TDA8035HN [NXP]

Smart card interface externally by a resistor bridge; 通过一个电阻电桥的智能卡接口的外部
TDA8035HN
型号: TDA8035HN
厂家: NXP    NXP
描述:

Smart card interface externally by a resistor bridge
通过一个电阻电桥的智能卡接口的外部

文件: 总32页 (文件大小:918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8035HN  
Smart card interface  
Rev. 1.0 — 19 April 2011  
Product data sheet  
1. General description  
The TDA8035 is the cost efficient successor of the well established integrated contact  
smart card reader IC TDA8024. It offers a high level of security for the card performing  
current limitation, short circuit detection, ESD protection as well as supply supervision.  
Operating in 3 V supply domain, the current consumption during the standby mode of the  
contact reader is very low and is therefore the ideal component for a power efficient  
contact reader.  
2. Features and benefits  
2.1 Protection of the contact smart card  
„ Thermal and short-circuit protections on all card contacts  
„ Vcc regulation:  
‹ 5 V, 3 V, 1.8 V ± 5 % on 2 × 220 nF multilayer ceramic capacitors with low ESR  
‹ current spikes of 40 nA/s (Vcc = 5 V and 3 V) or 15 nA/s (Vcc = 1.8 V) up to  
20 MHz, with controlled rise and fall times, filtered overload detection  
approximately 120 mA  
„ Automatic activation and deactivation sequences initiated by software or by hardware  
in the event of a short-circuit, card take-off, overheating, falling VREG VDD(INTF),VDDP  
„ Enhanced card-side ElectroStatic Discharge (ESD) protection of (> 8 kV)  
„ Supply supervisor for killing spikes during power on and off:  
‹ threshold internally fixed  
‹ externally by a resistor bridge  
2.2 Easy integration into your contact reader  
„ SW compatible to TDA8024 and TDA8034  
„ 5 V, 3 V, 1.8 V smart card supply  
„ DC/DC converter for Vcc generation separately powered from 2.7 V to 5.5 V supply  
(VDDP and GNDP)  
„ Very low power consumption in Deep Shutdown mode  
„ Three protected half-duplex bidirectional buffered I/O lines (C4, C7 and C8 )  
„ External clock input up to 26 MHz  
„ Card clock generation up to 20 MHz using pins CLKDIV1 and CLKDIV2 with  
synchronous frequency changes of fXTAL, fXTAL/2, XTAL/4 or fXTAL/8  
f
„ Non-inverted control of pin RST using pin RSTIN  
„ Built-in debouncing on card presence contact  
„ Multiplexed status signal using pin OFFN  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
„ Chip Select digital input for parallel operation of several TDA8035 ICs.  
2.2.1 Other  
„ HVQFN32 package  
„ Compliant with ISO 7816, NDS and EMV 4.2 payment systems  
3. Applications  
„ Pay TV  
„ Electronic payment  
„ Identification  
„ IC card readers for banking  
4. Quick reference data  
Table 1.  
Quick reference data  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified  
Symbol  
Supply  
VDDP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
power supply voltage  
interface supply voltage  
power supply current  
2.7  
1.6  
-
3.3  
3.3  
0.1  
5.5  
3.6  
3
V
VDD(INTF)  
IDDP  
V
Deep Shutdown mode;  
μA  
fXTAL = stopped;  
Shutdown mode;  
fXTAL = stopped;  
-
300  
500  
μA  
active mode; VCC = +5 V  
CLK = fXTAL/2; no load  
-
-
-
-
5
mA  
mA  
active mode; CLK =  
fXTAL/2 ; VCC = +5 V; Icc =  
65 mA  
220  
active mode; CLK =  
-
-
-
-
-
-
160  
120  
1
mA  
mA  
μA  
f
XTAL/2 ; VCC = +3 V; ICC =  
65 mA  
active mode; CLK =  
fXTAL/2 ; VCC = +1.8 V; Icc =  
35 mA  
IDD(INTF)  
interface supply current  
Deep Shutdown mode;  
f
XTAL = stopped;  
present card  
Shutdown mode;  
fXTAL = stopped;  
-
-
1
μA  
present card  
Internal supply voltage  
VDD  
supply voltage  
1.62  
1.8  
1.98  
V
Card supply voltage: pin VCC  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
2 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 1.  
Quick reference data …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
4.75  
4.65  
Typ  
5.0  
5.0  
Max  
5.25  
5.25  
Unit  
V
VCC  
supply voltage  
5 V card; DC ICC < 65 mA  
5 V card; AC current spikes  
of 40 nAs  
V
3 V card; DC ICC < 65 mA  
2.85  
2.76  
-
-
3.15  
3.24  
V
V
3 V card; AC current spikes  
of 40 nAs  
1.8 V card; DC ICC < 35 mA  
1.71  
1.66  
-
-
1.89  
1.94  
V
V
1.8 V card; AC current  
spikes of 15 nAs  
Vripple(p-p)  
ICC  
peak-to-peak ripple voltage  
supply current  
from 20 kHz to 200 MHz  
VCC = 5 V or 3 V  
VCC = 1.8 V  
-
-
-
-
-
-
300  
65  
mV  
mA  
mA  
35  
General  
tdeact  
deactivation time  
total sequence  
35  
-
90  
-
250  
0.45  
+85  
μs  
W
Ptot  
total power dissipation  
ambient temperature  
Tamb = 40 °C to +85 °C  
Tamb  
-25  
-
°C  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8035HN/C1  
HVQFN32  
plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-7  
32 terminals; body 5 × 5 × 0.85  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
3 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
6. Block diagram  
V
DD(INTF)  
VDDP  
330 nF  
330 nF  
100 nF  
10 μF  
100 nF  
100 nF  
V
DD(INTF)  
VDDP  
PORADJ VREG  
GND  
GNDP  
SAP SAM SBP SBM  
CS  
VUP  
1 μF  
INTERNAL  
deep  
shutdown  
cmdvccn  
EN_5V/3VN  
EN_1.8VN  
RSTIN  
DCDC  
REGULATOR  
DEEP  
CONVERTER  
SHUTDOWN  
VCC  
LATCH  
CLKDIV1  
CLKDIV2  
ISO7816  
READER  
INTERFACE  
reset and  
supalarm  
2 ×  
INPUT SENSE  
GNDC  
220 nF  
SUPERVISOR  
HOST  
INTERFACE  
DEEP SHUTDOWN  
RST  
CLK  
AUX1  
AUX2  
IO  
IOUC  
AUX1UC  
AUX2UC  
BANDGAP  
C5  
C1  
C2  
C3  
C4  
H
Z
UC  
TDA8035  
C6  
C7  
C8  
INTERNAL  
OSCILLATOR  
vddi  
THERMAL  
configurations  
