TDA1566TH/N2S,118 [NXP]

TDA1566 - I2C-bus controlled dual channel 46 W/2 Ohm, single channel 92 W/1 Ohm amplifier with load diagnostic features SOIC 24-Pin;
TDA1566TH/N2S,118
型号: TDA1566TH/N2S,118
厂家: NXP    NXP
描述:

TDA1566 - I2C-bus controlled dual channel 46 W/2 Ohm, single channel 92 W/1 Ohm amplifier with load diagnostic features SOIC 24-Pin

放大器 光电二极管 商用集成电路
文件: 总46页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA1566  
I2C-bus controlled dual channel 46 W/2 , single channel  
92 W/1 amplifier with load diagnostic features  
Rev. 02 — 20 August 2007  
Product data sheet  
1. General description  
The TDA1566 is a car audio power amplifier with a complementary output stage realized  
in BCDMOS. The TDA1566 has two Bridge Tied Load (BTL) output stages and comes in a  
HSOP24 or DBS27P package.  
The TDA1566 can be controlled with or without I2C-bus. With I2C-bus control gain settings  
per channel and diagnostic trigger levels can be selected. Failure conditions as well as  
load identification can be read with I2C-bus. The load identification detects whether the  
outputs of a BTL channel are connected with a DC or AC load and discriminates between  
a speaker load, a line driver load and an open (unconnected) load.  
The TDA1566 can be configured in a single BTL mode and drive a 1 load. For the single  
BTL mode it is necessary to connect on the Printed-Circuit Board (PCB) the outputs of  
both BTL channels in parallel.  
2. Features  
I Operates in I2C-bus mode and non-I2C-bus mode  
I TH version: four I2C-bus addresses controlled by two pins; J version: two I2C-bus  
addresses controlled by one pin  
I Two 4 or 2 capable BTL channels or one 1 capable BTL channel  
I Low offset  
I Pop free off/standby/mute/operating mode transitions  
I Speaker fault detection  
I Selectable gain (26 dB and 16 dB)  
I In I2C-bus mode:  
N DC load detection: open, short and speaker or line driver present  
N AC load (tweeter) detection  
N Programmable trigger levels for DC and AC load detection  
N Per channel programmable gain (26 dB and 16 dB, selectable per channel)  
N Selectable diagnostic levels for clip detection and thermal pre-warning  
N Selectable information on the DIAG pin for clip information of each channel  
separately and independent enabling of thermal-, offset- or load fault  
I Independent short-circuit protection per channel  
I Loss of ground and open VP safe  
I All outputs short-circuit proof to VP, GND and across the load  
I All pins short-circuit proof to ground  
I Temperature controlled gain reduction at high junction temperatures  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
I Fault condition diagnosis per channel: short to ground, short to supply, shorted lead  
and speaker fault (wrongly connected)  
I Low battery voltage detection  
I TH version: pin compatible with the TDA8566TH1  
3. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
TDA1566TH  
HSOP24  
plastic, heatsink small outline package; 24 leads; low  
stand-off height  
SOT566-3  
TDA1566J  
DBS27P  
plastic DIL-bent-SIL (special bent) power package;  
27 leads (lead length 6.8 mm)  
SOT827-1  
4. Block diagram  
V
V
P2  
ADS2  
8
ADS1  
9
SDA  
6
SCL  
5
P1  
14  
23  
22  
13  
PROG  
CLIP  
7
MODE  
SELECT  
SELECT DIAGNOSTIC  
/CLIP DETECT  
2
EN  
I C-BUS  
1
DIAG  
16  
18  
10  
11  
2
OUT1+  
OUT1−  
IN1+  
IN1−  
IN2+  
IN2−  
MUTE  
26 dB/  
16 dB  
PROTECTION  
/DIAGNOSTIC  
MUTE  
MUTE  
MUTE  
19  
21  
OUT2+  
OUT2−  
26 dB/  
16 dB  
PROTECTION  
/DIAGNOSTIC  
V
P
3
15  
24  
1OHM  
TAB  
TDA1566TH  
4
12  
17  
20  
SVR  
SGND  
PGND1  
PGND2  
001aac999  
Fig 1. Block diagram (TDA1566TH)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
2 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
V
V
P2  
ADS1  
2
SDA  
26  
SCL  
25  
P1  
7
21  
20  
6
PROG  
DIAG  
1
MODE  
SELECT  
SELECT DIAGNOSTIC  
/CLIP DETECT  
2
EN  
I C-BUS  
10  
13  
3
OUT1+  
OUT1−  
IN1+  
IN1−  
IN2+  
IN2−  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
16 dB  
PROTECTION  
/DIAGNOSTIC  
4
15  
18  
22  
23  
OUT2+  
OUT2−  
26 dB/  
16 dB  
PROTECTION  
/DIAGNOSTIC  
V
P
9, 11, 14,  
17, 19  
n.c.  
8
1OHM  
TDA1566J  
27  
TAB  
24  
5
12  
16  
PGND2  
SVR  
SGND  
PGND1  
001aad002  
Fig 2. Block diagram (TDA1566J)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
3 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
5. Pinning information  
5.1 Pinning  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
TAB  
DIAG  
IN2+  
IN2−  
SVR  
SCL  
V
P2  
3
PROG  
OUT2−  
PGND2  
OUT2+  
OUT1−  
PGND1  
OUT1+  
1OHM  
4
5
6
SDA  
EN  
TDA1566TH  
7
8
ADS2  
ADS1  
IN1+  
IN1−  
SGND  
9
10  
11  
12  
V
P1  
CLIP  
001aad006  
Fig 3. Pin configuration for TDA1566TH (top view)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
4 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
1
EN  
ADS1  
IN1+  
2
3
4
IN1−  
5
SGND  
DIAG  
6
7
V
P1  
8
1OHM  
n.c.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
OUT1+  
n.c.  
PGND1  
OUT1−  
n.c.  
TDA1566J  
OUT2+  
PGND2  
n.c.  
OUT2−  
n.c.  
PROG  
V
P2  
IN2+  
IN2−  
SVR  
SCL  
SDA  
TAB  
001aad007  
Fig 4. Pin configuration for non mounting base TDA1566J (front)  
5.2 Pin description  
Table 2.  
Pin description TDA1566TH  
Symbol  
DIAG  
IN2+  
IN2−  
SVR  
Pin  
1
Description  
diagnostic output  
2
positive input channel 2  
negative input channel 2  
supply voltage ripple decoupling  
I2C-bus clock input  
3
4
SCL  
5
SDA  
6
I2C-bus data input/output  
EN  
7
enable input  
ADS2  
ADS1  
IN1+  
IN1−  
SGND  
8
I2C-bus address select bit 2  
I2C-bus address select bit 1  
positive input channel 1  
negative input channel 1  
signal ground  
9
10  
11  
12  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
5 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 2.  
Pin description TDA1566TH …continued  
Symbol  
CLIP  
Pin  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Description  
clip detect and temperature pre-warning output  
supply voltage channel 1  
1 select pin  
VP1  
1OHM  
OUT1+  
PGND1  
OUT1−  
OUT2+  
PGND2  
OUT2−  
PROG  
VP2  
positive output channel 1  
power ground channel 1  
negative output channel 1  
positive output channel 2  
power ground channel 2  
negative output channel 2  
program input/output  
supply voltage channel 2  
connect to PGND  
TAB  
Table 3.  
Symbol  
EN  
Pin description TDA1566J  
Pin  
1
Description  
enable input  
ADS1  
IN1+  
2
I2C-bus address select bit 1  
positive input channel 1  
negative input channel 1  
signal ground  
3
IN1−  
4
SGND  
DIAG  
VP1  
5
6
diagnostic output  
7
supply voltage channel 1  
1 select pin  
1OHM  
n.c.  
8
9
not connected  
OUT1+  
n.c.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
positive output channel 1  
not connected  
PGND1  
OUT1−  
n.c.  
power ground channel 1  
negative output channel 1  
not connected  
OUT2+  
PGND2  
n.c.  
positive output channel 2  
power ground channel 2  
not connected  
OUT2−  
n.c.  
negative output channel 2  
not connected  
PROG  
VP2  
program input/output  
supply voltage channel 2  
positive input channel 2  
negative input channel 2  
supply voltage ripple decoupling  
IN2+  
IN2−  
SVR  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
6 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 3.  
Pin description TDA1566J …continued  
Symbol  
SCL  
Pin  
25  
26  
27  
Description  
I2C-bus clock input  
I2C-bus data input/output  
connect to PGND  
SDA  
TAB  
6. Functional description  
6.1 General  
Naming conventions used in this document:  
Reference to bits in instruction bytes: IBx[Dy] refers to bit Dy of instruction byte x  
Reference to bits in data bytes: DBx[Dy] refers to bit Dy of data byte x  
6.1.1 Mode selection  
The ADS1 pin selects the I2C-bus or non-I2C-bus mode operation as listed in Table 4. See  
Section 6.1.6 and Section 6.4.3 for the ADS1 pin functionality.  
Table 4.  
Pin  
Mode selection with the ADS1 pin  
Non-I2C-bus mode  
GND  
I2C-bus mode  
ADS1  
open or via 33 kto GND  
Table 5 lists the control for the I2C-bus mode operation. In I2C-bus mode the EN pin  
operates at CMOS compatible LOW and HIGH logic levels. With the EN pin LOW the  
TDA1566 is switched off and the quiescent current is at its lowest value. With the enable  
pin HIGH the operation mode of the TDA1566 is selected with IB1[D0] and IB1[D1]. The  
I2C-bus instruction and data bytes are described in Section 6.4.2 and Section 6.4.3.  
Table 5.  
EN pin  
I2C-bus mode operation  
IB1[D0]  
IB2[D0]  
Operation mode  
operating  
mute  
HIGH (> 2.6 V)  
1
0
1
1
0
don’t care  
don’t care  
standby  
off  
LOW (< 1.0 V)  
don’t care  
In non-I2C-bus mode the TDA1566 has 3 operation modes: off/mute/operation. The  
operation mode is selected with the EN pin. Figure 5 displays the required voltage levels  
at the EN pin in I2C-bus and non-I2C-bus mode. For the voltage levels see Section 9  
“Characteristics”.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
7 of 46  
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
2
I C-bus mode  
off  
operation mode defined by IB1[D0] and IB2[D0]  
0 V  
1.0 V  
2.6 V  
V
P
2
non-I C-bus mode  
off  
mute  
operating  
0 V  
1.0 V  
2.6 V  
4.5 V  
6.5 V  
V
P
001aad008  
Fig 5. Enable pin mode switching in I2C-bus and non-I2C-bus mode  
6.1.2 Gain selection  
The TDA1566 features a 16 dB and a 26 dB gain setting. The 16 dB setting is referred to  
as line driver mode, the 26 dB setting is referred to as amplifier mode. Table 6 shows how  
the gain is selected.  
Table 6.  
Gain select in I2C-bus and non-I2C-bus mode  
Gain select  
I2C-bus  
16 dB  
26 dB  
IB3[D6] = 1  
IB3[D5] = 1  
IB3[D6] = 0[1]  
IB3[D5] = 0[2]  
PROG open[3]  
Non-I2C-bus  
PROG connected with 1.5 kΩ  
to GND  
[1] Channel 1.  
[2] Channel 2.  
[3] Both channels.  
6.1.2.1 I2C-bus mode  
The gain is selected with IB3[D6] for channel 1 and IB3[D5] for channel 2. If the gain  
select is performed when the amplifier is muted, the gain select will be pop free. See  
Section 6.4.2 for the definition of the instruction bytes.  
If DC load detection is used, IB1[D1] = 1, auto gain select is activated. Detection of an  
open load (see Section 6.2.1) will result in a line driver mode setting. If the load detection  
data is invalid, IB3[D5] and IB3[D6] will define the gain setting.  
6.1.2.2 Non-I2C-bus mode  
The gain for channel 1 and channel 2 is selected with the PROG pin. Leaving the pin  
unconnected selects 26 dB gain and connecting a resistor of 1500 between the PROG  
pin and GND selects 16 dB gain.  
When the amplifier is used in line driver mode loads of 2 and 4 can be driven. With a  
load larger than 25 a Zobel network of 33 nF in series with 22 should be connected  
between the amplifier output terminals. The Zobel network should be placed close to the  
output pins. To prevent instability in 1 mode the amplifier must not be used in line driver  
mode with a load larger than 25 .  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
8 of 46  
 
