TDA8512 [NXP]

26 W BTL and 2 x 13 W SE or 4 x 13 W SE power amplifier; 26 W¯¯ BTL和2个为13W SE或4 ×13 W¯¯ SE功率放大器
TDA8512
型号: TDA8512
厂家: NXP    NXP
描述:

26 W BTL and 2 x 13 W SE or 4 x 13 W SE power amplifier
26 W¯¯ BTL和2个为13W SE或4 ×13 W¯¯ SE功率放大器

放大器 功率放大器
文件: 总24页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8512J  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
Preliminary specification  
2001 Nov 16  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
CONTENTS  
15  
PACKAGE OUTLINE  
16  
SOLDERING  
1
2
3
4
5
6
7
8
FEATURES  
16.1  
Introduction to soldering through-hole mount  
packages  
Soldering by dipping or by solder wave  
Manual soldering  
Suitability of through-hole mount IC packages  
for dipping and wave soldering methods  
APPLICATIONS  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
16.2  
16.3  
16.4  
17  
18  
19  
DATA SHEET STATUS  
DEFINITIONS  
PINNING  
FUNCTIONAL DESCRIPTION  
DISCLAIMERS  
8.1  
8.2  
8.3  
8.4  
Mode select switch  
Mode select  
Built-in protection circuits  
Short-circuit protection  
9
LIMITING VALUES  
10  
11  
12  
13  
14  
HANDLING  
THERMAL CHARACTERISTICS  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
Input configuration  
Output power  
Power dissipation  
Supply Voltage Ripple Rejection (SVRR)  
Switch-on and switch-off  
PCB layout and grounding  
Typical performance characteristics  
2001 Nov 16  
2
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
1
FEATURES  
Flexible leads  
Low thermal resistance  
Requires very few external components  
High output power  
Identical inputs: inverting and non-inverting.  
Low output offset voltage Bridge-Tied Load (BTL)  
channel  
2
APPLICATIONS  
Fixed gain  
Multimedia systems  
Good ripple rejection  
Active speaker systems (stereo with sub woofer or  
QUAD).  
Mode select switch: operating, mute and standby  
Short-circuit safe to ground and across load  
Low power dissipation in any short-circuit condition  
Thermally protected  
3
GENERAL DESCRIPTION  
The TDA8512J is an integrated class-B output amplifier in  
a 17-lead Single-In-Line (SIL) power package. It contains  
4 × 13 W Single Ended (SE) amplifiers of which two can be  
used to configure a 26 W BTL amplifier.  
Reverse polarity safe  
Electrostatic discharge protection  
No switch-on and switch-off plops  
4
QUICK REFERENCE DATA  
SYMBOL  
General  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VP  
supply voltage  
6
15  
18  
4
V
IORM  
Iq(tot)  
Istb  
repetitive peak output current  
total quiescent current  
standby current  
A
80  
0.1  
mA  
100.0 µA  
BTL channel  
Po  
output power  
RL = 4 ; THD = 10%  
Rs = 0 Ω  
26  
W
SVRR  
Vn(o)  
Zi  
supply voltage ripple rejection  
noise output voltage  
input impedance  
46  
dB  
µV  
kΩ  
mV  
70  
25  
VOO  
DC output offset voltage  
150  
SE channels  
Po  
output power  
THD = 10%  
RL = 4 Ω  
7.0  
13.0  
W
RL = 2 Ω  
W
SVRR  
Vn(o)  
Zi  
supply voltage ripple rejection  
noise output voltage  
input impedance  
46  
dB  
µV  
kΩ  
Rs = 0 Ω  
50  
50  
5
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA8512J  
DBS17P  
plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)  
SOT243-1  
2001 Nov 16  
3
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
