TDA8592J [NXP]

IC 87 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier;
TDA8592J
型号: TDA8592J
厂家: NXP    NXP
描述:

IC 87 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier

局域网 放大器 CD 商用集成电路
文件: 总32页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8592J  
I2C-bus controlled 4 × 50 W power amplifier  
Rev. 02 — 3 June 2005  
Product data sheet  
1. General description  
The TDA8592J is a complementary quad BTL audio power amplifier made in BCDMOS  
technology. It contains four independent amplifiers in Bridge Tied Load (BTL)  
configuration. Through the I2C-bus, the diagnostic information of each amplifier and  
speaker can be read separately.  
Both front and both rear channel amplifiers can be configured independently in line driver  
mode with a gain of 20 dB.  
2. Features  
I2C-bus control  
Hardware programmable I2C-bus address  
Can drive a 2 load with a battery voltage of up to 16 V and a 4 load with a battery  
voltage of up to 18 V  
DC-load detection: open, short and present  
AC-load (tweeter) detection  
Programmable clip detection: 1 % or 3 %  
Programmable thermal protection pre-warning  
Independent short-circuit protection per channel  
Low gain line driver mode (20 dB)  
Loss-of-ground and open VP safe  
All outputs protected from short-circuit to ground, to VP, or across the load  
All pins protected from short-circuit to ground  
Soft thermal clipping to prevent audio holes  
Low battery detection.  
3. Quick reference data  
Table 1:  
Quick reference data  
VP = VP1 = VP2 = 14.4 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
14.4 18  
280 400  
Max Unit  
VP  
Iq  
operating supply voltage  
quiescent current  
RL = 4  
8
-
V
mA  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 1:  
Quick reference data …continued  
VP = VP1 = VP2 = 14.4 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Po(max)  
maximum output power  
RL = 4 ;  
VP = 14.4 V;  
44  
46  
-
-
-
W
W
W
VIN = 2 V (RMS)  
square wave  
RL = 4 ;  
VP = 15.2 V;  
49  
83  
52  
87  
VIN = 2 V (RMS)  
square wave  
RL = 2 ;  
VP = 14.4 V;  
VIN = 2 V (RMS)  
square wave  
THD  
total harmonic distortion  
-
-
0.01 0.1  
%
Vn(o)(amp)  
noise output voltage in  
amplifier mode  
50  
70  
µV  
Vn(o)(LN)  
noise output voltage in line  
driver mode  
-
25  
35  
µV  
4. Ordering information  
Table 2:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8592J  
DBS27P  
plastic DIL-bent-SIL (special bent) power package;  
27 leads (lead length 7.7 mm)  
SOT767-1  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
2 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
5. Block diagram  
ADSEL SDA SCL  
V
V
P1  
21  
P2  
1
2
5
7
26  
DIAG  
23  
2
I C-BUS  
STB  
STANDBY/ MUTE  
CLIP DETECT/ DIAGNOSTIC  
INTERFACE  
10  
8
12  
16  
13  
15  
MUTE  
MUTE  
MUTE  
MUTE  
OUTRF+  
OUTRF−  
INRF  
INLF  
INRR  
INLR  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
18  
20  
OUTLF+  
OUTLF−  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
6
4
OUTRR+  
OUTRR−  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
22  
24  
OUTLR+  
OUTLR−  
26 dB/  
20 dB  
V
P
PROTECTION/  
DIAGNOSTIC  
27  
TAB  
TEMPERATURE AND LOAD  
DUMP PROTECTION  
AMPLIFIER  
TDA8592J  
11  
SVR  
14  
17  
9
3
19  
25  
PGND4  
coa036  
SGND  
ACGND  
PGND1 PGND2 PGND3  
Fig 1. Block diagram  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
3 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
6. Pinning information  
6.1 Pinning  
ADSEL  
SDA  
1
2
3
4
5
6
7
8
9
PGND2  
OUTRR  
SCL  
OUTRR+  
V
P2  
OUTRF−  
PGND1  
OUTRF+ 10  
SVR 11  
INRF 12  
INRR 13  
SGND 14  
INLR 15  
TDA8592J  
INLF 16  
ACGND 17  
OUTLF+ 18  
PGND3 19  
OUTLF20  
V
P1  
21  
OUTLR+ 22  
STB 23  
OUTLR24  
PGND4 25  
DIAG 26  
TAB 27  
001aac643  
Fig 2. Pin configuration  
6.2 Pin description  
Table 3:  
Symbol  
ADSEL  
SDA  
Pin description  
Pin  
1
Description  
I2C-bus address selection  
I2C-bus data input and output  
power ground 2  
2
PGND2  
OUTRR−  
SCL  
3
4
channel right rear negative output  
I2C-bus clock input  
5
OUTRR+  
VP2  
6
channel right rear positive output  
