pulse width low  
35ꢀ  
35ꢀ  
65ꢀ  
65ꢀ  
RX_CLK period  
RX_CLK period  
Figure 21. MII receive signal timing diagram  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M1  
M2  
4.18.2  
MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1ꢀ.  
There is no minimum frequency requirement. In addition, the system clock frequency must  
92/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
exceed four times the TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency  
in 1:1 mode.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from  
either the rising or falling edge of TX_CLK, and the timing is the same in either case. This  
options allows the use of non-compliant MII PHYs.  
Refer to the Fast Ethernet Controller (FEC) chapter of the SPC564B74 and SPC56EC74  
Reference Manual for details of this option and how to enable it.  
(1)  
Table 46. MII transmit signal timing  
Spec  
Characteristic  
Min  
Max  
Unit  
TX_CLK to TXD[3:0],  
TX_EN, TX_ER invalid  
M5  
5
ns  
TX_CLK to TXD[3:0],  
TX_EN, TX_ER valid  
M6  
25  
ns  
M7  
M8  
TX_CLK pulse width high  
TX_CLK pulse width low  
35ꢀ  
35ꢀ  
65ꢀ  
65ꢀ  
TX_CLK period  
TX_CLK period  
1. Output pads configured with SRE = 0b11.  
Figure 22. MII transmit signal timing diagram  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
4.18.3  
MII Async Inputs Signal Timing (CRS and COL)  
(1)  
Table 47. MII Async Inputs Signal Timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M9  
CRS, COL minimum pulse width  
1.5  
TX_CLK period  
1. Output pads configured with SRE = 0b11.  
Figure 23. MII async inputs timing diagram  
CRS, COL  
M9  
Doc ID 17478 Rev 4  
93/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
4.18.4  
MII Serial Management Channel Timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
(1)  
Table 48. MII serial management channel timing  
Spec  
Characteristic  
Min  
Max  
Unit  
MDC falling edge to  
MDIO output invalid  
(minimum  
M10  
0
ns  
propagation delay)  
MDC falling edge to  
MDIO output valid  
(max prop delay)  
M11  
25  
ns  
MDIO (input) to MDC  
rising edge setup  
M12  
M13  
28  
0
ns  
ns  
MDIO (input) to MDC  
rising edge hold  
MDC pulse width  
high  
M14  
M15  
40ꢀ  
40ꢀ  
60ꢀ  
60ꢀ  
MDC period  
MDC period  
MDC pulse width low  
1. Output pads configured with SRE = 0b11.  
Figure 24. MII serial management channel timing diagram  
M14  
M15  
MDC (output)  
MDIO (output)  
M10  
M11  
MDIO (input)  
M12  
M13  
94/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
4.19  
On-chip peripherals  
4.19.1  
Current consumption  
(1)  
Table 49. On-chip peripherals current consumption  
Value(2)  
Typ  
fperiph + 84.73  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
7.652  
Max  
500  
Kbps  
Total (static +  
dynamic)  
×
consumption:  
CAN  
(FlexCAN)  
IDD_HV_A(CAN) CC D supply  
current on  
FlexCAN in loop-  
back mode  
XTAL@8 MHz used  
as CAN engine clock  
source  
125  
Kbps  
8.0743  
×
fperiph + 26.757  
VDD_HV_A  
Message sending  
period is 580 µs  
Static consumption:  
eMIOS channel OFF  
Global prescaler enabled  
28.7 × fperiph  
eMIOS  
supply  
current on  
VDD_HV_A  
IDD_HV_A(eMIOS) CC  
D
D
Dynamic consumption:  
µA  
3
It does not change varying  
the frequency (0.003 mA)  
Total (static + dynamic)  
consumption:  
SCI(LINFlex)  
supply  
current on  
VDD_HV_A  
IDD_HV_A(SCI) CC  
4.7804 × fperiph + 30.946  
LIN mode  
Baudrate: 20 Kbps  
Ballast static consumption  
(only clocked)  
1
SPI (DSPI)  
supply  
current on  
VDD_HV_A  
Ballast dynamic consumption  
(continuous communication):  
IDD_HV_A(SPI) CC  
D
Baudrate: 2 Mbit  
Trasmission every 8 µs  
Frame: 16 bits  
16.3  
× fperiph  
Ballast static  
consumption (no  
conversion)  
VDD  
5.5 V  
=
0.0409  
0.0049  
× fperiph  
ADC supply  
IDD_HV_A(ADC) CC D current on  
VDD_HV_A  
mA  
Ballast dynamic  
consumption  
(continuous  
VDD  
5.5 V  
=
×
fperiph  
conversion)  
Doc ID 17478 Rev 4  
95/118  
 