6
BLOCK DIAGRAM  
V
V
P1  
5
P2  
13  
1
mute switch  
INV1  
C
m
60  
k  
6
VA  
OUT1  
2
kΩ  
power stage  
18 kΩ  
3
mute switch  
C
INV2  
m
60  
kΩ  
8
VA  
OUT2  
2
kΩ  
power stage  
18 kΩ  
V
P
TDA8512J  
14  
MODE  
standby  
switch  
standby  
reference  
voltage  
VA  
PROTECTIONS  
thermal  
short-circuit  
mute  
switch  
15 kΩ  
x1  
4
RR  
mute  
15 kΩ  
reference  
voltage  
16  
15  
mute switch  
C
m
INV3  
INV3  
60  
kΩ  
10  
VA  
OUT3  
2
kΩ  
power stage  
18 kΩ  
17  
mute switch  
C
INV4  
REF  
m
60  
kΩ  
12  
VA  
OUT4  
9
2
kΩ  
input  
reference  
voltage  
power stage  
18 kΩ  
2
7
11  
MGW426  
SGND  
GND1  
GND2  
Fig.1 Block diagram.  
4
2001 Nov 16  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
7
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
non-inverting input 1  
INV1  
SGND  
INV2  
RR  
1
2
INV1  
1
2
3
4
5
6
7
8
9
signal ground  
SGND  
3
non-inverting input 2  
supply voltage ripple rejection  
supply voltage 1  
output 1  
INV2  
RR  
4
VP1  
5
V
P1  
OUT1  
GND1  
OUT2  
REF  
6
OUT1  
GND1  
OUT2  
7
power ground 1  
output 2  
8
9
reference voltage input  
output 3  
OUT3  
GND2  
OUT4  
VP2  
10  
11  
12  
13  
14  
15  
16  
17  
REF  
TDA8512J  
power ground 2  
output 4  
OUT3 10  
11  
12  
13  
14  
15  
16  
17  
GND2  
OUT4  
supply voltage 2  
mode select switch input  
inverting input 3  
non-inverting input 3  
non-inverting input 4  
MODE  
INV3  
INV3  
INV4  
V
P2  
MODE  
INV3  
INV3  
INV4  
MGW427  
Fig.2 Pin configuration.  
2001 Nov 16  
5
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
8
FUNCTIONAL DESCRIPTION  
8.2  
Mode select  
The TDA8512J contains four identical amplifiers and can  
be used in the configurations:  
For the 3 functional modes; standby, mute and operate,  
the pin MODE can be driven by a 3-state logic output  
stage: e.g. microcontroller with some extra components for  
DC level shifting. (see Fig.10).  
Two SE channels (fixed gain 20 dB) and one BTL  
channel (fixed gain 26 dB)  
Standby mode will be activated by a applying a low  
DC level between 0 and 2 V. The power consumption of  
the device will be reduced to less than 1.5 mW. The input  
and output pins are floating: high impedance condition.  
Four SE channels.  
(RL depends on the application).  
8.1  
Mode select switch  
Mute mode will be activated by a applying a DC level  
between 3.3 and 6.4 V. The outputs of the amplifier will be  
muted (no audio output); however, the amplifier is  
DC biased and the DC level of the input and output pins  
stays on half the supply voltage.  
A special feature of the TDA8512J device is the mode  
select switch (pin MODE), offering:  
Low standby current (<100 µA)  
Low switching current (low cost supply switch)  
Mute facility.  
Operating mode is obtained at a DC level between 8.5 V  
and VP.  
To avoid switch-on plops, it is advised to keep the amplifier  
in the mute mode for longer than 100 ms to allow charging  
of the input capacitors at pins INV1, INV2, INV3, INV3  
and INV4. This can be achieved by:  
8.3  
Built-in protection circuits  
The device contains both a thermal protection, and a  
short-circuit protection.  
Control via a microcontroller  
Thermal protection:  