bus for smartcard  
reader interface  
PROTECTION  
XTAL1  
OFFN  
H
Z
CRYSTAL  
OSCILLATOR  
DIGITAL  
SEQUENCER  
XTAL2  
interuption  
PRESN  
001aan745  
Fig 1. Block diagram  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
4 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
I/OUC  
PORADJ  
1
2
3
4
5
6
7
8
24 CLK  
23 RST  
22 VCC  
21 VUP  
20 SAP  
19 SBP  
18 VDDP  
17 SBM  
CMDVCCN  
VDD(INTF)  
CLKDIV1  
TDA8035  
CLKDIV2  
EN_5V/3VN  
EN_1.8VN  
001aan746  
Transparent top view  
Fig 2. Pin configuration HVQFN32  
7.2 Pin description  
Table 3.  
Symbol  
I/OUC  
Pin description  
Pin  
1
Supply  
Type  
I/O  
I
Description  
host data I/O line (internal 10k pullup resistor to VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
)
PORADJ  
2
Input for VDD(INTF) supervisor. PORADJ threshold can be changed  
with an external R bridge  
CMDVCCN  
VDD(INTF)  
3
4
5
6
7
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
I
start activation sequence input from the host (active LOW)  
interface supply voltage  
supply  
CLKDIV1  
CLKDIV2  
EN_5V/3VN  
I
I
I
control with CLKDIV2 for choosing CLK frequency see Table 4  
control with CLKDIV1 for choosing CLK frequency see Table 4  
control signal for selecting Vcc = 5 V (HIGH) or Vcc = 3 V (LOW) if  
EN_1.8 VN = High  
EN_1.8 VN  
RSTIN  
8
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
I
control signal for selecting Vcc = 1.8V (low)  
card reset input from the host (active HIGH)  
9
I
OFFN  
10  
O
NMOS interrupt to the host (active LOW) with 10k internal pull up  
resistor to VDD(INTF) (See fault detection)  
GND  
11  
12  
13  
14  
15  
-
supply  
ground  
XTAL1  
XTAL2  
VREG  
SAM  
VDD(INTF)  
VDD(INTF)  
VDDP  
I
crystal connection  
crystal connection  
Internal supply voltage  
O
supply  
I/O  
VDDP  
DC/DC converter capacitor ; connected between SAM and SAP; C =  
330nF with ESR < 100mΩ  
GNDP  
16  
-
supply  
DC/DC converter power supply ground  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
5 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 3.  
Symbol  
SBM  
Pin description …continued  
Pin  
Supply  
Type  
Description  
17  
VDDP  
I/O  
DC/DC converter capacitor ; connected between SBM and SBP; C =  
330nF with ESR < 100mΩ  
VDDP  
SBP  
18  
19  
VDDP  
VDDP  
supply  
I/O  
Power supply voltage  
DC/DC converter capacitor ; connected between SBM and SBP; C =  
330nF with ESR < 100mΩ  
SAP  
VUP  
Vcc  
20  
21  
22  
VDDP  
VDDP  
Vcc  
I/O  
I/O  
O
DC/DC converter capacitor ; connected between SAM and SAP; C =  
330nF with ESR < 100mΩ  
DC/DC converter output decoupling capacitor connected between  
VUP and GNDP; C = 1uF with ESR < 100mΩ  
supply for the card (C1)( decouple to GND with 2 × 220nF capacitors  
with ESR < 100mΩ).  
RST  
23  
24  
25  
26  
Vcc  
Vcc  
-
O
card reset (C2)  
CLK  
O
clock to the card (C3)  
card signal ground  
GNDC  
AUX1  
supply  
I/O  
Vcc  
auxiliary data line to/from the card (C4)(internal 10 k pull up resistor to  
Vcc )  
AUX2  
27  
Vcc  
I/O  
auxiliary data line to/from the card (C8)(internal 10 k pull up resistor to  
Vcc )  
I/O  
28  
29  
30  
Vcc  
I/O  
data line to/from the card (C7)(internal 10 k pull up resistor toVcc)  
Chip Select input from the host ( active High )  
CS  
VDD(INTF)  
VDD(INTF)  
I
I
PRESN  
card presence contact input (active LOW); if PRESN is true, then the  
card is considered as present. A debouncing feature of 4.05 ms typ.  
is built in.  
AUX1UC  
AUX2UC  
31  
32  
VDD(INTF)  
VDD(INTF)  
I/O  
I/O  
auxiliary data line to/from the host (internal 10 k pull up resistor to  
VDD(INTF)  
auxiliary data line to/from the host (internal 10 k pull up resistor to  
VDD(INTF)  
)
)
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
6 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8. Functional description  
Remark: Throughout this document the ISO 7816 terminology conventions have been  
adhered to and it is assumed that the reader is familiar with these.  
8.1 Power Supply  
Power supply voltage VDDP should be in the range from 2.7 to 5.5 V  
All interface signals with the system controller are referenced to VDD(INTF). All card  
contacts remain inactive during powering up or powering down.  
Internal regulator VREG should be in the range of 1.8 V  
After powering the device, OFFN remains Low until CMDVCCN is set High and PRESN is  
Low .  
During power off, OFFN falls Low when VDDP is below the threshold voltage falling.  
The frequency of the internal oscillator Foscint used for the activation sequences is put in  
low frequency mode in order to save power consumption as long as CMDVCCN is kept at  
high level (card not activated).  
This device includes DC/DC converter to generate the 5 V, 3 V or 1.8 V card supply  
voltage (Vcc). The DC/DC converter should be supplied separately by Vddp and Gndp.  
The DC/DC converter operates as a voltage tripler, doubler or follower according to the  
respective values of Vcc and Vddp.  
The operating mode is as follows (see Figure 3):  
Vcc = 5 V & Vddp > 3.8 V ; voltage doubler  
Vcc = 5 V & Vddp < 3.6 V; voltage tripler  
Vcc = 3 V & Vddp > 3.8 V; voltage follower  
Vcc = 3 V & Vddp < 3.6 V; voltage doubler  
Vcc = 1.8 V & Vddp > 3.8 V; voltage doubler  
Vcc = 1.8 V & Vddp < 3.6 V; voltage tripler  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
7 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.2 Voltage supervisor  
Vreg  
vbg  
vreg  
VDDP  
Deep_shutdown  
VDD(INTF)  
vbg  
vbg  
