TDA1517ATW/N1,118 [NXP]

TDA1517ATW - 8 W BTL or 2 × 4 W SE power TSSOP2 20-Pin;
TDA1517ATW/N1,118
型号: TDA1517ATW/N1,118
厂家: NXP    NXP
描述:

TDA1517ATW - 8 W BTL or 2 × 4 W SE power TSSOP2 20-Pin

放大器 光电二极管 商用集成电路
文件: 总20页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA1517ATW  
8 W BTL or 2 × 4 W SE power  
amplifier  
Product specification  
2001 Apr 17  
Supersedes data of 2001 Feb 14  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
FEATURES  
Electrostatic discharge protection  
Thermal protection  
Requires very few external components  
Reverse polarity safe  
Flexibility in use: mono Bridge-Tied Load (BTL) and  
stereo Single-Ended (SE); it should be noted that in  
stereo applications the outputs of both amplifiers are in  
opposite phase  
Capable of handling high energy on outputs (VP = 0 V)  
No switch-on/switch-off plop  
Low thermal resistance.  
High output power  
Low offset voltage at output (important for BTL)  
Fixed gain  
GENERAL DESCRIPTION  
The TDA1517ATW is an integrated class-AB output  
amplifier contained in a plastic heatsink thin shrink small  
outline package (HTSSOP20). The device is primarily  
developed for multimedia applications.  
Good ripple rejection  
Mode select switch (operating, mute and standby)  
AC and DC short-circuit safe to ground and VP  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VP  
6
12  
18  
V
IORM  
Iq(tot)  
Istb  
repetitive peak output current  
total quiescent current  
standby current  
2.5  
80  
A
40  
0.1  
mA  
µA  
100  
SE application  
Po  
output power  
THD = 10%; RL = 4 Ω  
RS = 0 Ω  
4
W
SVRR  
αcs  
supply voltage ripple rejection  
channel separation  
noise output voltage  
input impedance  
46  
40  
dB  
dB  
µV  
kΩ  
RS = 10 kΩ  
55  
50  
Vn(o)  
Zi  
RS = 0 Ω  
50  
BTL application  
Po  
output power  
THD = 10%; RL = 8 Ω  
RS = 0 Ω  
8
W
SVRR  
VOO  
Vn(o)(offset)  
Zi  
supply voltage ripple rejection  
output offset voltage  
noise output offset voltage  
input impedance  
50  
dB  
mV  
µV  
kΩ  
150  
RS = 0 Ω  
70  
25  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA1517ATW  
HTSSOP20  
plastic, heatsink thin shrink small outline package; 20 leads; body  
width 4.4 mm  
SOT527-1  
2001 Apr 17  
2
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
BLOCK DIAGRAM  
V
V
P1  
15  
P2  
16  
3
non-inverting  
input 1  
mute switch  
C
m
+
60  
k  
8
9
OUT1a  
VA  
+
OUT1b  
2
kΩ  
power stage  
18 kΩ  
V
P
TDA1517ATW  
17  
1
MODE  
not  
standby  
switch  
2
6
7
14  
19  
20  
VA  
mute  
switch  
connected  
15 kΩ  
x 1  
+
+
standby  
reference  
voltage  
5
SVRR  
15 kΩ  
mute  
reference  
voltage  
18 kΩ  
+
2
kΩ  
12  
OUT2a  
OUT2b  
VA  
inverting  
input 2  
18  
13  
+
60  
kΩ  
C
m
mute switch  
input  
reference  
voltage  
power stage  
4
10  
11  
MGU303  
SGND  
PGND1 PGND2  
Fig.1 Block diagram.  
3
2001 Apr 17  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
not connected  
n.c.  
1
2
n.c.  
not connected  
non-inverting input 1  
signal ground  
handbook, halfpage  
IN1+  
3
n.c.  
n.c.  
1
2
3
4
5
6
7
8
9
20 n.c.  
SGND  
SVRR  
n.c.  
4
19 n.c.  
5
supply voltage ripple rejection  
not connected  
not connected  
output 1a  
IN1+  
18 IN2−  
17 MODE  
6
SGND  
SVRR  
n.c.  
n.c.  
7
16  
15  
V
V
OUT1a  
OUT1b  
PGND1  
PGND2  
OUT2a  
OUT2b  
n.c.  
8
P2  
P1  
TDA1517ATW  
9
output 1b  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
power ground 1  
power ground 2  
output 2a  
n.c.  
14 n.c.  
OUT1a  
OUT1b  
13 OUT2b  