An external timing circuit (see Fig.3).  
The junction temperature is measured by a temperature  
sensor; at a junction temperature of about 160 °C this  
detection circuit switches off the power stages.  
The circuit slowly ramps up the voltage at the pin MODE  
when switching on, and results in fast muting when  
switching off.  
Short-circuit protection (outputs to ground, supply and  
across the load):  
V
P
handbook, halfpage  
Short-circuit is detected by a so called Maximum Current  
Detection circuit, which measures the current in the  
positive, respectively negative supply line of each power  
stage. At currents exceeding (typical) 6 A, the power  
stages are switched off during some ms.  
10 k  
47 µF  
100 Ω  
mode  
select  
switch  
8.4  
Short-circuit protection  
100 kΩ  
When a short-circuit during operation to either GND or  
across the load of one or more channels occurs, the output  
stages are switched off for approximately 20 ms. After that  
time, it is checked during approximately 50 µs to see  
whether the short-circuit is still present. Due to this duty  
factor of 50 µs per 20 ms, the average supply current is  
very low during this short-circuit (approximately 40 mA,  
see Fig.4).  
MGA708  
Fig.3 Mode select switch circuitry.  
2001 Nov 16  
6
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
I(A)  
20 ms  
MGW430  
current  
in  
output  
stage  
t (s)  
short-circuit  
50 µs  
Fig.4 Short-circuit wave form.  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER CONDITIONS  
supply voltage  
MIN. MAX. UNIT  
VP  
operating  
no signal  
18  
21  
6
V
V
A
A
V
V
W
IOSM  
IORM  
Vsc  
non-repetitive peak output current  
repetitive peak output current  
short-circuit safe voltage  
reverse polarity voltage  
total power dissipation  
4
operating; note 1  
18  
6
Vrp  
Ptot  
Tstg  
Tamb  
Tvj  
60  
storage temperature  
55  
40  
+150 °C  
ambient temperature  
+85  
150  
°C  
°C  
virtual junction temperature  
Note  
1. To ground and across load.  
10 HANDLING  
ESD protection of this device complies with the Philips’ General Quality Specification (GQS).  
2001 Nov 16  
7
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
11 THERMAL CHARACTERISTICS  
In accordance with IEC 60747-1.  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
Rth(j-c)  
thermal resistance from junction to ambient  
thermal resistance from junction to case  
in free air  
see Fig.5  
40.0  
1.3  
K/W  
K/W  
The measured thermal resistance of the IC-package (Rth(j-c)) is maximum 1.3 K/W if all four channels are driven. For a  
maximum ambient temperature of 60 °C and VP = 15 V, the following calculation for the heatsink can be made:  
For the application two SE outputs with 2 load, the measured worst-case sine-wave dissipation is 2 × 7 W  
For the application BTL output with 4 load, the worst-case sine-wave dissipation is 12.5 W.  
So the total power dissipation is Pd(tot) = 2 × 7 + 12.5 W = 26.5 W.  
At Tj(max) = 150 °C the temperature increase, caused by the power dissipation, is: T = 150 °C 60 °C = 90 °C.  
90  
26.5  
So Pd(tot) × Rth(tot) = T = 90 K. As a result: Rth(tot)  
th(hs) = Rth(tot) Rth(j-c) = 3.4 1.3 = 2.1 K/W.  
=
= 3.4 K/W which means:  
-----------  
R