Poradj  
001aan747  
Fig 3. Block voltage supervisor  
The voltage supervisor is used as a power on reset, and also as supply drop detection  
during a card session. The threshold of the voltage supervisor is set internally in the IC for  
V
DDP and VREG whereas it can be adjusted externally for VDD(INTF) using the PORADJ pin.  
As long as VREG is less than Vth(VREG) + Vhys(VREG), the IC will remain inactive whatever  
the levels on the command lines are. This also lasts for the duration of tw after VREG has  
reached a level higher than Vth(VREG) + Vhys(VREG).The outputs of the VDDP, VREG and  
V
DD(INTF) supervisors are combined and sent to a digital controller in order to reset the  
TDA8035. This defined reset pulse of approximately 5.7 ms (tw=2048 × 1/(fosc(int)_Low)  
is used internally for maintaining the IC in a inactive mode during the supply voltage  
power-on; (see following pictures). When VREG falls below Vth(VREG) or when V  
DD(INTF)falls below Vthextf or when VDDP falls below Vth(VDDP) , a deactivation sequence  
is performed.  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
8 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
VDDP  
VREG  
Vth_vddp_Ih  
Vt  
Supervisor outputs  
vsup  
X
Tw  
Tw  
reset  
X
X
2 Tw  
supalarm  
Supervisor inputs  
Deep_shutdown  
X
X
X
Oscint  
180 kHz  
1.2 V  
Vbg  
IC pins  
OFFN  
X
debouncing  
001aan748  
Fig 4. Voltage supervisor  
Vddp  
Vth_Vddp_Ih  
2.65 V  
2.5 V  
Vth_vddp_hI  
1
Vreg  
1.8 V  
1
Vsup  
2
2
3
Supalarm  
3
Tw  
Tw  
Tw  
100 μs analog delay  
Reset  
Start debouncing if a card  
has been inserted during  
shutdown mode  
001aan749  
Fig 5. Voltage supervisor  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
9 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.3 Clock circuitry  
DIGITAL  
Enclkin  
clkxtal  
MUX  
XTAL  
001aan750  
Fig 6. Switch external clock  
To generate the card clock CLK, the TDA8035 can either use an external clock provided  
on XTAL1 pin or a crystal oscillator connected on both XTAL1 and XTAL2 pins. The  
TDA8035 automatically detects if an external clock is provided on XTAL1. So, there is no  
need of an extra pin to configure the clock source (external clock or crystal).  
The automatic clock source detection is performed on each activation command  
(CMDVCCN pin falling edge). During a time window defined by the internal oscillator, the  
presence of an external clock on XTAL1 pin is checked. If a clock is detected, the crystal  
oscillator is kept stopped, else, the crystal oscillator is started. It is mandatory when an  
external clock is used, that the clock is applied on XTAL1 before CMDVCCN falling edge  
signal.  
The frequency may be chosen as fXTAL, fXTAL/2, fXTAL/4 or fXTAL/8 via the pins CLKDIV1 and  
CLKDIV2. (Both selection inputs shall not be changed simultaneously: 10 ns minimum are  
required between changes on CLKDIV1/CLKDIV2).  
The frequency change is synchronous, which means that during transition, no pulse is  
shorter than 45 % of the smallest period and that the first and last clock pulse around the  
change has the correct width. When changing dynamically the frequency, the change is  
effective only 10 periods of XTAL1 after the command.  
The duty cycle on pin CLK shall be between 45 % and 55 % :  
When an external clock is used on XTAL1 pin , it should have a duty cycle of 48  
% to 52 % when fXTAL is used and rise and fall times shall respect values mentioned  
on table 7 tr(i), tf(i). It has to connect a 56 pF serial capacitor .  
CLK frequency is fXTAL,fXTAL/2, fXTAL/4 or fXTAL/8  
:
It is guaranteed between 45 % and 55 % of the period by the frequency dividers.  
Table 4.  
Clock configuration  
CLKDIV1  
CLKDIV2  
CLK  
0
0
1
1
0
1
1
0
fXTAL/8  
fXTAL/4  
fXTAL/2  
fXTAL  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
10 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.4 I/O circuitry  
The three data lines I/O, AUX1 and AUX2 are identical.  
The Idle state is realized by both lines (I/O and I/OUC) being pulled HIGH via a 10 k  
resistor (I/O to VCC and I/OUC to VDD(INTF))  
.
I/O is referenced to VCC, and I/OUC to VDD(INTF), thus allowing operation with  
VCC VDD(INTF)  
.
The first side on which a falling edge occurs becomes the master. An anti-latch circuit  
disables the detection of falling edges on the other line, which becomes a slave.  
After a time delay td(edge), the logic 0 present on the master side is transmitted to the slave  
side.  
When the master side returns to logic 1, the slave side transmits the logic 1 during the  
time delay tpu, and then both sides return to their Idle states.  
This active pull-up feature ensures fast Low to High transitions; it is able to deliver more  
than 1 mA up to an output voltage of 0.9 VCC on a 80 pF load. At the end of the active  
pull-up pulse, the output voltage only depends on the internal pull-up resistor, and on the  
load current.  
The current to/from the cards I/O lines is internally limited to 15 mA.  
The maximum frequency on these lines is 1.5 MHz.  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
11 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.5 CS control  
The CS (Chip Select) input allows multiple devices to operate in parallel. When CS is  
high, the system interface signals operate as described. When CS is low , the signals  
CMDVCCN, RSTIN, CLKDIV1, CLKDIV2, EN5V/3VN and EN1V8N are latched. I/OUC,  
AUX1UC and AUX2UC are set to high impedance pull up mode and won’t pass data to or  