 
 
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
6.1.3 Balanced and unbalanced input sources  
The TDA1566 accepts balanced as well as unbalanced input signals. Table 7 and Table 8  
show the required hard or software setting and Figure 6 shows the input source  
connection. Note that the unbalanced input source should be connected to the positive  
BTL channel input. Note that the J version accepts in non-I2C-bus mode only a balanced  
input source.  
Table 7.  
Balanced and unbalanced input source setting TDA1566TH  
Source  
Balanced input source  
IB3[D1] = 0  
Unbalanced input source  
I2C-bus mode  
Non-I2C-bus mode  
IB3[D1] = 1  
ADS2 pin connected to GND  
ADS2 pin unconnected  
Table 8.  
Balanced and unbalanced input source setting TDA1566J  
Source  
Balanced input source  
IB3[D1] = 0  
Unbalanced input source  
I2C-bus mode  
Non-I2C-bus mode  
IB3[D1] = 1  
default  
not selectable  
001aad009  
Fig 6. Balanced (left) and unbalanced (right) input source  
6.1.4 Single channel 1 operation  
The input and output pins for single channel 1 operation are listed in Table 9. The 1 Ω  
operation requires that on the PCB the output pins are shorted as indicated in Table 9. In  
the 1 operation the input signal is taken from channel 1.  
To prevent instability in 1 operation the amplifier must not be used in line driver mode  
with a load larger than 25 .  
Table 9.  
Symbol  
Pinning for the single channel 1 mode; TDA1566TH and TDA1566J  
Pin  
Pin  
Description single channel  
operation  
Description dual channel  
operation  
(TDA1566TH)  
(TDA1566J)  
IN2+  
2
3
22  
23  
disabled: connect IN2+ with 470 nF  
to SGND  
positive input channel 2  
IN2−  
disabled: connect IN2+ with 470 nF  
to SGND  
negative input channel 2  
IN1+  
10  
11  
15  
16  
18  
19  
21  
3
positive input channel 1  
positive input channel 1  
IN1−  
4
negative input channel 1  
1 select pin connected to VP  
positive output channel 1  
negative output channel 1  
shorted on board to OUT1−  
shorted on board to OUT1+  
negative input channel 1  
1 select pin connected to GND  
positive output channel 1  
negative output channel 1  
positive output channel 2  
negative output channel 2  
1OHM  
OUT1+  
OUT1−  
OUT2+  
OUT2−  
8
10  
13  
15  
18  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
9 of 46  
 
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
6.1.5 Mute speed setting  
In I2C-bus mode the amplifier can be muted slow (20 ms) or fast (0.1 ms). The mute speed  
is selected with IB2[D2].  
See Section 6.4.2 for the definition of the instruction bytes. Table 10 lists the operation  
mode transitions where slow and fast mute are applied. The operation modes are  
described in Section 6.1.1, Table 5.  
Table 10. Mute speed setting  
Mode transition  
Mute to operating  
Operating to mute  
I2C-bus mode  
slow mute  
Non-I2C-bus mode  
slow mute  
IB2[D2] = 0: slow mute  
IB2[D2] = 1: fast mute  
slow mute  
slow mute  
Operating to standby  
Operating to off  
n.a.  
fast mute  
fast mute  
6.1.6 Pins with double functions  
Table 11. Pins with double functions  
Pin  
I2C-bus mode  
Non-I2C-bus mode  
PROG  
load detection reference  
current programming, see  
Section 6.2.1 and 6.2.2  
gain select, see Section 6.1.2  
ADS1  
I2C-bus address select bit 1,  
see Section 6.4.1  
non-I2C-bus mode select, see  
Section 6.1.1  
ADS2[1]  
I2C-bus address select bit 2,  
see Section 6.4.1  
balanced/unbalanced input,  
see Section 3  
EN  
chip enable, see Section 6.1.1 mode select, see Section 6.1.1  
[1] TH version only.  
6.2 Load identification (I2C-bus mode only)  
6.2.1 DC load detection  
The default setting IB1[D1] = 0 disables DC load detection. When the DC load detection is  
enabled with IB1[D1] = 1, an offset is slowly applied at the output of the amplifiers at the  
beginning of the start-up cycle. The DC load is measured and compared with Rtrip1 and  
Rtrip2 to distinguish between an amplifier load, line driver load or open load. Rtrip1 and  
Rtrip2 are set with resistor RPROG (1 %) connected between the PROG pin and GND.  
amplifier load  
25  
line driver load  
100 500 Ω  
open load  
5 kΩ  
0 Ω  
R
trip1  
R
trip2  
001aad010  
Fig 7. DC load detection limits (RPROG = 1500 /1 %)  
The relation between RPROG, Rtrip1 and Rtrip2 is approximated by (valid for RPROG should  
be between 1.2 kand 4 k):  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
10 of 46  
 