power supply voltage 2  
7
OUTRF−  
PGND1  
8
channel right front negative output  
power ground 1  
9
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
4 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 3:  
Symbol  
OUTRF+  
SVR  
Pin description …continued  
Description  
channel right front positive output  
Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
half supply voltage filter capacitor  
channel right front input  
INRF  
INRR  
channel right rear input  
SGND  
INLR  
signal ground  
channel left rear input  
INLF  
channel left front input  
ACGND  
OUTLF+  
PGND3  
OUTLF−  
VP1  
AC ground  
channel left front positive output  
power ground 3  
channel left front negative output  
power supply voltage 1  
OUTLR+  
STB  
channel left rear positive output  
standby or operating or mute mode select input  
channel left rear negative output  
power ground 4  
OUTLR−  
PGND4  
DIAG  
diagnostic and clip detection output; active LOW  
heatsink connection, must be connected to ground  
TAB  
To keep the output pins on the front side, shift bending is applied.  
7. Functional description  
The TDA8592J is an audio power amplifier with four independent amplifiers configured in  
Bridge Tied Load (BTL) with diagnostic capability. The amplifier diagnostic functions give  
information about output offset, load, or short-circuit. Diagnostic functions are controlled  
via the I2C-bus. The TDA8592J is protected against short-circuit, over-temperature, open  
ground and open VP connections. If a short-circuit occurs at the input or output of a single  
amplifier, that channel shuts down, and the other channels continue to operate normally.  
The channel that has a short-circuit can be disabled by the microcontroller via the  
appropriate enable bit of the I2C-bus to prevent any noise generated by the fault condition  
from being heard.  
7.1 Start-up  
When pin STB is LOW, the total quiescent current is low and the I2C-bus lines are  
high-impedance.  
When pin STB is HIGH, the I2C-bus is biased and then the TDA8592J performs a  
power-on reset. When bit D0 of instruction byte IB1 is set, the amplifier is activated, bit D7  
of data byte 2 (power-on reset occurred) is reset, and pin DIAG is no longer held LOW.  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
5 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
7.2 Start-up and shut-down timing  
A capacitor connected to pin SVR enables smooth start-up and shut-down, preventing the  
amplifier from producing audible clicks at switch-on or switch-off. The start-up and  
shut-down times can be extended by increasing the capacitor value.  
If the amplifier is shut-down using pin STB, the amplifier is muted, and the capacitor  
connected to pin SVR discharges. The low current standby mode is activated 2 seconds  
after pin STB goes LOW; see Figure 8.  
7.3 Power-on reset and supply voltage spikes  
If the supply voltage drops too low to guarantee the integrity of the data in the I2C-bus  
latches, the power-on reset cycle will start. All latches will be set to a pre-defined state, pin  
DIAG will be pulled LOW to indicate that a power-on reset has occurred, and bit D7 of  
data byte 2 is also set for the same reason. When D0 of instruction byte 1 is set, the  
power-on flag resets, pin DIAG is released and the amplifier will then enter its start-up  
cycle; see Figure 9 and see Figure 10.  
7.4 Diagnostic output  
Pin DIAG indicates clipping, thermal protection pre-warning, short-circuit protection, low  
and high battery voltage. Pin DIAG is an open-drain output, is active LOW, and must be  
connected to an external voltage via an external pull-up resistor. If a failure occurs, pin  
DIAG remains LOW during the failure and no clipping information is available. The  
microcontroller can read the failure information via the I2C-bus.  
7.5 Muting  
A hard mute and a soft mute can both be performed via the I2C-bus. A hard mute mutes  
the amplifier within 0.5 ms. A soft mute mutes the amplifier within 20 ms and is less  
audible. A hard mute is also activated if a voltage of 8 V is applied to pin STB.  