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
(1)  
Table 49. On-chip peripherals current consumption (continued)  
Value(2)  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Analog static  
consumption (no  
conversion)  
200  
µA  
mA  
µA  
ADC_0  
supply  
current on  
VDD_HV_ADC0  
VDD  
5.5 V  
=
IDD_HV_ADC0 CC  
D
Analog dynamic  
consumption  
4
(continuous  
conversion)  
Analog static  
consumption (no  
conversion)  
VDD  
5.5 V  
=
300  
× fperiph  
ADC_1  
supply  
current on  
VDD_HV_ADC1  
IDD_HV_ADC1 CC  
D
Analog dynamic  
consumption  
(continuous  
VDD  
5.5 V  
=
6
mA  
conversion)  
CFlash +  
DFlash  
IDD_HV(FLASH) CC D supply  
current on  
VDD  
5.5 V  
=
=
13.25  
mA  
VDD_HV_ADC  
PLL supply  
CC D current on  
VDD_HV  
VDD  
5.5 V  
IDD_HV(PLL)  
0.0031 × fperiph  
1. Operating conditions: TA = 25 °C, fperiph = 8 MHz to 120 MHz.  
2. fperiph is in absolute value.  
4.19.2  
DSPI characteristics  
Table 50. DSPI timing  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
Refer  
1
DSPI Cycle Time  
tSCK  
115  
ns  
ns  
ns  
note(1)  
Internal delay between pad associated to SCK and pad  
associated to CSn in master mode for CSn1->0  
ΔtCSC  
ΔtASC  
Internal delay between pad associated to SCK and pad  
associated to CSn in master mode for CSn1->1  
15  
2
3
4
CS to SCK Delay(2)  
After SCK Delay(3)  
SCK Duty Cycle  
tCSC  
tASC  
tSDC  
7
15  
ns  
ns  
ns  
0.4 × tSCK  
0.6 × tSCK  
Slave Setup Time  
tSUSS  
5
ns  
(SS active to SCK setup time)  
96/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 50. DSPI timing (continued)  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
Slave Hold Time  
5
tHSS  
10  
ns  
ns  
ns  
(SS active to SCK hold time)  
Slave Access Time  
(SS active to SOUT valid)(4)  
tA  
42  
25  
Slave SOUT Disable Time  
6
tDIS  
(SS inactive to SOUT High-Z or invalid)  
7
8
CSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
0
0
ns  
ns  
Data Setup Time for Inputs  
Master (MTFE = 0)  
36  
5
ns  
ns  
ns  
ns  
9
Slave  
tSUI  
Master (MTFE = 1, CPHA = 0)(5)  
36  
36  
Master (MTFE = 1, CPHA = 1)  
Data Hold Time for Inputs  
Master (MTFE = 0)  
0
4
0
0
ns  
ns  
ns  
ns  
10  
11  
12  
Slave  
tHI  
Master (MTFE = 1, CPHA = 0)(5)  
Master (MTFE = 1, CPHA = 1)  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
12  
37  
12  
12  
ns  
ns  
ns  
ns  
Slave  
tSUO  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Data Hold Time for Outputs  
Master (MTFE = 0)  
0(6)  
9.5  
0(7)  
0(8)  
ns  
ns  
ns  
ns  
Slave  
tHO  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
1. This value of this parameter is dependent upon the external device delays and the other parameters mentioned in this  
table.  
2. The maximum value is programmable in DSPI_CTARn [PSSCK] and DSPI_CTARn [CSSCK]. For SPC564B74 and  
SPC56EC74, the spec value of tCSC will be attained only if TDSPI x PSSCK x CSSCK > ΔtCSC  
.
3. The maximum value is programmable in DSPI_CTARn [PASC] and DSPI_CTARn [ASC]. For SPC564B74 and  
SPC56EC74, the spec value of tASC will be attained only if TDSPI x PASC x ASC > ΔtASC.  
4. The parameter value is obtained from tSUSS and tSUO for slave.  
5. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00.  
6. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is 2 ns.  
7. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is 2 n.  
8. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is 2 ns.  
Doc ID 17478 Rev 4  
97/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 25. DSPI classic SPI timing–master, CPHA = 0  
2
3
CSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 50.  