from the smart card. OFFN output is tri-stated.  
8.6 Shutdown mode and Deep Shutdown mode  
After power-on reset, the circuit enters the Shutdown mode if CMDVCCN input pin is to a  
logic-High. A minimum number of circuits are active while waiting for the micro-controller  
to start a session.  
1. All card contacts are inactive (approximately 200 Ω to GND).  
2. I/OUC, AUX1UC and AUX2UC are high impedance (10 k pull-up resistor connected  
to VDDI).  
3. Voltage generators are stopped.  
4. Voltage supervisor is active.  
5. The internal oscillator runs at its low frequency.  
A Deep Shutdown mode can be entered by forcing CMDVCCN input pin to a logic-High  
state and EN5V/3VN, EN1V8N input pins to a logic-Low state. Deep Shutdown mode can  
only be entered when the smart card reader is inactive. In Deep Shutdown mode, all  
circuits are disabled. The OFFN pin follows the status of PRESN pin. To exit Deep  
Shutdown mode, change the state of one or more of the three control pins. Figure 8  
shows the control sequence for entering and exiting.  
DEACTIVATION  
SEQUENCE  
CMDVCCN  
EN1V8N  
EN5V/3VN  
Shutdown  
Shutdown  
Shutdown  
debounce  
Mode  
(internal pin)  
Activation  
Deep Shutdown  
Activation  
OFFN  
PRESN  
VCC  
001aan751  
Fig 7. Shutdown mode and Deep Shutdown mode  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
12 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.7 Activation sequence  
The following sequence then occurs with crystal oscillator (see Figure 8):  
T = 64 × Toscint(freq high)  
1. CMDVCCN is pulled Low (t0)  
2. Crystal oscillator start up time (t0).  
3. The internal oscillator changes to its high frequency & DC/DC starts (t1 = t0 + 768 ×  
Tosc_Low)  
4. VCC rises from 0 to selected Vcc value ( 5 V, 3 V, 1.8 V ) with a controlled slope  
(t2 = t1 + 3T/2)  
5. I/O, AUX1 and AUX2 are enabled (t3 = t1 + 10T) (They were pulled LOW until this  
moment)  
6. CLK is applied to the C3 contact (t4 = t3 + x) with 200 ns < x < 10 x 1/fXtal  
7. RST is enabled (t5 = t1 + 13T).  
Oscint  
CMDVCCN  
Xtal1  
low frequency  
high frequency  
VUP  
VCC  
IO  
CLK  
RST  
T / 2  
≈ 3 ms  
t0  
t1  
t2  
t3 t4  
t5  
001aan752  
Fig 8. Activation sequence at t3  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
13 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.8 Deactivation sequence  
When a session is completed, the micro-controller sets the CMDVCCN line to the HIGH  
state. The circuit then executes an automatic deactivation sequence by counting the  
sequencer back and ends in the inactive state (see Figure 9):  
1. RST goes LOW (t11 = t10 + 3T/64)  
2. CLK is stopped LOW (t12 = t11 +T/2)  
3. I/O, AUX1 and AUX2 are pulled LOW (t13 = t11 + T)  
4. VCC falls to zero (t14 = t11 + 3T/2) (The deactivation sequence is completed when VCC  
reaches its inactive state)  
5. VUP falls to zero (t15 = t11 + 7T/2)  
6. VCC < 0.4 V (tde = t11 + 3T/2 + Vcc fall time)  
7. All card contacts become low-impedance to GND (I/OUC, AUX1UC and AUX2UC  
remain pulled up to VDD(INTF) via a 10 kΩ resistor).  
8. The internal oscillator goes back to its lower frequency.  
CMDVCCN  
RST  
CLK  
I/O  
VCC  
VUP  
Xtal1  
Oscint  
high frequency  
low frequency  
T / 2  
t10  
t11  
t12 t13 t14  
t15  
001aan753  
Fig 9. Deactivation sequence  
8.9 VCC regulator  
VCC buffer is able to continuously deliver up to 65mA at Vcc = 5 V, 65 mA at Vcc = 3 V,  
35 mA at Vcc =1.8 V .  
It has an internal overload detection at approximately 125 mA.  
This detection is internally filtered, allowing spurious current pulses of some ms up to  
200 mA to be drawn by the card without causing a deactivation. (The average current  
value must stay below maximum).  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
14 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
8.10 Fault detection  
The following fault conditions are monitored by the circuit:  
1. Short-circuit or high current on VCC  
2. Card removal during transaction  
3. VDDP or VDD(INTF) or Vreg dropping  
4. Overheating.  
There are two different cases (see Figure 10 on page 16):  
1. CMDVCCN High: (outside a card session) then, OFFN is Low if the card is not in the  
reader, and High if the card is in the reader. A supply voltage drop on VDDP is detected  
by the supply supervisor, generates an internal power-on reset pulse, but does not act  
upon OFFN. The card is not powered-up, so no short-circuit or overheating is  
detected.  
2. CMDVCCN Low: (within a card session) then, OFFN falls Low in any of the  
aforementioned cases. As soon as the fault is detected, an emergency deactivation is  
automatically performed. When the system controller sets CMDVCCN back to High, it  
may sense OFFN again after complete deactivation sequence in order to distinguish  
between a hardware problem or a card extraction (OFFN will then go back High if the  
card is still present).  
Depending on the type of card presence switch within the connector (normally close or  
normally open), and on the mechanical characteristics of the switch, a bouncing may  
occur on PRESN signal at card insertion or withdrawal. Consequently, a debounce feature  
of approximately 4.05 ms (tdeb = 1280 × 1/(fosc(int)_Low) is integrated in the device.  
Figure 11 on page 16 When the card is inserted, OFFN goes High only at the end of the  
debouncing time.  
When the card is extracted, an automatic deactivation sequence of the card is performed  