The above calculation is for application at worst-case (stereo) sine-wave output signals. In practice, music signals will be  
applied. In that case the maximum power dissipation will be about the half the sine-wave power dissipation, which allows  
the use of a smaller heatsink.  
90  
13.25  
So Pd(tot) × Rth(tot) = T = 90 K. As a result: Rth(tot)  
=
= 6.8 K/W which means:  
--------------  
Rth(hs) = Rth(tot) Rth(j-c) = 6.8 1.3 = 5.5 K/W.  
virtual junction  
output 3 output 4  
handbook, halfpage  
output 1 output 2  
3.0 K/W  
3.0 K/W  
3.0 K/W  
3.0 K/W  
0.7 K/W  
0.7 K/W  
MEA860 - 2  
0.2 K/W  
case  
Fig.5 Equivalent thermal resistance network.  
2001 Nov 16  
8
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
12 DC CHARACTERISTICS  
VP = 15 V; Tamb = 25 °C; measured according to Figs 6 and 7; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VP  
supply voltage  
note 1  
6
15  
18  
V
Iq(tot)  
VO  
total quiescent current  
DC output voltage  
80  
6.9  
160  
mA  
V
VOO  
DC output offset voltage  
note 2  
150  
mV  
Mode select switch  
Vsw(on)  
switch-on voltage  
8.5  
V
Mute condition  
V
mute voltage  
3.3  
6.4  
2
V
VO  
output voltage  
Vi(max) = 1 V; fi = 1 kHz  
note 2  
mV  
mV  
VOO  
DC output offset voltage  
150  
Standby condition  
Vstb  
Istb  
standby voltage  
0
2
V
standby current  
100  
40  
µA  
µA  
Isw(on)  
switch-on current  
12  
Notes  
1. The circuit is DC adjusted at VP = 6 to 18 V and AC operating at VP = 8.5 to 18 V.  
2. Only for BTL channel (VOUT4 VOUT3).  
13 AC CHARACTERISTICS  
VP = 15 V; fi = 1 kHz; Tamb = 25 °C; bandpass 22 Hz to 22 kHz; measured according to Figs 6 and 7; unless otherwise  
specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
BTL channel  
Po  
output power  
RL2 = 4 (see Fig.7); note 1  
THD = 0.5%  
16  
20  
26  
W
W
%
THD = 10%  
22  
THD  
BP  
total harmonic distortion  
power bandwidth  
Po = 1 W  
0.06  
THD = 0.5%; Po = 1 dB with  
20 to 15000 −  
Hz  
respect to 17 W  
fro(l)  
low frequency roll-off  
at 1 dB; note 2  
at 1 dB  
25  
Hz  
fro(h)  
GV  
high frequency roll-off  
20  
25  
kHz  
dB  
closed loop voltage gain  
supply voltage ripple rejection  
26  
27  
SVRR  
note 3;  
operating  
mute  
48  
46  
80  
dB  
dB  
dB  
standby  
2001 Nov 16  
9
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
SYMBOL  
Zi  
PARAMETER  
input impedance  
noise output voltage  
CONDITIONS  
MIN.  
25  
TYP.  
MAX. UNIT  
30  
38  
kΩ  
µV  
µV  
µV  
Vn(o)  
operating; Rs = 0 ; note 4  
operating; Rs = 10 k; note 4  
mute; notes 4 and 5  
70  
100  
60  
200  
SE channels  
Po  
output power  
RL1 = 2 (see Fig.7); note 1  
THD = 0.5%  
8.0  
10.0  
13.0  
W
W
THD = 10%  
11.0  
R
L1 = 4 (see Fig.7); note 1  
THD = 0.5%  
5.5  
7.0  
0.06  
25  
W
THD = 10%  
W
THD  
fro(l)  
total harmonic distortion  
low frequency roll-off  
Po = 1 W  
%
at 1 dB; note 2  
at 1 dB  
Hz  
kHz  
dB  
fro(h)  
Gv  
high frequency roll-off  
20  
19  
closed loop voltage gain  
supply voltage ripple rejection  
20  
21  
SVRR  
note 3;  
operating  
mute  
48  
46  
80  
50  
dB  
dB  
dB  
kΩ  
µV  
µV  
µV  
dB  
dB  
standby  
Zi  
input impedance  
60  
50  
70  
50  
60  
75  
Vn(o)  
noise output voltage  
operating; Rs = 0 ; note 4  