Figure 26. DSPI classic SPI timing–master, CPHA = 1  
CSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 50.  
98/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 27. DSPI classic SPI timing–slave, CPHA = 0  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
6
First Data  
Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 50.  
Figure 28. DSPI classic SPI timing–slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 50.  
Doc ID 17478 Rev 4  
99/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 29. DSPI modified transfer format timing–master, CPHA = 0  
3
CSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 50.  
Figure 30. DSPI modified transfer format timing–master, CPHA = 1  
CSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 50.  
100/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 31. DSPI modified transfer format timing–slave, CPHA = 0  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 50.  
Figure 32. DSPI modified transfer format timing–slave, CPHA = 1  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 50.  
Doc ID 17478 Rev 4  
101/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 33. DSPI PCS strobe (PCSS) timing  
8
7
PCSS  
CSx  
Note: Numbers shown reference Table 50.  
4.19.3  
Nexus characteristics  
(1)  
Table 51. Nexus debug port timing  
Spec  
Characteristic  
Symbol  
tMCYC  
tMDC  
Min  
Max  
Unit  
MCKO Cycle  
Time(2)  
1
16.3  
ns  
MCKO Duty  
Cycle  
2
3
40  
60  
MCKO Low to  
MDO, MSEO,  
EVTO Data  
Valid(3)  
tMDOV  
–0.1  
0.25  
tMCYC  
4
5
EVTI Pulse Width  
tEVTIPW  
4.0  
1
tTCYC  
tMCYC  
EVTO Pulse  
Width  
tEVTOPW  
TCK Cycle  
Time(4)  
6
7
8
tTCYC  
tTDC  
tNTDIS, NTMSS  
tNTDIH, NTMSH  
tJOV  
40  
40  
8
60  
ns  
TCK Duty Cycle  
TDI, TMS Data  
Setup Time  
t
ns  
TDI, TMS Data  
Hold Time  
9
t
5
0
ns  
ns  
TCK Low to TDO  
Data Valid  
10  
25  
1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured  
from 50ꢀ of MCKO and 50ꢀ of the respective signal. Nexus timing specified at VDDE = 4.0 – 5.5 V, TA = TL to TH, and  
CL = 30 pF with SRC = 0b11.  
2. MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz.  
3. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
4. The system clock frequency needs to be three times faster than the TCK frequency.  
102/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Figure 34. Nexus output timing  
1
2
MCKO  
3
MDO  
MSEO  
EVTO  
Output Data Valid  
5
4
EVTI  
Doc ID 17478 Rev 4  
103/118  
Electrical Characteristics  
SPC564Bxx - SPC56ECxx  
Figure 35. Nexus TDI, TMS, TDO timing  
6
7
TCK  
8
9
TMS, TDI  
10  
TDO  
4.19.4  
JTAG characteristics  
Table 52. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
tJCYC  
tTDIS  
tTDIH  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
TCK cycle time  
64  
10  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
TDI setup time  
TDI hold time  
tTMSS  
tTMSH  
tTDOV  
TMS setup time  
TMS hold time  
10  
5
TCK low to TDO valid  
104/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Electrical Characteristics  
Table 52. JTAG characteristics (continued)  
Value  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
7
tTDOI  
tTDC  
CC  
CC  
D
D
D
TCK low to TDO invalid  
TCK Duty Cycle  
6
60  
3
ns  
40  
tTCKRISE CC  
TCK Rise and Fall Times  
ns  
Figure 36. Timing diagram - JTAG boundary scan  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
OUTPUT DATA VALID  
7
DATA OUTPUTS  
Note: Numbers shown reference Table 52.  
Doc ID 17478 Rev 4  
105/118  
Package characteristics  
SPC564Bxx - SPC56ECxx  
5
Package characteristics  
5.1  
