TDA3681ATH [NXP]

Multiple voltage regulator with switch and ignition buffer;
TDA3681ATH
型号: TDA3681ATH
厂家: NXP    NXP
描述:

Multiple voltage regulator with switch and ignition buffer

文件: 总22页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA3681A  
Multiple voltage regulator with  
switch and ignition buffer  
Product specification  
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
FEATURES  
General  
Foldback current limit protection for regulators 1, 2, 3  
and 4  
Delayed second current limit protection for the power  
switch (at short circuit)  
Extremely low noise behaviour and good stability with  
very small output capacitors  
The regulator outputs and the power switch are  
DC short-circuit safe to ground and supply (VP).  
Second supply pin for regulators 3 and 4 to reduce  
power dissipation (e.g. via a DC-to-DC converter)  
Three VP-state controlled regulators (regulators 1, 3  
and 4) and a power switch  
GENERAL DESCRIPTION  
The TDA3681A is a multiple output voltage regulator with  
a power switch and an ignition buffer. It is intended for use  
in car radios with or without a microcontroller.  
The TDA3681A contains the following:  
Regulator 2, reset and ignition buffer operational during  
load dump and thermal shutdown  
Combined control pin for switching regulators 1 and 3  
Separate control pins for switching regulator 4 and the  
power switch  
Four fixed voltage regulators with a foldback current  
protection (regulators 1, 2, 3 and 4). Regulator 2, which  
is intended to supply a microcontroller, also operates  
during load dump and thermal shutdown  
Supply voltage range from 18 V to +50 V  
Low quiescent current in standby mode (when  
regulators 1, 3 and 4 and power switch are switched off  
and ignition input is low)  
Regulators 3 and 4 have a second supply pin that can  
be connected to a lower supply voltage (> 6.5 V) to  
reduce the power dissipation  
Hold output for low VP, load dump and temperature  
protection  
A power switch with protection, operated by a control  
input  
Reset (push-pull output stage) for regulator 2 and hold  
output (open-collector output)  
Reset and hold outputs that can be used to interface  
with the microcontroller; the reset signal can be used to  
call up the microcontroller  
Adjustable reset delay time  
High supply voltage ripple rejection  
Backup capacitor for regulator 2  
One independent ignition buffer (active HIGH).  
Both supply pins can withstand load dump pulses and  
negative supply voltages  
Regulator 2, which is in regulation at a backup voltage  
above 6.5 V  
Protections  
A provision for the use of a reserve supply capacitor that  
will hold enough energy for regulator 2 (5 V continuous)  
to allow a microcontroller to prepare for loss of voltage  
Reverse polarity safe (down to 18 V without high  
reverse current)  
Able to withstand voltages up to 18 V at the outputs  
(supply line may be short-circuited)  
An ignition input Schmitt trigger with push-pull output  
stage.  
ESD protection on all pins  
Thermal protections  
Load dump protection  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA3681ATH  
HSOP20 plastic, heatsink small outline package; 20 leads; low stand-off height  
SOT418-3  
2003 Aug 29  
2
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supplies  
VP1  
supply voltage 1  
operating  
9.5  
14.4  
18  
18  
50  
30  
50  
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
4
14.4  
t 10 minutes  
load dump protection  
supply voltage 2  
operating  
t 50 ms; tr 2.5 ms  
VP2  
6.5  
14.4  
18  
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
18  
V
0
50  
V
t 10 minutes  
30  
V