operating; Rs = 10 k; note 4  
mute; notes 4 and 5  
Rs = 10 kΩ  
100  
αcs  
channel separation  
channel unbalance  
40  
GV  
1
Notes  
1. Output power is measured directly at the output pins of the device.  
2. Frequency response externally fixed.  
3. Ripple rejection measured at the output with a source impedance of 0 ; maximum ripple of 2 V (p-p) and at a  
frequency between 100 Hz to 10 kHz.  
4. Noise measured in a bandwidth of 20 Hz to 20 kHz.  
5. Noise output voltage independant of Rs (Vi = 0 V).  
2001 Nov 16  
10  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
14 APPLICATION INFORMATION  
14.1 Input configuration  
For suppressing higher frequency transients (spikes) on  
the supply line a capacitor with low ESR (typical 0.1 µF)  
has to be placed as close as possible to the device. For  
suppressing lower frequency noise and ripple signals, a  
large electrolytic capacitor (e.g.1000 µF or more) must be  
placed close to the device.  
Inputs 1 and 2 are used for SE application on pin OUT1,  
respectively pin OUT2  
Input 3 can be configured for both SE and BTL  
application  
The bypass capacitor on the pin RR reduces the noise and  
ripple on the mid rail voltage. For good THD and noise  
performance, a low ESR capacitor is recommended.  
Input 4 can be used for SE application of pin OUT4, or  
for BTL application together with input 3. See  
Figs 6 and 7.  
14.5 Switch-on and switch-off  
Note that the DC level of all input pins is half the supply  
voltage VP, so coupling capacitors for the input pins are  
necessary!  
To avoid audible plops during switching on and switching  
off the supply voltage, the pin MODE has to be set in  
standby condition (<2V) before the voltage is applied  
(switch-on) or removed (switch-off). Via the mute mode,  
the input- and SVRR-capacitors are smoothly charged.  
Cut-off frequency for the input is: fi(co) = 12 Hz. Therefore  
it is not necessary to use high capacitor values on the  
input; so the delay during switch-on, which is necessary for  
charging the input capacitors, can be minimised. This  
results in a good low frequency response and good  
switch-on behaviour.  
The turn-on and turn-off time can be influenced by an  
RC-circuit on the pin MODE (see Fig.3). Rapidly switching  
on and off of the device or the pin MODE, may cause “click  
and pop” noise. This can be prevented by a proper timing  
on the pin MODE.  
14.2 Output power  
The output power versus supply voltage has been  
measured on the output pins of one channel, and at  
THD = 10%. The maximum output power is limited by the  
maximum supply voltage of 18 V and the maximum  
available output current: 4 A repetitive peak current.  
14.6 PCB layout and grounding  
For high system performance level certain grounding  
techniques are imperative. The input reference grounds  
have to be tied with their respective source grounds, and  
must have separate traces from the power ground traces;  
this will separate the large (output) signal currents from  
interfering with the small AC input signals. The  
small-signal ground traces should be physically located as  
far as possible from the power ground traces. Supply- and  
output-traces should be as wide as practical for delivering  