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Rtrip1 = 0.1 × (RPROG 720) Ω  
Rtrip2 = 1.05 × (RPROG 450) Ω  
Rtrip1 and Rtrip2 levels presented refer to the advised value of 1500 . Note that a shorted  
load will be interpreted as an amplifier load.  
The result of the DC load detection is stored in DB1[D4] and DB1[D5] for channel 1 and in  
DB2[D4] and DB2[D5] for channel 2, see Table 12.  
Table 12. Interpretation of DC load detection bits  
Open load bits  
Amplifier load bits  
DC load valid bit  
Description  
DB1[D4] and DB2[D4] DB1[D5] and DB2[D5] DB3[D3]  
0
0
1
1
1
0
amplifier load  
line driver load  
open load  
0
1
1
don’t care  
don’t care  
Don’t care  
invalid DC load  
detection result  
Note that the DC load bits are only valid if DB3[D3] = 1. The DC load detection valid bit is  
reset, DB3[D3] = 0, when the DC load detection is started with a not completely  
discharged SVR capacitor (VSVR > 0.3 V) or when the DC load detection is interrupted by  
an engine start (VP < 7.5 V typical, see Section 9).  
6.2.2 AC load detection  
The AC load detection is used to detect if AC coupled speakers like tweeters are  
connected correctly during assembly. The detection starts when IB1[D2] changes from  
LOW to HIGH. A sine wave of a certain frequency (e.g. 19 kHz) needs to be applied to the  
inputs of the amplifier. The output voltage over the load impedance will cause an output  
current in the amplifier. Output currents larger than 1.15 × Iref will set the AC load  
detection bit and no AC load is detected when the output current is less than 0.85 × Iref,  
see Figure 8. The reference current Iref is set with an external resistor RPROG (1 %)  
connected between the PROG pin and GND. The relation between RPROG and Iref is given  
by:  
Iref = 390 / RPROG [A] (valid for RPROG between 1.2 kand 4 k).  
To set the AC load detection bit the peak output current must pass the 1.15 × Iref threshold  
three times. The three ‘threshold cross’ counter is used to prevent false AC load detection  
caused by switching the input signal on or off. To reset the slope counter, IB1[D2] needs to  
be reset. With RPROG = 1500 the current thresholds are set to 200 mA and 320 mA.  
0.78 × I  
1.22 × I  
ref  
ref  
no AC load detected  
AC load detected  
200 mA  
(peak)  
320 mA  
(peak)  
001aad011  
Fig 8. AC load detection limits  
The levels presented refer to the advised value of 1500 .  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
11 of 46  
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
For instance at an output voltage of 4 V peak the total impedance must be less than 10 Ω  
to detect the AC coupled load or more than 13.4 to guarantee no connected AC load is  
detected. Values between 10 and 13.4 cannot be recognized. The result of the AC  
load detection is shown in DB1[D7] for channel 1 and DB2[D7] for channel 2.  
When IB1[D2] = 1 the AC load detection is enabled. The AC load detection can only be  
performed after the amplifier has completed its start-up cycle and will not conflict with the  
DC load detection. The default setting of IB1[D2] = 0 disables AC load detection.  
Note: in the 1 mode Iref is doubled, so Iref = 2 × 390 / RPROG [A].  
6.3 Diagnostic  
6.3.1 Diagnostic table  
The available diagnostic information is shown in Table 13 and Table 14. Refer to Table 17  
and Table 18 for the bitmap of the instruction and data bytes.  
DIAG and CLIP have an open-drain output, are active LOW and must have an external  
pull-up resistor to an external voltage.  
DIAG shows fixed information and via the I2C-bus selectable information. This information  
will be seen on DIAG and CLIP as a logical OR. The temperature pre-warning diagnostic  
and clip information is available on the CLIP.  
In case of a failure, DIAG will remain LOW and the microprocessor can read out the failure  
information via the I2C-bus. The I2C-bus bits are set on a failure and will be reset with the  
I2C-bus read command. Even when the failure is removed the microprocessor will know  
what was wrong by reading the I2C-bus. The consequence of this procedure is that during  
the I2C-bus read old information is read. Most actual information will be gathered with 2  
read commands after each other.  
DIAG will give actual diagnostic information (when selected). When a failure is removed,  
DIAG will be released instantly, independently of the I2C-bus latches.  
Table 13. Available diagnostic data TH version  
Diagnostic  
I2C-bus mode  
Non-I2C-bus mode  
DIAG  
yes  
CLIP  
no  
DIAG  
no  
CLIP  
no  
POR  
Low VP or load  
dump detection  
yes  
no  
yes  
no  
Clip detection  
selectable  
selectable  
yes  
yes  
no  
no  
yes  
yes  
Temperature  
pre-warning  
Short  
selectable  
selectable  
no  
no  
yes  
yes  
no  
no  
Speaker  
protection  
Offset detection  
selectable  
yes  
no  
no  
yes  
yes  
no  
no  
Maximum  
temperature  
protection  
Load detection  
no  
no  
no  
no  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
12 of 46  
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Note that in the J version no CLIP pin is available.  
Table 14. Available diagnostic data J version  
Diagnostic  
I2C-bus mode  
Non-I2C-bus mode  
DIAG  
DIAG  
no  
POR  
yes  
Low VP or load dump detection yes  
yes  
yes  
yes  
yes  
yes  
no  
Clip detection  
selectable  
Temperature pre-warning  
Short  
selectable  
selectable  
selectable  
selectable  
yes  
Speaker protection  
Offset detection  
Maximum temperature  
protection  
yes  
Load detection  
no  
no  
Following diagnostic information is only available via I2C-bus:  
DC and AC load detection results, see Section 6.2  
DB3[D4] is set when the DC settling of the amplifier has almost completed and the  
SVR voltage has risen to a value of VP / 2 or above, see Section 6.5.1  
6.3.2 Diagnostic level settings  
Table 15. Clip and temperature pre-warning level setting  
Setting  
I2C-bus mode  
Non-I2C-bus mode  
Clip detection level  
IB2[D7] = 0 selects 3 %  
IB2[D7] = 1 selects 7 %  
3 %  
Temperature pre-warning level IB3[D4] = 0 selects 145 °C  
IB3[D4] = 1 selects 122 °C  
145 °C  
6.3.3 Temperature pre-warning  
If in I2C-bus mode the average junction temperature reaches a by I2C-bus selectable level,  
the pre-warning will be activated resulting in a LOW CLIP pin.  
In non-I2C mode the thermal pre-warning is set on 145 °C.  
In the TH version the thermal pre-warning is available on the CLIP pin in I2C-bus mode  
and non-I2C mode.  
In the J version the thermal pre-warning is available on the DIAG pin in non-I2C-bus mode.  
In I2C-bus mode the presence of the thermal pre-warning on the DIAG is selected with  
IB1[D4], see Section 6.3.1 and Section 6.4.2.  
If the temperature increases above the pre-warning level, the temperature controlled gain  
reduction will be activated for both channels resulting in a lower output power. If this does  
not reduce the average junction temperature, both channels will be switched off at the  
absolute maximum temperature Toff, typical 175 °C.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
13 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
6.3.4 Speaker protection  
To prevent damage of the speaker when one side of the speaker is connected to ground,  
see Figure 9, a ‘missing current protection’ is implemented.  
I
I
O2  
O1  
001aad012  
Fig 9. Speaker protection condition  
When in one BTL channel the absolute value of the current through the output terminals  
differ, so |IO1| ≠ |IO2|, a fault condition is assumed, and the BTL channel will be switched off.  
The ‘speaker protection active’ diagnosis options for I2C-bus and non-I2C-bus mode are  
listed in Table 13.  
6.3.5 Offset detection  
The offset detection can be performed with no input signal (for instance when the DSP is  
in mute after a start-up) or with input signal.  
In I2C-bus mode the offset bits DB1[D2] and DB2[D2] are set by executing a read  
command. The offset bits will be reset when the BTL output voltage  
Vo = |VOUT1+ VOUT1| enters the offset threshold window of 1.5 V. The offset bits are read  
with a 2nd read command.  
In non-I2C-bus mode (or in I2C-bus mode with offset diagnostic selected on DIAG) DIAG  
will be pulled LOW if the BTL output voltage is more than 1.5 V.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
14 of 46  
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
V
= V  
V  
V
= V  
V  
OUT+ OUT  
o
OUT+  
OUT−  
o
offset  
threshold  
offset  
threshold  
time  
time  
DB1[D2] read  
DIAG  
DB1[D2] =  
1
0
0 => 1  
time  
V
= V  
V  
V
= V  
V  
OUT+ OUT−  
o
OUT+  
OUT−  
o
offset  
threshold  
offset  
threshold  
time  
time  
DB1[D2] read  
DB1[D2] =  
DIAG  
1
1
1
time  
001aad013  
2
2
I C-bus mode only  
TH version only: Non-I C-bus mode  
2
TH/J version:  
I C-bus mode with offset  
fault selected on DIAG  
Fig 10. Offset detection in I2C-bus mode and in non-I2C-bus mode  
6.4 I2C-bus operation  
6.4.1 I2C-bus address with hardware address select  
Table 16. I2C-bus address table TH version  
ADS1  
ADS2  
open  
GND  
A6  
1
A5  
1
A4  
0
A3  
1
A2  
0
A1  
0
A0  
0
R/W[1]  
1/0  
open  
1
1
0
1
0
0
1
1/0  
33 kto GND open  
1
1
0
1
0
1
0
1/0  
GND  
1
1
0
1
0
1
1
1/0  
[1] 0 = write to TDA1566TH; 1 = read from TDA1566TH.  
Table 17. I2C-bus address table J version  
ADS1  
A6  
1
A5  
1
A4  
0
A3  
1
A2  
0
A1  
A0  
R/W[1]  
1/0  
open  
0
1
1
1
33 kto GND  
1
1
0
1
0
1/0  
[1] 0 = write to TDA1566J; 1 = read from TDA1566J.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
15 of 46  
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
6.4.2 Instruction bytes  
If R/W bit = 0, the TDA1566 expects 3 instruction bytes; IB1, IB2 and IB3. After a  
power-on reset, all instruction bits are set to zero. In 1 mode the instruction bits of  
channel 1 are used. The instruction bits labelled ‘reserved for test’ should be set to zero.  
Table 18. Instruction bytes  
Bit  
Instruction byte IB1  
Instruction byte IB2  
Instruction byte IB3  
D7  
0
1
0
1
0
1
0
1
slow start enable  
0
clip detect level on  
3 %  
reserved for test  
slow start disable  
1
clip detect level on  
7 %  
D6  
D5  
D4  
channel 1 no clip  
detect on DIAG  
reserved for test  
0
1
0
1
0
1
channel 1 26 dB gain  
channel 1 clip detect  
on DIAG  
channel 1 16 dB gain  
channel 2 26 dB gain  
channel 2 16 dB gain  
channel 2 no clip  
detect on DIAG  
reserved for test  
channel 2 clip detect  
on DIAG  
no temperature pre-  
warning on DIAG  
0
1
speaker protection or  
short on DIAG  
temperature pre-  
warning on 145 °C  
temperature pre-  
warning on DIAG  
no speaker protection  
or short on DIAG  
temperature pre-  
warning on 122 °C  