ECOPACK®  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
106/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package characteristics  
5.2  
Package mechanical data  
5.2.1  
LQFP176 package mechanical drawing  
Figure 37. LQFP176 package mechanical drawing  
Doc ID 17478 Rev 4  
107/118  
Package characteristics  
SPC564Bxx - SPC56ECxx  
inches(2)  
(1)  
Table 53. LQFP176 mechanical data  
mm  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
1.400  
0.050  
1.350  
0.170  
0.090  
23.900  
23.900  
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
24.100  
0.063  
A1  
0.002  
0.053  
0.007  
0.004  
0.941  
0.941  
A2  
0.057  
0.011  
0.008  
0.949  
0.949  
b
C
D
E
e
0.500  
0.020  
HD  
25.900  
25.900  
0.450  
26.100  
26.100  
0.750  
1.020  
1.020  
0.018  
1.028  
1.028  
0.030  
HE  
L(3)  
L1  
1.000  
1.250  
1.250  
0.039  
0.049  
0.049  
ZD  
ZE  
q
0 °  
7 °  
0 °  
7 °  
Tolerance  
ccc  
mm  
inches  
0.0031  
0.080  
1. Controlling dimension: millimeter  
2. Values in inches are converted from mm and rounded to 4 decimal digits.  
3. L dimension is measured at gauge plane at 0.25 mm above the seating plane  
108/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package characteristics  
5.2.2  
LQFP208 package mechanical drawing  
Figure 38. LQFP208 mechanical drawing  
Note: Exact shape of each corner is optional.  
Table 54. LQFP208 mechanical data  
mm  
Typ  
Ref  
Min  
Max  
A
1.6  
A1  
0.05  
0.15  
Doc ID 17478 Rev 4  
109/118  
Package characteristics  
SPC564Bxx - SPC56ECxx  
Table 54. LQFP208 mechanical data (continued)  
mm  
Typ  
Ref  
Min  
Max  
A2  
b
1.35  
0.17  
0.09  
29.8  
27.8  
1.40  
0.22  
1.45  
0.27  
0.2  
c
D
30  
28  
30.2  
28.2  
D1  
D3  
e
25.5  
0.5  
30  
E
29.8  
27.8  
30.2  
28.2  
E1  
E3  
L
28  
25.5  
0.6  
1
0.45  
0
0.75  
L1  
K
3.5  
7.0  
ccc  
0.08  
110/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Package characteristics  
5.2.3  
LBGA256 package mechanical drawing  
Figure 39. LBGA256 mechanical drawing  
Doc ID 17478 Rev 4  
111/118  
Package characteristics  
SPC564Bxx - SPC56ECxx  
Table 55. LBGA256 mechanical data  
mm  
Typ  
Ref  
Min  
Max  
A
A1  
A2  
A4  
b
1.210  
0.300  
1.700  
0.300  
0.800  
0.600  
0.400  
0.500  
17.000  
15.000  
17.000  
15.000  
1.000  
D
16.800  
17.200  
D1  
E
16.800  
17.200  
E1  
e
0.900  
0.750  
1.100  
1.250  
0.200  
Z
1.000  
ddd  
Note:  
The package is designed according to the Jedec standard No 95-1 Section 14 dedicated to  
Ball Grid Array Package Design Guide.  
112/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Ordering information  
6
Ordering information  
Figure 40. Ordering information scheme  
Example code:  
L7  
Family Memory Package  
SPC56  
4
C
74  
C
8
E
0
Y
Product identifier Core  
Conditioning  
Temperature CPU Frequency EEPROM Options  
Y = Tray  
X = Tape and Reel  
0 = No option  
E = Ethernet  
C = CSE + Ethernet  
0 = NO EEPROM  
E = EEPROM  
8 = 80 MHz  
9 = 120 MHz  
B = –40 to 105 °C  
C = –40 to 125 °C  
L7 = LQFP176  
L8 = LQFP208  
B3 = LBGA256  
74 = 3 MB  
70 = 2 MB  
64 = 1.5 MB  
B = Body  
C = Gateway  
4 = e200z4d  
E = e200z4d + e200  
z0h  
SPC56 = Power  
Architecture in  
90 nm  
Doc ID 17478 Rev 4  
113/118  
Abbreviations  
SPC564Bxx - SPC56ECxx  
Appendix A  
Abbreviations  
Table 56 lists abbreviations used but not defined elsewhere in this document.  
Table 56. Abbreviations  
Abbreviation  
Meaning  
CS  
EVTO  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
Chip select  
Event out  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
114/118  
Doc ID 17478 Rev 4  
 