load dump protection  
t 50 ms; tr 2.5 ms  
50  
V
Iq(tot)  
Tj  
total quiescent supply current standby mode  
junction temperature  
110  
150  
150  
µA  
°C  
Voltage regulators  
Vo(REG1)  
Vo(REG2)  
Vo(REG3)  
Vo(REG4)  
output voltage of regulator 1  
1 mA IREG1 600 mA; VP = 14.4 V  
1 mA IREG2 300 mA; VP = 14.4 V  
8.0  
8.5  
5.0  
5.0  
3.3  
9.0  
V
V
V
V
output voltage of regulator 2  
output voltage of regulator 3  
output voltage of regulator 4  
4.75  
5.25  
5.25  
3.46  
1 mA IREG3 1400 mA; VP = 14.4 V 4.75  
1 mA IREG4 1 A; VP = 14.4 V  
3.14  
Power switch  
Vdrop(SW) drop-out voltage  
ISW = 1 A; VP1 = 13.5 V  
3
0.45  
1.0  
0.65  
1.8  
V
V
A
ISW = 1.8 A; VP1 = 13.5 V  
IM(SW)  
peak current  
2003 Aug 29  
3
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
BLOCK DIAGRAM  
(14 V/  
3 A)  
POWER SWITCH  
(14.4 V)  
14  
16  
V
SW  
P1  
TEMPERATURE  
LOAD DUMP  
PROTECTION  
8
ENSW  
&
(14 V/  
100 mA)  
BACKUP SWITCH  
13  
BU  
BACKUP CONTROL  
(5 V/  
300 mA)  
12  
REGULATOR 2  
REGULATOR 4  
REG2  
REG4  
(14.4 V)  
20  
6
V
P2  
(3.3 V/  
1 A)  
1
&
&
&
EN4  
11  
15  
18  
HEATTAB  
n.c.  
(5 V/  
1400 mA)  
19  
REG3  
REGULATOR 3  
TDA3681A  
REGULATOR 1  
n.c.  
(8.5 V/  
600 mA)  
17  
9
REG1  
HOLD  
7
EN1/3  
+
4
RES  
5
2
C
RES  
3
IGN  
IN  
IGNITION BUFFER  
IGN  
OUT  
10  
MGU561  
GND  
Fig.1 Block diagram.  
4
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
PINNING  
SYMBOL PIN  
DESCRIPTION  
regulator 4 output  
REG4  
IGNIN  
IGNOUT  
RES  
1
2
3
4
5
6
7
8
9
10  
ignition input  
handbook, halfpage  
ignition output (active HIGH)  
reset output (active LOW)  
reset delay capacitor  
enable input for regulator 4  
enable input for regulators 1 and 3  
enable input for power switch  
hold output (active LOW)  
ground  
V
20  
1
2
3
4
5
6
7
8
9
REG4  
P2  
REG3 19  
n.c. 18  
IGN  
IN  
CRES  
IGN  
OUT  
EN4  
REG1 17  
SW 16  
RES  
C
EN1/3  
ENSW  
HOLD  
GND  
RES  
TDA3681ATH  
n.c. 15  
EN4  
V
14  
EN1/3  
ENSW  
HOLD  
P1  
HEATTAB 11  
heat tab connection; note 1  
regulator 2 output  
BU 13  
REG2  
BU  
12  
13  
14  
15  
16  
17  
18  
19  
20  
REG2 12  
backup switch output  
first supply voltage  
HEATTAB 11  
10 GND  
VP1  
MGU563  
n.c.  
not connected  
SW  
power switch output  
regulator 1 output  
REG1  
n.c.  
not connected  
REG3  
VP2  
regulator 3 output  
Fig.2 Pin configuration.  
second supply voltage  
Note  
1. The pin is used for final test purposes. In the  
application it should be connected directly to ground.  
2003 Aug 29  
5
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
FUNCTIONAL DESCRIPTION  
The hold circuit is also controlled by the temperature and  
load dump protection. Activating the temperature or load  
dump protection causes a hold (LOW) during the time that  
the protection is activated.  
The TDA3681A is a multiple output voltage regulator with  
a power switch, intended for use in car radios with or  
without a microcontroller. Because of the low voltage  
operation of the car radio, low voltage drop regulators are  
used.  
The hold circuit is enabled at low battery voltages. This  
indicates that it is not possible to get regulator 1 into  
regulation when switching it on: regulator 1 has the highest  
output voltage (8.5 V) of all switchable regulators.  
Therefore, regulator 1 is the most critical regulator with  
respect to an out of regulation condition caused by a low  
battery voltage.  
Regulator 2 is in regulation when the backup voltage  
exceeds 6.5 V for the first time. When regulator 2 is  
switched on and its output voltage is within its voltage  
range, the reset output is disabled to release the  