maximum output power. The PCB layout, which  
accommodates the TDA8510, TDA8511, and TDA8512  
products, is shown in Fig.8.  
14.3 Power dissipation  
The power dissipation graphs are given for one output  
channel in SE, respectively BTL application. So for total  
worst-case power dissipation the Pd of each channel must  
be added up.  
14.4 Supply Voltage Ripple Rejection (SVRR)  
The SVRR is measured with an electrolytic capacitor of  
100 µF on pin RR and at a bandwidth of 10 Hz to 80 kHz,  
whereas the lowest frequencies can be lower than 10 Hz.  
Proper supply bypassing is critical for low noise  
performance and high power supply rejection. The  
respective capacitor locations should be as close to the  
device as possible, and grounded to the power ground. A  
proper power supply decoupling also prevents oscillations.  
2001 Nov 16  
11  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
V
P
2200  
µF  
100  
nF  
V
5
V
MODE  
14  
P1  
P2  
13  
TDA8512J  
(1)  
1 kΩ  
INV1  
1
input 1  
6
8
OUT1  
OUT2  
220  
nF  
(2)  
C
out  
60  
kΩ  
R
L
(1)  
1 kΩ  
INV2  
3
2
input 2  
(2)  
C
out  
220  
nF  
60  
kΩ  
R
SGND  
L
reference  
voltage  
REF  
9
INV3  
15  
60  
kΩ  
10  
OUT3  
(1)  
(1)  
1 kΩ  
1 kΩ  
16  
INV3  
input 3  
input 4  
(2)  
C
C
out  
220  
nF  
R
L
60  
kΩ  
12 OUT4  
17  
4
INV4  
RR  
(2)  
out  
220  
nF  
supply voltage  
ripple rejection  
R
L
1/2V  
P
7
11  
100  
µF  
GND1 GND2  
MGW429  
(1) Advised when driven with hard clipping input signals.  
(2) For frequencies down to 20 Hz:  
Cout = 4700 µF at RL = 2 Ω.  
Cout = 2200 µF at RL = 4 Ω.  
Fig.6 Application diagram for four SE amplifiers.  
12  
2001 Nov 16  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
V
P
2200  
µF  
100  
nF  
V
5
V
MODE  
14  
P1  
P2  
13  
TDA8512J  
(1)  
1 kΩ  
INV1  
1
input 1  
6
8
OUT1  
OUT2  
220  
nF  
(2)  
C
out  
60  
kΩ  
R
L1  
(1)  
1 kΩ  
INV2  
3
input 2  
(2)  
C
out  
220  
nF  
60  
kΩ  
R
2
9
SGND  
L1  
reference  
voltage  
REF  
INV3 16  
INV3 15  
60  
kΩ  
10  
OUT3  
R
(1)  
L2  
4 Ω  
1 kΩ  
60  
kΩ  
inputs  
3 and 4  
470  
nF  
12 OUT4  
17  
4
INV4  
RR  
1/2V  
P
7
11  
100  
µF  
GND1 GND2  
MGW428  
(1) Advised when driven with hard clipping input signals.  
(2) For frequencies down to 20 Hz:  
Cout = 4700 µF at RL1 = 2 .  
Cout = 2200 µF at RL1 = 4 .  
Fig.7 Application diagram for one BTL amplifier and two SE amplifiers.  
13  
2001 Nov 16  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
78 mm  
55  
mm  
a. Top view copper layout.  
TDA8510  
TDA8511  
TDA8512  
Diag  
100 µF  
220 nF  
4700 µF  
100 nF  
470 nF  
out 2  
out 1  
out 3  
out 4  
2200 µF  
47 µF  
4700 µF  
10  
kΩ  
off on  
S-Gnd  
1 IN 2  
Gnd  
V
4 IN 3  
mode  
P
MGW520  
b. Top view component layout.  
Fig.8 Printed-circuit board layout.  
14  
2001 Nov 16  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
14.7 Typical performance characteristics  
MGW431  
MGW432  
4
10  
120  
V
handbook, halfpage  
handbook, halfpage  
o
I
q
(mV)  
(mA)  
3
10  
100  
2
10  
80  
60  
40  
20  
0
10  
1
(1)  
(2)  
1  
10  
2  
10  
3  
10  
0
2
4
6
8
10  
7
9
11  
13  
15  
17  
(V)  
19  
V
(V)  
MODE  
V
P
(1) BTL mode.  
(2) SE mode.  
Fig.9 Quiescent current as a function of supply  