12 OUT2a  
11 PGND2  
output 2b  
PGND1 10  
not connected  
supply voltage 1  
supply voltage 2  
mode select switch  
inverting input 2  
not connected  
not connected  
MGU302  
VP1  
VP2  
MODE  
IN2−  
n.c.  
Fig.2 Pin configuration.  
n.c.  
FUNCTIONAL DESCRIPTION  
The TDA1517ATW contains two identical amplifiers with differential input stages. This device can be used for  
Bridge-Tied Load (BTL) or Single-Ended (SE) applications. The gain of each amplifier is fixed at 20 dB. A special feature  
of this device is the mode select switch. Since this pin has a very low input current (<40 µA), a low cost supply switch  
can be used. With this switch the TDA1517ATW can be switched into three modes:  
Standby: low supply current  
Mute: input signal suppressed  
Operating: normal on condition.  
2001 Apr 17  
4
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VP  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
MAX.  
UNIT.  
18  
18  
6
V
VPSC  
Vrp  
AC and DC short-circuit-safe voltage  
reverse polarity voltage  
V
V
ERGo  
IOSM  
IORM  
Ptot  
energy handling capability at outputs VP = 0 V  
non-repetitive peak output current  
repetitive peak output current  
total power dissipation  
200  
4
mJ  
A
2.5  
5
A
W
°C  
°C  
°C  
Tvj  
virtual junction temperature  
storage temperature  
150  
+150  
+85  
Tstg  
55  
40  
Tamb  
ambient temperature  
THERMAL CHARACTERISTICS  
SYMBOL  
tbf  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
DC CHARACTERISTICS  
VP = 12 V; Tamb = 25 °C; measured in Fig.3; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VP  
Iq  
supply voltage  
quiescent current  
note 1  
6.0  
12  
40  
18  
80  
V
RL = ∞  
mA  
Operating condition  
VMODE(oper) mode switch voltage level  
IMODE(oper) mode switch current  
8.5  
VP  
40  
V
VMODE = 12 V  
15  
5.7  
µA  
V
VO  
VOO  
DC output voltage  
DC output offset voltage  
150  
mV  
Mute condition  
VMODE(mute) mode switch voltage level  
3.3  
6.4  
V
VO  
VOO  
DC output voltage  
5.7  
V
DC output offset voltage  
150  
mV  
Standby condition  
VMODE(stb) mode switch voltage level  
Istb standby current  
0
2
V
0.1  
100  
µA  
Note  
1. The circuit is DC adjusted at VP = 6 to 18 V and AC operating at VP = 8.5 to 18 V.  
2001 Apr 17  
5
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
AC CHARACTERISTICS  
VP = 12 V; f = 1 kHz; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SE application; note 1  
Po  
output power  
note 2  
THD = 1%  
THD = 10%  
Po = 1 W  
2.5  
3.3  
W
3
4
W
THD  
fro(L)  
fro(H)  
GV  
total harmonic distortion  
low frequency roll-off  
high frequency roll off  
voltage gain  
0.1  
25  
%
1 dB; note 3  
1 dB  
Hz  
kHz  
dB  
dB  
20  
19  
20  
21  
1
GV  
SVRR  
channel balance  
supply voltage ripple rejection  
note 4  
on  
46  
46  
80  
50  
dB  
dB  
dB  
kΩ  
mute  
standby  
Zi  
input impedance  
60  
75  
Vn(o)(rms)  
noise output voltage (RMS value)  
note 5  
on; RS = 0 Ω  
on; RS = 10 kΩ  
mute; note 6  
RS = 10 kΩ  
note 7  
50  
70  
50  
55  
µV  
µV  
µV  
dB  
mV  
100  
αcs  
channel separation  
40  
Vo(mote)  
output voltage in mute  
2
BTL application; note 8  
PO  
output power  
note 2  
THD = 1%  
THD = 10%  
Po = 1 W  
1 dB; note 3  
1 dB  
5
6.6  
8.0  
0.03  
25  
W
6.5  
W
THD  
fro(L)  
fro(H)  
GV  
total harmonic distortion  
low frequency roll-off  
high frequency roll off  
voltage gain  
%
Hz  
kHz  
dB  
20  
25  
26  
27  
SVRR  
supply voltage ripple rejection  
note 4  
on  
50  
50  
80  