microcontroller. The reset delay time before release can  
be extended by an external capacitor (CCRES). This  
start-up feature is included to secure a smooth start-up of  
the microcontroller at first connection, without uncontrolled  
switching of regulator 2 during the start-up sequence.  
The hold function includes hysteresis to avoid oscillations  
when the battery voltage crosses the hold threshold levels  
for low VP and load dump. The block diagram of the hold  
function is illustrated in Fig.3.  
The charge on the backup capacitor can be used to supply  
regulator 2 for a short period when the external supply  
voltage drops to 0 V (the time depends on the value of the  
backup capacitor).  
All output pins are fully protected. The regulators are  
protected against load dump (regulators 1, 3 and 4 switch  
off at supply voltages > 18 V) and short-circuit (foldback  
current protection).  
The output stages of all switchable regulators have an  
extremely low noise behaviour and good stability, even for  
small values of the output capacitors.  
The power switch contains a current protection. However,  
this protection is delayed at short-circuit by the reset delay  
capacitor (it should be noted that this is the second  
function of the reset delay capacitor CCRES). During this  
time, the output current is limited to a peak value of at  
least 3 A (after a delay, the power switch can deliver 1.8 A  
continuous if VP 18 V).  
When both regulator 2 and the supply voltages (VP1 and  
VP2 > 4.5 V) are available, regulators 1 and 3 can be  
operated by means of one enable input.  
Regulator 4 and the power switch have a separate enable  
input.  
In a normal situation, the voltage on the reset delay  
capacitor is approximately 3.5 V (depending on the  
temperature). The power switch output is approximately  
VP 0.4 V. At operating temperature, the power switch  
can deliver at least 3 A. At high temperature, the switch  
can deliver approximately 2 A.  
Pin HOLD is normally HIGH but is active LOW. Pin HOLD  
is connected to an open-collector NPN transistor and must  
have an external pull-up resistor to operate. The hold  
output is controlled by a low battery voltage (VP1) detection  
circuit which, when activated, pulls the hold output LOW  
(enabled).  
low battery  
detector  
V
OR  
P1  
internal  
voltage reference  
HOLD  
buffer  
TDA3681A  
TEMPERATURE  
PROTECTION  
LOAD DUMP  
MGU564  
Fig.3 Block diagram of the hold circuit.  
6
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
During an overload condition or a short circuit  
Interfacing with the microcontroller (simple full or semi  
on/off logic applications) can be realized with an  
independent ignition Schmitt trigger and ignition output  
buffer (push-pull output).  
(VSW < VP 3.7 V), the voltage on the reset delay  
capacitor rises 0.6 V above the voltage of regulator 2. This  
rise time depends on the capacitor connected to  
pin CCRES. During this time, the power switch can deliver  
more than 3 A. When regulator 2 is out of regulation and  
generates a reset, the power switch can only deliver 2 A  
and will immediately go into foldback protection.  
The timing diagrams are illustrated in Figs 4 and 5.  
The second supply voltage VP2 is used for the switchable  
regulators 3 and 4. This input can be connected to a lower  
supply voltage of 6 V to reduce the power dissipation of  
the TDA3681A. A DC-to-DC converter could be used for  
this purpose.  
At supply voltages > 17 V, the power switch is clamped at  
16 V maximum (to avoid externally connected circuits  
being damaged by an overvoltage) and the power switch  