on the first True/False transition on PRESN, and OFFN goes Low .  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
15 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
OFFN  
PRESN  
RST  
CLK  
I/O  
VCC  
VUP  
Xtal1  
Oscint  
high frequency  
low frequency  
T / 2  
t10 = t11 t12 t13 t14  
t15  
001aan754  
Fig 10. Emergency deactivation sequence (Card extraction)  
PRESN  
OFFN  
CMDVCCN  
tdeb  
tdeb  
VCC  
Deactivation caused by  
cards withdrawal  
Deactivation caused by  
short circuit  
001aan757  
Fig 11. Behavior of OFFN, CMDVCCN, PRESN and Vcc  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
16 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
9. Limiting values  
All card contacts are protected against any short with any other card contact.  
Stress beyond these levels may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device under this condition is not implied.  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
6
Unit  
V
VDDP  
power supply voltage  
VDD(INTF) interface supply voltage  
4.1  
4.1  
V
VIH  
High-level input voltage CS, PRESN,  
CMDVCCN, CLKDIV2,  
V
CLKDIV1, EN_1.8VN,  
EN_5V/3VN, RSTIN,  
OFFN, PORADJ, XTAL1,  
I/OUC, AUX1UC, AUX2UC,  
VDDP, VDD(INTF)  
I/O, RST, AUX1, AUX2 and  
CLK  
0.3  
5.75  
V
Tamb  
Tstg  
Tj  
ambient temperature  
storage temperature  
junction temperature  
25  
55  
+85  
°C  
°C  
°C  
W
+150  
+125  
0.45  
+10  
Ptot  
VESD  
total power dissipation Tamb = 40 to +85 °C  
electrostatic discharge Human Body Model (HBM)  
10  
kV  
voltage  
on card pins I/O, RST, VCC,  
AUX1, CLK, AUX2, PRESN  
within typical application  
Human Body Model (HBM)  
on all other pins  
2  
+2  
kV  
V
200  
+200  
Machine Model (MM) on  
all pins  
Field Charged Device  
500  
+500  
V
Model (FCDM) on all pins  
10. Thermal characteristics  
Table 6.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Package name Parameter  
Conditions  
Typ  
Unit  
HVQFN32  
thermal resistance from junction in free air with 4 thermal vias  
55  
K/W  
to ambient  
on pcb  
in free air without thermal  
vias on pcb  
63  
K/W  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
17 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
11. Characteristics  
Table 7.  
Characteristics of IC  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage  
VDDP  
power supply voltage  
interface supply voltage  
power supply current  
2.7  
1.6  
-
3.3  
3.3  
0.1  
5.5  
3.6  
3
V
VDD(INTF)  
IDDP  
V
Deep Shutdown mode;  
fXTAL = stopped  
μA  
Shutdown mode;  
-
300  
500  
μA  
f
XTAL = stopped  
active mode; CLK = fXTA/2;  
CC = +5 V; no load  
-
-
-
-
-
-
-
-
-
-
5
mA  
mA  
mA  
mA  
μA  
V
active mode; CLK = fXTAL/2 ;  
VCC = +5 V; ICC = 65 mA  
220  
160  
120  
1
active mode; CLK = fXTAL/2 ;  
VCC = +3 V; Icc = 65 mA  
active mode; CLK=fXTAL/2 ;  
VCC = +1.8 V; ICC = 35 mA  
IDD(INTF)  
interface supply current  
Deep Shutdown mode  
fXTAL = stopped;  
present card  
Shutdown mode  
-
-
1
μA  
fXTAL = stopped;  
present card  
Vth(  
Vth threshold voltage  
Internal voltage regulator  
falling  
1.38  
1.45  
1.52  
V
)
VREG  
Vhys(  
Vhys hysteresis voltage  
Vth threshold voltage  
Vhys hysteresis voltage  
pulse width  
Internal voltage regulator  
Pin VDDP falling  
Pin VDDP  
90  
100  
2.25  
100  
6.5  
110  
2.35  
110  
8.9  
mV  
V
)
VREG  
Vth(VDDP)  
Vhys(VDDP)  
tW  
2.15  
90  
mV  
ms  
V
3
Vth(L)(PORADJ)  
LOW-level threshold  
voltage on pin PORADJ  
External resistors on  
PORADJ  
0.68  
0.86  
1.04  
Vhys(PORADJ)  
Vhys hysteresis voltage  
leakage current  
Pin PORADJ  
Pin PORADJ  
30  
60  
-
90  
1
mV  
IL  
1  
μA  
VREG  
VO  
tr  
output voltage  
rise time  
1.62  
-
1.8  
-
1.98  
200  
V
Exit of deep Shutdown mode  
μs  
VUP ( DC/DC converter)  
VOH output voltage  
VCC = 5 V, ICC < 65 mA DC  
VCC = 3 V, ICC < 65 mA DC  
VCC = 1.8 V, ICC < 35 mA DC  
5.10  
3.50  
5.10  
5.60  
3.95  
5.60  
6.10  
4.40  
6.10  
V
V
V
Card supply voltage (VCC) (2 ceramic multilayer capacitances with low ESR 220 nF/220nF should be used in order  
to meet these specs)[1]  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
18 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Cdec  
decoupling capacitance  
connected on VCC (220 nF +  
220 nF 10 % )  
396  
-
484  
nF  
Vo  
Io  
output voltage  
output current  
supply voltage  
inactive mode; no load  
inactive mode; Io = 1 mA  
inactive mode &  
0.1  
0.1  
-
-
-
-
+0.1  
+0.3  
1  
V
V
mA  
at grounded pin VCC  
VCC  
active mode; 5 V card;  
ICC < 65 mA DC  
4.75  
2.85  
1.71  
4.65  
5.0  
5.25  
3.15  
1.89  
5.25  
V
V
V
V
active mode; 3 V card;  
3.05  
1.83  
5.0  
ICC < 65 mA DC  
active mode; 1.8 V card;  
ICC < 35 mA DC  
active mode; current pulses  
of 40 nAs with ICC < 200 mA,  
t < 400 ns; 5 V card  
active mode; current pulses  
of 40 nAs with ICC < 200 mA,  
t < 400 ns; 3 V card  
2.76  
1.66  
-
-
-
-
3.20  
1.94  
350  
V
active mode; current pulses  
of 15 nAs with ICC < 200 mA,  
t < 400 ns;1.8 V card  
V
Vripple(p-p)  
ICC  
peak to peak ripple  
voltage  
from 20 kHz to 200 MHz  
mV  
supply current  
VCC = 0 V to 5 V, 3V  
VCC = 0 V to 1.8V  
5 V card  
-
-
65  
mA  
-
-
35  
mA  
SR  
slew rate  
0.055  
0.040  
0.025  
0.18  
0.18  
0.18  
0.8  
0.8  
0.8  
V/μs  
V/μs  
V/μs  
3 V card  
1.8 V card  
Crystal oscillator (XTAL1 and XTAL2)  
Cext  
external capacitance  
connected on pins  
-
-
33  
pF  
XTAL1/XTAL2 (depending on  
specification of crystal or  
resonator used)  
fXTAL  
crystal frequency  