25  
dB  
dB  
dB  
kΩ  
mute  
standby  
Zi  
input impedance  
30  
38  
Vn(o)(rms)  
noise output voltage (RMS value)  
note 5  
on; RS = 0 Ω  
on; RS = 10 kΩ  
mute; note 6  
note 7  
70  
100  
60  
µV  
µV  
µV  
mV  
200  
Vo(mute)  
output voltage in mute  
2
2001 Apr 17  
6
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
Notes to the characteristics  
1. RL = 4 , measured in Fig.4.  
2. Output power is measured directly at the output pins of the IC.  
3. Frequency response externally fixed.  
4. Vripple = Vripple(max) = 2 V (p-p); RS = 0 .  
5. Noise voltage measured in a bandwidth of 20 Hz to 20 kHz.  
6. Noise output voltage independent of RS.  
7. Vi = Vi(max) = 1 V (RMS).  
8. RL = 8 , measured in Fig.3.  
APPLICATION INFORMATION  
V
1000  
CC  
100  
nF  
µF  
15  
16  
TDA1517ATW  
3
8
9
R
i
60 kΩ  
+OUT  
A
B
470 nF  
R
L
+IN1  
8 Ω  
12  
13  
R
OUT  
V
i
CC  
60 kΩ  
18  
17  
10 kΩ  
STANDBY/  
MODE  
MUTE LOGIC  
V
CC  
SHORT CIRCUIT  
AND  
TEMPERATURE  
PROTECTION  
8.2  
kΩ  
15 kΩ  
5
µc1  
MICRO-  
CONTROLLER  
input  
reference  
voltage  
µc2  
15 kΩ  
µc1 µc2  
4
10  
11  
On  
Mute  
0
0
0
1
0
Standby 1  
MGU304  
PGND  
SGND  
Fig.3 BTL application block diagram.  
2001 Apr 17  
7
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
V
CC  
100  
nF  
1000  
µF  
15  
16  
TDA1517ATW  
3
220 nF  
8
9
1000 µF  
R
i
IN1+  
A
B
60 kΩ  
+OUT  
R
L
4 Ω  
220 nF  
18  
IN2−  
12  
13  
1000 µF  
OUT  
R
i
60 kΩ  
V
CC  
R
L
4 Ω  
10 kΩ  
17  
5
STANDBY/  
MUTE LOGIC  
MODE  
V
CC  
SHORT CIRCUIT  
AND  
TEMPERATURE  
PROTECTION  
8.2  
kΩ  
15 kΩ  
µc1  
MICRO-  
CONTROLLER  
input  
reference  
voltage  
100  
µF  
µc2  
15 kΩ  
µc1 µc2  
4
10  
11  
On  
Mute  
0
0
0
1
0
Standby 1  
MGU305  
PGND  
SGND  
Fig.4 SE application block diagram.  
Test conditions  
Proper supply bypassing is critical for low noise  
performance and high power supply rejection. The  
respective capacitor locations should be as close as  
possible to the device and grounded to the power ground.  
Decoupling the power supply also prevents unwanted  
oscillations. For suppressing higher frequency transients  
(spikes) on the supply line a capacitor with low ESR  
(typical 0.1 µF) has to be placed as close as possible to the  
device. For suppressing lower frequency noise and ripple  
signals, a large electrolytic capacitor (e.g. 1000 µF or  
greater) must be placed close to the IC.  
Tamb = 25 °C; unless otherwise specified: VP = 12 V, BTL  
application, f = 1 kHz, RL = 8 , fixed gain = 26 dB, audio  
band-pass: 22 Hz to 22 kHz. In the figures as a function of  
frequency a band-pass of 10 Hz to 80 kHz was applied.  
The BTL application block diagram is shown in Fig.3. The  
PCB layout [which accommodates both the mono (BTL)  
and stereo (single-ended) application] is shown in Fig.6.  
Printed-Circuit Board (PCB) layout and grounding  
For high system performance levels certain grounding  
techniques are imperative. The input reference grounds  
have to be tied to their respective source grounds and  
must have separate traces from the power ground traces;  
this will separate the large (output) signal currents from  
interfering with the small AC input signals. The small  
signal ground traces should be located physically as far as  
possible from the power ground traces. Supply and output  
traces should be as wide as possible for delivering  
maximum output power.  
In single-ended (stereo) application a bypass capacitor  
connected to pin SVR reduces the noise and ripple on the  