will switch off at load dump.  
load dump  
18 V  
8.9 V  
7.0 V  
4.0 V  
V
= V  
P2  
P1  
1.8 V  
enable  
regulator 1/3  
regulator 1  
regulator 3  
1.3 V  
8.5 V  
0 V  
5.0 V  
0 V  
>1.8 V  
enable  
regulator 4  
<1.3 V  
3.3 V  
regulator 4  
0 V  
V
and enable Schmitt trigger  
P
load dump  
16.9 V  
V
P
7.0 V  
4.0 V  
enable  
power  
switch  
>1.8 V  
<1.3 V  
16 V  
power  
switch  
output  
0 V  
MGL906  
Power switch behaviour  
Fig.4 Timing diagram of regulators and power switch.  
7
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
load dump  
V
P1  
6.5 V  
V
BU  
5.4 V  
5.0 V  
0 V  
regulator 2  
reset  
delay  
capacitor  
5.0 V  
3.0 V  
0 V  
5.0 V  
reset  
Back-up Schmitt trigger and reset behaviour  
load dump  
V
= V  
P2  
P1  
50 V  
0 V  
ignition  
input  
100 V  
5.0 V  
ignition  
output  
0 V  
Enable Schmitt trigger ignition  
load dump  
>22 V  
<10.3 V  
P2  
>9.0 V  
V
= V  
P1  
0 V  
active  
temperature  
protection  
150 °C  
passive  
HIGH  
V
HOLD  
LOW  
Hold behaviour  
MGU565  
Fig.5 Timing diagram of ignition Schmitt triggers and hold circuit.  
8
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VP1  
supply voltage 1  
operating  
18  
V
V
V
V
reverse polarity  
jump start  
non-operating  
18  
30  
50  
t 10 minutes  
load dump protection  
supply voltage 2  
operating  
t 50 ms; tr 2.5 ms  
VP2  
18  
V
V
V
V
W
reverse polarity  
non-operating  
18  
jump start  
t 10 minutes  
30  
load dump protection  
total power dissipation  
storage temperature  
ambient temperature  
junction temperature  
t 50 ms; tr 2.5 ms  
50  
Ptot  
Tstg  
Tamb  
Tj  
62  
non-operating  
operating  
55  
40  
40  
+150  
+85  
+150  
°C  
°C  
°C  
operating  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
K/W  
K/W  
Rth(j-c)  
Rth(j-a)  
thermal resistance from junction to case  
thermal resistance from junction to ambient  
2
in free air  
50  
QUALITY SPECIFICATION  
In accordance with “General Quality Specification For Integrated Circuits (SNW-FQ-611)”.  
2003 Aug 29  
9
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
CHARACTERISTICS  
VP1 = VP2 = 14.4 V; Tamb = 25 °C; measured in test circuit of Fig.8; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VP1  
supply voltage 1  
operating  
9.5  
14.4  
18  
18  
50  
30  
50  
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
note 1  
4
14.4  
t 10 minutes  
t 50 ms; tr 2.5 ms  
load dump protection  
supply voltage 2  
operating  
VP2  
6.5  
14.4  
18  
18  
50  
30  
50  
22  
V
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
0
t 10 minutes  
load dump protection  
t 50 ms; tr 2.5 ms  
VP1 and/or VP2  
Vbat(loaddump) battery overvoltage  
shutdown  
18  
20  
Iq(tot)  
total quiescent supply  
current  
VP = 12.4 V; note 2  
VP = 14.4 V; note 2  
105  
110  
145  
150  
µA  
µA  
Schmitt trigger for power supply (regulators 1, 3 and 4)  
Vth(r)  
Vth(f)  
Vhys  
rising threshold voltage  
falling threshold voltage  
hysteresis voltage  
VP1 rising  
VP1 falling  
6.5  
4.0  
7.0  
4.5  
2.5  
7.5  
5.0  
V
V
V
Schmitt trigger for enable input (regulators 1, 3, 4 and power switch)  
Vth(r)  
Vth(f)  
Vhys  
ILI  
rising threshold voltage  
falling threshold voltage  
hysteresis voltage  
1.4  
0.9  
1.8  
1.3  
0.5  
5
2.4  
1.9  
V
V
IREG = ISW = 1 mA  
VEN = 5 V  
V
input leakage current  
1
20  
µA  
Reset trigger level of regulator 2  
Vth(r)  
rising threshold voltage  
VP1 rising; IREG1 = 50 mA;  
note 3  
4.43  
4.4  
V
REG2 0.15  
REG2 0.25  
V
REG2 0.1  
V
V
Vth(f)  
falling threshold voltage  
VP1 falling; IREG1 = 50 mA;  
note 3  
V
VREG2 0.13  
Schmitt triggers for hold circuit output  
Vth(r)(VP)  
Vth(f)(VP)  
Vhys(VP)  
rising threshold voltage  
of supply voltage  
9.1  
9.0  
9.7  
9.4  
0.3  
10.3  
9.8  
V
V
V
falling threshold voltage  
of supply voltage  
hysteresis voltage of  
supply voltage  
2003 Aug 29  
10  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
SYMBOL  
Reset and hold buffer  
Isink(L) LOW-level sink current  
ILO  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
RES 0.8 V; VHOLD 0.8 V  
2
mA  
µA  
µA  
output leakage current  
VHOLD = 5 V  
VRES = 5 V  
0.1  
400  
5
Isource(H)  
HIGH-level source  
current  
240  
900  
tr  
tf  
rise time  
fall time  
note 4  
note 4  
7
1
50  
50  
µs  
µs  
Reset delay  
Ich  
reset delay capacitor  
charge current  
VCRES = 0 V  
VCRES = 3 V;  
2
4
8
µA  
mA  
V
Idch  
reset delay capacitor  
discharge current  
1.0  
2.5  
1.0  
1.6  
3.0  
1.2  
VP1 = VP2 = 4.3 V  
Vth(r)(RES)  
Vth(f)(RES)  
rising voltage threshold  
reset signal  
3.5  
1.4  
falling voltage threshold  
reset signal  
V
td(RES)  
td(SW)  
delay reset signal  
CCRES = 47 nF; note 5  
CCRES = 47 nF; note 6  
20  
8
35  
70  
40  
ms  
ms  
delay power switch  
foldback protection  
17.6  
Regulator 1 (IREG1 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
9.0  
9.0  
75  
85  
60  
mV  
V
Vo(REG1)  
1 mA IREG1 600 mA  
9.5 V VP1 18 V  
8.0  
8.0  
8.5  
8.5  
2
V
Vline  
Vload  
Iq  
line regulation  
load regulation  
quiescent current  
9.5 V VP1 18 V  
mV  
mV  
mA  
dB  
1 mA IREG1 600 mA  
IREG1 = 600 mA  
20  
25  
70  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG1)  
drop-out voltage  
IREG1 = 550 mA;  
0.4  
0.7  
V
VP1 = 8.55 V; note 7  
Im(REG1)  
Isc(REG1)  
current limit  
VREG1 > 7 V; note 8  
0.65 1.2  
250 800  
A
short-circuit current  
RL 0.5 ; note 9  
mA  
Regulator 2 (IREG2 = 5 mA; unless otherwise specified)  
Vo(REG2)  
output voltage  
0.5 mA IREG2 300 mA  
7 V VP1 18 V  
4.75 5.0  
4.75 5.0  
4.75 5.0  
5.25  
5.25  
5.25  
V
V
V
18 V VP1 50 V;  
IREG2 150 mA  
Vline  
line regulation  
load regulation  
6 V VP1 18 V  
2
50  
mV  
mV  
mV  
mV  
6 V VP1 50 V  
15  
20  
75  
Vload  
1 mA IREG2 150 mA  
1 mA IREG2 300 mA  
50  
100  
2003 Aug 29  
11  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
50  
55  
dB  
Vdrop(REG2)  
drop-out voltage  
IREG2 = 100 mA;  
0.4  
0.8  
0.2  
0.8  
0.6  
1.2  
0.5  
1.0  
V
V
V
V
VP1 = 4.75 V; note 7  
IREG2 = 200 mA;  
VP1 = 5.75 V; note 7  
I
REG2 = 100 mA;  
VBU = 4.75 V; note 10  
REG2 = 200 mA;  
I
VBU = 5.75 V; note 10  
VREG2 > 4.5 V; note 8  
RL 0.5 ; note 9  
Im(REG2)  
Isc(REG2)  
current limit  
0.32 0.37  
A
short-circuit current  
95  
120  
mA  
Regulator 3 (IREG3 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
mV  
V
Vo(REG3)  
1 mA IREG3 1400 mA  
7 V VP1 and/or VP2 18 V  
7 V VP1 and/or VP2 18 V  
1 mA IREG3 1400 mA  
IREG3 = 1400 mA  
4.75 5.0  
4.75 5.0  
5.25  
5.25  
50  
V
Vline  
Vload  
Iq  
line regulation  
load regulation  
quiescent current  
2
mV  
mV  
mA  
dB  
20  
19  
70  
150  
45  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG3)  
drop-out voltage  
IREG3 = 1400 mA ; VP2 = 6 V;  
note 7  
1
1.5  
V
Im(REG3)  
Isc(REG3)  
current limit  
VREG3 > 4.5 V; note 8  
1.5  
1.7  
A
short-circuit current  
RL 0.5 ; note 9  
430  
750  
mA  
Regulator 4 (IREG4 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
3.46  
3.46  
50  
mV  
V
Vo(REG4)  
1 mA IREG4 1 A  
3.14 3.3  
6.5 V VP1 and/or VP2 18 V 3.14 3.3  
V
Vline  
Vload  
Iq  
line regulation  
load regulation  
quiescent current  
6.5 V VP1 and/or VP2 18 V −  
2
mV  
mV  
mA  
dB  
1 mA IREG4 1 A  
IREG4 = 1 A  
20  
15  
70  
50  
40  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG4)  
Im(REG4)  
drop-out voltage  
current limit  
IREG4 = 1 A; VP2 = 5 V; note 7  
VREG4 > 3.0 V; note 8  
RL 0.5 ; note 9  
1.7  
1.5  
750  
2.4  
V
1.1  
470  
A
Isc(REG4)  
short-circuit current  
mA  
2003 Aug 29  
12  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Power switch  
Vdrop(SW)  
drop-out voltage  
ISW = 1 A; VP1 = 13.5 V;  
note 11  
0.45  
1.0  
0.65  
V
V
ISW = 1.8 A; VP1 = 13.5 V;  
1.8  
note 11  
IDC(SW)  
continuous current  
clamping voltage  
VP1 = 16 V; VSW = 13.5 V  
1.8  
2.0  
A
V
Vclamp(SW)  
VP1 17 V;  
13.5 15.0  
16.0  
1 mA < ISW < 1.8 A  
IM(SW)  
peak current  
VP1 < 17 V;  
3
A
notes 6, 12 and 13  
Vfb(SW)  
Isc(SW)  
Backup switch  
flyback voltage behaviour ISW = 100 mA  
VP1 + 3  
1.7  
22  
V
A
short-circuit current VSW < 1.2 V; note 13  
0.5  
IDC(BU)  
Vclamp(BU)  
Ir(BU)  
continuous current  
VBU > 5 V  
P1 16.7 V; IREG2 = 100 mA  
VP1 = 0 V; VBU = 12.4 V  
0.3  
0.35  
A
clamping voltage  
reverse current  
V
16  
900  
V
µA  
Schmitt trigger for enable of ignition input  
Vth(r)(IGNIN)  
rising threshold voltage  
of ignition input  
VP1 > 3.5 V  
1.9  
1.7  
2.2  
2.0  
2.5  
2.3  
V
V
Vth(f)(IGNIN)  
falling threshold voltage  
of ignition input  
VP1 > 3.5 V  
Vhys(IGNIN)  
ILI  
Ii(clamp)  
VIH(clamp)  
hysteresis voltage  
input leakage current  
input clamp current  
VP > 3.5 V  
0.1  
0.2  
0.5  
1.0  
50  
V
VIGNIN = 5 V  
VIGNIN > 50 V  
µA  
mA  
V
HIGH-level input  
clamping voltage  
VP1  
50  
VIL(clamp)  
LOW-level input clamping  
voltage  
0.6  
0
V
Ignition buffer  
VOL  
VOH  
LOW-level output voltage IIGNOUT = 0 mA  
0
0.2  
5.0  
0.8  
V
V
HIGH-level output  
voltage  
IIGNOUT = 0 mA  
4.5  
5.25  
IOL  
IOH  
ILO  
LOW-level output current  
V
IGNOUT 0.8 V  
0.45 0.8  
mA  
mA  
µA  
HIGH-level output current VIGNOUT 4.5 V  
0.45 2.0  
output leakage current  
(source)  
VIGNOUT = 5 V; VIGNIN = 0 V  
1.0  
tPLH  
tPHL  
LOW-to-HIGH  
propagation time  
VIGNIN rising from 1.7 to 2.5 V −  
500  
500  
µs  
µs  
HIGH-to-LOW  
propagation time  
VIGNIN falling from  
2.5 to 1.7 V  
2003 Aug 29  
13  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Temperature protection  
Tj(sd)  
junction temperature for  
shutdown  
150  
150  
160  
160  
170  
170  
°C  
°C  
Tj(hold)  
junction temperature for  
hold trigger  
Notes  
1. Minimum operating voltage, only if VP1 has exceeded 6.5 V.  
2. The total quiescent current is measured in the standby mode. Therefore, the enable inputs of regulators 1, 3, 4 and  
the power switch are grounded and RL(REG2) = (see Fig.8).  
3. The voltage of the regulator drops as a result of a VP1 drop for regulators 1 and 2. Regulators 3 and 4 drop as a result  
of VP2 drop.  
4. The rise and fall times are measured with a 10 kpull-up resistor and a 50 pF load capacitor.  
C
5. The delay time depends on the value of the reset delay capacitor: td(RES)  
6. The delay time depends on the value of the reset delay capacitor: td(SW)  
=
× V  
= C × (750 × 103)[s]  
------  
Ich  
C(th)  
C
=
× V  
= C × (375 × 103)[s]  
------  
C(th)  
Ich  
7. The drop-out voltage of regulators 1 and 2 is measured between pins VP1 and REGn. The drop-out voltage of  
regulators 3 and 4 is measured between pins VP2 and REGn.  
8. At current limit, Im(REGn) is held constant (see Fig.6).  
9. The foldback current protection limits the dissipated power at short-circuit (see Fig.6).  
10. The drop-out voltage is measured between pins BU and REG2.  
11. The drop-out voltage of the power switch is measured between pins VP1 and SW.  
12. The maximum output current of the power switch is limited to 1.8 A when the supply voltage exceeds 18 V.  
13. At short-circuit, Isc(SW) of the power switch is held constant to a lower value than the continuous current after a delay  
of at least 10 ms (see Fig.7).  
2003 Aug 29  
14  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
handbook, halfpage  
8.5 V  
handbook, halfpage  
MGL907  
V
o(REG2)  
MGL908  
5.0 V  
V
o(REG1)  
I
I
m(REG2)  
sc(REG2)  
I
REG2  
I
I
sc(REG1)  
m(REG1)  
I
REG1  
a. Regulator 1.  
b. Regulator 2.  
handbook, halfpage  
handbook, halfpage  
V
V
o(REG4)  
o(REG3)  
MGL909  
MGL910  
5.0 V  
3.3 V  
I
I
m(REG3)  
I
I
sc(REG3)  
m(REG4)  
sc(REG4)  
I
I
REG3  
REG4  
c. Regulator 3.  
d. Regulator 4.  
Fig.6 Foldback current protection of the regulators.  
MGU566  
V
SW  
V
3.3 V  
P
not  
delayed  
delayed  
2V  
BE  
1 A  
>1.8 A  
>3 A  
I
SW  
Fig.7 Current protection of the power switch.  
15  
2003 Aug 29  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
TEST AND APPLICATION INFORMATION  
Test information  
supply voltage 1  
power switch output  
C2  
16  
12  
17  
19  
14  
C1  
220 nF  
V
R
(1)  
P1  
L(SW)  
10 µF  
12 kΩ  
regulator 2  
output  
enable input power switch  
enable input regulator 1/3  
enable input regulator 4  
5 V  
8
7
6
C3  
10 µF  
R
V
L(REG2)  
ENSW  
5 kΩ  
regulator 1  
output  
8.5 V  
C4  
10 µF  
R
V
L(REG1)  
EN1/3  
10 kΩ  
regulator 3  
output  
5 V  
C5  
10 µF  
R
V
L(REG3)  
EN4  
5 kΩ  
regulator 4  
output  
3.3 V  
TDA3681A  
1
supply voltage 2  
C6  
10 µF  
20  
R
L(REG4)  
C7  
(1)  
V
5 kΩ  
P2  
220 nF  
reset delay  
capacitor  
reset  
output  
5
C8  
47 nF  
4
C9  
50 pF  
(3)  
(3)  
R3  
10 kΩ  
backup switch  
output  
hold output  
13  
9
3
C12  
50 pF  
V
(2)  
C10  
100 µF  
BU  
R6  
ignition input  
ignition output  
2
10 kΩ  
MGU568  
C11  
1 nF  
11  
10  
V
IGNIN  
heat tab  
ground  
(1) A minimum capacitor of 220 nF on the supply lines VP1 and VP2 is required for stability.  
(2) A minimum capacitor of 1 µF for backup supply is required for stability.  
(3) These capacitors represent the typical input capacitance of CMOS logic connected to the reset and hold outputs.  
Fig.8 Test circuit.  
2003 Aug 29  
16  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
Application information  
NOISE  
The output capacitors can be selected by using the graphs  
given in Figs 9 and 10. When an electrolytic capacitor is  
used, its temperature behaviour can cause oscillations at  
a low temperature. The two examples below show how an  
output capacitor value is selected.  
Table 1 Noise figures  
NOISE FIGURE (µV)(1)  
REGULATOR  
Example 1  
Co = 10 µF Co = 47 µF Co = 100 µF  
1
2
3
4
170  
440  
120  
85  
110  
240  
100  
70  
110  
190  
80  
Regulators 1, 3 and 4 are stabilized with an electrolytic  
output capacitor of 220 µF (ESR = 0.15 ).  
At Tamb = 30 °C, the capacitor value is decreased to  
73 µF and the ESR is increased to 1.1 . The regulator  
remains stable at Tamb = 30 °C (see Fig.9).  
55  
Note  
1. Measured at a bandwidth of 30 kHz.  
Example 2  
Regulator 2 is stabilized with a 10 µF electrolytic capacitor  
(ESR = 3 ). At Tamb = 30 °C, the capacitor value is  
decreased to 3 µF and the ESR is increased to 23.1 .  
As can be seen from Fig.10, the regulator will be unstable  
at Tamb = 30 °C.  
The noise on the supply line depends on the value of the  
supply capacitor and is caused by a current noise (the  
output noise of the regulators is translated to a current  
noise by the output capacitors). The noise is minimal when  
a high frequency capacitor of 220 nF in parallel with an  
electrolytic capacitor of 100 µF is connected directly to the  
supply pins VP1, VP2 and GND.  
Solution  
To avoid problems with stability at low temperatures, the  
use of tantalum capacitors is recommended. Use a  
tantalum capacitor of 10 µF or a larger electrolytic  
capacitor.  
STABILITY  
The regulators are stabilized by the externally connected  
output capacitors.  
MGL912  
handbook, halfpage  
handbook, halfpage  
MGL913  
20  
14  
ESR  
maximum ESR  
stable region  
ESR  
()  
()  
12  
15  
10  
8
maximum ESR  
10  
6
4
5
0
stable region  
2
minimum ESR  
10  
0
2  
10  
0.1  
1
100  
0.22  
1
100  
C (µF)  
C (µF)  
Fig.9 Curve for selecting the value of the output  
capacitor for regulators 1, 3 and 4.  
Fig.10 Curve for selecting the value of the output  
capacitor for regulator 2.  
2003 Aug 29  
17  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
PACKAGE OUTLINE  
HSOP20: plastic, heatsink small outline package; 20 leads; low stand-off height  
SOT418-3  
E
A
D
x
X
c
E
H
y
2
v
M
A
E
D
1
D
2
10  
1
pin 1 index  
Q
A
A
2
(A )  
3
E
1
A
4
θ
L
p
detail X  
20  
11  
w M  
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
max.  
(1)  
(2)  
(2)  
A
A
A
b
c
D
D
D
E
E
1
E
e
H
E
L
p
Q
v
w
x
y
Z
θ
UNIT  
2
3
4
p
1
2
2
8°  
0°  
+0.08 0.53 0.32  
0.04 0.40 0.23  
16.0 13.0 1.1 11.1 6.2  
15.8 12.6 0.9 10.9 5.8  
2.9  
2.5  
14.5 1.1  
13.9 0.8  
1.7  
1.5  
2.5  
2.0  
3.5  
3.2  
mm  
1.27  
3.5  
0.35  
0.25 0.25 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-02-12  
03-07-23  
SOT418-3  
2003 Aug 29  
18  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
Introduction to soldering surface mount packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
below 220 °C (SnPb process) or below 245 °C (Pb-free  
process)  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
– for all BGA and SSOP-T packages  
Manual soldering  
– for packages with a thickness 2.5 mm  
– for packages with a thickness < 2.5 mm and a  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
volume 350 mm3 so called thick/large packages.  
below 235 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2003 Aug 29  
19  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, SSOP-T(3), TFBGA, VFBGA  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(4)  
suitable  
PLCC(5), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO, VSSOP  
PMFP(8)  
suitable  
suitable  
not recommended(5)(6) suitable  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Hot bar or manual soldering is suitable for PMFP packages.  
2003 Aug 29  
20  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with  
switch and ignition buffer  
TDA3681A  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Aug 29  
21  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R32/02/pp22  
Date of release: 2003 Aug 29  
Document order number: 9397 750 11719  

相关型号:

TDA3681ATH/N1C,518

TDA3681A - Multiple voltage regulator with switch and ignition buffer SOIC 20-Pin
NXP

TDA3681J

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3681J/N2C,112

TDA3681 - Multiple voltage regulator with switch and ignition buffer ZIP 17-Pin
NXP

TDA3681JR

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3681JR

Regulator, 4 Output, BIPolar, PZIP17,
PHILIPS

TDA3681JR/N2C

TDA3681 - Multiple voltage regulator with switch and ignition buffer ZIP 17-Pin
NXP

TDA3681TH

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3682

Multiple voltage regulator with power switches
NXP

TDA3682ST

Multiple voltage regulator with power switches
NXP

TDA3683

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3683J

Power Management Circuit, CMOS, PZIP23,
PHILIPS

TDA3683J/N2S,112

TDA3683 - Multiple voltage regulator with switch and ignition buffer ZIP 23-Pin
NXP