7.6 Temperature protection  
If the average junction temperature rises to a temperature value that has been set via the  
I2C-bus, a thermal protection pre-warning is activated making pin DIAG LOW. If the  
temperature continues to rise, all four channels will be muted to reduce the output power  
(soft thermal clipping). The value at which the temperature mute control activates is fixed:  
only the temperature at which the thermal protection pre-warning signal occurs can be  
specified by bit D4 in instruction byte 3. If the temperature mute control does not reduce  
the average junction temperature, all the power stages will be switched off (muted) at the  
absolute maximum temperature Tj(max)  
.
7.7 Offset detection  
Offset detection can only be performed when there is no input signal to the amplifiers, for  
instance when the external digital signal processor is muted after a start-up. The output  
voltage of each channel is measured and compared with a reference voltage. If the output  
voltage of a channel is greater than the reference voltage, bit D2 of the associated data  
byte is set and read by the microcontroller during a read instruction. Note that the value of  
this bit is only meaningful when there is no input signal and the amplifier is not muted.  
Offset detection is always enabled.  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
6 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
7.8 Speaker protection  
If one side of a speaker is connected to ground, a missing current protection is  
implemented to prevent damage to the speaker. A fault condition is detected in a channel  
when there is a mismatch between the power current in the high side and the power  
current in the low side; during a fault condition the channel will be switched off.  
The load status of each channel can be read via the I2C-bus: short to ground (one side of  
the speaker connected to ground), short to VP (one side of the speaker connected to VP),  
and shorted load.  
7.9 Line driver mode  
An amplifier can be used as a line driver by switching it to low gain mode. In normal mode,  
the gain between single-ended input and differential output (across the load) is 26 dB. In  
low gain mode the gain between single-ended input and differential output is 20 dB.  
7.10 Input and AC ground capacitor values  
The negative inputs to all four amplifier channels are combined at pin ACGND. To obtain  
the best performance for supply voltage ripple rejection and unwanted audible noise, the  
value of the capacitor connected to pin ACGND must be as close as possible to 4 times  
the value of the input capacitor connected to the positive input of each channel.  
7.11 DC-load detection  
When DC-load detection is enabled, during the start-up cycle, a DC offset is applied  
slowly to the amplifier outputs, and the output currents are measured. If the output current  
of an amplifier rises above a certain level, it is assumed that there is a load of less than  
6 and bit D5 is reset in the associated data byte register to indicate that a load is  
detected.  
Because the offset is measured during the amplifier start-up cycle, detection is inaudible  
and can be performed every time the amplifier is switched on.  
7.12 I2C-bus address selection  
If in the application more amplifiers are used, the I2C-bus address of the TDA8592J can  
be changed with an external resistor: see Section 8.  
7.13 AC-load detection  
AC-load detection can be used to detect that AC-coupled speakers are connected  
correctly during assembly. This requires at least 3 periods of a 19 kHz sine wave to be  
applied to the amplifier inputs. The amplifier produces a peak output voltage which also  
generates a peak output current through the AC-coupled speaker. The 19 kHz sine wave  
is also audible during the test. If the amplifier detects three current peaks that are greater  
than 550 mA, the AC-load detection bit D1 of instruction byte IB1 is set to logic 1. Three  
current peaks are counted to avoid false AC-load detection which can occur if the input  
signal is switched on and off. The peak current counter can be reset by setting bit D1 of  
instruction byte IB1 to logic 0. To guarantee AC-load detection, an amplifier current of  
more than 550 mA is required. AC-load detection will never occur with a current of less  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
7 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
than 150 mA. Figure 3 shows which AC-loads are detected at different output voltages.  
For example, if a load is detected at an output voltage of 2 V (peak), the load is less than  
3.5 . If no load is detected, the output impedance is more than 13 .  
001aaa587  
2
10  
no load present  
(1)  
Z
o(load)  
()  
undefined  
(2)  
10  
load present  
1
0
2
4
6
V
8
(V)  
o(peak)  
(1) Io(peak) < 150 mA.  
(2) Io(peak) > 550 mA.  
Fig 3. Tolerance of AC detected load as a function of output voltage  
7.14 Load detection procedure  
Procedure:  
1. At start-up, enable the AC or DC-load detection by setting D1 of instruction byte IB1 to  
logic 1.  