D3  
D2  
reserved for test  
reserved for test  
0
1
0
channel 1 enabled  
channel 1 disabled  
channel 2 enabled  
0
AC load detection  
0
slow mute (20 ms)  
disabled; detection  
slope counter reset  
1
0
1
0
1
AC load detection  
enabled  
1
0
1
0
1
fast mute (0.1 ms)  
offset fault on DIAG  
no set fault on DIAG  
1
0
1
channel 2 disabled  
balanced input  
D1  
D0  
DC load detection  
disabled  
DC load detection  
enabled  
unbalanced input  
TDA1566 in standby  
channel 1 and  
channel 2 operating  
reserved for test  
TDA1566 in mute or  
operating (see  
IB2[D0])  
channel 1 and  
channel 2 muted  
6.4.3 Data bytes  
If R/W = 1, the TDA1566 will send 3 data bytes to the microprocessor: DB1, DB2, and  
DB3. All short diagnostic and offset detect bits are latched. All bits are reset after a read  
operation except DB1[D7], DB2[D7], DB1[D4], DB2[D4], DB1[D5] and DB2[D5]. DB1[D2]  
and DB2[D2] are set after a read operation, see Section 6.3.5. DB1[D7] and DB2[D7] are  
reset when IB1[D2] is LOW. In 1 mode the diagnostic information will be shown in DB1.  
The content of the bits ‘reserved for test’ should be ignored.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
16 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 19. Data bytes  
Bit  
Data byte DB1 channel 1  
Data byte DB2 channel 2  
Data byte DB3 both  
channels  
D7  
0
1
no AC load detected  
AC load detected  
0
1
no AC load detected  
AC load detected  
0
TDA1566 in mute or  
operating  
(IB1[D0] = 1)  
1
power-on reset has  
occurred or TDA1566  
in standby  
(IB1[D0] = 0)  
D6  
D5  
0
1
no speaker fault  
speaker fault  
0
1
no speaker fault  
speaker fault  
0
1
below maximum  
temperature  
maximum  
temperature  
protection activated  
0
1
amplifier load (D4 = 0) 0  
not valid (D4 = 1)  
amplifier load (D4 = 0) 0  
not valid (D4 = 1)  
no temperature  
warning  
line driver load  
(D4 = 0)  
1
line driver load  
(D4 = 0)  
1
temperature  
pre-warning active  
open load (D4 = 1)  
open load (D4 = 1)  
D4  
0
1
amplifier load (D5 = 0) 0  
amplifier load (D5 = 0) 0  
SVR below VP / 2  
SVR above VP / 2  
line driver load  
(D5 = 1)  
line driver load  
(D5 = 1)  
not valid (D5 = 0)  
open load (D5 = 1)  
no shorted load  
shorted load  
1
not valid (D5 = 0)  
open load (D5 = 1)  
no shorted load  
shorted load  
1
D3  
D2  
D1  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
invalid DC load data  
valid DC load data  
no output offset  
output offset detected  
no short to VP  
no output offset  
output offset detected  
no short to VP  
reserved for test  
reserved for test  
reserved for test  
short to VP  
short to VP  
no short to ground  
short to ground  
no short to ground  
short to ground  
6.5 Timing waveforms  
6.5.1 Start-up and shutdown  
To prevent switch-on or switch-off pop noise, the capacitor on the SVR pin CSVR is used  
for smooth start-up and shutdown. During start-up and shutdown the output voltage tracks  
the SVR voltage. With IB1[D7] = 0 the time constant made with the SVR capacitor can be  
increased to reduce turn on transients at the load. Consequently the start-up time  
td(mute_off) increases with approximately 420 ms (VP = 14.4 V, CSVR = 22 µF, Tamb = 25 °C).  
Note that in non-I2C-bus mode the IB1[D7] = 0 setting will be used.  
Increasing CSVR results in a longer start-up and shutdown time. Note that a larger SVR  
capacitor value will also result in a longer DC load detection cycle.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
17 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
For optimized pop performance it is recommended to keep the amplifier in mute until the  
SVR voltage has reached its final level.  
When the amplifier is switched off by pulling the EN pin LOW the amplifier is muted (fast  
mute) and the capacitor on the SVR pin will be discharged. With an SVR capacitor of  
22 µF the off current is reached 2 s after the EN pin is switched to zero.  
Start-up and shutdown in I2C-bus mode is shown in Figure 11 and explained in Table 20.  
V
P
DIAG  
DB3[D7]  
DB3[D4]  
5
9
3
7
4
IB1[D0]  
IB2[D0] = 0  
2
6
1
8
EN  
10  
SVR  
t
dcload  
t
d(mute-fgain)  
slow  
mute  
fast  
mute  
t
wake  
t
d(mute_off)  
OUTx  
001aad014  
Fig 11. Start-up and shutdown timing in I2C-bus mode  
Table 20. Start-up and shutdown timing in I2C-bus mode  
Step  
Action  
Result  
1
TDA1566 is enabled with EN TDA1566 from off to standby  
DB3[D7] is set and DIAG is pulled LOW to indicate  
power-on reset  
2
TDA1566 is switched from  
standby to operating with  
IB1[D0] = 1  
DIAG is released  
DB3[D7] is reset  
SVR capacitor is charged, OUTx voltage tracks SVR  
voltage  
gradual increase of gain; when the SVR voltage increases  
above a threshold of 2 V + 2VBE the amplifiers operate at  
full gain  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
18 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 20. Start-up and shutdown timing in I2C-bus mode …continued  
Step  
Action  
Result  
3
SVR voltage has become larger than VP / 2 resulting in  
setting DB3[D4]  
4
TDA1566 is switched from  
operating to standby with  
IB1[D0] = 0  
DIAG is pulled LOW  
SVR is discharged, OUTx voltage tracks SVR voltage  
amplifier is slow muted  
5
6
SVR voltage has dropped below VP / 2 resulting in  
resetting DB3[D4]  
TDA1566 is switched from  
standby to operating with  
IB1[D0] = 1  
see step 2  
7
8
see step 3  
TDA1566 is disabled with  
EN  
DIAG is pulled LOW  
amplifier is fast muted  
SVR is discharged, OUTx voltage tracks SVR voltage  
see step 5  
9
10  
OUTx is at ground potential, DIAG is released, TDA1566 is  
off  
6.5.2 Engine start  
The DC-output voltage of the amplifier follows the voltage on the SVR pin. On the SVR pin  
a capacitor is connected which is used for start-up and shutdown timing as well as for DC  
load detection. If the supply voltage drops during engine start below 8.6 V the SVR  
capacitor will be discharged and the fast mute is activated to prevent audible transients at  
the output.  
If in I2C-bus mode the supply voltage drops below 5.5 V (see VP(POR)) the content of the  
I2C-bus latches cannot be guaranteed and the power-on reset will be activated:  
DB3[D7] = 1. All latches will be reset, the amplifier is switched off and the DIAG pin will be  
pulled LOW to indicate that a power-on reset has occurred. The TDA1566 will not start-up  
but wait for a command to start-up.  
7. Limiting values  
Table 21. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
18  
Unit  
V
VP  
supply voltage  
operating; RL = 4 Ω  
-
-
operating; RL = 2 or  
1 Ω  
16  
V
non operating  
1  
+50  
50  
V
V
load dump protection;  
during 50 ms;  
-
tr 2.5 ms  
VP(r)  
IOSM  
reverse supply voltage  
maximum 10 minutes  
-
-
2  
V
A
non-repetitive peak output current  
13  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
19 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 21. Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
IORM  
Parameter  
Conditions  
Min  
Max  
8
Unit  
A
repetitive peak output current  
peak back gate current  
-
-
IBGM  
loss off GND or open  
VP application failure;  
supply decoupling  
capacitor of maximum  
3 × 2200 µF/16 V and  
a series resistance of  
70 mΩ  
50  
A
[1]  
[1]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
V1OHM  
VEN  
voltage on pin 1OHM  
voltage on pin EN  
operating,  
non operating  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24  
24  
13  
13  
13  
13  
13  
13  
13  
13  
6.5  
6.5  
6.5  
6.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
operating,  
non operating  
VIN1-  
voltage on pin IN1−  
voltage on pin IN1+  
voltage on pin IN2−  
voltage on pin IN2+  
voltage on pin DIAG  
voltage on pin CLIP  
voltage on pin PROG  
voltage on pin SVR  
voltage on pin SCL  
voltage on pin SDA  
voltage on pin ADS1  
voltage on pin ADS2  
operating,  
non operating  
VIN1+  
VIN2-  
operating,  
non operating  
operating,  
non operating  
VIN2+  
VDIAG  
VCLIP  
VPROG  
VSVR  
VSCL  
VSDA  
VADS1  
VADS2  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
operating,  
non operating  
Tj  
junction temperature  
storage temperature  
ambient temperature  
protection voltage  
-
150  
+150  
+85  
VP  
°C  
°C  
°C  
V
Tstg  
Tamb  
V(prot)  
55  
40  
-
AC and DC short-circuit  
voltage of output pins  
and across the load  
Ptot  
total power dissipation  
Tcase = 70 °C  
-
80  
W
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
20 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 21. Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vesd  
electrostatic discharge voltage  
HBM  
C = 100 pF;  
-
2000  
V
Rs = 1500 Ω  
MM  
C = 200 pF;  
Rs = 10 ;  
L = 0.75 µH  
-
200  
V
[1] The voltage on this pin is clamped by an ESD protection. If this pin is connected to VP a series resistance of 10 kshould be added.  
[2] The voltage on this pin is clamped by an ESD protection.  
8. Thermal characteristics  
Table 22. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-c)  
thermal resistance from junction  
to case  
TDA1566TH  
TDA1566J  
1.0  
1.0  
K/W  
K/W  
Rth(j-a)  
thermal resistance from junction  
to ambient  
TDA1566TH  
TDA1566J  
in free air  
in free air  
35  
35  
K/W  
K/W  
9. Characteristics  
Table 23. Characteristics  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage behavior  
VP(oper)  
operating supply  
voltage  
RL = 4 Ω  
VP(low)(mute) 14.4  
VP(low)(mute) 14.4  
18  
V
[1]  
RL = 2 or 1 Ω  
no load  
I2C-bus mode only  
16  
V
Iq  
quiescent current  
standby current  
off-state current  
output voltage  
-
180  
10  
220  
15  
mA  
mA  
µA  
V
Istb  
-
Ioff  
VEN 0.4 V; Tj < 85 °C  
-
2
10  
VO  
6.7  
6.5  
7.0  
4.1  
7.2  
7.2  
7.6  
5.0  
7.6  
7.7  
8.2  
5.8  
VP(low)(mute)  
low supply voltage  
mute  
falling supply voltage  
rising supply voltage  
V
V
VP(POR)  
power-on reset supply  
voltage  
V
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
21 of 46  
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
50  
25  
25  
Typ  
0
Max  
+50  
+25  
+25  
Unit  
mV  
mV  
mV  
VO(offset)  
output offset voltage  
amplifier mode; on  
line driver mode; on  
0
amplifier and line driver mode;  
mute  
0
Mode select pin EN (see Figure 5)  
VEN voltage on pin EN  
off condition; I2C-bus and  
non-I2C-bus mode  
-
-
1.0  
V
standby mode; I2C-bus mode  
mute condition; non-I2C-bus  
mode  
2.6  
2.6  
-
-
VP  
V
V
4.5  
[2]  
[3]  
operating condition;  
non-I2C-bus mode  
6.5  
-
-
VP  
70  
V
IEN  
current on pin EN  
VEN = 8.5 V  
10  
µA  
Start-up, shutdown and mute timing (see Figure 11)  
twake  
wake-up time  
time after wake-up via EN pin  