2
0
-
-
27  
27  
MHz  
MHz  
fXTAL1  
External frequency  
applied on XTAL1  
with 56 pF serial capacitor  
VIL  
VIH  
LOW-level input voltage  
0.3  
-
0.3  
VDD(INTF)  
V
V
HIGH-level input voltage  
0.7VDD(IN  
-
VDD(INTF)  
+ 0.3  
TF)  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
19 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr(i), tf(i)  
input rise time, input fall  
times  
fCLK = fXTAL1 = 20 MHz on  
external clock  
-
-
4
ns  
fCLK = fXTAL1 = 10 MHz on  
external clock  
-
-
-
-
8
ns  
ns  
fCLK = fXTAL1 = 5 MHz on  
external clock  
16  
Data lines (pins I/O, I/OUC, AUX1, AUX2, AUXIUC, AUX2UC )  
td  
delay time  
falling edge on pins I/O and  
I/OUC or I/OUC and I/O  
-
-
200  
ns  
tw(pu)  
fmax  
Ci  
pull-up pulse width  
maximum frequency  
input capacitance  
200  
400  
1
ns  
on data lines  
on data lines  
-
-
-
-
MHz  
pF  
10  
Data lines to the card (pins I/O, AUX1, AUX2); (Integrated 10k pull up resistor connected to VCC  
)
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io= 1 mA  
inactive mode &  
0
0
-
-
-
-
0.1  
0.3  
1  
V
V
Io  
output current  
mA  
at grounded pin I/O  
VOL  
LOW-level output voltage IOL = 1 mA  
IOL 15 mA  
0
-
0.3  
V
V
VCC 0.4 -  
VCC  
VOH  
HIGH-level output voltage No DC load  
0.9 VCC  
-
VCC + 0.1 V  
VCC + 0.1 V  
VCC + 0.1 V  
IOH < 40 μA 5 V or 3 V  
0.75 VCC  
IOH < 20 μA 1.8 V card  
IOH ≥ −15 mA  
0.75 VCC  
0
-
0.4  
0.8  
V
V
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage VCC = +5 V  
VCC = +3 V or 1.8 V  
on I/O  
0.3  
-
0.6Vcc  
-
VCC + 0.3 V  
VCC + 0.3 V  
0.7Vcc  
-
Vhys  
IIL  
hysteresis voltage  
30  
-
75  
-
120  
600  
10  
mV  
LOW-level input current  
on I/O; VIL = 0  
μA  
μA  
ILH  
HIGH-level leakage  
current  
on I/O; VIH = VCC  
-
-
tr(i), tf(i)  
tr(o), tf(o)  
input rise time, input fall  
time  
from VIL max to VIH min  
-
-
-
-
1.2  
0.1  
μs  
μs  
output rise time, output  
fall time  
CL <= 80 pF; 10 % to 90 %  
from 0 to VCC  
Rpu  
Ipu  
pull-up resistance  
pull-up current  
connected to VCC  
8k  
10k  
12k  
Ω
VOH = 0.9 VCC, C = 80 pF  
8  
6  
4  
mA  
Data lines to the system; pins I/OμC, AUX1μC, AUX2μC (Integrated 10k pull up resistor to VDD(INTF)  
)
VOL  
LOW level output voltage IOL = 1 mA  
0
-
0.3  
V
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
20 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
HIGH level output voltage No DC load  
0.9  
VDD(INTF)  
-
VDD(INTF)  
+ 0.1  
V
IOH 40 μA; VDDI>2V  
0.75  
VDD(INTF)  
-
-
-
VDD(INTF)  
+ 0.1  
V
IOH 20 μA; VDDI<2V  
0.75  
VDD(INTF)  
VDD(INTF)  
+ 0.1  
V
VIL  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
0.3  
0.3  
V
VDD(INTF)  
VIH  
Vhys  
ILH  
0.7  
VDD(INTF)  
VDD(INTF)  
+ 0.3  
V
on I/Ouc  
0.05  
-
0.25  
V
VDD(INTF)  
VDD(INTF)  
HIGH-level input leakage VIH = VDDI  
current  
10  
μA  
IIL  
LOW-level input current  
pull-up resistance  
VIL = 0  
600  
12k  
1.2  
0.1  
μA  
Ω
Rpu  
connected to VDD(INTF)  
from VIL max to VIH min  
8k  
-
10k  
tr(i), tf(i)  
tr(o), tf(o)  
input rise & fall times  
output rise & fall times  
-
-
μs  
μs  
CL 30 pF; 10 % to 90 %  
-
from 0 to VDD(INTF)  
Ipu  
pull up current  
VOH = 0.9 VDD, C = 30 pF  
1  
-
-
mA  
Internal oscillator  
fosc(int) internal oscillator  
frequency  
Reset output to the card (RST)  
inactive state : osc(int)_Low  
active state : osc(int)_High  
230  
2.0  
315  
2.5  
430  
3.0  
kHz  
MHz  
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io= 1 mA  
inactive mode &  
0
0
-
-
-
-
0.1  
0.3  
1  
V
V
Io  
output current  
mA  
at grounded pin RST  
td  
between RSTIn and RST RST enabled  
-
-
-
-
200  
0.3  
0.2  
ns  
V
VOL  
LOW level output voltage IOL= 200 μA ,VCC = +5 V  
0
0
IOL= 200 μA ,VCC = +3 V or  
V
1.8 V  
IOL = 20 mA (current limit)  
HIGH level output voltage IOH = 200 μA  
IOH = 20 mA (current limit)  
VCC 0.4 -  
VCC  
VCC  
0.4  
V
VOH  
0.9 VCC  
-
-
-
V
0
-
V
tr, tf  
tr, tf  
rise and fall time  
CL = 100 pF  
0.1  
us  
VCC = +5 V and +3 V  
rise and fall time  
CL = 100 pF  
VCC = +18 V  
-
-
0.2  
us  
Clock output to the card (CLK)  
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io = 1 mA  
0
0
-
-
0.1  
0.3  
V
V
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
21 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Io  
output current  
inactive mode &  
at grounded pin CLK  
-
-
1  
mA  
VOL  
LOW level output voltage IOL = 200 μA  
IOL = 70 mA (current limit)  
HIGH level output voltage IOH = 200 μA  
IOH = 70 mA (current limit)  
CL = 30 pF [2]  
0
-
0.3  
VCC  
VCC  
0.4  
16  
V
VCC 0.4 -  
V
VOH  
0.9 VCC  
-
-
-
-
-
-
-
V
0
V
tr  
rise time  
-
ns  
ns  
MHz  
%
tf  
fall time  
CL = 30 pF [2]  
-
16  
fCLK  
frequency on pin CLK  
duty cycle  
operational  
CL = 30 pF [2]  
0
20  
45  
0.2  
55  
SR  
slew rate  
rise and fall; CL = 30 pF; VCC  
= +5 V  
-
V/ns  
rise and fall; CL = 30 pF; VCC  
= +3 V  
0.12  
-
-
-
-
V/ns  
V/ns  
rise and fall; CL = 30 pF; VCC  
= +1.8 V  
0.072  
Control inputs (pins CS, CMDVCCN, CLKDIV1, CLKDIV2, RSTIN, EN_5V/ 3VN, EN_1.8VN)[3]  
VIL  
VIH  
Vhys  
ILL  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
0.3  
-
-
-
-
-
0.3  
VDD(INTF)  
V
0.7  
VDD(INTF)  
VDD(INTF)  
+ 0.3  
V
on control input  
0.05  
VDD(INTF)  
0.25  
VDD(INTF)  
V
LOW-level input leakage VIL = 0  
current  
-
-
1
1
μA  
μA  
ILH  
HIGH-level input leakage VIH = VDD(INTF)  
current  
Card presence input (PRESN); PRESN has an integrated pull down resistor[3]  