2. After 250 ms the DC-load is detected and the mute is released. This is inaudible and  
can be implemented each time the IC is powered on.  
3. When the amplifier start-up cycle is completed (after 1.5 s), apply an AC signal to the  
input, and DC-load bits D5 of each data byte should be read and stored by the  
microcontroller.  
4. After at least 3 periods of the input signal, the load status can be checked by reading  
AC-detect bits D4 of each data byte.  
The AC-load peak current counter can be reset by setting bit D1 of instruction byte IB1 to  
logic 0 and then to logic 1. Note that this will also reset the DC-load detection bits D5 in  
each data byte.  
7.15 Low headroom protection  
The normal DC output voltage of the amplifier is set to half the supply voltage and is  
related to the voltage on pin SVR. An external capacitor is connected to pin SVR to  
suppress power supply ripple. If the supply voltage drops (at vehicle engine start), the DC  
output voltage will follow slowly due to the affect of the SVR capacitor.  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
8 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
The headroom voltage is the voltage required for correct operation of the amplifier and is  
defined as the voltage difference between the level of the DC output voltage before the VP  
voltage drop and the level of VP after the voltage drop; see Figure 4.  
At a certain supply voltage drop, the headroom voltage will be insufficient for correct  
operation of the amplifier. To prevent unwanted audible noises at the output, the  
headroom protection mode will be activated; see Figure 9. This protection discharges the  
capacitors connected to pins SVR and ACGND to increase the headroom voltage.  
V
(V)  
V
P
14  
headroom voltage  
SVR voltage  
8.4  
7
output voltage  
steady state: 0.5V  
P
t (s)  
001aaa588  
Fig 4. Amplifier output during supply voltage  
8. I2C-bus specification  
Table 4:  
Device address with hardware address selection; see Figure 23  
RADSEL A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
300 kΩ  
27 kΩ  
1 kΩ  
1
1
1
1
0
1
1
0
0
0 = write to device  
1 = read from device  
0 = write to device  
1 = read from device  
0 = write to device  
1 = read from device  
1
1
0
0
1
1
1
1
0
1
1
1
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
mba608  
Fig 5. Definition of start and stop conditions  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
9 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 6. Bit transfer  
2
I C-WRITE  
SCL  
SDA  
1
2
7
8
9
1
2
7
8
9
MSB 1  
MSB MSB 1  
LSB + 1  
LSB  
MSB  
LSB + 1  
ACK  
ACK  
S
A
A
P
ADDRESS  
WRITE DATA  
W
To stop the transfer, after the last acknowledge (A)  
a stop condition (P) must be generated  
2
I C-READ  
SCL  
SDA  
1
2
7
8
9
1
2
7
8
9
MSB MSB 1  
LSB + 1  
MSB MSB 1  
LSB + 1  
LSB  
ACK  
A
ACK  
A
P
S
R
READ DATA  
ADDRESS  
To stop the transfer, the last byte must not be acknowledged  
and a stop condition (P) must be generated  
: generated by master (microcontroller)  
: generated by slave  
: start  
001aac644  
S
P
A
: stop  
: acknowledge  
R/W : read / write  
Fig 7. I2C-bus read and write modes  
8.1 Instruction bytes  
If bit R/W = 0, the TDA8592J expects 3 instruction bytes: IB1, IB2 and IB3.  
After a power-on reset, all instruction bits are set to zero.  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
10 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 5:  
Bit  
Instruction byte IB1  
Description  
D7 to D2  
D1  
-
AC or DC-load detection switch  
0 = AC or DC-load detection off; resets DC-load detection bits and AC-load  
detection peak current counter  
1 = AC or DC-load detection on  
D0  
amplifier start enable (clear power-on reset flag, D7 of DB2)  
0 = amplifier off; pin DIAG remains LOW  
1 = amplifier on; when power-on occurs, bit D7 of DB2 is reset and pin DIAG is  
released  
Table 6:  
Bit  
Instruction byte IB2  
Description  
D7 to D2  
D1  
-
soft mute all amplifier channels (mute delay 20 ms)  
0 = no mute  
1 = mute  
D0  
hard mute all amplifier channels (mute delay 0.4 ms)  
0 = no mute  
1 = mute  
Table 7:  
Bit  
Instruction byte IB3  
Description  
D7  
clip detection level  
0 = 4 % detection level  
1 = 1 % detection level  
D6  
D5  
D4  
D3  
D2  
amplifier front channels gain select  
0 = 26 dB (normal mode)  
1 = 20 dB (line driver mode)  
amplifier rear channels gain select  
0 = 26 dB (normal mode)  
1 = 20 dB (line driver mode)  
amplifier thermal protection pre-warning  
0 = warning level on 145 °C  
1 = warning level on 122 °C  
disable RF channel  
0 = RF channel enabled  
1 = RF channel disabled  
disable LF channel  
0 = LF channel enabled  
1 = LF channel disabled  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
11 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 7:  
Bit  
Instruction byte IB3 …continued  
Description  
D1  
disable RR channel  
0 = RR channel enabled  
1 = RR channel disabled  
disable LR channel  
D0  
0 = LR channel enabled  
1 = LR channel disabled  
8.2 Data bytes  
If bit R/W = 1, the TDA8592J will send 4 data bytes to the microcontroller: DB1, DB2, DB3  
and DB4.  