before first I2C-bus  
-
300  
500  
µs  
transmission is recognized  
td(mute_off)  
mute off delay time  
I2C-bus mode with slow start  
enabled and non-I2C-bus  
mode; DC load detection  
disabled  
[4]  
[4]  
C
SVR = 22 µF  
-
-
380  
170  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection enabled; slow start  
enabled  
[4]  
[4]  
C
SVR = 22 µF  
-
-
510  
250  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection disabled; slow start  
disabled  
[4]  
[4]  
C
SVR = 22 µF  
-
-
230  
110  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection enabled; slow start  
disabled  
[4]  
[4]  
C
SVR = 22 µF  
-
-
370  
180  
-
-
ms  
ms  
CSVR = 10 µF  
tdet(DCload)  
DC load detection  
time  
I2C-bus mode only; DC load  
detection enabled  
[4]  
[4]  
[5]  
[5]  
CSVR = 22 µF  
CSVR = 10 µF  
-
-
-
-
160  
70  
-
-
-
-
ms  
ms  
ms  
ms  
td(mute-fgain)  
mute to full gain delay CSVR = 22 µF  
90  
time  
CSVR = 10 µF  
40  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
22 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
td(mute-on)  
mute to on delay time I2C-bus mode:  
IB2[D0] = 1 to 0  
-
20  
40  
ms  
non-I2C-bus mode: VEN from  
3.3 V to 8 V  
slow mute delay time I2C-bus mode:  
-
-
20  
20  
40  
40  
ms  
ms  
td(slow_mute)  
IB2[D0] = 0 to 1; IB2[D2] = 0  
non-I2C-bus mode: VEN from  
8 V to 3.3 V  
on to mute in I2C-bus mode;  
IB2[D2] = 1; IB2[D0] = 0 to 1  
-
-
20  
40  
1
ms  
ms  
td(fast_mute)  
fast mute delay time  
0.1  
on to standby in I2C-bus mode;  
IB2[D0] = 0; IB1[D0] = 1 to 0  
on to off in I2C-bus and  
non-I2C-bus mode: VEN from  
8 V to 0.5 V  
-
-
20  
40  
1
ms  
ms  
0.1  
t(on-SVR)  
time from amplifier  
switch-on to SVR  
above VP / 2  
via I2C-bus (IB1[D0]) to  
DB3[D4] = 1 (SVR above  
VP / 2); I2C-bus mode with slow  
start enabled; DC load  
detection disabled  
C
SVR = 22 µF  
-
-
1000  
440  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection enabled; slow start  
enabled.  
C
SVR = 22 µF  
-
-
1100  
530  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection disabled; slow start  
disabled  
C
SVR = 22 µF  
-
-
810  
370  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus mode only; DC load  
detection enabled; slow start  
disabled  
C
SVR = 22 µF  
-
-
940  
450  
-
-
ms  
ms  
CSVR = 10 µF  
I2C-bus interface and 1 selection[6]  
VIL(SCL)  
VIL(SDA)  
VIH(SCL)  
LOW-level input  
voltage on pin SCL  
-
-
-
-
1.5  
1.5  
5.5  
V
V
V
LOW-level input  
voltage on pin SDA  
-
HIGH-level input  
2.3  
voltage on pin SCL  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
23 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH(SDA)  
HIGH-level input  
2.3  
-
5.5  
V
voltage on pin SDA  
VOL(SDA)  
LOW-level output  
Iload = 5 mA  
-
-
0.4  
V
voltage on pin SDA  
fclk  
clock frequency  
-
400  
-
kHz  
V
[7]  
V1OHM  
voltage on pin 1OHM mono channel mode  
dual channel mode  
2.5  
-
VP  
1.5  
200  
5
0
-
-
-
-
-
-
-
-
-
V
I1OHM  
current on pin 1OHM V1OHM = 1.5 V  
V1OHM = 5.5 V  
130  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-
ISCL  
current on pin SCL  
current on pin SDA  
current on pin ADS1  
VSCL = 1.5 V  
-
5
VSCL = 5.5 V  
-
5
ISDA  
VSDA = 1.5 V  
-
5
VSDA = 5.5 V  
-
5
IADS1  
ADS1 pin connected to GND  
300  
70  
400  
100  
ADS1 pin connected via 33 kΩ  
to GND  
IADS2  
current on pin ADS2  
ADS2 pin connected to GND  
-
-
300  
70  
400  
100  
µA  
µA  
ADS2 pin connected via 33 kΩ  
to GND  
Diagnostic  
VOL(DIAG)  
LOW-level output  
voltage on pin DIAG  
fault condition; IDIAG = 1 mA  
-
-
-
-
0.3  
0.3  
V
V
VOL(CLIP)  
ILIH(CLIP)  
ILIH(DIAG)  
LOW-level output  
voltage on pin CLIP  
TH version only; clip or  
temperature pre-warning  
active; ICLIP = 1 mA  
HIGH-level input  
leakage current on pin pre-warning not activated  
CLIP  
diagnostic, clip or temperature  
-
-
-
-
2
2
µA  
µA  
HIGH-level input  
diagnostic, clip or temperature  
leakage current on pin pre-warning not activated  
DIAG  
Vth(offset)  
threshold voltage for  
offset detection  
1.0  
1.5  
7
2.0  
V
[8]  
[8]  
THDCLIP7  
THDCLIP3  
Tj(AV)(warn1)  
7 % clip detection  
level (THD)  
I2C-bus mode: IB2[D7] = 1  
-
-
-
-
-
-
%
%
°C  
3 % clip detection  
level (THD)  
I2C-bus mode: IB2[D7] = 0 and  
non-I2C-bus mode  
I2C-bus mode: IB3[D4] = 0 and  
non-I2C-bus mode  
3
average junction  
temperature for  
pre-warning 1  
145  
Tj(AV)(warn2)  
average junction  
temperature for  
pre-warning 2  
I2C-bus mode: IB3[D4] = 1  
-
122  
-
°C  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
24 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tj(AV)(G(0.5dB)) average junction  
temperature for 0.5 dB  
gain reduction  
Vi = 0.05 V  
-
155  
-
°C  
Tj(warn1-mute) difference in junction  
temperature between  
pre-warning 1 and  
-
-
10  
20  
-
-
°C  
°C  
mute  
Tj(G(0.5-40dB)) difference in junction  
temperature between  
0.5 dB and 40 dB gain  
reduction  
Tj(AV)(off)  
average junction  
temperature for off  
-
-
175  
-
185  
25  
°C  
Zth(load)  
load detection  
threshold impedance I2C-bus mode only:  
amplifier DC load detection;  
R
PROG = 1500 /1 %  
line driver DC load detection;  
I2C-bus mode only:  
120  
5
-
-
-
-
500  
R
PROG = 1500 /1 %  
[9]  
open load DC load detection;  
I2C-bus mode only:  
-
kΩ  
mA  
mA  
R
PROG = 1500 /1 %  
IoM  
peak output current  
AC load bit is set; I2C-bus  
mode only:  
320  
-
-
R
PROG = 1500 /1 %; Tj > 0 °C  
AC load bit is not set; I2C-bus  
mode only:  
200  
R
PROG = 1500 /1 %; Tj > 0 °C  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
25 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
Amplifier  
Po  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
output power  
RL = 4 ; VP = 14.4 V;  
THD = 0.5 %  
-
23  
24  
29  
45  
-
-
-
-
W
W
W
W
RL = 4 ; VP = 14.4 V;  
THD = 3 %  
-
RL = 4 ; VP = 14.4 V;  
THD = 10 %  
24  
40  
RL = 4 ; VP = 14.4 V  
maximum power; Vi = 2 V  
(RMS) square wave  
RL = 4 ; VP = 15.2 V  
maximum power; Vi = 2 V  
(RMS) square wave  
45  
50  
-
W
RL = 2 ; VP = 14.4 V;  
THD = 0.5 %  
-
38  
41  
50  
75  
-
-
-
-
W
W
W
W
RL = 2 ; VP = 14.4 V;  
THD = 3 %  
-
RL = 2 ; VP = 14.4 V;  
THD = 10 %  
39  
67  
RL = 2 ; VP = 14.4 V  
maximum power; Vi = 2 V  
(RMS) square wave  
RL = 1 ; VP = 14.4 V;  
THD = 0.5 %  
-
74  
-
-
-
-
W
W
W
W
RL = 1 ; VP = 14.4 V;  
THD = 3 %  
-
81  
RL = 1 ; VP = 14.4 V;  
THD = 10 %  
78  
130  
92  
RL = 1 ; VP = 14.4 V  
maximum power; Vi = 2 V  
(RMS) square wave  
150  
THD  
total harmonic  
distortion  
Po = 1 W to 12 W; f = 1 kHz;  
RL = 4 Ω  
-
-
-
-
0.005  
0.01  
0.02  
0.1  
0.1  
0.2  
%
%
%
%
Po = 1 W to 12 W; f = 1 kHz;  
RL = 2 Ω  
Po = 1 W to 12 W; f = 1 kHz;  
RL = 1 Ω  
Po = 1 W to 12 W; f = 10 kHz;  
measured with 30 kHz filter;  
RL = 4 Ω  
0.3  
0.6  
0.1  
Po = 1 W to 12 W; f = 10 kHz;  
measured with 30 kHz filter;  
RL = 2 Ω  
-
-
0.2  
%
%
line driver mode; Vo =1 V  
(RMS) and 5 V (RMS);  
f = 20 Hz to 20 kHz;  
RL = 400 Ω  
0.02  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
26 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 23. Characteristics …continued  
Refer to test circuit (see Figure 22); VP = 14.4 V; RL = 4 ; 40 °C < Tamb < +85 °C and 40 °C < Tj < +150 °C; unless  
otherwise specified.  
Symbol  
αcs  
Parameter  
Conditions  
Min  
42  
Typ  
55  
Max  
Unit  
dB  
channel separation  
f = 1 kHz to 10 kHz; Rs = 2 kΩ  
-
-
SVRR  
supply voltage  
rejection ratio  
f = 100 Hz to 10 kHz;  
Rs = 2 k; Vripple = 2 V (p-p)  
45  
70  
dB  
CMRR  
common-mode  
rejection ratio  
amplifier mode;  
Vcm = 0.3 V (p-p); f = 1 kHz to  
3 kHz; Rs = 2 kΩ  
60  
70  
-
dB  
Vcm(max)(rms)  
maximum  
common-mode  
voltage (RMS value)  
f = 1 kHz; Vi = 0.5 V (RMS);  
amplifier mode  
-
-
1
V
f = 1 kHz; Vi = 1.6 V (RMS);  
line driver mode  
-
-
0.6  
50  
70  
50  
27  
17  
-
V
Vn(o)(RMS)  
RMS noise output  
voltage  
line driver mode; filter 20 Hz to  
22 kHz; Rs = 2 kΩ  
-
20  
50  
20  
26  
16  
60  
80  
µV  
µV  
µV  
dB  
dB  
kΩ  
amplifier mode; filter 20 Hz to  
22 kHz; Rs = 2 kΩ  
-
mute mode; filter 20 Hz to  
22 kHz; Rs = 2 kΩ  
-
Gv(amp)  
Gv(ld)  
voltage gain amplifier (VOUT1+ VOUT1−) /  
mode (VIN1+ VIN1−  
25  
15  
44  
)
voltage gain line driver (VOUT1+ VOUT1) /  
mode  
(VIN1+ VIN1)  
[10]  
[11]  
Zi(sym)  
symmetrical input  
impedance  
C = 470 nF  
αmute  
mute attenuation  
power bandwidth  
f = 1 kHz; Vi = 1 V (RMS)  
-
-
-
-
dB  
Hz  
Bp  
1 dB; C = 2.2 µF  
20 to  
20000  
[1] Operation above 16 V with a 2 or 1 mode with reactive load can trigger the amplifier protection. The amplifier switches off and will  
restart after 8 ms resulting in an ‘audio hole’.  
[2] If the EN pin is connected with VP a series resistance of 10 kis necessary for load dump robustness.  
[3] If the EN pin is left unconnected the amplifier will be switched off.  
[4] The mute release is initiated when the SVR voltage increases above 3.5 V typical. Mute release is defined as the moment when the  
output signal has reached 10 % of the expected amplitude.  
[5] Mute release is defined as the moment when the output signal has reached 10 % of the expected amplitude (Gv × Vi). Full gain is  
defined as the moment when the output signal has reached 90 % of the expected amplitude (Gv × Vi).  
[6] Standard I2C-bus spec: maximum LOW level = 0.3 × VDD, minimum HIGH level = 0.7 × VDD. To comply with 5 V and 3.3 V logic the  
maximum LOW level is defined with VDD = 5 V and the minimum HIGH level with VDD = 3.3 V.  
[7] If the 1 pin is connected with VP a series resistance of 10 kis necessary for load dump robustness.  
[8] Clip detect is not operational for VP < 10 V.  
[9] If an open load is detected the amplifier is switched in line driver mode.  
[10] Rs is the total differential source resistance. 3 dB cut-off frequency is given as  
1
1
=
= 19 Hz assuming worst case low input resistance and 20 % spread in Ci.  
-----------------------------  
2π × Ri × Ci  
------------------------------------------------------------------  
2π × 22 kΩ × 470 nF × 0.8  
[11] Power bandwidth can be limited by the 3 dB cut-off frequency, see Table note 10.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
27 of 46  
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
9.1 Performance diagrams  
All graphs Tamb = 25 °C.  
001aad019  
001aad020  
2
10  
10  
THD  
(%)  
THD  
(%)  
10  
1
1
1  
10  
1  
10  
(1)  
2  
10  
2  
10  
10  
(1)  
(2)  
(2)  
(3)  
3  
3  
10  
1  
2
2
3
4
5
10  
1
10  
10  
10  
10  
10  
10  
10  
P
(W)  
f (Hz)  
o
RL = 4 ; 80 kHz measurement filter.  
RL = 4 ; 80 kHz measurement filter.  
(1) Po = 1 W.  
(1) f = 10 kHz.  
(2) f = 1 kHz.  
(3) f = 100 Hz.  
(2) Po = 10 W.  