midrail voltage. For good THD and noise performance a  
low ESR capacitor is recommended.  
Input configuration  
It should be noted that the DC level of the input pins is  
approximately 2.1 V; a coupling capacitor is therefore  
necessary.  
2001 Apr 17  
8
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
The formula for the cut-off frequency at the input is as  
1
Average listening level without any distortion yields:  
Ptot  
5
follows: fIC  
=
------------------------------  
2 × π × RiCi  
PALL  
=
=
= 315 mW  
----------------  
factor  
--------------  
15.85  
The power dissipation can be derived from Fig.11 for 0 dB  
and 12 dB headroom.  
1
thus f IC  
=
= 11 Hz  
-----------------------------------------------------------------------------  
2 × π × 30 × 103 × 470 × 109  
Table 1 Power rating  
As can be seen it is not necessary to use high capacitor  
values for the input; so the delay during switch-on, which  
is necessary for charging the input capacitors, can be  
minimized. This results in a good low frequency response  
and good switch-on behaviour.  
POWER  
DISSIPATION  
RATING  
HEADROOM  
Po = 5 W  
(THD = 0.1%)  
0 dB  
3.5 W  
2.0 W  
12 dB  
In stereo applications (single-ended) coupling capacitors  
on both input and output are necessary. It should be noted  
that the outputs of both amplifiers are in opposite phase.  
Thus for the average listening level (music power) a power  
dissipation of 2.0 W can be used for the thermal PCB  
calculation; see Section “Thermal behaviour (PCB design  
considerations)”.  
Built-in protection circuits  
The IC contains two types of protection circuits:  
Short-circuits the outputs to ground, the supply to  
ground and across the load: short-circuit is detected and  
controlled by a SOAR protection circuit  
Mode pin  
For the 3 functional modes: standby, mute and operate,  
the MODE pin can be driven by a 3-state logic output  
stage, e.g. a microcontroller with some extra components  
for DC-level shifting; see Fig.10 for the respective  
DC levels.  
Thermal shut-down protection: the junction temperature  
is measured by a temperature sensor. Thermal foldback  
is activated at a junction temperature of >150 °C.  
Standby mode is activated by a low DC level between  
0 and 2 V. The power consumption of the IC will be  
reduced to <0.12 mW.  
Output power  
The output power as a function of supply voltage has been  
measured on the output pins and at THD = 10%. The  
maximum output power is limited by the maximum  
allowable power dissipation and the maximum available  
output current, 2.5 A repetitive peak current.  
Mute mode is activated by a DC level between  
3.3 and 6.4 V. The outputs of the amplifier will be muted  
(no audio output); however the amplifier is DC biased  
and the DC level of the output pins stays at half the  
supply voltage. The input coupling capacitors are  
charged when in mute mode to avoid pop-noise.  
Supply voltage ripple rejection  
The SVRR has been measured without an electrolytic  
capacitor on pin 5 and at a bandwidth of 10 Hz to 80 kHz.  
The curves for operating and mute condition (respectively)  
were measured with Rsource = 0 . Only in single-ended  
applications is an electrolytic capacitor (e.g. 100 µF) on  
pin 5 necessary to improve the SVRR behaviour.  
The IC will be in the operating condition when the  
voltage at pin MODE is between 8.5 V and VCC  
.
Switch-on/switch-off  
To avoid audible plops during switch-on and switch-off of  