SPC564Bxx - SPC56ECxx  
Revision history  
Revision history  
Table summarizes revisions to this document  
.
Revision history  
Date  
Revision  
Changes  
01-Jun-2010  
1
Initial Release  
– Editing and formatting updates throughout the document.  
– Updated Voltage regulator capacitance connection figure.  
– Added a new sub-section “VDD_BV Options”  
– Program and erase specifications:  
Updated Tdwprogram TYP to 22 us  
Updated T128Kpperase Max to 5000 ms  
Added tESUS parameter  
– Added recommendation in the Voltage regulator electrical characteristics section.  
– Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz)  
electrical characteristics section and corrected the cross-reference to the same.  
– Added new sections - Pad types, System pins and functional ports  
– Updated TYP numbers in the Flash program and erase specifications table  
– Added a new table: Program and erase specifications (Data Flash)  
– Flash read access timing table: Added Data flash memory numbers  
– Flash power supply DC electrical characteristics table: Updated IDFREAD and  
IDFMOD values for Data flash, Removed IDFLPW parameter  
– Updated feature list.  
– SPC564Bxx and SPC56ECxx family comparison table: Updated ADC channels  
and added ADC footnotes.  
17-Dec-2010  
2
– SPC564Bxx and SPC56ECxx block diagram: Updated ADC channels and added  
legends.  
– SPC564Bxx and SPC56ECxx series block summary: Added new blocks.  
– Functional Port Pin Descriptions table: Added OSC32k_XTAL and  
OSC32k_EXTAL function at PB8 and PB9 port pins.  
– Electrical Characteristics: Replaced VSS with VSS_HV throughout the section.  
– Absolute maximum ratings, Recommended operating conditions (3.3 V) and  
Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to  
"0".  
– Recommended operating conditions (3.3 V) and Recommended operating  
conditions (5.0 V) tables: Clarified VIN parameter, clarified footnote 2 in both  
tables.  
– LQFP thermal characteristics section: Added numbers for LQFP packages.  
– Low voltage power domain electrical characteristics table: Clarified footnotes  
based upon review comments.  
– Code flash memory—Program and erase specifications: Updated tESRT to  
20 ms.  
– ADC electrical characteristics section: Replace ADC0 with ADC_0 and ADC1 with  
ADC_1 throughout the document.  
DSPI characteristics section: Replaced PCSx with CSx in all figures and tables.  
Doc ID 17478 Rev 4  
115/118  
Revision history  
SPC564Bxx - SPC56ECxx  
Revision history (continued)  
Date  
Revision  
Changes  
– Replaced VIL min from –0.4 V to –0.3 V in the following tables:  
- I/O input DC electrical characteristics  
- Reset electrical characteristics  
- Fast external crystal oscillator (4 to 40 MHz) electrical characteristics  
– Updated Crystal oscillator and resonator connection scheme figure  
– Specified NPN transistor as the recommended BCP68 transistor throughout the  
document  
– Code and Data flash memory—Program and erase specifications tables:  
Renamed the parameter tESUS to Teslat  
– Revised the footnotes in the “Functional port pin descriptions” table.  
– In the “System pin descriptions” table, added a footnote to the A pads regarding  
not using IBE.  
For ports PB[12–15], changed ANX to ADC0_X.  
– Revised the presentation of the ADC functions on the following ports:  
PB[4–7]  
PD[0–11]  
– ADC conversion characteristics (10-bit ADC_0) table and Conversion  
characteristics (12-bit ADC_1) table- Updated footnote 5 and 7 respectively for the  
definition of the conversion time.  