Table 8:  
Bit  
Data byte DB1  
Description  
D7  
amplifier thermal protection pre-warning  
0 = no warning  
1 = junction temperature above pre-warning level  
amplifier maximum thermal protection  
0 = junction temperature below 175 °C  
1 = junction temperature above 175 °C  
channel LR DC-load detection  
0 = DC-load detected  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1 = no DC-load detected  
channel LR AC-load detection  
0 = no AC-load detected  
1 = AC-load detected  
channel LR load short-circuit  
0 = normal load  
1 = short-circuit load  
channel LR output offset  
0 = no output offset  
1 = output offset  
channel LR VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
channel LR ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
12 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 9:  
Bit  
Data byte DB2  
Description  
D7  
power-on reset occurred or amplifier status  
0 = amplifier on  
1 = POR has occurred; amplifier off  
-
D6  
D5  
channel RR DC-load detection  
0 = DC-load detected  
1 = no DC-load detected  
channel RR AC-load detection  
0 = no AC-load detected  
1 = AC-load detected  
D4  
D3  
D2  
D1  
D0  
channel RR load short-circuit  
0 = normal load  
1 = short-circuit load  
channel RR output offset  
0 = no output offset  
1 = output offset  
channel RR VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
channel RR ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
Table 10: Data byte DB3  
Bit  
Description  
D7 to D6  
D5  
-
channel LF DC-load detection  
0 = DC-load detected  
1 = no DC-load detected  
channel LF AC-load detection  
0 = no AC-load detected  
1 = AC-load detected  
channel LF load short-circuit  
0 = normal load  
D4  
D3  
D2  
D1  
1 = short-circuit load  
channel LF output offset  
0 = no output offset  
1 = output offset  
channel LF VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
13 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 10: Data byte DB3 …continued  
Bit  
Description  
D0  
channel LF ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
Table 11: Data byte DB4  
Bit  
Description  
D7 to D6  
D5  
-
channel RF DC-load detection  
0 = DC-load detected  
1 = no DC-load detected  
channel RF AC-load detection  
0 = no AC-load detected  
1 = AC-load detected  
channel RF load short-circuit  
0 = normal load  
D4  
D3  
D2  
D1  
D0  
1 = short-circuit load  
channel RF output offset  
0 = no output offset  
1 = output offset  
channel RF VP short-circuit  
0 = no short-circuit to VP  
1 = short-circuit to VP  
channel RF ground short-circuit  
0 = no short-circuit to ground  
1 = short-circuit to ground  
9. Limiting values  
Table 12: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
-
Max  
18  
Unit  
V
VP  
supply voltage  
operating  
non operating  
load dump protection  
1  
0
+50  
50  
V
V
VSDA, VSCL voltage on pins SDA and SCL operating  
0
7
V
VINn, VSVR  
VACGND  
VDIAG  
,
voltage on pins INLF, INLR,  
INRF, INRR, SVR, ACGND and  
DIAG  
operating  
0
13  
V
,
VSTB  
IOSM  
voltage on pin STB  
operating  
0
-
24  
10  
V
A
non-repetitive peak output  
current  
IORM  
repetitive peak output current  
-
6
A
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
14 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 12: Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Tj  
Parameter  
Conditions  
Min  
-
Max  
Unit  
junction temperature  
storage temperature  
ambient temperature  
supply voltage for protections  
150  
°C  
Tstg  
55  
40  
-
+150 °C  
Tamb  
VP(prot)  
+85  
18  
°C  
AC and DC  
V
short-circuit voltage of  
output pins and  
across the load  
Ptot  
total power dissipation  
Tcase = 70 °C  
-
-
-
80  
W
V
[1]  
[2]  
Vesd  
electrostatic discharge voltage human body model  
machine model  
2000  
200  
V
[1] Human body model: Rs = 1.5 k; C = 100 pF; all pins have passed all tests to 2500 V to guarantee 2000 V,  
according to class II.  