the supply voltage, the MODE pin has to be set in standby  
condition (VCC level) before the voltage is applied  
(switch-on) or removed (switch-off). The input and SVRR  
capacitors are smoothly charged during mute mode.  
Headroom  
A typical music CD requires at least 12 dB (is factor 15.85)  
dynamic headroom (compared with the average power  
output) for passing the loudest portions without distortion.  
The following calculation can be made for this application  
at VP = 12 V and RL = 8 : Po at THD = 0.1% is  
approximately 5 W (see Fig.7).  
The turn-on and turn-off time can be influenced by an  
RC-circuit connected to the MODE pin. Switching the  
device or the MODE pin rapidly on and off may cause ‘click  
and pop’ noise. This can be prevented by proper timing on  
the MODE pin. Further improvement in the BTL application  
can be obtained by connecting an electrolytic capacitor  
(e.g. 100 µF) between the SVRR pin and signal ground.  
2001 Apr 17  
9
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
Thermal behaviour (PCB design considerations)  
The thermal vias (0.3 mm ) in the ‘thermal land’ should  
not use web construction techniques, because those will  
have high thermal resistance; continuous connection  
completely around the via-hole is recommended.  
The typical thermal resistance [Rth(j-a)] of the IC in the  
HTSSOP20 package is 37 K/W if the IC is soldered on a  
printed-circuit board with double sided 35 µm copper with  
a minimum area of approximately 30 cm2. The actual  
usable thermal resistance depends strongly on the  
mounting method of the device on the printed-circuit  
board, the soldering method and the area and thickness of  
the copper on the printed-circuit board.  
For a maximum ambient temperature of 60 °C the  
following calculation can be made: for the application at  
VP = 12 V and RL = 8 the (ALL-) music power  
dissipation approximately 2.0 W;  
Tj(max) = Tamb + P × Rth(j-a) = 60 °C + 2.0 × 37 = 134 °C.  
The bottom ‘heat-spreader’ of the IC has to be soldered  
efficiently on the ‘thermal land’ of the copper area of the  
printed-circuit board using the re-flow solder technique.  
Note: the above calculation holds for application at  
‘average listening level’ music output signals. Applying (or  
testing) with sine wave signals will produce approximately  
twice the music power dissipation; at worst case condition  
this can activate the maximum temperature protection.  
A number of thermal vias in the ‘thermal land’ provide a  
thermal path to the opposite copper site of the  
printed-circuit board. The size of the surface layers should  
be as large as needed to dissipate the heat.  
60  
K/W  
50  
ON-BOARD-COOLING  
COPPER DESIGN  
CU-LAYER 1  
40  
L
L
R
th(j-a)  
30  
20  
R
CU-LAYER 2-4  
th(j-p)  
10  
0
0
1
2
3
4
number of 35 µm copper layers  
MGU306  
Rth(j-p) curve is given for practical calculation purpose.  
L = 30 mm plus vias  
Fig.5 Thermal resistance of the HTSSOP20 mounted on printed-circuit board.  
2001 Apr 17  
10  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
top view  
top copper layout  
top view  
bottom copper layout  
+
V
P
TDA  
1517ATW  
1000 µF  
25 V  
100 nF  
220 nF  
IN1  
IN2  
Std By  
On  
100 µF/16 V  
1000 µF  
16 V  
sept 2000  
+
OUT1  
OUT2  
MGU312  
top view  
component layout  
For BTL applications the two 1000 µF/16 V capacitors must be replaced by 0 jumpers.  
Fig.6 Printed-circuit board layout for BTL and SE application.  
11  