Fig 12. THD as a function of output power  
Fig 13. THD as a function of frequency  
001aad021  
001aad022  
10  
THD  
0
SVRR  
(dB)  
(%)  
operating  
1
20  
40  
1  
10  
10  
10  
10  
2  
3  
4  
60  
80  
100  
1  
2
2
3
4
5
10  
1
10  
10  
10  
10  
10  
10  
10  
V
(V)  
f (Hz)  
o(rms)  
RL = 100 ; 80 kHz measurement filter; f = 1 kHz.  
Rs = 1 k; CSVR = 10 µF.  
Fig 14. THD as a function of output voltage in line  
driver mode  
Fig 15. SVRR as a function of frequency (operating)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
28 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
001aad023  
001aad024  
0
50  
α
(dB)  
cs  
SVRR  
(dB)  
mute  
(1), (2)  
(3)  
20  
60  
40  
60  
70  
80  
(3)  
(1) (2)  
80  
90  
100  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Rs = 1 k; CSVR = 10 µF.  
(1) Rs = 0 .  
(2) Rs = 1 k.  
(3) Rs = 10 k.  
Fig 16. SVRR as a function of frequency (mute)  
Fig 17. Channel separation as a function of frequency  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
29 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
9.2 PCB layout  
S G + S  
C n 5 D  
L d V A  
2
external  
I C supply  
I C/gain in legacy  
2
2
Vp  
supply  
16 dB/I C load  
detection  
top  
GND  
+Vp  
external  
supply  
26 dB  
1.5 kΩ  
1 %  
10 µF  
inputs  
gnd  
in  
TDA3664  
+
+
1
1 µF  
prog  
monitor  
IN2  
+
+
diagnostic  
LED  
470 nF  
470 nF  
2200 µF  
2−  
2+  
1−  
R
Rs  
Zobel  
+
22  
Sgnd  
µF  
470 nF  
470 nF  
SVR  
Zobel  
+
1+  
33 kΩ  
temperature/clip  
LED  
output  
Vp  
R
IN1  
2
legacy/I C  
ADS1 ADS2  
3.6 V  
10 k1.5 kΩ  
GND  
sense  
enable  
Jp  
2
D0  
D2  
D4  
I C  
device  
off  
device  
operating  
device  
mute  
legacy input  
unbalanced  
legacy mode control  
legacy input  
balanced  
D6  
TDA1566TH stereo  
NXP Semiconductors  
SRK ver. 1e  
mode  
select  
address  
select  
001aad688  
Fig 18. PCB layout TDA1566TH, components top  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
30 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
top  
1
24  
13  
12  
001aad696  
Fig 19. PCB layout TDA1566TH, components bottom  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
31 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
2
ADS1  
R2  
SDA SCL  
GND +5VA GND EXT-I C  
1
X2  
S2  
S7  
OUT2+  
J1  
C9  
C6  
C10  
+
+
OUT2−  
1
OUT1+  
VP  
OUT1−  
J8  
J9  
1
1
APPL-BOARD-TDA1566J-DB527  
7322-448-07651  
C11  
IN1+  
IN1+DC  
1
C12  
IN1−  
IN1DC  
X1  
SGND  
C13  
IN2+  
IN2+DC  
C14  
IN2−  
IN2DC  
C7  
C15  
VP  
S4  
S1  
R9  
R1  
S6  
S5  
V1  
J7  
1
GND  
EN  
SVR DIAG/CLIP GND PROG  
1E  
001aad689  
Fig 20. PCB layout TDA1566J, components top  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
32 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
A1  
R6  
C8  
C5  
R8  
R4  
R7  
001aad708  
Fig 21. PCB layout TDA1566J, components bottom  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
33 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
10. Test information  
+5 V  
(4)  
2200  
µF  
220  
nF  
(1)  
10 kΩ  
V
V
P2  
ADS2  
8
ADS1  
9
SDA  
6
SCL  
5
P1  
14  
23  
V
22 PROG  
(2)  
P
10 kΩ  
13 CLIP  
(3)  
EN  
7
STAND-BY  
/MUTE  
SELECT DIAGNOSTIC  
/CLIP DETECT  
2
I C-BUS  
1
DIAG  
0.5R  
470 nF  
C
s
16  
OUT1+  
IN1+ 10  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
R
L
16 dB  
0.5V  
0.5V  
18 OUT1−  
in  
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
IN111  
0.5R  
s
0.5R  
0.5V  
470 nF  
C
s
19  
21  
OUT2+  
IN2+  
2
3
26 dB/  
16 dB  
R
L
OUT2−  
in  
0.5V  
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
V
P
IN2−  
0.5R  
s
V
cm  
TDA1566TH  
4
12  
17  
20  
24  
15  
1OHM  
SVR  
22 µF  
SGND  
PGND1  
PGND2  
TAB  
001aad015  
(1) The 220 nF capacitor should be placed close to the VP and PGND pins of the IC.  
(2) In non-I2C-bus mode the PROG pin should be left unconnected for 26 dB gain selection or connected via a resistor of  
1500 to GND for 16 dB gain selection.  
(3) CLIP is not available in the DBS27P version.  
(4) In non-I2C-bus mode (ADS1 pin connected to GND) and balanced input source (ADS2 pin connected to GND) selected.  
ADS2 is not available in DBS27P version.  
Fig 22. Non-I2C-bus mode (26 dB gain)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
34 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
2200  
µF  
220  
nF  
(1)  
connected to  
microcontroller  
+5 V  
(4)  
V
P
V
V
P2  
ADS2  
8
ADS1  
9
SDA  
6
SCL  
5
P1  
10 kΩ  
14  
23  
22 PROG  
(2)  
R
PROG  
1500 Ω  
(1 %)  
13 CLIP  
(3)  
EN  
7
STAND-BY  
/MUTE  
SELECT DIAGNOSTIC  
/CLIP DETECT  
connected to  
microcontroller  
2
I C-BUS  
1
DIAG  
0.5R  
470 nF  
C
s
16  
OUT1+  
IN1+ 10  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
R
L
16 dB  
0.5V  
0.5V  
18 OUT1−  
in  
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
IN111  
0.5R  
s
0.5R  
0.5V  
470 nF  
C
s
19  
21  
OUT2+  
IN2+  
2
3
26 dB/  
16 dB  
R
L
OUT2−  
in  
0.5V  
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
V
P
IN2−  
0.5R  
s
V
cm  
TDA1566TH  
4
12  
17  
20  
24  
15  
1OHM  
SVR  
22 µF  
SGND  
PGND1  
PGND2  
TAB  
001aad016  
(1) The 220 nF capacitor should be placed close to the VP and PGND pins of the IC.  
(2) RPROG defines the trip levels for the AC and DC load detection.  
(3) CLIP is not available in DBS27P version.  
(4) I2C-bus mode is selected with ADS1 open. ADS2 is not available in DBS27P version.  
Fig 23. I2C-bus mode  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
35 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
+5 V  
(4)  
2200  
µF  
220  
nF  
(1)  
10 kΩ  
V
V
P2  
ADS2  
8
ADS1  
9
SDA  
6
SCL  
5
P1  
14  
23  
V
22 PROG  
(2)  
P
10 kΩ  
13 CLIP  
(3)  
EN  
7
STAND-BY  
/MUTE  
SELECT DIAGNOSTIC  
/CLIP DETECT  
2
I C-BUS  
1
DIAG  
0.5R  
470 nF  
C
s
16  
OUT1+  
IN1+ 10  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
16 dB  
0.5V  
0.5V  
18 OUT1−  
in  
R
L
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
1 Ω  
IN111  
0.5R  
s
470 nF  
C
19  
21  
OUT2+  
IN2+  
2
3
26 dB/  
16 dB  
OUT2−  
PROTECTION  
/DIAGNOSTIC  
470 nF  
C
V
P
IN2−  
V
cm  
TDA1566TH  
4
12  
17  
20  
24  
15  
SVR  
22 µF  
SGND  
PGND1  
PGND2  
TAB  
1OHM  
001aad017  
10 kΩ  
connected to V  
P
(1) The 220 nF capacitor should be placed close to the VP and PGND pins of the IC.  
(2) In non-I2C-bus mode the PROG pin should be left unconnected for 26 dB gain selection or connected via a resistor of  
1500 to GND for 16 dB gain selection.  
(3) CLIP is not available in the DBS27P version.  
(4) In non-I2C-bus mode (ADS1 pin connected to GND) and balanced input source (ADS2 pin connected to GND) selected.  
ADS2 is not available in DBS27P version.  
Fig 24. Non-I2C-bus mode (1 mode and 26 dB gain)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
36 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
2200  
µF  
220  
nF  
(1)  
connected to  
microcontroller  
+5 V  
(4)  
V
P
V
V
P2  
ADS2  
8
ADS1  
9
SDA  
6
SCL  
5
P1  
10 kΩ  
14  
23  
22 PROG  
(2)  
R
PROG  
1500 Ω  
(1 %)  
13 CLIP  
(3)  
EN  
7
STAND-BY  
/MUTE  
SELECT DIAGNOSTIC  
/CLIP DETECT  
connected to  
microcontroller  
2
I C-BUS  
1
DIAG  
0.5R  
470 nF  
C
s
16  
OUT1+  
IN1+ 10  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
16 dB  
0.5V  
0.5V  
18 OUT1−  
in  
R
L
PROTECTION  
/DIAGNOSTIC  
in  
470 nF  
C
1 Ω  
IN111  
0.5R  
s
470 nF  
C
19  
21  
OUT2+  
IN2+  
2
3
26 dB/  
16 dB  
OUT2−  
PROTECTION  
/DIAGNOSTIC  
470 nF  
C
V
P
IN2−  
V
cm  
TDA1566TH  
4
12  
17  
20  
24  
15  
SVR  
22 µF  
SGND  
PGND1  
PGND2  
TAB  
1OHM  
001aad018  
10 kΩ  
connected to V  
P
(1) The 220 nF capacitor should be placed close to the VP and PGND pins of the IC.  
(2) RPROG defines the trip levels for the AC and DC load detection.  
(3) CLIP is not available in the DBS27P version.  
(4) I2C-bus mode is selected with ADS1 open. ADS2 is not available in DBS27P version.  
Fig 25. I2C-bus mode (1 mode)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
37 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
11. Package outline  
HSOP24: plastic, heatsink small outline package; 24 leads; low stand-off height  
SOT566-3  
E
A
D
x
X
c
y
E
H
2
v
M
A
E
D
1
D
2
12  
1
pin 1 index  
Q
A
A
2
(A )  
3
E
1
A
4
θ
L
p
detail X  
24  
13  
w
M
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
max.  
(1)  
(2)  
(2)  
A
A
A
b
c
D
D
D
E
E
1
E
e
H
E
L
p
Q
v
w
x
y
Z
θ
UNIT  
2
3
4
p
1
2
2
8°  
0°  
+0.08 0.53 0.32  
0.04 0.40 0.23  
16.0 13.0 1.1 11.1 6.2  
15.8 12.6 0.9 10.9 5.8  
2.9  
2.5  
14.5 1.1  
13.9 0.8  
1.7  
1.5  
2.7  
2.2  
3.5  
3.2  
mm  
1
3.5  
0.35  
0.25 0.25 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-02-18  
03-07-23  
SOT566-3  
Fig 26. Package outline SOT566-3 (HSOP24)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
38 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
DBS27P: plastic DIL-bent-SIL (special bent) power package; 27 leads (lead length 6.8 mm)  
SOT827-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
A
2
d
B
j
E
A
L
4
L
3
L
L
2
1
27  
e
w
M
Z
1
c
v
M
Q
b
p
e
e
2
m
0
10  
scale  
20 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
L
L
4
m
Q
v
w
x
Z
2
p
h
1
2
h
2
3
4.65 0.60 0.5 29.2 25.8  
4.35 0.45 0.3 28.8 25.4  
15.9  
15.5  
3.4  
3.1  
3.9 1.15 22.9  
3.1 0.85 22.1  
1.8  
1.2  
2.1  
1.8  
8
6.8  
mm  
12  
2
1
4
19  
4
0.6 0.25 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-07-29  
SOT827-1  
- - -  
- - -  
- - -  
Fig 27. Package outline SOT827-1 (DBS27P)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
39 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
12. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
integrated circuits.  
13. Soldering  
13.1 Introduction  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Through-hole mount packages  
13.2.1 Soldering by dipping or by solder wave  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
The total contact time of successive solder waves must not exceed 5 seconds.  
The device may be mounted up to the seating plane, but the temperature of the plastic  
body must not exceed the specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling may be necessary immediately  
after soldering to keep the temperature within the permissible limit.  
13.2.2 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the  
seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is  
less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is  
between 300 °C and 400 °C, contact may be up to 5 seconds.  
13.3 Surface mount packages  
13.3.1 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 28) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
40 of 46  
 