voltage; measured without load.  
Fig.10 Output voltage as a function of mode select  
voltage.  
MGW434  
MGW433  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
(1)  
1  
1  
10  
10  
(2)  
(3)  
(2)  
(3)  
2  
2  
10  
10  
2  
1  
2
2  
1  
2
10  
10  
1
10  
10  
10  
10  
1
10  
10  
P
(W)  
P
(W)  
o
o
SE mode.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
SE mode.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
(1) fi = 10 kHz.  
(1) fi = 10 kHz.  
Fig.11 THD as a function of output power at  
Fig.12 THD as a function of output power at  
RL = 2 .  
RL = 4 .  
2001 Nov 16  
15  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
MGW436  
MGW435  
0
10  
handbook, halfpage  
handbook, halfpage  
SVRR  
(dB)  
THD  
(%)  
20  
40  
1
(1)  
(2)  
1  
10  
(1)  
(2)  
60  
(3)  
(4)  
2  
80  
10  
10  
2  
1  
2
2  
1  
2
10  
1
10  
10  
10  
10  
1
10  
10  
f (kHz)  
f (kHz)  
i
i
SE mode.  
(3) Operating mode channel 2.  
(4) Operating mode channel 1.  
SE mode.  
(1) Mute mode channel 2.  
(2) Mute mode channel 1.  
(1) RL = 4 Ω.  
(2) RL = 2 .  
Fig.13 SVRR as a function of frequency at  
VREF = 1 V; no bandpass applied.  
Fig.14 THD as a function of frequency at Po = 1 W;  
no bandpass applied.  
MGW443  
MGW444  
0
20  
handbook, halfpage  
handbook, halfpage  
P
α
(dB)  
o
cs  
(1)  
(2)  
(W)  
16  
20  
12  
8
40  
60  
80  
(3)  
(4)  
4
0
2  
1  
2
5
10  
15  
20  
10  
10  
1
10  
10  
V
(V)  
f (kHz)  
P
i
SE mode.  
(3) RL = 4 ; THD = 10%.  
(4) RL = 4 ; THD = 0.5%.  
(1) RL = 2 ; THD = 10%.  
(2) RL = 2 ; THD = 0.5%.  
SE mode.  
Fig.15 Channel separation as a function of  
frequency; no bandpass applied.  
Fig.16 Output power as a function of supply  
voltage.  
2001 Nov 16  
16  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
MGW446  
(1)  
MGW445  
12  
10  
handbook, halfpage  
handbook, halfpage  
P
d
P
d
(W)  
10  
(W)  
8
8
6
4
2
6
(1)  
(2)  
4
(2)  
2
0
0
5
10  
15  
20  
0
4
8
12  
16  
V
(V)  
Po (W)  
P
SE mode.  
SE mode.  
(1) RL = 2 .  
(2) RL = 4 .  
(1) RL = 2 .  
(2) RL = 4 .  
Fig.17 Power dissipation as a function of output  
power at VP = 15 V.  
Fig.18 Power dissipation as a function of supply  
voltage.  
MGW448  
MGW447  
4
4
handbook, halfpage  
handbook, halfpage  
B
P
B
P
(dB)  
(dB)  
2
2
0
2  
4  
0
2  
4  
2  
1  
2
2  
1  
2
10  
10  
1
10  
10  
10  
10  
1
10  
10  
f (kHz)  
f (kHz)  
i
i
SE mode.  
VP = 15 V; RL = 2 .  
Po = 8.5 W; THD = 0.5%.  
BTL mode.  
VP = 15 V; RL = 4 .  
Po = 17 W; THD = 0.5%.  
Fig.19 Power bandwidth as a function of  
frequency; no bandpass applied.  
Fig.20 Power bandwidth as a function of  
frequency; no bandpass applied.  
2001 Nov 16  
17  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
MGW438  
MGW437  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
1  
1  
10  
10  
(2)  
(3)  
2  
2  
10  
10  
2  
1  
2
2  
1  
2
10  
10  
1
10  
10  
10  
10  
1
10  
10  
P
(W)  
f (kHz)  
i
o
BTL mode.  
(2) fi = 1 kHz.  
(3) fi = 100 Hz.  
BTL mode.  
(1) fi = 10 kHz.  
Po = 1 W; RL = 4 .  
Fig.21 THD as a function of output power at  
Fig.22 THD as a function of frequency; no  
bandpass applied.  
RL = 4 .  
MGW440  
MGW439  
0
40  
handbook, halfpage  
handbook, halfpage  
(1)  