– Data flash memory—Program and erase specifications: Updated Twprogram to 500  
µs and T16Kpperase to 500 µs. Corrected Teslat classsification from “C” to “D”.  
– Code flash memory—Program and erase specifications: Corrected Teslat  
classification from “C” to “D”.  
– Flash Start-up time/Switch-off time: Changed TFLARSTEXIT classification from “C”  
to “D”.  
28-Apr-2011  
3
– Functional port pin description: Added a footnote at the PB [9] port pin.  
– Absolute maximum ratings table: Added footnote 1.  
– Low voltage power domain electrical characteristics table: Updated IDDHALT,  
IDDSTOP, IDDSTBY3, IDDSTDBY2, IDDSTDBY1.  
– Updated commercial product code structure.  
– Slow external crystal oscillator (32 kHz) electrical characteristics table: Updated  
gmSXOSC, VSXOSC, ISXOSCBIAS and ISXOSC.  
– FMPLL electrical characteristics table: Updated ΔtLTJIT.  
– Fast internal RC oscillator (16 MHz) electrical characteristics table: Updated  
TFIRCSU and IFIRCPWD.  
– MII serial management channel timing table: Updated M12  
– JTAG characteristics table: Updated tTDOV.  
– Low voltage monitor electrical characteristics table: Updated VLVDHV3H,  
VLVDHV3L, VLVDHV5H, VLVDHV5L.  
– DSPI electricals table: Updated spec 1, 5, 6. Updated footnote 2 and 3. Added  
ΔtCSC, ΔtASC, tSUSS, tHSS.  
– IO consumption table: Updated all parameter values.  
– DSPI electricals: Updated ΔtCSC max to 115 ns.  
– Low voltage power domain electrical characteristics table: Added footnote 9.  
– ADC electrical characteristics: Added 2 notes above 10-bit and 12-bit conversion  
tables.  
116/118  
Doc ID 17478 Rev 4  
SPC564Bxx - SPC56ECxx  
Revision history  
Revision history (continued)  
Date  
Revision  
Changes  
– Interchanged the denominator with numerator in Equation 11 of Input impedance  
and ADC accuracy section  
– Removed the note (All ADC conversion characteristics described in the table  
below are applicable only for the precision channels. The data for semi-precision  
and extended channels is awaited and same will be subsequently updated in later  
revs.) in the ADC electrical characteristics section.  
01-Dec-2011  
4
Table 49 (On-chip peripherals current consumption). Replaced IDD_HV_ADC  
with IDD_HV_ADC0 and IDD_HV_ADC1 values as per ADC specs  
– In Table 43, the minimum sample time of ADC0 changed to 500 at 32 MHz  
– In Table 43, removed the entry for sample time at 30 MHz  
– In Table 44, changed TUEX to TUES and INLX to INLS (Extended channels are  
not supported by the device. So, changed to standard channel.)  
Doc ID 17478 Rev 4  
117/118  
SPC564Bxx - SPC56ECxx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
118/118  
Doc ID 17478 Rev 4  

相关型号:

SPC56ECxx

Up to 80 MHz and 75 MIPs operation
STMICROELECTR

SPC56EL54L3

用于汽车底盘和安全应用的32位Power Architecture MCU
STMICROELECTR

SPC56EL54L5

用于汽车底盘和安全应用的32位Power Architecture MCU
STMICROELECTR

SPC56EL54x

Dual issue five-stage pipeline core
STMICROELECTR

SPC56EL60L3

用于汽车底盘和安全应用的32位Power Architecture MCU
STMICROELECTR

SPC56EL60L5

32-bit Power Architecture® microcontroller for automotive SIL3/ASILD chassis and safety applications
STMICROELECTR

SPC56EL60X

Dual issue five-stage pipeline core
STMICROELECTR

SPC56EL70L3

4 KB instruction cache with error detection code
STMICROELECTR

SPC56EL70L5

4 KB instruction cache with error detection code
STMICROELECTR

SPC56EL70XX

This errata sheet describes all the functional
STMICROELECTR

SPC56ELADPT144S

SPC56ELxx microcontroller family evaluation board
STMICROELECTR

SPC56P

Reset push button
STMICROELECTR