 
 
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 24 and 25  
Table 24. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 25. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 28.  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 28. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
41 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
13.3.2 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.3.3 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.4 Package related soldering information  
Table 26. Suitability of IC packages for wave, reflow and dipping soldering methods  
Mounting  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
Dipping  
Through-hole mount  
CPGA, HCPGA  
suitable  
DBS, DIP, HDIP, RDBS, SDIP, SIL suitable[3]  
suitable  
Through-hole-surface  
mount  
PMFP[4]  
not suitable  
not suitable  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
42 of 46  
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
Table 26. Suitability of IC packages for wave, reflow and dipping soldering methods …continued  
Mounting  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
Dipping  
Surface mount  
BGA, HTSSON..T[5], LBGA,  
LFBGA, SQFP, SSOP..T[5], TFBGA,  
VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, not suitable[6]  
HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN,  
suitable  
HVSON, SMS  
PLCC[7], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[7][8]  
not recommended[9]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[10], WQCCN..L[10]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your NXP  
Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with  
respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of  
the moisture in them (the so called popcorn effect).  
[3] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
[4] Hot bar soldering or manual soldering is suitable for PMFP packages.  
[5] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed  
through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C  
measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.  
[6] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate  
between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the  
heatsink surface.  
[7] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint  
must incorporate solder thieves downstream and at the side corners.  
[8] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for  
packages with a pitch (e) equal to or smaller than 0.65 mm.  
[9] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely  
not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[10] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil.  
However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate  
soldering profile can be provided on request.  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
43 of 46  
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
14. Revision history  
Table 27. Revision history  
Document ID  
TDA1566_2  
Release date  
20070820  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
TDA1566_1  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Table 23 “Characteristics” changed values for CMRR, Po and THD  
TDA1566_1  
20060405  
Product data sheet  
-
-
(9397 750 15043)  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
44 of 46  
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
result in personal injury, death or severe property or environmental damage.  
15.2 Definitions  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
15.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of a NXP Semiconductors product can reasonably be expected to  
I2C-bus — logo is a trademark of NXP B.V.  
16. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TDA1566_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 20 August 2007  
45 of 46  
 