2001 Apr 17  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
Typical performance characteristics for BTL  
application at VP = 12 V and RL = 8 Ω  
MGU307  
MGU308  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
P
= 1 W  
o
1  
1  
10  
10  
2  
2  
10  
10  
2  
1  
2  
1  
2
10  
10  
1
10  
10  
10  
1
10  
10  
P
(W)  
f (kHz)  
o
Fig.7 THD as a function of Po.  
Fig.8 THD as a function of frequency.  
MGU310  
MGU309  
10  
0
handbook, halfpage  
handbook, halfpage  
V
o
SVRR  
(dB)  
(V)  
1
20  
40  
60  
80  
1  
10  
2  
10  
3  
10  
mute  
4  
10  
2  
1  
2
0
2
4
6
8
10  
V
12  
(V)  
10  
10  
1
10  
10  
f (kHz)  
MODE  
Fig.9 SVRR as a function of frequency.  
Fig.10 Vo as a function of VMODE.  
2001 Apr 17  
12  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
MGU311  
MGU323  
6
12  
handbook, halfpage  
handbook, halfpage  
P
o
P
(W)  
(W)  
10  
5
V
= 12 V  
4
3
2
1
0
8
P
R
= 8 Ω  
L
R
6
= 4 Ω  
8 Ω  
16 Ω  
L
V
R
= 15 V  
P
L
4
2
= 16 Ω  
0
6
0
2
4
6
8
10  
8
10  
12  
14  
16  
V
18  
(V)  
P
(W)  
o
P
Fig.11 Power dissipation as a function of Po.  
Fig.12 Po as a function of VP.  
2001 Apr 17  
13  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
PACKAGE OUTLINE  
HTSSOP20: plastic, heatsink thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT527-1  
D
E
A
X
c
y
H
v
M
A
heathsink side  
E
D
h
Z
11  
20  
(A )  
3
A
2
A
E
h
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.  
8o  
0o  
0.15 0.95  
0.05 0.80  
0.30 0.20 6.6  
0.19 0.09 6.4  
4.3  
4.1  
4.5  
4.3  
3.1  
2.9  
6.6  
6.2  
0.75  
0.50  
0.5  
0.2  
mm  
1.10  
0.65  
0.25  
1.0  
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-11-12  
00-07-12  
SOT527-1  
2001 Apr 17  
14  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2001 Apr 17  
15  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
not suitable  
REFLOW(1)  
BGA, HBGA, LFBGA, SQFP, TFBGA  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS  
PLCC(3), SO, SOJ  
suitable  
suitable  
suitable  
not suitable(2)  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2001 Apr 17  
16  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2001 Apr 17  
17  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
NOTES  
2001 Apr 17  
18  
Philips Semiconductors  
Product specification  
8 W BTL or 2 × 4 W SE power amplifier  
TDA1517ATW  
NOTES  
2001 Apr 17  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4728 6600, Fax. +33 1 4728 6638  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,  
Tel: +36 1 382 1700, Fax: +36 1 382 1800  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
72  
SCA  
© Philips Electronics N.V. 2001  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/02/pp20  
Date of release: 2001 Apr 17  
Document order number: 9397 750 08264  

相关型号:

TDA1517P

2 x 6 W stereo power amplifier
NXP

TDA1517P/N3

IC 6 W, 2 CHANNEL, AUDIO AMPLIFIER, PQFP44, LQFP-44, Audio/Video Amplifier
NXP

TDA1517PN

IC 6 W, 2 CHANNEL, AUDIO AMPLIFIER, PQFP44, LQFP-44, Audio/Video Amplifier
NXP

TDA1517U

暂无描述
NXP

TDA1518

24 W BTL or 2 x 12 watt stereo car radio power amplifier
NXP

TDA1518B

24 W BTL or 2 x 12 watt stereo car radio power amplifier
NXP

TDA1518BQ

24 W BTL or 2 x 12 watt stereo car radio power amplifier
NXP

TDA1518BQU

IC 12 W, 2 CHANNEL, AUDIO AMPLIFIER, PZIP13, POWER, PLASTIC, SOT-141C, SIL-BENT-DIL, 13 PIN, Audio/Video Amplifier
NXP

TDA1518Q

双音频功率放大器(2× 10W)
ETC

TDA1518QU

Dual Audio Amplifier
ETC

TDA1519

2 x 6 W stereo car radio power amplifier
NXP

TDA1519/N2

TDA1519/N2
NXP