VIL  
VIH  
Vhys  
ILL  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
0.3  
-
-
-
-
-
0.3  
VDD(INTF)  
V
0.7  
VDD(INTF)  
VDD(INTF)  
+ 0.3  
V
0.05  
VDD(INTF)  
0.1  
VDD(INTF)  
V
LOW-level input leakage VIL = 0  
current  
-
-
1
5
μA  
μA  
ILH  
HIGH-level input leakage VIH = VDD(INTF)  
current  
OFFN output (pin OFFN is an NMOS drain with a 10k pull up resistor to VDD(INTF)  
)
VOL  
VOH  
LOW level output voltage IOL = 2 mA  
0
-
-
0.3  
12  
V
V
HIGH level output voltage IOH = 15 μA  
0.75  
VDD(INTF)  
Rpu  
pull-up resistance  
8
10  
kΩ  
Protections and limitations  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
22 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb=25 °C; unless otherwise specified  
Symbol  
Tsd  
Parameter  
Conditions  
Min  
-
Typ  
150  
-
Max  
-
Unit  
°C  
shutdown temperature  
output current limit  
at die  
IOlim  
on pin I/O  
15  
70  
20  
90  
+15  
+70  
+20  
160  
260  
150  
250  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
on pin CLK  
-
on pin RST  
-
on pin VCC = 5 V or 1.8 V  
on pin VCC = 3 V  
on pin VCC = 5 V or 1.8 V  
on pin VCC = 3 V  
125  
160  
115  
150  
90  
Isd  
shutdown current  
80  
80  
Timings  
tact  
activation time  
deactivation time  
activation time  
see Figure 8 on page 13  
see Figure 9 on page 14  
1847  
35  
-
3390  
250  
μs  
μs  
μs  
tdeact  
tact  
90  
2690  
time of the window for sending CLK 1992  
to the card with XTAL1  
3653  
tact(start)= t3; see Figure 8 on  
page 13  
2055  
2766  
3749  
μs  
tact(end)=t5; see Figure 8 on  
page 13  
tdeb  
debouncing time  
on pin PRESN  
2.96  
4.05  
5.55  
ms  
[1] To meet these specifications, VCC should be decoupled to CGND using two ceramic multilayer capacitors of low ESR with values of  
either 220 nF.  
[2] The transition time and the duty factor definitions are shown in Figure 12 on page 23.; d=t1/(t1+ t2)  
[3] PRESN and CMDVCCN are active LOW; RSTIN is active HIGH; for CLKDIV1 and CLKDIV2 see Table 4.  
t
t
r
f
V
OH  
90%  
90%  
(V  
+ V ) /2  
OL  
OH  
10%  
10%  
V
OL  
t
t
2
1
fce666  
Fig 12. Definition of output and input transition times  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
23 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
12. Application information  
V
DD(INTF)  
V
DD(INTF)  
(4)  
C9  
220 nF  
CARD  
CONNECTOR  
C8  
(3)  
220 nF  
VDDI  
C5  
C1  
C2  
C3  
C4  
I/OUC  
PORADJ  
CLK  
RST  
VCC  
VUP  
SAP  
SBP  
C6  
C7  
C8  
(5)  
(5)  
R1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
R
CMDVCCN  
VDD(INTF)  
CLKDIV1  
CLKDIV2  
EN5V_3V  
EN_1.8V  
R2  
VDDI  
(1)  
0 Ω  
C1  
C5  
VDDI  
(2)  
1 μF  
100 nF  
TDA8035  
VDDP  
SBM  
VDD  
C4  
(2)  
100 nF  
(2)  
C6  
C7  
10 μF  
330 nF  
C3  
C10  
C2  
100 nF  
330 nF  
(1)  
56 pF  
001aan759  
(1) Place close to the protected pin with good (low resistive) and straight connection to the main ground.  
(2) Place close to the supply pin with good (low resistive) and straight connection to GNDP.  
(3) Place close to TDA8035´s VCC pin with good connection to GNDC.  
(4) Place close to card connector´s C1 (VCC) pinwidth good connection to GNDC.  
(5) Optional bridge. If not used, R1 must be O Ohm and R2 absent (direct connection to VDDI).  
(6) GNDP and GNDC must be connected to the main ground with a straight and low resistive connection  
Fig 13. Application diagram  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
24 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
13. Package outline  
HVQFN32: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
SOT617-7  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
1/2 e  
C
y
v
w
C A  
B
C
e
b
y
C
1
9
16  
L
8
17  
e
E
h
e
2
1/2 e  
1
24  
X
terminal 1  
index area  
32  
25  
D
h
0
2.5  
scale  
5 mm  
w
Dimensions  
Unit  
(1)  
(1)  
A
A
1
b
c
D
D
h
E
E
h
e
e
1
e
2
L
v
y
y
1
max 1.00 0.05 0.30  
5.1 2.2 5.1 2.2  
0.5  
mm nom 0.85 0.02 0.21 0.2 5.0 2.1 5.0 2.1 0.5 3.5 3.5 0.4 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 4.9 2.0 4.9 2.0 0.3  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
sot617-7_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
- - -  
10-02-08  
10-02-09  
SOT617-7  
Fig 14. Package outline SOT617-7  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
25 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
14. Soldering  
14.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature  
of the packages should preferable be kept below 220 °C for thick/large packages, and  
below 235 °C small/thin packages.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
26 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need  
for removal of corrosive residues in most applications.  
14.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
14.5 Package related soldering information  
Table 8.  
Suitability of surface mount IC packages for wave and reflow soldering methods  
Soldering method  
Package  
Wave  
Reflow[1]  
suitable  
suitable  
BGA, HBGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable[2]  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, SMS  
PLCC[3], SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
suitable  
suitable  
not recommended[3][4]  
not recommended[5]  
[1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[2] These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and  
heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
[3] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[4] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than  