 
 
 
 
 
TDA1566  
NXP Semiconductors  
I2C-bus controlled dual channel/single channel amplifier  
17. Contents  
1
2
3
4
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13.2.2  
13.3  
13.3.1  
13.3.2  
13.3.3  
13.4  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 40  
Surface mount packages . . . . . . . . . . . . . . . . 40  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 40  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 42  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 42  
Package related soldering information. . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 44  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 45  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 45  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6
6.1  
Functional description . . . . . . . . . . . . . . . . . . . 7  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Gain selection. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
I2C-bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Non-I2C-bus mode . . . . . . . . . . . . . . . . . . . . . . 8  
Balanced and unbalanced input sources . . . . . 9  
Single channel 1 W operation. . . . . . . . . . . . . . 9  
Mute speed setting . . . . . . . . . . . . . . . . . . . . . 10  
Pins with double functions . . . . . . . . . . . . . . . 10  
Load identification (I2C-bus mode only) . . . . . 10  
DC load detection . . . . . . . . . . . . . . . . . . . . . . 10  
AC load detection . . . . . . . . . . . . . . . . . . . . . . 11  
Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Diagnostic table . . . . . . . . . . . . . . . . . . . . . . . 12  
Diagnostic level settings . . . . . . . . . . . . . . . . . 13  
Temperature pre-warning . . . . . . . . . . . . . . . . 13  
Speaker protection . . . . . . . . . . . . . . . . . . . . . 14  
Offset detection. . . . . . . . . . . . . . . . . . . . . . . . 14  
I2C-bus operation . . . . . . . . . . . . . . . . . . . . . . 15  
I2C-bus address with hardware address select 15  
Instruction bytes . . . . . . . . . . . . . . . . . . . . . . . 16  
Data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Timing waveforms. . . . . . . . . . . . . . . . . . . . . . 17  
Start-up and shutdown . . . . . . . . . . . . . . . . . . 17  
Engine start . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
15.1  
15.2  
15.3  
15.4  
6.1.1  
6.1.2  
6.1.2.1  
6.1.2.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.2  
6.2.1  
6.2.2  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.4  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 45  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6.4.1  
6.4.2  
6.4.3  
6.5  
6.5.1  
6.5.2  
7
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 19  
Thermal characteristics. . . . . . . . . . . . . . . . . . 21  
9
9.1  
9.2  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Performance diagrams . . . . . . . . . . . . . . . . . . 28  
PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10  
11  
12  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 34  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 38  
Handling information. . . . . . . . . . . . . . . . . . . . 40  
13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Through-hole mount packages. . . . . . . . . . . . 40  
Soldering by dipping or by solder wave . . . . . 40  
13.1  
13.2  
13.2.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 20 August 2007  
Document identifier: TDA1566_2  
 

相关型号:

TDA1572

AM receiver circuit
NXP

TDA1572T

AM receiver
NXP
NXP

TDA1572TD

IC AM, AUDIO SINGLE CHIP RECEIVER, PDSO20, Receiver IC
NXP

TDA1574

Integrated FM tuner for radio receivers
NXP

TDA1574

Integrated FM Tuner for Radio Receivers
GSG

TDA1574N

暂无描述
NXP

TDA1574T

Integrated FM tuner for radio receivers
NXP

TDA1574TD

IC 1-BAND, AUDIO TUNER, PDSO20, Tuner IC
NXP

TDA1574TD-G

暂无描述
NXP

TDA1574TD-T

IC 1-BAND, AUDIO TUNER, PDSO20, Tuner IC
NXP

TDA1575

FM front end circuit for CENELEC EN 55020 applications
NXP