P
o
(W)  
SVRR  
(dB)  
20  
40  
30  
(2)  
(3)  
(4)  
20  
10  
60  
(1)  
(2)  
0
5
80  
10  
2  
1  
2
10  
15  
20  
10  
1
10  
10  
V
(V)  
f (kHz)  
P
i
BTL mode.  
(1) Operating.  
(2) Mute.  
BTL mode.  
(3) RL = 8 ; THD = 10%.  
(4) RL = 8 ; THD = 0.5%.  
(1) RL = 4 ; THD = 10%.  
(2) RL = 4 ; THD = 0.5%.  
Fig.23 SVRR as a function of frequency at  
VREF = 1 V; no bandpass applied.  
Fig.24 Output power as a function of supply  
voltage.  
2001 Nov 16  
18  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
MGW441  
MGW442  
(1)  
20  
16  
handbook, halfpage  
handbook, halfpage  
P
d
P
d
(W)  
(W)  
16  
12  
(1)  
12  
8
(2)  
8
(2)  
4
4
0
0
5
0
10  
20  
30  
10  
15  
20  
P
(W)  
V
(V)  
o
P
BTL mode.  
BTL mode.  
(1) RL = 4 .  
(2) RL = 8 .  
(1) RL = 4 .  
(2) RL = 8 .  
Fig.25 Power dissipation as a function of output  
power at VP = 15 V.  
Fig.26 Power dissipation as a function of supply  
voltage.  
2001 Nov 16  
19  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
15 PACKAGE OUTLINE  
DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)  
SOT243-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
d
A
2
B
j
E
A
L
3
L
Q
c
2
v
M
1
17  
e
e
m
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
3
m
Q
v
w
x
Z
2
p
h
1
2
h
17.0 4.6 0.75 0.48 24.0 20.0  
15.5 4.4 0.60 0.38 23.6 19.6  
12.2  
11.8  
3.4 12.4 2.4  
3.1 11.0 1.6  
2.00  
1.45  
2.1  
1.8  
6
mm  
10  
2.54 1.27 5.08  
0.8  
4.3  
0.4 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-12-16  
99-12-17  
SOT243-1  
2001 Nov 16  
20  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
16 SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
16.1 Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
16.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
16.2 Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
300 and 400 °C, contact may be up to 5 seconds.  
16.4 Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
2001 Nov 16  
21  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
17 DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
18 DEFINITIONS  
19 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2001 Nov 16  
22  
Philips Semiconductors  
Preliminary specification  
26 W BTL and 2 × 13 W SE or  
4 × 13 W SE power amplifier  
TDA8512J  
NOTES  
2001 Nov 16  
23  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2001  
SCA73  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/01/pp24  
Date of release: 2001 Nov 16  
Document order number: 9397 750 08677  

相关型号:

TDA8512J

26 W BTL and 2 x 13 W SE or 4 x 13 W SE power amplifier
NXP

TDA8540

4 X 4 video switch matrix
NXP

TDA8540N

IC QUAD 4-CHANNEL, AUDIO/VIDEO SWITCH, PDIP20, DIP-20, Multiplexer or Switch
NXP

TDA8540T

4 X 4 video switch matrix
NXP

TDA8540T-T

IC 4-CHANNEL, AUDIO/VIDEO SWITCH, PDSO20, SO-20, Multiplexer or Switch
NXP

TDA8540TD-T

Cross-Point Switch
ETC

TDA8541

1 W BTL audio amplifier
NXP

TDA8541G-S08-R

Audio Amplifier,
UTC

TDA8541L-S08-R

Audio Amplifier,
UTC

TDA8541T

1 W BTL audio amplifier
NXP

TDA8541T-T

IC 1.2 W, 1 CHANNEL, AUDIO AMPLIFIER, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT96-1, SOP-8, Audio/Video Amplifier
NXP

TDA8541T/N1,112

TDA8541 - 1 W BTL audio amplifier SOIC 8-Pin
NXP