0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[5] Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
15. Abbreviations  
Table 9.  
Abbreviations  
Description  
Acronym  
ESD  
ElectroStatic Discharge  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
27 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
16. Revision history  
Table 10. Revision history  
Document ID  
Release date Data sheet status  
20110419 Product data sheet  
Change notice  
Supersedes  
TDA8035HN v. 1.0  
-
-
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
28 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
29 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
30 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
19. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 4. Clock configuration. . . . . . . . . . . . . . . . . . . . . .10  
Table 5. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 6. Thermal characteristics . . . . . . . . . . . . . . . . . .17  
Table 7. Characteristics of IC . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Suitability of surface mount IC packages  
for wave and reflow soldering methods . . . . . . 27  
Table 9. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 10. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 28  
20. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration HVQFN32 . . . . . . . . . . . . . . . . .5  
Fig 3. Block voltage supervisor . . . . . . . . . . . . . . . . . . . .8  
Fig 4. Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 5. Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 6. Switch external clock . . . . . . . . . . . . . . . . . . . . . .10  
Fig 7. Shutdown mode and Deep Shutdown mode . . . .12  
Fig 8. Activation sequence at t3 . . . . . . . . . . . . . . . . . .13  
Fig 9. Deactivation sequence . . . . . . . . . . . . . . . . . . . .14  
Fig 10. Emergency deactivation sequence  
(Card extraction) . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 11. Behavior of OFFN, CMDVCCN, PRESN  
and Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 12. Definition of output and input transition times . . .23  
Fig 13. Application diagram . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 14. Package outline SOT617-7 . . . . . . . . . . . . . . . . .25  
TDA8035HN  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1.0 — 19 April 2011  
31 of 32  
TDA8035HN  
NXP Semiconductors  
Smart card interface  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
20  
21  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Protection of the contact smart card . . . . . . . . 1  
Easy integration into your contact reader . . . . . 1  
Other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.2.1  
3
4
5
6
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
Functional description . . . . . . . . . . . . . . . . . . . 7  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . 8  
Clock circuitry . . . . . . . . . . . . . . . . . . . . . . . . . 10  
I/O circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CS control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Shutdown mode and Deep Shutdown mode . 12  
Activation sequence . . . . . . . . . . . . . . . . . . . . 13  
Deactivation sequence . . . . . . . . . . . . . . . . . . 14  
VCC regulator. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Fault detection . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal characteristics . . . . . . . . . . . . . . . . . 17  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application information. . . . . . . . . . . . . . . . . . 24  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 25  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
11  
12  
13  
14  
14.1  
Introduction to soldering surface mount  
packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 26  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 26  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 27  
Package related soldering information . . . . . . 27  
14.2  
14.3  
14.4  
14.5  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 29  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 29  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 30  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 19 April 2011  
Document identifier: TDA8035HN  

相关型号:

TDA8035HN/C1

IC SPECIALTY ANALOG CIRCUIT, PQCC32, 5 X 5 MM, 0.85 MM HEIGHT, PLASTIC, SOT617-7, HVQFN-32, Analog IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN/C1,151

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN/C1/S1

SPECIALTY ANALOG CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN/C2/S1

SPECIALTY ANALOG CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN/C2/S1J

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN/C2/S1QL

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8037T/C1Y

TDA8037 - Low power 3V smart card interface SOP 28-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8040T

Quadrature demodulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8040T-T

RF/Microwave Modulator/Demodulator, 21.4 MHz - 300 MHz RF/MICROWAVE I/Q DEMODULATOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8040TD

IC SPECIALTY TELECOM CIRCUIT, PDSO16, Telecom IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8040TD-T

IC SPECIALTY TELECOM CIRCUIT, PDSO16, Telecom IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8041H

Quadrature demodulator controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP