TDA6651ATT [NXP]

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog); 5 V混频器/振荡器和低噪声的PLL合成器,用于混合动力地面调谐器(数字和模拟)
TDA6651ATT
型号: TDA6651ATT
厂家: NXP    NXP
描述:

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
5 V混频器/振荡器和低噪声的PLL合成器,用于混合动力地面调谐器(数字和模拟)

振荡器 消费电路 商用集成电路 光电二极管 信息通信管理
文件: 总54页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA6650ATT; TDA6651ATT  
5 V mixer/oscillator and low noise PLL synthesizer for hybrid  
terrestrial tuner (digital and analog)  
Rev. 02 — 2 February 2007  
Product data sheet  
1. General description  
The TDA6650ATT; TDA6651ATT is a programmable 3-band mixer/oscillator and low  
phase noise PLL synthesizer intended for pure 3-band tuner concepts applied to hybrid  
(digital and analog) or digital-only terrestrial and cable TV reception.  
Table 1.  
Application  
Different versions are available, depending on the target application[1]  
Type version  
Analog and digital (Hybrid ISDB-T/NTSC Japan) TDA6650ATT/C3  
TDA6651ATT/C3  
Digital only (ISDB-T)  
TDA6650ATT/C3/S2  
TDA6651ATT/C3/S2  
TDA6651ATT/C3/S3  
[1] See Table 20 “Characteristics” for differences between TDA6651ATT/C3/S2 and TDA6651ATT/C3/S3.  
The device includes three double balanced mixers for low, mid and high bands, three  
oscillators for the corresponding bands, a switchable IF amplifier, a wideband AGC  
detector and a low noise PLL synthesizer. The frequencies of the three bands are shown  
in Table 2. Two pins are available between the mixer output and the IF amplifier input to  
enable IF filtering for improved signal handling and to improve the adjacent channel  
rejection.  
Table 2.  
Band  
Recommended band limits  
RF input  
Oscillator  
Min (MHz)  
Min (MHz)  
Max (MHz)  
Max (MHz)  
ISDB-T and NTSC Japan hybrid tuners[1]  
Low  
Mid  
91.25  
217.25  
463.25  
765.25  
150  
276  
522  
276  
522  
824  
217.25  
High  
463.25  
ISDB-T tuners for digital-only application[2]  
Low  
Mid  
93.00  
219.00  
465.00  
767.00  
150  
276  
522  
276  
522  
824  
219.00  
465.00  
High  
[1] RF input frequency is the frequency of the corresponding picture carrier for analog standard.  
[2] For bandwidth optimization please refer to Application note AN01014.  
The IF amplifier is switchable in order to drive both symmetrical and asymmetrical  
outputs. When it is used as an asymmetrical amplifier, the IFOUTB pin needs to be  
connected to the supply voltage VCCA  
.
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Five open-drain PMOS ports are included on the IC. Two of them, BS1 and BS2, are also  
dedicated to the selection of the low, mid and high bands. PMOS port BS5 pin is shared  
with the ADC.  
The AGC detector provides a control that can be used in a tuner to set the gain of the  
RF stage. Six AGC take-over points are available by software. Two programmable AGC  
time constants are available for search tuning and normal tuner operation.  
The local oscillator signal is fed to the fractional-N divider. The divided frequency is  
compared to the comparison frequency into the fast phase detector which drives the  
charge pump. The loop amplifier is also on-chip, including the high-voltage transistor to  
drive directly the 33 V tuning voltage without the need to add an external transistor.  
The comparison frequency is obtained from an on-chip crystal oscillator. The crystal  
frequency can be output to the XTOUT pin to drive the clock input of a digital  
demodulation IC.  
Control data is entered via the I2C-bus; six serial bytes are required to address the device,  
select the Local Oscillator (LO) frequency, select the step frequency, program the output  
ports and set the charge pump current or enable or disable the crystal output buffer, select  
the AGC take-over point and time constant and/or select a specific test mode. A status  
byte concerning the AGC level detector and the ADC voltage can be read out on the SDA  
line during a read operation. During a read operation, the loop ‘in-lock’ flag, the power-on  
reset flag and the automatic loop bandwidth control flag are read.  
The device has 4 programmable addresses. Each address can be selected by applying a  
specific voltage to pin AS, enabling the use of multiple devices in the same system.  
The I2C-bus is fast mode compatible, except for the timing as described in the functional  
description and is compatible with 5 V, 3.3 V and 2.5 V microcontrollers depending on the  
voltage applied to pin BVS.  
2. Features  
I Single-chip 5 V mixer/oscillator and low phase noise PLL synthesizer for TV and VCR  
tuners, dedicated to hybrid (digital and analog) and pure digital applications for  
Japanese standards (NTSC and ISDB-T)  
I Five possible step frequencies to cope with different digital terrestrial TV and  
analog TV standards  
I Eight charge pump currents between 40 µA and 600 µA to reach the optimum phase  
noise performance over the bands  
I I2C-bus protocol compatible with 2.5 V, 3.3 V and 5 V microcontrollers:  
N Address + 5 data bytes transmission (I2C-bus write mode)  
N Address + 1 status byte (I2C-bus read mode)  
N Four independent I2C-bus addresses  
I Five PMOS open-drain ports with 15 mA source capability for band switching and  
general purpose; one of these ports is combined with a 5-step ADC  
I Wideband AGC detector for internal tuner AGC:  
N Six programmable take-over points  
N Two programmable time constants  
N AGC flag  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
2 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
I In-lock flag  
I Crystal frequency output buffer  
I 33 V tuning voltage output  
I Fractional-N programmable divider  
I Balanced mixers with a common emitter input for the low band and for the mid band  
(each single input)  
I Balanced mixer with a common base input for the high band (balanced input)  
I 2-pin asymmetrical oscillator for the low band  
I 2-pin symmetrical oscillator for the mid band  
I 4-pin symmetrical oscillator for the high band  
I Switched concept IF amplifier with both asymmetrical and symmetrical outputs to drive  
low impedance or SAW filters i.e. 500 /40 pF  
3. Applications  
For all applications, the recommendations given in the latest Application note AN10544  
must be used.  
3.1 Application summary  
I Digital and analog terrestrial tuners (ISDB-T and NTSC Japan)  
I Cable tuners (QAM)  
I Digital TV sets  
I Digital set-top boxes  
4. Ordering information  
Table 3.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA6650ATT/C3  
TSSOP38  
plastic thin shrink small outline package; 38 leads; body width 4.4 mm; SOT510-1  
lead pitch 0.5 mm  
TDA6650ATT/C3/S2  
TDA6651ATT/C3  
TDA6651ATT/C3/S2  
TDA6651ATT/C3/S3  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
3 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
5. Block diagram  
IFFIL1  
IFFIL2  
IFOUTA  
IFOUTB  
V
CCA  
n.c.  
21 (18)  
26 (13)  
6 (33)  
7 (32) 28 (11)  
27 (12)  
(30) 9  
AGC  
IF  
AGC  
AMP  
DETECTOR  
TDA6650ATT  
AGC  
flag  
(TDA6651ATT)  
AL0, AL1, AL2 ATC  
(10) 29  
IFGND  
(1) 38  
(2) 37  
LOSCIN  
4 (35)  
3 (36)  
LOW  
INPUT  
LOW  
MIXER  
LOW  
OSCILLATOR  
LBIN  
BS1  
BS1  
LOSCOUT  
(5) 34  
(4) 35  
MOSCIN1  
MOSCIN2  
MID  
INPUT  
MID  
MIXER  
MID  
OSCILLATOR  
MBIN  
BS2  
BS2  
(9) 30  
(8) 31  
(7) 32  
(6) 33  
1 (38)  
2 (37)  
HOSCIN1  
HBIN1  
HBIN2  
HIGH  
INPUT  
HIGH  
MIXER  
HOSCOUT1  
HOSCOUT2  
HOSCIN2  
HIGH  
OSCILLATOR  
BS1 . BS2  
BS1 . BS2  
5 (34)  
(3) 36  
RFGND  
OSCGND  
XTOUT  
(21) 18  
OUTPUT  
BUFFER  
R0, R1,  
R2  
24 (15)  
[ ]  
N 14:0  
V
CCD  
T0, T1, T2  
PHASE  
COMPARATOR  
FRACTIONAL  
DIVIDER  
FRACTIONAL  
CALCULATOR  
(17) 22  
(16) 23  
LOOP  
AMP  
VT  
CP  
19 (20)  
20 (19)  
XTAL1  
XTAL2  
CHARGE  
PUMP  
CRYSTAL  
OSCILLATOR  
REFERENCE  
DIVIDER  
15 (24)  
16 (23)  
17 (22)  
13 (26)  
T0, T1, CP0, CP1,  
SCL  
SDA  
AS  
LOCK  
DETECTOR  
T2  
CP2  
2
I C-BUS  
TRANSCEIVER  
FRACTIONAL  
SPURIOUS  
COMPENSATION  
BAND SWITCH  
OUTPUT PORTS  
BS5-  
BS1  
BVS  
AGC  
(14) 25  
POR  
ADC  
14  
8
10  
11  
12  
PLLGND  
(25) (31) (29) (28) (27)  
coa033  
ADC/  
BS5  
BS3  
BS1  
BS4  
BS2  
The pin numbers in parenthesis represent the TDA6651ATT.  
Fig 1. Block diagram  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
4 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
6. Pinning information  
6.1 Pin description  
Table 4.  
Symbol  
Pin description  
Pin  
Description  
TDA6650ATT TDA6651ATT  
HBIN1  
HBIN2  
MBIN  
LBIN  
1
2
3
4
5
6
7
8
38  
37  
36  
35  
34  
33  
32  
31  
high band RF input 1  
high band RF input 2  
mid band RF input  
low band RF input  
RF ground  
RFGND  
IFFIL1  
IFFIL2  
BS4  
IF filter output 1  
IF filter output 2  
PMOS open-drain output port 4 for general  
purpose  
AGC  
BS3  
9
30  
29  
AGC output  
10  
PMOS open-drain output port 3 for general  
purpose  
BS2  
BS1  
11  
12  
28  
27  
PMOS open-drain output port 2 to select the mid  
band  
PMOS open-drain output port 1 to select the low  
band  
BVS  
13  
14  
26  
25  
bus voltage selection input  
ADC/BS5  
ADC input or PMOS open-drain output port 5 for  
general purpose  
SCL  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
I2C-bus serial clock input  
I2C-bus serial data input and output  
I2C-bus address selection input  
crystal frequency buffer output  
crystal oscillator input 1  
crystal oscillator input 2  
not connected  
SDA  
AS  
XTOUT  
XTAL1  
XTAL2  
n.c.  
VT  
tuning voltage output  
CP  
charge pump output  
VCCD  
PLLGND  
VCCA  
IFOUTB  
supply voltage for the PLL part  
PLL ground  
supply voltage for the analog part  
IF output B for symmetrical amplifier and  
asymmetrical IF amplifier switch input  
IFOUTA  
IFGND  
28  
29  
30  
11  
10  
9
IF output A  
IF ground  
HOSCIN1  
high band oscillator input 1  
high band oscillator output 1  
high band oscillator output 2  
HOSCOUT1  
HOSCOUT2  
31  
32  
8
7
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
5 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 4.  
Pin description …continued  
Symbol  
Pin  
Description  
TDA6650ATT TDA6651ATT  
HOSCIN2  
MOSCIN1  
MOSCIN2  
OSCGND  
LOSCOUT  
LOSCIN  
33  
34  
35  
36  
37  
38  
6
5
4
3
2
1
high band oscillator input 2  
mid band oscillator input 1  
mid band oscillator input 2  
oscillators ground  
low band oscillator output  
low band oscillator input  
6.2 Pinning  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
HBIN1  
HBIN2  
MBIN  
LBIN  
LOSCIN  
LOSCIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
HBIN1  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
3
3
4
4
5
5
RFGND  
IFFIL1  
IFFIL2  
BS4  
RFGND  
IFFIL1  
IFFIL2  
BS4  
6
6
7
7
8
8
9
9
AGC  
AGC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
BS3  
TDA6650ATT  
TDA6651ATT  
BS3  
BS2  
IFOUTA  
IFOUTA  
BS2  
BS1  
IFOUTB  
IFOUTB  
BS1  
BVS  
V
CCA  
V
CCA  
BVS  
ADC/BS5  
SCL  
PLLGND  
PLLGND  
ADC/BS5  
SCL  
V
CCD  
V
CCD  
SDA  
CP  
CP  
SDA  
AS  
VT  
VT  
AS  
XTOUT  
XTAL1  
n.c.  
n.c.  
XTOUT  
XTAL1  
XTAL2  
XTAL2  
001aac086  
001aac087  
Fig 2. Pin configuration TDA6650ATT  
Fig 3. Pin configuration TDA6651ATT  
7. Functional description  
7.1 Mixer, Oscillator and PLL (MOPLL) functions  
Bit BS1 enables the BS1 port, the low band mixer and the low band oscillator. Bit BS2  
enables the BS2 port, the mid band mixer and the mid band oscillator. When both BS1  
and BS2 bits are logic 0, the high band mixer and the high band oscillator are enabled.  
The oscillator signal is applied to the fractional-N programmable divider. The divided  
signal fdiv is fed to the phase comparator where it is compared in both phase and  
frequency with the comparison frequency fcomp. This frequency is derived from the signal  
present on the crystal oscillator fxtal and divided in the reference divider. There is a  
fractional calculator on the chip that generates the data for the fractional divider as well as  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
6 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
the reference divider ratio, depending on the step frequency selected. The crystal  
oscillator requires a 4 MHz crystal in series with an 18 pF capacitor between pins XTAL1  
and XTAL2.  
The output of the phase comparator drives the charge pump and the loop amplifier  
section. This amplifier has an on-chip high voltage drive transistor. Pin CP is the output of  
the charge pump, and pin VT is the pin to drive the tuning voltage to the varicap diodes of  
the oscillators and the tracking filters. The loop filter has to be connected between pins CP  
and VT. The spurious signals introduced by the fractional divider are automatically  
compensated by the spurious compensation block.  
It is possible to drive the clock input of a digital demodulation IC from pin XTOUT with the  
4 MHz signal from the crystal oscillator. This output is also used to output 12fdiv and fcomp  
signals in a specific test mode (see Table 9). It is possible to switch off this output, which is  
recommended when it is not used.  
For test and alignment purposes, it is also possible to release the tuning voltage output by  
selecting the sinking mode (see Table 9), and by applying an external voltage on pin VT.  
In addition to the BS1 and BS2 output ports that are used for the band selection, there are  
three general purpose ports BS3, BS4 and BS5. All five ports are PMOS open-drain type,  
each with 15 mA drive capability. The connection for port BS5 and the ADC input is  
combined on one pin. It is not possible to use the ADC if port BS5 is used.  
The AGC detector compares the level at the IF amplifier output to a reference level which  
is selected from 6 different levels via the I2C-bus. The time constant of the AGC can be  
selected via the I2C-bus to cope with normal operation as well as with search operation.  
When the output level on pin AGC is higher than the threshold VRMH, then bit AGC = 1.  
When the output level on pin AGC is lower than the threshold VRML, then bit AGC = 0.  
Between these two thresholds, bit AGC is not defined. The status of the AGC bit can be  
read via the I2C-bus according to the read mode as described in Table 13.  
7.2 I2C-bus voltage  
The I2C-bus lines SCL and SDA can be connected to an I2C-bus system tied to 2.5 V,  
3.3 V or 5 V. The choice of the bus input threshold voltages is made with pin BVS that can  
be left open-circuit, connected to the supply voltage or to ground (see Table 5).  
Table 5.  
I2C-bus voltage selection  
Pin BVS connection  
Bus voltage  
Logic level  
LOW  
HIGH  
To ground  
Open-circuit  
To VCC  
2.5 V  
3.3 V  
5 V  
0 V to 0.75 V  
0 V to 1.0 V  
0 V to 1.5 V  
1.75 V to 5.5 V  
2.3 V to 5.5 V  
3.0 V to 5.5 V  
7.3 Phase noise, I2C-bus traffic and crosstalk  
While the TDA6650ATT; TDA6651ATT is dedicated for hybrid terrestrial applications, the  
low noise PLL will clean up the noise spectrum of the VCOs close to the carrier to reach  
noise levels at 1 kHz offset from the carrier compatible with e.g. ISDB-T reception.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
7 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Linked to this noise improvement, some disturbances may become visible while they were  
not visible because they were hidden into the noise in analog dedicated applications and  
circuits.  
This is especially true for disturbances coming from the I2C-bus traffic, whatever this traffic  
is intended for the MOPLL or for another slave on the bus.  
To avoid this I2C-bus crosstalk and be able to have a clean noise spectrum, it is necessary  
to use a bus gate that enables the signal on the bus to drive the MOPLL only when the  
communication is intended for the tuner part (such a kind of I2C-bus gate is included into  
the NXP terrestrial channel decoders), and to avoid unnecessary repeated sending of the  
same information.  
8. I2C-bus protocol  
The TDA6650ATT; TDA6651ATT is controlled via the two-wire I2C-bus. For programming,  
there is one device address (7 bits) and the R/W bit for selecting read or write mode. To be  
able to have more than one MOPLL in an I2C-bus system, one of four possible addresses  
is selected depending on the voltage applied to address selection pin AS (see Table 8).  
The TDA6650ATT; TDA6651ATT fulfils the fast mode I2C-bus, according to the NXP  
I2C-bus specification, except for the timing as described in Figure 4. The I2C-bus interface  
is designed in such a way that the pins SCL and SDA can be connected to 5 V, 3.3 V  
or to 2.5 V pulled-up I2C-bus lines, depending on the voltage applied to pin BVS (see  
Table 5).  
8.1 Write mode; R/W = 0  
After the address transmission (first byte), data bytes can be sent to the device (see  
Table 6). Five data bytes are needed to fully program the TDA6650ATT; TDA6651ATT.  
The I2C-bus transceiver has an auto-increment facility that permits programming the  
device within one single transmission (address + 5 data bytes).  
The TDA6650ATT; TDA6651ATT can also be partly programmed on the condition that the  
first data byte following the address is byte 2 (divider byte 1) or byte 4 (control byte 1). The  
first bit of the first data byte transmitted indicates whether byte 2 (first bit = 0) or byte 4  
(first bit = 1) will follow. Until an I2C-bus STOP condition is sent by the controller, additional  
data bytes can be entered without the need to re-address the device. The fractional  
calculator is updated only at the end of the transmission (STOP condition). Each control  
byte is loaded after the 8th clock pulse of the corresponding control byte. Main divider  
data are valid only if no new I2C-bus transmission is started (START condition) during the  
computation period of 50 µs.  
Both DB1 and DB2 need to be sent to change the main divider ratio. If the value of the  
ratio selection bits R2, R1 and R0 are changed, the bytes DB1 and DB2 have to be sent in  
the same transmission.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
8 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
50 µs  
ADDRESS  
BYTE  
ADDRESS  
BYTE  
DIVIDER DIVIDER CONTROL CONTROL CONTROL CONTROL  
STOP  
START  
START  
2
BYTE 1  
BYTE 2  
BYTE 1  
BYTE 2  
BYTE 1  
BYTE 2  
2
I C-bus transmission dedicated to  
the MOPLL  
I C-bus transmission  
dedicated to  
another IC  
fce921  
Fig 4. Example of I2C-bus transmission frame  
Table 6.  
Name  
I2C-bus write data format  
Byte  
Bit  
Ack  
MSB[1]  
LSB  
Address byte  
1
2
3
4
1
1
0
0
0
MA1  
MA0  
N9  
R/W = 0 A  
Divider byte 1 (DB1)  
Divider byte 2 (DB2)  
0
N14  
N6  
N13  
N5  
N12  
N4  
T1  
0
N11  
N3  
N10  
N2  
N8  
A
A
A
A
A
N7  
1
N1  
N0  
Control byte 1 (CB1);  
see Table 7  
T/A = 1 T2  
T0  
R2  
R1  
R0  
1
T/A = 0  
CP1  
0
ATC  
BS4  
AL2  
BS3  
AL1  
BS2  
AL0  
BS1  
Control byte 2 (CB2)  
5
CP2  
CP0  
BS5  
[1] MSB is transmitted first.  
Table 7.  
Description of write data format bits  
Description  
Bit  
A
acknowledge  
MA1 and MA0  
R/W  
programmable address bits; see Table 8  
logic 0 for write mode  
N14 to N0  
programmable LO frequency;  
N = N14 × 214 + N13 × 213 + N12 × 212 + ... + N1 × 21 + N0  
T/A  
test/AGC bit  
T/A = 0: the next 6 bits sent are AGC settings  
T/A = 1: the next 6 bits sent are test and reference divider ratio settings  
test bits; see Table 9  
T2, T1 and T0  
R2, R1, and R0  
ATC  
reference divider ratio and programmable frequency step; see Table 10  
AGC current setting and time constant; capacitor on pin AGC = 150 nF  
ATC = 0: AGC current = 220 nA; AGC time constant = 2 s  
ATC = 1: AGC current = 9 µA; AGC time constant = 50 ms  
AGC take-over point bits; see Table 11  
AL2, AL1 and AL0  
CP2, CP1 and CP0 charge pump current; see Table 12  
BS5, BS4, BS3, BS2 PMOS ports control bits  
and BS1  
BSn = 0: corresponding port is off, high-impedance state (status at  
power-on reset)  
BSn = 1: corresponding port is on; VO = VCC VDS(sat)  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
9 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
8.1.1 I2C-bus address selection  
The device address contains programmable address bits MA1 and MA0, which offer the  
possibility of having up to four MOPLL ICs in one system. Table 8 gives the relationship  
between the voltage applied to the AS input and the MA1 and MA0 bits.  
Table 8.  
Address selection  
Voltage applied to pin AS  
0 V to 0.1VCC  
MA1  
MA0  
0
0
1
1
0
1
0
1
0.2VCC to 0.3VCC or open-circuit  
0.4VCC to 0.6VCC  
0.9VCC to VCC  
8.1.2 XTOUT output buffer and mode setting  
The crystal frequency can be sent to pin XTOUT and used in the application, for example  
to drive the clock input of a digital demodulator, saving a quartz crystal in the bill of  
material. To output fxtal, it is necessary to set T[2:0] to 001. If the output signal on this pin  
is not used, it is recommended to disable it, by setting T[2:0] to 000. This pin is also used  
to output 12fdiv and fcomp in a test mode. At power-on, the XTOUT output buffer is set to  
on, supplying the fxtal signal. The relation between the signal on pin XTOUT and the  
setting of the T[2:0] bits is given in Table 9.  
Table 9.  
XTOUT buffer status and test modes  
T2  
0
T1  
0
T0  
0
Pin XTOUT  
disabled  
fxtal (4 MHz)  
12fdiv  
Mode  
normal mode with XTOUT buffer off  
normal mode with XTOUT buffer on  
charge pump off  
0
0
1
0
1
0
0
1
1
fxtal (4 MHz)  
fcomp  
not used[1]  
1
0
0
test mode  
1
0
1
12fdiv  
test mode  
1
1
0
fxtal (4 MHz)  
disabled  
charge pump sinking current[2]  
1
1
1
charge pump sourcing current  
[1] This is an on-chip function that automatically sets internal values for the PLL. This function is not optimized  
for ISDB-T and NTSC Japan and therefore must not be used.  
[2] This is the default mode at power-on reset. This mode disables the tuning voltage.  
8.1.3 Step frequency setting  
The step frequency is set by three bits, giving five steps to cope with different application  
requirements.  
The reference divider ratio is automatically set depending on bits R2, R1 and R0. The  
phase detector works at either 4 MHz, 2 MHz or 1 MHz.  
Table 10 shows the step frequencies and corresponding reference divider ratios. When  
the value of bits R2, R1 and R0 are changed, it is necessary to re-send the data bytes  
DB1 and DB2.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
10 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 10. Reference divider ratio select bits  
R2  
R1  
R0  
Referencedivider Frequency  
Frequency step  
ratio  
comparison  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
1
1
4
1
-
2 MHz  
4 MHz  
4 MHz  
1 MHz  
4 MHz  
-
62.5 kHz  
142.86 kHz  
166.67 kHz  
50 kHz  
125 kHz  
reserved  
reserved  
reserved  
-
-
-
-
8.1.4 AGC detector setting  
The AGC take-over point can be selected out of 6 levels according to Table 11.  
Table 11. AGC programming  
AL2  
0
AL1  
0
AL0  
0
Typical take-over point level  
124 dBµV (p-p)  
121 dBµV (p-p)  
118 dBµV (p-p)  
115 dBµV (p-p)  
112 dBµV (p-p)  
109 dBµV (p-p)  
IAGC = 0 A  
[1]  
[1]  
[1]  
[2]  
[2]  
[2]  
[3]  
[4]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
VAGC = 3.5 V  
[1] This take-over point is available for both symmetrical and asymmetrical modes.  
[2] This take-over point is available for asymmetrical mode only.  
[3] The AGC current sources are disabled. The AGC output goes into a high-impedance state and an external  
AGC source can be connected in parallel and will not be influenced.  
[4] The AGC detector is disabled and IAGC = 9 µA.  
8.1.5 Charge pump current setting  
The charge pump current can be chosen from 8 values depending on the value of bits  
CP2, CP1 and CP0 bits; see Table 12.  
Table 12. Charge pump current  
CP2  
CP1  
CP0  
Charge pump current  
number  
Typical current (absolute  
value in µA)  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
1
2
3
4
5
38  
54  
83  
122  
163  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
11 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 12. Charge pump current …continued  
CP2  
CP1  
CP0  
Charge pump current  
number  
Typical current (absolute  
value in µA)  
1
1
1
0
1
1
1
0
1
6
7
8
254  
400  
580  
8.2 Read mode; R/W = 1  
Data can be read from the device by setting the R/W bit to 1 (see Table 13). After the  
device address has been recognized, the device generates an acknowledge pulse and the  
first data byte (status byte) is transferred on the SDA line (MSB first). Data is valid on the  
SDA line during a HIGH level of the SCL clock signal.  
A second data byte can be read from the device if the microcontroller generates an  
acknowledge on the SDA line (master acknowledge). End of transmission will occur if no  
master acknowledge occurs. The device will then release the data line to allow the  
microcontroller to generate a STOP condition.  
Table 13. I2C-bus read data format  
Name  
Byte Bit  
MSB[1]  
Ack  
LSB  
MA1 MA0 R/W = 1 A  
AGC A2 A1 A0  
Address byte 1  
Status byte  
1
1
0
0
0
1
0
2
POR  
FL  
-
[1] MSB is transmitted first.  
Table 14. Description of read data format bits  
Bit  
A
Description  
acknowledge  
POR  
power-on reset flag  
POR = 0, normal operation  
POR = 1, power-on reset  
in-lock flag  
FL  
FL = 0, not locked  
FL = 1, the PLL is locked  
internal AGC flag  
AGC  
AGC = 0 when internal AGC is active (VAGC < VRML  
)
AGC = 1 when internal AGC is not active (VAGC > VRMH  
)
A2, A1, A0  
digital outputs of the 5-level ADC; see Table 15  
Table 15. ADC levels  
Voltage applied to pin ADC[1]  
0.6VCC to VCC  
A2  
1
A1  
A0  
0
0
1
0.45VCC to 0.6VCC  
0
1
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
12 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 15. ADC levels …continued  
Voltage applied to pin ADC[1]  
A2  
0
A1  
1
A0  
0
0.3VCC to 0.45VCC  
0.15VCC to 0.3VCC  
0
0
1
0 V to 0.15VCC  
0
0
0
[1] Accuracy is ±0.03VCC. Bit BS5 must be set to logic 0 to disable the BS5 output port. The BS5 output port  
uses the same pin as the ADC and can not be used when the ADC is in use.  
8.3 Status at power-on reset  
At power on or when the supply voltage drops below approximately 2.85 V (at  
Tamb = 25 °C), internal registers are set according to Table 16.  
At power on, the charge pump current is set to 580 µA, the test bits T[2:0] are set to 110  
which means that the charge pump is sinking current, the tuning voltage output is  
disabled. The XTOUT buffer is on, driving the 4 MHz signal from the crystal oscillator and  
all the ports are off. As a consequence, the high band is selected by default.  
Table 16. Default setting at power-on reset  
Name  
Byte  
Bit[1]  
MSB  
LSB  
Address byte  
1
2
3
4
1
1
0
0
0
MA1  
MA0  
X
Divider byte 1 (DB1)  
Divider byte 2 (DB2)  
Control byte 1 (CB1)  
0
N14 = X  
N13 = X N12 = X N11 = X N10 = X N9 = X  
N8 = X  
N0 = X  
R0 = X  
AL0 = 0  
N7 = X  
N6 = X  
N5 = X  
N4 = X  
T1 = 1  
0
N3 = X  
T0 = 0  
N2 = X  
R2 = X  
N1 = X  
R1 = X  
AL1 = 1  
1
1
T/A = X[2] T2 = 1  
T/A = X[3]  
0
ATC = 0 AL2 = 0  
Control byte 2 (CB2)  
5
CP2 = 1 CP1 = 1  
CP0 = 1 BS5 = 0 BS4 = 0 BS3 = 0 BS2 = 0 BS1 = 0  
[1] X means that this bit is not set or reset at power-on reset.  
[2] The next six bits are written, when bit T/A = 1 in a write sequence.  
[3] The next six bits are written, when bit T/A = 0 in a write sequence.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
13 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
9. Internal circuitry  
Table 17. Internal pin configuration  
Symbol  
Pin  
Average DC voltage versus band Description[1]  
selection  
TDA6650ATT TDA6651ATT Low  
Mid  
n.a.  
n.a.  
High  
1.0 V  
1.0 V  
HBIN1  
HBIN2  
1
2
38  
37  
n.a.  
n.a.  
(38) 1  
2 (37)  
fce899  
MBIN  
3
4
5
36  
35  
34  
n.a.  
1.8 V  
-
1.8 V  
n.a.  
-
n.a.  
n.a.  
-
(36) 3  
fce901  
LBIN  
(35) 4  
fce898  
RFGND  
5 (34)  
fce897  
IFFIL1  
IFFIL2  
6
7
33  
32  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
3.7 V  
7 (32)  
(33) 6  
fce896  
BS4  
8
31  
high-Z or  
high-Z or  
high-Z or  
VCC VDS VCC VDS VCC VDS  
8 (31)  
fce895  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
14 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 17. Internal pin configuration …continued  
Symbol  
Pin  
Average DC voltage versus band Description[1]  
selection  
TDA6650ATT TDA6651ATT Low  
Mid  
High  
AGC  
9
30  
0 V or  
3.5 V  
0 V or  
3.5 V  
0 V or  
3.5 V  
9 (30)  
fce907  
BS3  
BS2  
BS1  
BVS  
10  
11  
12  
13  
29  
28  
27  
26  
high-Z or  
high-Z or  
high-Z or  
VCC VDS  
VCC VDS VCC VDS  
10 (29)  
fce893  
high-Z  
VCC VDS high-Z  
11 (28)  
fce892  
VCC VDS high-Z  
high-Z  
2.5 V  
12 (27)  
fce891  
2.5 V  
2.5 V  
(26) 13  
mce163  
ADC/BS5  
14  
25  
V
CEsat or  
VCEsat or  
high-Z  
VCEsat or  
high-Z  
high-Z  
(25) 14  
fce887  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
15 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 17. Internal pin configuration …continued  
Symbol  
Pin  
Average DC voltage versus band Description[1]  
selection  
TDA6650ATT TDA6651ATT Low  
Mid  
High  
SCL  
15  
24  
high-Z  
high-Z  
high-Z  
(24) 15  
fce889  
SDA  
16  
23  
high-Z  
high-Z  
high-Z  
(23) 16  
fce888  
AS  
17  
18  
22  
21  
1.25 V  
1.25 V  
1.25 V  
(22) 17  
001aac102  
XTOUT  
3.45 V  
3.45 V  
3.45 V  
18 (21)  
mce164  
XTAL1  
XTAL2  
19  
20  
20  
19  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
20 (19)  
19 (20)  
fce883  
n.c.  
21  
18  
n.a.  
n.a.  
n.a.  
not connected  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
16 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 17. Internal pin configuration …continued  
Symbol  
Pin  
Average DC voltage versus band Description[1]  
selection  
TDA6650ATT TDA6651ATT Low  
Mid  
High  
VT  
22  
17  
VVT  
VVT  
VVT  
22 (17)  
fce884  
CP  
23  
16  
1.8 V  
1.8 V  
1.8 V  
23 (16)  
fce885  
VCCD  
24  
25  
15  
14  
5 V  
-
5 V  
-
5 V  
-
PLLGND  
25 (14)  
fce882  
VCCA  
26  
27  
28  
13  
12  
11  
5 V  
5 V  
5 V  
IFOUTB  
IFOUTA  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
2.1 V  
28 (11)  
fce886  
IFGND  
29  
30  
10  
-
-
-
29 (10)  
fce880  
HOSCIN1  
9
8
7
6
2.2 V  
5 V  
2.2 V  
5 V  
1.8 V  
2.5 V  
2.5 V  
1.8 V  
HOSCOUT1 31  
HOSCOUT2 32  
5 V  
5 V  
32 (7)  
30 (9)  
(8) 31  
(6) 33  
HOSCIN2  
33  
2.2 V  
2.2 V  
fce879  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
17 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 17. Internal pin configuration …continued  
Symbol  
Pin  
Average DC voltage versus band Description[1]  
selection  
TDA6650ATT TDA6651ATT Low  
Mid  
High  
2.3 V  
2.3 V  
MOSCIN1  
MOSCIN2  
34  
35  
5
4
2.3 V  
2.3 V  
1.3 V  
1.3 V  
35 (4)  
fce878  
34 (5)  
OSCGND  
36  
3
-
-
-
36 (3)  
fce908  
LOSCOUT  
LOSCIN  
37  
38  
2
1
1.7 V  
2.9 V  
1.4 V  
3.5 V  
1.4 V  
3.5 V  
37 (2)  
(1) 38  
fce877  
[1] The pin numbers in parenthesis refer to the TDA6651ATT.  
10. Limiting values  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are  
entering the IC and negative currents are going out of the IC; all voltages are referenced to ground  
(GND)[1].  
Symbol  
VCCA  
VCCD  
VVT  
Parameter  
Conditions  
Min  
Max  
+6  
Unit  
V
analog supply voltage  
digital supply voltage  
tuning voltage output  
0.3  
0.3  
0.3  
0.3  
+6  
V
+35  
+6  
V
VSDA  
serial data input and output  
voltage  
V
ISDA  
serial data output current  
during  
0
10  
mA  
acknowledge  
VSCL  
VAS  
serial clock input voltage  
0.3  
0.3  
+6  
+6  
V
V
address selection input  
voltage  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
18 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 18. Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are  
entering the IC and negative currents are going out of the IC; all voltages are referenced to ground  
(GND)[1].  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
Vn  
voltage on all other inputs,  
outputs and combined  
inputs and outputs, except  
GNDs  
4.5 V < VCC < 5.5 V  
0.3  
VCC + 0.3  
V
IBSn  
PMOS port output current  
corresponding port  
on; open-drain  
20  
50  
-
0
mA  
mA  
s
IBS(tot)  
tsc(max)  
sum of all PMOS port output open-drain  
currents  
0
maximum short-circuit time each pin to VCC or  
to GND  
10  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
40  
20  
-
+150  
°C  
°C  
°C  
[3]  
Tamb(max)  
150  
[1] Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage.  
Maximum ratings cannot be accumulated.  
[2] VCC refers to the operating supply voltage.  
[3] The maximum allowed ambient temperature Tamb(max) depends on the assembly conditions of the package  
and especially on the design of the printed-circuit board. The application mounting must be done in such a  
way that the maximum junction temperature is never exceeded. An estimation of the junction temperature  
can be obtained through measurement of the temperature of the top center of the package (Tpackage). The  
temperature difference junction to case (Tj-c) is estimated at about 13 °C on the demo board (PCB 827-3).  
The junction temperature Tj = Tpackage + Tj-c  
.
11. Thermal characteristics  
Table 19. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
[1][2][3]  
Rth(j-a)  
thermal resistance from  
junction to ambient  
in free air  
TDA6650ATT  
TDA6651ATT  
82  
74  
K/W  
K/W  
[1] Measured in free air as defined by JEDEC standard JESD51-2.  
[2] These values are given for information only. The thermal resistance depends strongly on the nature and  
design of the printed-circuit board used in the application. The thermal resistance given corresponds to the  
value that can be measured on a multilayer printed-circuit board (4 layers) as defined by JEDEC standard.  
[3] The junction temperature influences strongly the reliability of an IC. The printed-circuit board used in the  
application contributes in a large part to the overall thermal characteristic. It must therefore be insured that  
the junction temperature of the IC never exceeds T j(max) = 150 °C at the maximum ambient temperature.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
19 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
12. Characteristics  
Table 20. Characteristics  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Supply  
VCC  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
supply current  
4.5  
80  
5.0  
96  
5.5  
V
ICC  
PMOS ports off  
115  
131  
136  
mA  
mA  
mA  
one PMOS port on: sourcing 15 mA  
96  
112  
117  
two PMOS ports on: one port  
sourcing 15 mA and one other port  
sourcing 5 mA  
101  
General functions  
VPOR  
power-on reset supply  
voltage  
power-on reset active if VCC < VPOR  
-
2.85  
-
3.5  
V
flock  
frequency range the PLL  
is able to synthesize  
64  
1024  
MHz  
Crystal oscillator[1]  
fxtal crystal frequency  
Zxtal  
-
4.0  
-
-
MHz  
input impedance  
(absolute value)  
fxtal = 4 MHz; VCC = 4.5 V to 5.5 V  
amb = 20 °C to Tamb(max)  
350  
430  
T
,
see Section 10  
[2]  
Pxtal  
crystal drive level  
fxtal = 4 MHz  
-
70  
-
µW  
PMOS ports: pins BS1, BS2, BS3, BS4 and BS5  
ILO(off)  
output leakage current in VCC = 5.5 V; VBS = 0 V  
off state  
10  
-
-
µA  
VDS(sat)  
output saturation voltage only corresponding buffer is on,  
-
0.2  
0.4  
V
sourcing 15 mA; VDS(sat) = VCC VBS  
ADC input: pin ADC  
Vi  
ADC input voltage  
see Table 15  
HIGH-level input current VADC = VCC  
LOW-level input current VADC = 0 V  
0
-
-
-
5.5  
10  
-
V
IIH  
IIL  
-
µA  
µA  
10  
Address selection input: pin AS  
IIH  
IIL  
HIGH-level input current VAS = 5.5 V  
LOW-level input current VAS = 0 V  
-
-
-
10  
-
µA  
µA  
10  
Bus voltage selection input: pin BVS  
IIH  
IIL  
HIGH-level input current VBVS = 5.5 V  
LOW-level input current VBVS = 0 V  
-
-
-
100  
-
µA  
µA  
100  
Buffered output: pin XTOUT  
[3]  
Vo(p-p)  
square wave AC output  
voltage (peak-to-peak  
value)  
-
-
400  
175  
-
-
mV  
Zo  
output impedance  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
20 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
I2C-bus  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Inputs: pins SCL and SDA  
fclk  
VIL  
clock frequency  
frequency on SCL  
-
-
-
-
-
-
-
-
-
-
-
-
400  
0.75  
1.0  
1.5  
5.5  
5.5  
5.5  
10  
kHz  
V
LOW-level input voltage VBVS = 0 V  
VBVS = 2.5 V or open-circuit  
0
0
V
VBVS = 5 V  
0
V
VIH  
HIGH-level input voltage VBVS = 0 V  
1.75  
2.3  
3.0  
-
V
VBVS = 2.5 V or open-circuit  
V
VBVS = 5 V  
HIGH-level input current VCC = 0 V; VBUS = 5.5 V  
VCC = 5.5 V; VBUS = 5.5 V  
V
IIH  
µA  
µA  
µA  
µA  
-
10  
IIL  
LOW-level input current VCC = 0 V; VBUS = 1.5 V  
VCC = 5.5 V; VBUS = 0 V  
-
10  
10  
-
Output: pin SDA  
ILH  
leakage current  
VSDA = 5.5 V  
ISDA = 3 mA  
-
-
-
-
10  
µA  
VO(ack)  
output voltage during  
acknowledge  
0.4  
V
Charge pump output: pin CP  
Io  
output current (absolute see Table 12  
value)  
-
-
-
µA  
IL(off)  
off-state leakage current charge pump off (T[2:0] = 010)  
15  
0
+15  
nA  
Tuning voltage output: pin VT  
IL(off)  
leakage current when  
switched-off  
tuning supply voltage = 33 V  
-
-
-
10  
µA  
Vo(cl)  
output voltage when the tuning supply voltage = 33 V;  
loop is closed RL = 15 kΩ  
0.3  
32.7  
V
Noise performance  
Jφ(rms)  
phase jitter (RMS value) integrated between 1 kHz and 1 MHz  
offset from the carrier  
digital application:  
-
-
0.5  
0.6  
-
-
deg  
deg  
TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
TDA6651ATT/C3/S3  
hybrid application:  
TDA6650ATT/C3, TDA6651ATT/C3  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
21 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Low band mixer, including IF amplifier  
[4]  
[4]  
fRF  
RF frequency  
picture carrier for hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
91.25  
93.00  
-
-
219.143 MHz  
220.893 MHz  
picture carrier for digital-only  
application TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
TDA6651ATT/C3/S3  
Gv  
voltage gain  
asymmetrical IF output; RL = 75 ;  
see Figure 14  
fRF = 91.25 MHz  
20  
20  
23.5  
24.0  
26  
26  
dB  
dB  
fRF = 219.143 MHz  
symmetrical IF output; RL = 1.25 k;  
see Figure 15  
fRF = 91.25 MHz  
fRF = 219.143 MHz  
fRF = 150 MHz  
25  
25  
-
27.5  
27.5  
7
31  
31  
10  
dB  
dB  
dB  
NF  
Vo  
noise figure  
[5]  
[5]  
output voltage causing  
asymmetrical application;  
1 % cross modulation in see Figure 18  
channel  
fRF = 91.25 MHz  
107  
107  
110  
110  
-
-
dBµV  
dBµV  
fRF = 219.143 MHz  
symmetrical application;  
see Figure 19  
fRF = 91.25 MHz  
fRF = 219.143 MHz  
asymmetrical IF output  
117  
117  
-
120  
120  
85  
-
-
-
dBµV  
dBµV  
dBµV  
Vi  
input voltage causing  
750 Hz frequency  
deviation pulling in  
channel  
[7]  
Vi(lock)  
Gi  
input level without  
lock-out  
see Figure 25  
-
-
120  
dBµV  
input conductance  
fRF = 91.25 MHz; see Figure 5  
fRF = 219.43 MHz; see Figure 5  
-
-
-
0.15  
0.20  
1.60  
-
-
-
mS  
mS  
pF  
Ci  
input capacitance  
fRF = 91.25 MHz to 219.43 MHz;  
see Figure 5  
Mid band mixer, including IF amplifier  
foper  
operating frequency  
for hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
163.25  
165.00  
-
-
465.143 MHz  
466.893 MHz  
picture carrier for digital only  
application TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
TDA6651ATT/C3/S3  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
22 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[4]  
[4]  
fRF  
RF frequency  
picture carrier for hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
223.25  
-
465.143 MHz  
picture carrier for digital only  
application TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
225.00  
-
466.893 MHz  
TDA6651ATT/C3/S3  
Gv  
voltage gain  
asymmetrical IF output; load = 75 ;  
see Figure 14  
fRF = 223.25 MHz  
fRF = 465.143 MHz  
20  
20  
23.5  
24  
26  
26  
dB  
dB  
symmetrical IF output;  
load = 1.25 k; see Figure 15  
fRF = 223.25 MHz  
25  
25  
-
27  
27.5  
8
31  
31  
11  
dB  
dB  
dB  
fRF = 465.143 MHz  
NF  
Vo  
noise figure  
fRF = 300 MHz; see Figure 17  
asymmetrical application;  
[5]  
[5]  
output voltage causing  
1 % cross modulation in see Figure 18  
channel  
fRF = 223.25 MHz  
107  
107  
110  
110  
-
-
dBµV  
dBµV  
fRF = 465.143 MHz  
symmetrical application;  
see Figure 19  
fRF = 223.25 MHz  
fRF = 465.143 MHz  
asymmetrical IF output  
117  
117  
-
120  
120  
87  
-
-
-
dBµV  
dBµV  
dBµV  
Vi  
input voltage causing  
750 Hz frequency  
deviation pulling in  
channel  
[7]  
Vi(lock)  
input level without  
lock-out  
see Figure 25  
-
-
120  
dBµV  
Gi  
Ci  
input conductance  
input capacitance  
see Figure 6  
see Figure 6  
-
-
0.3  
1.1  
-
-
mS  
pF  
High band mixer, including IF amplifier  
foper  
operating frequency  
for hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
355.25  
357.00  
-
-
767.143 MHz  
768.893 MHz  
picture carrier for digital only  
application TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
TDA6651ATT/C3/S3  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
23 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[4]  
[4]  
fRF  
RF frequency  
picture carrier for hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
471.25  
-
767.143 MHz  
picture carrier for digital only  
application TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2,  
473.00  
-
768.893 MHz  
TDA6651ATT/C3/S3  
Gv  
voltage gain  
asymmetrical IF output; load = 75 ;  
see Figure 20  
fRF = 471.25 MHz  
fRF = 767.143 MHz  
31.5  
31.5  
35  
37.5  
37.5  
dB  
dB  
33.5  
symmetrical IF output;  
load = 1.25 k; see Figure 21  
fRF = 471.25 MHz  
fRF = 767.143 MHz  
see Figure 22  
35.5  
35.5  
38.5  
37  
41.5  
41.5  
dB  
dB  
NF  
Vo  
noise figure, not  
corrected for image  
fRF = 471.25 MHz  
fRF = 767.143 MHz  
asymmetrical application;  
-
-
6
7
8
9
dB  
dB  
[5]  
[5]  
[7]  
output voltage causing  
1 % cross modulation in see Figure 23  
channel  
fRF = 471.25 MHz  
107  
107  
110  
110  
-
-
dBµV  
dBµV  
fRF = 767.143 MHz  
symmetrical application;  
see Figure 24  
fRF = 471.25 MHz  
fRF = 767.143 MHz  
see Figure 26  
117  
117  
-
120  
120  
-
-
dBµV  
dBµV  
dBµV  
-
Vi(lock)  
Vi  
input level without  
lock-out  
120  
input voltage causing  
750 Hz frequency  
deviation pulling in  
channel  
asymmetrical IF output  
-
75  
-
dBµV  
Zi  
input impedance  
fRF = 471.25 MHz; see Figure 7  
(RS + jLSω)  
RS  
-
-
35  
8
-
-
LS  
nH  
fRF = 767.143 MHz; see Figure 7  
RS  
LS  
-
-
36  
8
-
-
nH  
Low band oscillator  
[7]  
[8]  
fosc  
oscillator frequency  
150  
-
-
276.143 MHz  
300 kHz  
fosc(V)  
oscillator frequency shift  
with supply voltage  
110  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
24 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[9]  
fosc(T)  
oscillator frequency drift T = 25 °C; VCC = 5 V with  
-
900  
-
kHz  
with temperature  
compensation  
Φosc(dig)  
phase noise, carrier to  
TDA6650ATT/C3/S2;  
sideband noise in digital TDA6651ATT/C3/S2;  
application  
TDA6651ATT/C3/S3  
±1 kHz frequency offset;  
82  
87  
104  
-
90  
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fcomp = 4 MHz;  
see Figure 8, 27 and 28  
±10 kHz frequency offset; worst  
case in the frequency range;  
see Figure 9, 27 and 28  
94  
±100 kHz frequency offset; worst  
case in the frequency range;  
see Figure 10, 27 and 28  
115  
117  
±1.4 MHz frequency offset; worst  
case in the frequency range;  
see Figure 27 and 28  
Φosc(hyb)  
phase noise, carrier to  
sideband noise in hybrid  
application  
TDA6650ATT/C3; TDA6651ATT/C3  
±1 kHz frequency offset;  
fcomp = 4 MHz; see Figure 11, 29  
and 30  
75  
85  
104  
-
81  
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
mV  
±10 kHz frequency offset; worst  
case in the frequency range;  
see Figure 12, 29 and 30  
92  
±100 kHz frequency offset; worst  
case in the frequency range;  
see Figure 13, 29 and 30  
115  
117  
200  
±1.4 MHz frequency offset; worst  
case in the frequency range;  
see Figure 29 and 30  
[10]  
RSCp-p  
ripple susceptibility of  
VCC = 5 V ± 5 %; worst case in the  
frequency range; ripple frequency  
500 kHz  
15  
VCC (peak-to-peak  
value)  
Mid band oscillator  
fosc  
oscillator operating  
frequency  
222  
-
522.143 MHz  
522.143 MHz  
[7]  
[8]  
oscillator frequency  
276  
-
-
fosc(V)  
fosc(T)  
oscillator frequency shift  
with supply voltage  
300  
-
kHz  
[9]  
oscillator frequency drift T = 25 °C; VCC = 5 V with  
with temperature compensation  
-
1500  
-
kHz  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
25 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Φosc(dig)  
phase noise, carrier to  
TDA6650ATT/C3/S2;  
sideband noise in digital TDA6651ATT/C3/S2;  
application  
TDA6651ATT/C3/S3  
±1 kHz frequency offset;  
85  
87  
104  
-
90  
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fcomp = 4 MHz;  
see Figure 8, 27 and 28  
±10 kHz frequency offset; worst  
case in the frequency range;  
see Figure 9, 27 and 28  
94  
±100 kHz frequency offset; worst  
case in the frequency range;  
see Figure 10, 27 and 28  
112  
116  
±1.4 MHz frequency offset; worst  
case in the frequency range;  
see Figure 27 and 28  
Φosc(hyb)  
phase noise, carrier to  
sideband noise in hybrid  
application  
TDA6650ATT/C3; TDA6651ATT/C3  
±1 kHz frequency offset;  
fcomp = 4 MHz; see  
80  
85  
104  
-
86  
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
mV  
Figure 11, 29 and 30  
±10 kHz frequency offset; worst  
case in the frequency range; see  
Figure 12, 29 and 30  
92  
±100 kHz frequency offset; worst  
case in the frequency range; see  
Figure 13, 29 and 30  
115  
115  
140  
±1.4 MHz frequency offset; worst  
case in the frequency range; see  
Figure 29 and 30  
[10]  
RSCp-p  
ripple susceptibility of  
VCC = 5 V ± 5 %; worst case in the  
frequency range; ripple frequency  
500 kHz  
15  
VCC (peak-to-peak  
value)  
High band oscillator  
fosc  
oscillator operating  
frequency  
414  
-
824.143 MHz  
824.143 MHz  
[7]  
[8]  
oscillator frequency  
522  
-
-
fosc(V)  
fosc(T)  
oscillator frequency shift  
with supply voltage  
300  
-
kHz  
[9]  
oscillator frequency drift T = 25 °C; VCC = 5 V; with  
with temperature compensation  
-
1100  
-
kHz  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
26 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Φosc(dig)  
phase noise, carrier to  
TDA6650ATT/C3/S2;  
sideband noise in digital TDA6651ATT/C3/S2;  
application  
TDA6651ATT/C3/S3  
±1 kHz frequency offset;  
80  
85  
104  
-
85  
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fcomp = 4 MHz;  
see Figure 8, 27 and 28  
±10 kHz frequency offset; worst  
case in the frequency range;  
see Figure 9, 27 and 28  
91  
±100 kHz frequency offset; worst  
case in the frequency range;  
see Figure 11, 27 and 28  
112  
117  
±1.4 MHz frequency offset; worst  
case in the frequency range;  
see Figure 27 and 28  
Φosc(hyb)  
phase noise, carrier to  
sideband noise in hybrid  
application  
TDA6650ATT/C3; TDA6651ATT/C3  
±1 kHz frequency offset;  
fcomp = 4 MHz;  
80  
82  
104  
-
86  
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
mV  
see Figure 11, 29 and 30  
±10 kHz frequency offset; worst  
case in the frequency range;  
see Figure 12, 29 and 30  
88  
±100 kHz frequency offset; worst  
case in the frequency range;  
see Figure 13, 29 and 30  
112  
117  
40  
±1.4 MHz frequency offset; worst  
case in the frequency range;  
see Figure 29 and 30  
[10]  
RSCp-p  
ripple susceptibility of  
VCC = 5 V ± 5 %; worst case in the  
frequency range; ripple frequency  
500 kHz  
15  
VCC (peak-to-peak  
value)  
IF amplifier  
Zo  
output impedance  
asymmetrical IF output  
RS at 57 MHz  
-
-
50  
-
-
LS at 57 MHz  
4.7  
nH  
symmetrical IF output  
RS at 57 MHz  
-
-
100  
10  
-
-
LS at 57 MHz  
nH  
Rejection at the IF output (IF amplifier in asymmetrical mode)  
[11]  
[12]  
INTdiv  
divider interferences in  
IF level  
worst case  
-
-
-
-
20  
dBµV  
INTxtal  
crystal oscillator  
VIF = 100 dBµV; worst case in the  
50  
dBc  
interferences rejection  
frequency range  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
27 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 20. Characteristics …continued  
VCCA = VCCD = 5 V; Tamb = 25 °C; values are given for an asymmetrical IF output loaded with a 75 load or with a  
symmetrical IF output loaded with 1.25 k; positive currents are entering the IC and negative currents are going out of the IC;  
the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the  
measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[13]  
INTf(step)  
step frequency rejection VIF = 100 dBµV; worst case in the  
frequency range  
digital application  
-
-
50  
dBc  
TDA6650ATT/C3/S2,  
TDA6651ATT/C3/S2  
digital application  
TDA6651ATT/C3/S3  
-
-
-
-
-
-
35  
57  
50  
dBc  
hybrid application  
TDA6650ATT/C3, TDA6651ATT/C3  
dBc  
[14]  
INTXTH  
crystal oscillator  
harmonics in the  
IF frequency  
dBµV  
AGC output (IF amplifier in asymmetrical mode): pin AGC  
AGCTOP(p-p) AGC take-over point  
(peak-to-peak level)  
bits AL[2:0] = 000  
122.5  
124  
125.5  
dBµV  
Isource(fast)  
Isource(slow)  
Vo  
source current fast  
source current slow  
output voltage  
7.5  
9.0  
11.6  
280  
µA  
185  
220  
nA  
maximum level  
TDA6650ATT/C3;  
TDA6651ATT/C3;  
TDA6650ATT/C3/S2;  
TDA6651ATT/C3/S2  
3.45  
3.55  
3.8  
V
TDA6651ATT/C3/S3  
minimum level  
3.3  
0
3.55  
-
3.8  
0.1  
V
V
Vo(dis)  
output voltage with AGC bits AL[2:0] = 111  
disabled  
TDA6650ATT/C3;  
3.45  
3.55  
3.8  
V
TDA6651ATT/C3;  
TDA6650ATT/C3/S2;  
TDA6651ATT/C3/S2  
TDA6651ATT/C3/S3  
3.3  
-
3.55  
-
3.8  
0.5  
V
VRF(slip)  
RF voltage range to  
switch the AGC from  
active to not active mode  
dB  
VRML  
VRMH  
ILO  
low threshold AGC  
output voltage  
AGC bit = 0 or AGC not active  
AGC bit = 1 or AGC active  
0
-
2.8  
3.8  
+50  
V
high threshold AGC  
output voltage  
3.2  
50  
3.55  
-
V
[15]  
leakage current  
bits AL[2:0] = 110; 0 < VAGC < 3.5 V  
nA  
[1] Important recommendation: to obtain the performances mentioned in this specification, the serial resistance of the crystal used with this  
oscillator must never exceed 120 . The crystal oscillator is guaranteed to operate at any supply voltage between 4.5 V and 5.5 V and  
at any temperature between 20 °C and Tamb(max), as defined in Section 10.  
[2] The drive level is expected with a 50 series resistance of the crystal at series resonance. The drive level will be different with other  
series resistance values.  
[3] The VXTOUT level is measured when the pin XTOUT is loaded with 5 kin parallel with 10 pF.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
28 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
[4] The RF frequency range is defined by the oscillator frequency range and the Intermediate Frequency (IF).  
[5] The 1 % cross modulation performance is measured with AGC detector turned off (AGC bits set to 110).  
[6] The IF output signal stays stable within the range of the step frequency for any RF input level up to 120 dBµV.  
[7] Limits are related to the tank circuits used in Figure 27 and 28 for digital application or Figure 29 and 30 for hybrid application.  
Frequency bands may be adjusted by the choice of external components.  
[8] The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from VCC = 5 V to 4.5 V or from  
VCC = 5 V to 5.25 V. The oscillator is free running during this measurement.  
[9] The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from Tamb = 25 °C to 50 °C or  
from Tamb = 25 °C to 0 °C. The oscillator is free running during this measurement.  
[10] The supply ripple susceptibility is measured in the measurement circuit according to Figure 27 to Figure 30 using a spectrum analyzer  
connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sine wave signal with a frequency of  
500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around  
the IF carrier to a level of 53.5 dB with respect to the carrier.  
[11] This is the level of divider interferences close to the IF frequency. The low and mid band inputs must be left open (i.e. not connected to  
any load or cable); the high band inputs are connected to an hybrid.  
[12] Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator.  
[13] The step frequency rejection is the level of step frequency sidebands related to the carrier. The measurement is done for  
VIF = 100 dBµV. This specification point corresponds to the worst case observed in the frequency range. This parameter is specified for  
fstep = 142.86 kHz in digital applications and fstep = 62.5 kHz, 50 kHz or 142.86 kHz in hybrid application.  
[14] This is the level of the 13rd and 15th harmonics of the 4 MHz crystal oscillator into the IF output.  
[15] The AGC pin (pin 9 for TDA6650ATT and pin 30 for TDA6651ATT) must not be connected to a voltage higher than 3.6 V.  
1
2
0.5  
0.2  
5
10  
10  
j  
+ j  
10  
5
2
1
0.5  
0.2  
40 MHz  
0
200 MHz  
5
0.2  
2
0.5  
mce160  
1
Fig 5. Input admittance (s11) of the low band mixer (40 MHz to 200 MHz); Yo = 20 mS  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
29 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
1
2
0.5  
0.2  
5
10  
10  
j  
10  
5
2
1
0.5  
0.2  
100 MHz  
0
+ j  
500 MHz  
5
0.2  
2
0.5  
mce161  
1
Fig 6. Input admittance (s11) of the mid band mixer (100 MHz to 500 MHz); Yo = 20 mS  
1
0.5  
2
800 MHz  
0.2  
5
350 MHz  
0.5  
10  
+ j  
j  
0.2  
1
2
5
10  
0
10  
5
0.2  
2
0.5  
1
001aac088  
Fig 7. Input impedance (s11) of the high band mixer (350 MHz to 800 MHz); Zo = 100 Ω  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
30 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
001aac089  
80  
Φosc  
(dBc/Hz)  
85  
90  
95  
100  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 27 and Figure 28  
Fig 8. 1 kHz phase noise typical performance in digital application  
001aac090  
85  
Φosc  
(dBc/Hz)  
90  
95  
100  
105  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 27 and Figure 28  
Fig 9. 10 kHz phase noise typical performance in digital application  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
31 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
001aac091  
105  
Φosc  
(dBc/Hz)  
110  
115  
120  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 27 and Figure 28  
Fig 10. 100 kHz phase noise typical performance in digital application  
001aac092  
75  
Φosc  
(dBc/Hz)  
80  
85  
90  
95  
100  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 29 and Figure 30  
Fig 11. 1 kHz phase noise typical performance in hybrid application  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
32 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
001aac093  
85  
Φosc  
(dBc/Hz)  
90  
95  
100  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 29 and Figure 30  
Fig 12. 10 kHz phase noise typical performance in hybrid application  
001aac094  
105  
Φosc  
(dBc/Hz)  
110  
115  
120  
150  
250  
350  
450  
550  
650  
750  
850  
f
(MHz)  
RF  
For measurement circuit see Figure 29 and Figure 30  
Fig 13. 100 kHz phase noise typical performance in hybrid application  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
33 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
signal  
LBIN  
or  
source  
50  
27 Ω  
IFOUTA  
spectrum  
analyzer  
MBIN  
DUT  
V
e
meas  
V
50 Ω  
V'  
meas  
50 Ω  
V
V
i
o
IFOUTB  
RMS  
voltmeter  
V
CCA  
fce747  
Zi >> 50 Ω → Vi = 2 × Vmeas = 70 dBµV.  
Vi = Vmeas + 6 dB = 70 dBµV.  
Vo = V’meas + 3.75 dB.  
Vo  
Gv = 20log  
.
------  
Vi  
ISDB-T and NTSC Japan.  
IF = 57 MHz.  
Fig 14. Gain (GV) measurement in low and mid band with asymmetrical IF output  
signal  
50 source  
LBIN  
or  
transformer  
IFOUTA  
spectrum  
analyzer  
MBIN  
V
DUT  
N1  
N2  
V'  
meas  
C
e
50 Ω  
50 Ω  
V
V
i
V
o
meas  
IFOUTB  
RMS  
voltmeter  
fce748  
Zi >> 50 Ω → Vi = 2 × Vmeas = 70 dBµV.  
Vi = Vmeas + 6 dB = 70 dBµV.  
Vo = V’meas + 15 dB (transformer ratio N1/N2 = 5 and transformer loss).  
Vo  
Gv = 20log  
.
------  
Vi  
ISDB-T and NTSC Japan.  
IF = 57 MHz.  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
Fig 15. Gain (GV) measurement in low and mid band with symmetrical IF output  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
34 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
NOISE  
FIGURE  
METER  
LBIN  
or  
MBIN  
27 Ω  
NOISE  
SOURCE  
BNC  
RIM  
IFOUTA  
INPUT  
CIRCUIT  
DUT  
IFOUTB  
V
CCA  
fce750  
NF = NFmeas loss of input circuit (dB).  
Fig 16. Noise figure (NF) measurement in low and mid band with asymmetrical IF output  
BNC  
connector  
BNC  
connector  
Cs  
TL  
TL  
Cc  
Cp  
Cc  
Cp  
Ls  
to the IC  
mixer input  
to the IC  
mixer input  
Lp  
Lp  
mce452  
a. Schematic 1  
b. Schematic 2  
For fRF = 150 MHz  
For fRF = 300 MHz  
Loss = 0 dB.  
Loss = 0.5 dB.  
Cs = 0.8 pF to 8 pF trimmer.  
Cp = 0.4 pF to 2.5 pF trimmer.  
Ls = 2 turns, 1.5 mm, 0.4 mm wire air coil.  
Cp = 8.2 pF in parallel with a 0.8 pF to 8 pF trimmer.  
Lp = 2 turns, 1.5 mm, 0.4 mm wire air coil.  
Cc = 4.7 nF.  
Lp = 4 turns, 4.5 mm, 0.4 mm wire air coil.  
Cc = 4.7 nF.  
TL: 50 semi rigid cable length = 75 mm.  
TL: 50 semi rigid cable length = 75 mm.  
Fig 17. Input circuit for optimum noise figure measurement  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
35 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
FILTER  
10 dB  
attenuator  
AM = 30 %  
1 kHz  
LBIN  
or  
MBIN  
50  
27 Ω  
A
C
IFOUTA  
modulation  
analyzer  
unwanted  
signal  
source  
e
u
57 MHz  
V
o
HYBRID  
DUT  
V
meas  
50 Ω  
V
50 Ω  
IFOUTB  
B
D
wanted  
signal  
e
w
50 Ω  
RMS  
voltmeter  
V
CCA  
source  
001aac095  
Vo = Vmeas + 3.75 dB.  
V’meas = Vo (transformer ratio N1/N2 = 5 and loss).  
Wanted signal source at fRFpix is 80 dBµV.  
Unwanted output signal at fsnd  
.
The level of unwanted signal is measured by causing 0.3 % AM modulation in the wanted signal.  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
Fig 18. Cross modulation measurement in low and mid band with asymmetrical IF output  
FILTER  
6 dB  
attenuator  
AM = 30 %  
1 kHz  
LBIN  
or  
MBIN  
50 Ω  
transformer  
A
IFOUTA  
C
modulation  
unwanted  
signal  
analyzer  
e
u
57 MHz  
source  
HYBRID  
C
N2  
DUT  
N1  
o
V
V'  
meas  
50 Ω  
V
50 Ω  
B
D
IFOUTB  
wanted  
signal  
e
w
50 Ω  
RMS  
voltmeter  
source  
001aac096  
V’meas = Vo (transformer ratio N1/N2 = 5 and loss).  
Wanted signal source at fRFpix is 80 dBµV.  
The level of unwanted signal Vo at fsnd is measured by causing 0.3 % AM modulation in the wanted output signal.  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
Fig 19. Cross modulation measurement in low and mid band with symmetrical IF output  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
36 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
signal  
source  
50 Ω  
27 Ω  
A
HBIN1  
HBIN2  
C
IFOUTA  
spectrum  
analyzer  
DUT  
HYBRID  
V
V
V'  
meas  
e
o
50 Ω  
V
50 Ω  
V
i
meas  
IFOUTB  
B
D
50 Ω  
RMS  
voltmeter  
V
CCA  
fce751  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss = 70 dBµV.  
Vo = V’meas + 3.75 dB.  
Vo  
Gv = 20log  
.
------  
Vi  
ISDB-T and NTSC Japan.  
IF = 57 MHz.  
Fig 20. Gain (GV) measurement in high band with asymmetrical IF output  
signal  
source  
50 Ω  
transformer  
C
D
HBIN1  
HBIN2  
IFOUTA  
A
spectrum  
analyzer  
DUT  
HYBRID  
V
meas  
C
N1  
N2  
V'  
V
i
50 Ω  
e
V
50 Ω  
V
o
meas  
B
IFOUTB  
50 Ω  
RMS  
voltmeter  
fce752  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss = 70 dBµV.  
Vo = V’meas + 15 dB (transformer ratio N1/N2 = 5 and transformer loss).  
Vo  
Gv = 20log  
.
------  
Vi  
ISDB-T and NTSC Japan.  
IF = 57 MHz.  
Fig 21. Gain (GV) measurement in high band with symmetrical IF output  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
37 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
NOISE  
FIGURE  
METER  
27 Ω  
NOISE  
SOURCE  
A
HBIN1 IFOUTA  
C
HYBRID  
DUT  
B
D
IFOUTB  
HBIN2  
50 Ω  
V
CCA  
fce753  
Loss in hybrid = 1 dB.  
NF = NFmeas loss.  
Fig 22. Noise figure (NF) measurement in high band with asymmetrical IF output  
FILTER  
57 MHz  
AM = 30 %  
1 kHz  
10 dB  
attenuator  
50 Ω  
27 Ω  
A
A
C
C
HBIN1  
IFOUTA  
IFOUTB  
modulation  
analyzer  
unwanted  
signal  
source  
e
u
HYBRID  
HYBRID  
DUT  
V
o
V
50 Ω  
V
meas  
50 Ω  
B
D
B
D
HBIN2  
wanted  
signal  
source  
e
w
RMS  
voltmeter  
V
50 Ω  
50 Ω  
CCA  
001aac097  
Vo = Vmeas + 3.75 dB.  
Wanted signal source at fRFpix is 70 dBµV.  
Unwanted output signal at fsnd  
.
The level of unwanted signal is measured by causing 0.3 % AM modulation in the wanted signal.  
Fig 23. Cross modulation measurement in high band with asymmetrical IF output  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
38 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
FILTER  
6 dB  
attenuator  
AM = 30 %  
1 kHz  
transformer  
50 Ω  
A
C
A
C
HBIN1 IFOUTA  
DUT  
modulation  
analyzer  
unwanted  
signal  
source  
e
u
57 MHz  
HYBRID  
HYBRID  
V'  
N1  
N2  
C
V
meas  
50 Ω  
V
o
50 Ω  
B
D
D
HBIN2 IFOUTB  
B
wanted  
signal  
source  
RMS  
voltmeter  
e
w
50 Ω  
50 Ω  
001aac098  
V’meas = Vo (transformer ratio N1/N2 = 5 and loss).  
Wanted signal source at fRFpix is 70 dBµV.  
The level of unwanted signal Vo at fsnd is measured by causing 0.3 % AM modulation in the wanted output signal.  
N1 = 10 turns.  
N2 = 2 turns.  
N1/N2 = 5.  
Fig 24. Cross modulation measurement in high band with symmetrical IF output  
signal  
source  
LBIN  
or  
27 Ω  
50 Ω  
IFOUTA  
spectrum  
analyzer  
MBIN  
DUT  
e
V
meas  
50 Ω  
V
50 Ω  
IFOUTB  
RMS  
voltmeter  
V
CCA  
fce755  
Zi >> 50 Ω → Vi = 2 × Vmeas  
.
Vi = Vmeas + 6 dB.  
Fig 25. Maximum RF input level without lock-out in low and mid band with asymmetrical IF output  
signal  
source  
27 Ω  
50 Ω  
A
HBIN1  
HBIN2  
IFOUTA  
IFOUTB  
C
spectrum  
analyzer  
DUT  
HYBRID  
V
V
meas  
50 Ω  
V
50 Ω  
e
i
B
D
50 Ω  
RMS  
voltmeter  
V
CCA  
fce756  
Loss in hybrid = 1 dB.  
Vi = Vmeas loss.  
Fig 26. Maximum RF input level without lock-out in high band with asymmetrical IF output  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
39 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
The TDA6650ATT; TDA6651ATT PLL loop stability is guaranteed in the configuration of  
the Figure 27 to Figure 30. In this configuration, the external supply source is 30 V  
minimum, the pull-up resistor, R19 is 15 kand all of the local oscillators are aligned to  
operate at a maximum tuning voltage of 26 V. If the configuration is changed, there might  
be an impact on the loop stability.  
For any other configurations, a stability analysis must be performed. The conventional PLL  
AC model used for the stability analysis, is valid provided the external source (DC supply  
source or DC-to-DC converter) is able to deliver a minimum current that is equal to the  
charge pump current in use.  
The delivered current can be simply calculated with the following formula:  
V
V  
T
DC  
I
=
> I  
(1)  
------------------------  
delivered  
CP  
R
pu  
where:  
Idelivered is the delivered current.  
VDC is the supply source voltage or DC-to-DC converter output voltage.  
VT is the tuning voltage.  
Rpu is the pull-up resistor between the DC supply source (or the DC-to-DC converter  
output) and the tuning line (R19 in Figure 27 to Figure 30).  
ICP is the charge pump current in use.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
40 of 54  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
J4  
LOW  
J3  
MID  
J1  
HIGH1  
J2  
HIGH2  
C7  
L3  
R1  
88 nH  
R07254  
12  
1.5 pF  
N750  
C6  
C5  
D1  
C4  
4.7 nF  
C3  
4.7 nF  
C1  
4.7 nF  
C2  
4.7 nF  
15 pF  
N750  
1 pF  
N750  
BB182  
R2  
6
4
5.6 kΩ  
2
4t  
2
L4  
TOKO  
500 nH  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
(1) 38  
(2) 37  
5.6 kΩ  
33 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
2 (37)  
1
3
D2  
BB178  
R4  
L1  
25 nH  
3 (36)  
(3) 36  
C27  
C26  
4 (35)  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
5 (34)  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
33 pF  
N750  
6 (33)  
(6) 33  
7 (32)  
(7) 32  
TDA6650ATT  
(TDA6651ATT)  
C11 1 pF  
8 (31)  
(8) 31  
AGC  
AGC  
TP1  
9 (30)  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
16 nH  
R02255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
CCA  
D4  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
8.2 pF  
N470  
R8  
1 k  
C18  
V
CCD  
N750  
V
CC  
3.9 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
V
CC  
Y1  
C19  
18 pF  
V
CC  
R9  
330 Ω  
R10  
330 Ω  
R11  
330 Ω  
C23  
4.7 nF  
R7  
1 kΩ  
R23  
C21  
47 nF  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
ST2  
R24  
ADC  
5 V bus  
C20  
470 pF  
R13  
6.8 kΩ  
1 kΩ  
R27  
3.3 kΩ  
R28  
3.3 kΩ  
V
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
R19  
15 kΩ  
R26  
27 Ω  
J8  
3 4 5 6  
1
2
J5  
3
4
C31  
10 µF  
C32  
10 µF  
C30  
10 µF  
2
J6  
J7  
test  
IF out  
30 V  
5 V bus  
001aac099  
The pin numbers in parenthesis represent the TDA6651ATT.  
Fig 27. Measurement circuit for digital application, with asymmetrical IF output and ISDB-T compliant loop filter  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
J4  
LOW  
J3  
MID  
J1  
HIGH1  
J2  
HIGH2  
C7  
L3  
R1  
88 nH  
R07254  
12 Ω  
1.5 pF  
N750  
C6  
C5  
D1  
C4  
4.7 nF  
C3  
4.7 nF  
C1  
4.7 nF  
C2  
4.7 nF  
15 pF  
N750  
1 pF  
N750  
BB182  
R2  
6
4
5.6 kΩ  
2
4t  
2
L4  
TOKO  
500 nH  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
(1) 38  
(2) 37  
5.6 kΩ  
33 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
2 (37)  
1
3
D2  
BB178  
R4  
L1  
25 nH  
3 (36)  
(3) 36  
C27  
C26  
4 (35)  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
5 (34)  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
33 pF  
N750  
6 (33)  
(6) 33  
7 (32)  
(7) 32  
C11 1 pF  
8 (31)  
(8) 31  
TDA6651ATT  
AGC  
AGC  
TP1  
9 (30)  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
16 nH  
R02255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
CCA  
D4  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
8.2 pF  
N470  
R8  
1 kΩ  
C18  
V
CCD  
N750  
V
CC  
3.9 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
Y1  
C19  
18 pF  
V
CC  
R9  
330 Ω  
R10  
330 Ω  
R11  
330 Ω  
C24  
4.7 nF  
C23  
4.7 nF  
R7  
1 kΩ  
C21  
47 nF  
R23  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
C25  
ST2  
C20  
R13  
6.8 kΩ  
R24  
ADC  
470 pF  
5 V bus  
12 pF  
1 kΩ  
R27  
3.3 kΩ  
R28  
3.3 kΩ  
V
V
CC  
CC  
1
6
2
3
R19  
30 V  
R14  
SCL  
1
SDA AS  
TR1  
TOKO  
7451  
15 kΩ  
30 V  
C29  
4.7 nF  
ST1  
1 kΩ  
J8  
3 4 5 6  
1
2
J5  
3
4
C31  
10 µF  
C32  
10 µF  
C30  
10 µF  
2
4
J6  
J7  
test  
IF out  
001aac100  
5 V bus  
The pin numbers in parenthesis represent the TDA6651ATT.  
Fig 28. Measurement circuit for digital application, with symmetrical IF output and ISDB-T compliant loop filter  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
J4  
LOW  
J3  
MID  
J1  
HIGH1  
J2  
HIGH2  
C7  
L3  
R1  
88 nH  
R07254  
12 Ω  
1.5 pF  
N750  
C6  
C5  
D1  
C4  
4.7 nF  
C3  
4.7 nF  
C1  
4.7 nF  
C2  
4.7 nF  
15 pF  
N750  
1 pF  
N750  
BB182  
R2  
6
4
5.6 kΩ  
2
4t  
2
L4  
TOKO  
500 nH  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
(1) 38  
(2) 37  
5.6 kΩ  
33 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
2 (37)  
1
3
D2  
BB178  
R4  
L1  
25 nH  
3 (36)  
(3) 36  
C27  
C26  
4 (35)  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
5 (34)  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
33 pF  
N750  
6 (33)  
(6) 33  
7 (32)  
(7) 32  
TDA6650ATT  
(TDA6651ATT)  
C11 1 pF  
8 (31)  
(8) 31  
AGC  
AGC  
TP1  
9 (30)  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
16 nH  
R02255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
CCA  
D4  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
8.2 pF  
N470  
R8  
1 kΩ  
C18  
V
CCD  
N750  
V
CC  
4.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
V
CC  
Y1  
C19  
18 pF  
V
CC  
R9  
330 Ω  
R10  
330 Ω  
R11  
330 Ω  
C23  
4.7 nF  
R7  
1 kΩ  
R23  
C21  
100 nF  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
ST2  
R24  
ADC  
5 V bus  
C20  
2.7 nF  
R13  
1.8 kΩ  
1 kΩ  
R27  
3.3 kΩ  
R28  
3.3 kΩ  
V
V
CC  
CC  
30 V  
R14  
SCL  
1
SDA AS  
C29  
4.7 nF  
ST1  
1 kΩ  
R19  
15 kΩ  
R26  
27 Ω  
J8  
3 4 5 6  
1
2
J5  
3
4
C31  
10 µF  
C32  
10 µF  
C30  
10 µF  
2
J6  
J7  
test  
IF out  
30 V  
5 V bus  
001aac044  
The pin numbers in parenthesis represent the TDA6651ATT.  
Fig 29. Measurement circuit for hybrid application, with asymmetrical IF output and loop filter for NTSC Japan and ISDB-T standards  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
J4  
LOW  
J3  
MID  
J1  
HIGH1  
J2  
HIGH2  
C7  
L3  
R1  
88 nH  
R07254  
12 Ω  
1.5 pF  
N750  
C6  
C5  
D1  
C4  
4.7 nF  
C3  
4.7 nF  
C1  
4.7 nF  
C2  
4.7 nF  
15 pF  
N750  
1 pF  
N750  
BB182  
R2  
6
4
5.6 kΩ  
2
4t  
2
L4  
TOKO  
500 nH  
*
C34  
R3  
HBIN1  
LOSCIN  
1 (38)  
(1) 38  
(2) 37  
5.6 kΩ  
33 pF  
N750  
HBIN2  
MBIN  
LBIN  
LOSCOUT  
OSCGND  
MOSCIN2  
MOSCIN1  
HOSCIN2  
HOSCOUT2  
HOSCOUT1  
HOSCIN1  
IFGND  
2 (37)  
1
3
D2  
BB178  
R4  
L1  
25 nH  
3 (36)  
(3) 36  
C27  
C26  
4 (35)  
(4) 35  
C33  
RFGND  
IFFIL1  
IFFIL2  
BS4  
5 (34)  
(5) 34  
12 pF  
12 pF  
5.6 kΩ  
33 pF  
N750  
6 (33)  
(6) 33  
7 (32)  
(7) 32  
C11 1 pF  
8 (31)  
(8) 31  
TDA6651ATT  
AGC  
AGC  
TP1  
9 (30)  
(9) 30  
N750  
D3  
BB179  
BS3  
10 (29)  
11 (28)  
12 (27)  
13 (26)  
14 (25)  
15 (24)  
16 (23)  
17 (22)  
18 (21)  
19 (20)  
(10) 29  
(11) 28  
(12) 27  
(13) 26  
(14) 25  
(15) 24  
(16) 23  
(17) 22  
(18) 21  
(19) 20  
C28  
150 nF  
C12 1 pF  
BS2  
IFOUTA  
L2  
16 nH  
R02255  
R5  
BS1  
IFOUTB  
N750  
C13 1 pF  
V
BVS  
CCA  
D4  
R20  
5.6 kΩ  
C17  
ADC/BS5  
SCL  
PLLGND  
8.2 pF  
N470  
R8  
1 kΩ  
C18  
V
CCD  
N750  
V
CC  
4.7 nF  
D5  
D6  
D7  
D8  
SDA  
CP  
C14 1 pF  
R21  
R6  
AS  
VT  
1 kΩ  
27 Ω  
5.6 kΩ  
N750  
XTOUT  
XTAL1  
n.c.  
XTAL2  
R22  
1 kΩ  
Y1  
C19  
18 pF  
V
CC  
R9  
330 Ω  
R10  
330 Ω  
R11  
330 Ω  
R7  
1 kΩ  
C21  
100 nF  
C24  
4.7 nF  
C23  
4.7 nF  
R23  
4 MHz  
1 kΩ  
C16  
4.7 nF  
C15  
4.7 nF  
5 V bus  
C25  
ST2  
C20  
2.7 nF  
R13  
1.8 kΩ  
R24  
ADC  
5 V bus  
12 pF  
1 kΩ  
R27  
3.3 kΩ  
R28  
3.3 kΩ  
V
V
CC  
CC  
1
6
2
3
R19  
30 V  
R14  
SCL  
1
SDA AS  
TR1  
TOKO  
7451  
15 kΩ  
30 V  
C29  
4.7 nF  
ST1  
1 kΩ  
J8  
3 4 5 6  
1
2
J5  
3
4
C31  
10 µF  
C32  
10 µF  
C30  
10 µF  
2
4
J6  
J7  
test  
IF out  
001aac101  
5 V bus  
The pin numbers in parenthesis represent the TDA6651ATT.  
Fig 30. Measurement circuit for hybrid application, with symmetrical IF output and loop filter for NTSC Japan and ISDB-T standards  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
13. Application information  
13.1 Tuning amplifier  
The tuning amplifier is capable of driving the varicap voltage without an external transistor.  
The tuning voltage output must be connected to an external load of 15 kwhich is  
connected to the tuning voltage supply rail. The loop filter design depends on the oscillator  
characteristics and the selected reference frequency as well as the required PLL loop  
bandwidth.  
Applications with the TDA6650ATT; TDA6651ATT have a large loop bandwidth, in the  
order of a few tens of kHz. The calculation of the loop filter elements has to be done for  
each application, it depends on the reference frequency and charge pump current.  
13.2 Crystal oscillator  
The TDA6650ATT; TDA6651ATT needs to be used with a 4 MHz crystal in series with a  
capacitor with a typical value of 18 pF, connected between pin XTAL1 and pin XTAL2.  
Philips crystal 4322 143 04093 is recommended. When choosing a crystal, take care to  
select a crystal able to withstand the drive level of the TDA6650ATT; TDA6651ATT without  
suffering from accelerated ageing. For optimum performances, it is highly recommended  
to connect the 4 MHz crystal without any serial resistance.  
The crystal oscillator of the TDA6650ATT; TDA6651ATT should not be driven (forced)  
from an external signal. Do not use the signal on pins XTAL1 or XTAL2, or the signal  
present on the crystal, to drive an external IC or for any other use as this may dramatically  
degrade the phase noise performance of the TDA6650ATT; TDA6651ATT.  
13.3 Examples of I2C-bus program sequences  
Table 21 to Table 26 show various sequences where:  
S = START  
A = acknowledge  
P = STOP.  
The following conditions apply:  
LO frequency is 800 MHz  
fcomp = 142.86 kHz  
N = 5600  
BS3 output port is on and all other ports are off: thus the high band is selected  
Charge pump current ICP = 600 µA  
Normal mode, with XTOUT buffer on  
IAGC = 220 nA  
AGC take-over point is set to 112 dBµV (p-p)  
Address selection is adjusted to make address C2 valid.  
To fully program the device, either sequence of Table 21 or Table 22 can be used, while  
other arrangements of the bytes are also possible.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
45 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 21. Complete sequence 1  
Start Address  
Divider  
byte 1  
Divider  
byte 2  
Control  
byte 1[1]  
Control  
byte 2  
Control  
byte 1[2]  
Stop  
byte  
S
C2  
A
15  
A
E0  
A
C9  
A
E4  
A
84  
A
P
[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1  
and R0.  
[2] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits  
AL2, AL1 and AL0.  
Table 22. Complete sequence 2  
Start Address  
byte  
Control  
byte 1[1]  
Control  
byte 2  
Divider  
byte 1  
Divider  
byte 2  
Control  
byte 1[2]  
Stop  
S
C2  
A
C9  
A
E4  
A
15  
A
E0  
A
84  
A
P
[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1  
and R0.  
[2] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits  
AL2, AL1 and AL0.  
Table 23. Sequence to program only the main divider ratio  
Start  
Address byte  
C2  
Divider byte 1  
15  
Divider byte 2  
E0  
Stop  
S
A
A
A
P
Table 24. Sequence to change the charge pump current, the ports and the test mode. If the  
reference divider ratio is changed, it is necessary to send the DB1 and DB2 bytes  
Start  
Address byte  
C2  
Control byte 1[1]  
Control byte 2  
E4  
Stop  
S
A
C9  
A
A
P
[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1  
and R0.  
Table 25. Sequence to change the test mode. If the reference divider ratio is changed, it is  
necessary to send the DB1 and DB2 bytes  
Start  
Address byte  
Control byte 1[1]  
Stop  
S
C2  
A
C9  
A
P
[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1  
and R0.  
Table 26. Sequence to change the charge pump current, the ports and the AGC data  
Start  
Address byte  
C2  
Control byte 1[1]  
Control byte 2  
E4  
Stop  
S
A
82  
A
A
P
[1] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits  
AL2, AL1 and AL0.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
46 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Table 27. Sequence to change only the AGC data  
Start  
Address byte  
Control byte 1[1]  
Stop  
S
C2  
A
84  
A
P
[1] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits  
AL2, AL1 and AL0.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
47 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
14. Package outline  
TSSOP38: plastic thin shrink small outline package; 38 leads; body width 4.4 mm;  
lead pitch 0.5 mm  
SOT510-1  
E
H
D
A
X
c
v
M
A
y
E
Z
20  
38  
A
(A )  
3
2
A
A
1
pin 1 index  
θ
L
p
L
1
19  
detail X  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
(1)  
Z
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
v
w
y
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.85  
0.27  
0.17  
0.20  
0.09  
9.8  
9.6  
4.5  
4.3  
0.7  
0.5  
0.49  
0.21  
mm  
1.1  
0.5  
1
0.2  
0.25  
6.4  
0.08  
0.08  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-02-18  
05-11-02  
SOT510-1  
MO-153  
Fig 31. Package outline SOT510-1 (TSSOP38)  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
48 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
15. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
integrated circuits.  
16. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
© NXP B.V. 2007. All rights reserved.  
TDA6650ATT_6651ATT_2  
Product data sheet  
Rev. 02 — 2 February 2007  
49 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 32) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 28 and 29  
Table 28. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 29. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 32.  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
50 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 32. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Abbreviations  
Table 30. Abbreviations  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
AGC  
Automatic Gain Control  
ISDB-T  
NTSC  
PLL  
Integrated Services Digital Broadcasting - Terrestrial  
National Telecommunications Standards Committee  
Phase-Locked Loop  
PMOS  
QAM  
Positive Channel Metal Oxide Semiconductor  
Quadrature Amplitude Modulation  
Voltage-Controlled Oscillator  
VCO  
VCR  
Video Cassette Recorder  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
51 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
18. Revision history  
Table 31. Revision history  
Document ID  
Release date  
20070202  
Data sheet status  
Product data sheet  
Change notice Supersedes  
TDA6650ATT_6651ATT_1  
TDA6650ATT_6651ATT_2  
Modifications:  
-
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Created Table 1 and updated Table 3 and 20 with new type numbers, emphasizing the  
different types for hybrid and digital only applications.  
Two values changed in Table 20; page 27 VAGC < VCC replaced with VAGC < 3.5 V and for  
Vo(dis) new minimum value of 3.3 V added.  
TDA6650ATT_6651ATT_1  
(9397 750 14179)  
20041214  
Product data sheet  
-
-
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
52 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
result in personal injury, death or severe property or environmental damage.  
19.2 Definitions  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
19.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of a NXP Semiconductors product can reasonably be expected to  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TDA6650ATT_6651ATT_2  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 02 — 2 February 2007  
53 of 54  
TDA6650ATT; TDA6651ATT  
NXP Semiconductors  
5 V mixer/oscillator and low noise PLL synthesizer  
21. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
20  
21  
Contact information . . . . . . . . . . . . . . . . . . . . 53  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Application summary . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
4
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
Functional description . . . . . . . . . . . . . . . . . . . 6  
Mixer, Oscillator and PLL (MOPLL) functions. . 6  
I2C-bus voltage . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Phase noise, I2C-bus traffic and crosstalk . . . . 7  
7.1  
7.2  
7.3  
8
8.1  
I2C-bus protocol. . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write mode; R/W = 0 . . . . . . . . . . . . . . . . . . . . 8  
I2C-bus address selection. . . . . . . . . . . . . . . . 10  
XTOUT output buffer and mode setting . . . . . 10  
Step frequency setting . . . . . . . . . . . . . . . . . . 10  
AGC detector setting . . . . . . . . . . . . . . . . . . . 11  
Charge pump current setting . . . . . . . . . . . . . 11  
Read mode; R/W = 1 . . . . . . . . . . . . . . . . . . . 12  
Status at power-on reset. . . . . . . . . . . . . . . . . 13  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 14  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal characteristics. . . . . . . . . . . . . . . . . . 19  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
13  
Application information. . . . . . . . . . . . . . . . . . 45  
Tuning amplifier. . . . . . . . . . . . . . . . . . . . . . . . 45  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 45  
Examples of I2C-bus program sequences . . . 45  
13.1  
13.2  
13.3  
14  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 48  
Handling information. . . . . . . . . . . . . . . . . . . . 49  
16  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Introduction to soldering . . . . . . . . . . . . . . . . . 49  
Wave and reflow soldering . . . . . . . . . . . . . . . 49  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 49  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 50  
16.1  
16.2  
16.3  
16.4  
17  
18  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 52  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 53  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 53  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
19.1  
19.2  
19.3  
19.4  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 2 February 2007  
Document identifier: TDA6650ATT_6651ATT_2  

相关型号:

TDA6651ATT/C3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651ATT/C3/S2

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651ATT/C3/S3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3/S2

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6651TT/C3/S3

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)
NXP

TDA6800

Video modulator circuit
NXP

TDA6800T

Video modulator circuit
NXP

TDA6811

Consumer IC, Bipolar, PDIP18
INFINEON

TDA6812-2M

Consumer Circuit, Bipolar, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON

TDA6812-5

TV-Stereo Processor
INFINEON