[2] Machine model: Rs = 10 ; C = 200 pF; L = 0.75 mH; all pins have passed all tests to 250 V to guarantee  
200 V, according to class II.  
10. Thermal characteristics  
Table 13: Thermal characteristics  
Symbol  
Rth(j-c)  
Parameter  
Conditions  
Typ  
1
Unit  
K/W  
K/W  
thermal resistance from junction to case  
Rth(j-a)  
thermal resistance from junction to  
ambient  
in free air  
40  
11. Characteristics  
Table 14: Characteristics  
Tamb = 25 °C; VP = VP1 = VP2 = 14.4 V, RL = 4 ; measured in test circuit Figure 23; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage behavior  
VP  
operating supply voltage  
RL = 4 Ω  
RL = 2 Ω  
no load  
8
14.4  
14.4  
280  
10  
18  
16  
400  
50  
-
V
8
V
Iq  
quiescent current  
standby current  
-
mA  
µA  
V
Istb  
-
VO  
DC output voltage  
low supply voltage mute  
headroom voltage  
-
7.2  
7
VP(mute)  
Vhr  
6.5  
-
8
V
when headroom protection activated;  
see Figure 4  
1.4  
-
V
VPOR  
VOO  
power-on reset voltage  
output offset voltage  
see Figure 10  
-
5.5  
0
-
V
mute mode and power on  
100  
+100 mV  
Mode select (pin STB)  
Vstb  
standby mode voltage  
operating mode voltage  
-
-
-
1.3  
5.5  
V
V
Voper  
2.5  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
15 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 14: Characteristics …continued  
Tamb = 25 °C; VP = VP1 = VP2 = 14.4 V, RL = 4 ; measured in test circuit Figure 23; unless otherwise specified.  
Symbol  
Vmute  
II  
Parameter  
Conditions  
Min  
Typ  
Max  
VP  
Unit  
V
mute mode voltage  
input current  
8
-
-
VSTB = 5 V  
4
25  
µA  
Start-up, shut-down and mute timing  
twake  
wake-up time from standby  
before first I2C-bus transmission  
is recognized  
via pin STB; see Figure 8  
-
-
300  
250  
500  
-
µs  
tmute(off)  
time from amplifier switch-on to  
mute release  
via I2C-bus D0(IB1) = 1; CSVR = 22 µF;  
see Figure 8  
ms  
td(mute-on)  
delay from mute to on (soft mute) D1(IB2) = 1 0  
delay from mute to on (fast mute) D0(IB2) = 1 0  
10  
10  
10  
25  
25  
25  
40  
40  
40  
ms  
ms  
ms  
delay from mute to on via  
pin STB  
VSTB from 8 V to 4 V  
td(on-mute)  
delay from on to mute (soft mute) D1(IB2) = 0 1  
delay from on to mute (fast mute) D0(IB2) = 0 1  
10  
-
25  
40  
1
ms  
ms  
ms  
0.4  
0.4  
delay from on to mute via  
pin STB  
VSTB from 4 V to 8 V  
-
1
I2C-bus interface  
VIL  
LOW-level input voltage on pins  
SCL and SDA  
-
-
-
-
1.5  
5.5  
0.4  
V
V
V
VIH  
VOL  
HIGH-level input voltage on pins  
SCL and SDA  
2.3  
-
LOW-level output voltage on  
pin SDA  
IL = 3 mA  
fSCL  
clock frequency  
-
-
400  
kHz  
kΩ  
kΩ  
kΩ  
RADSEL  
resistor value for address  
selection  
I2C-bus address D8/D9h  
I2C-bus address DA/DBh  
I2C-bus address DE/DFh  
200  
15  
0
300  
27  
1
36  
1.6  
Diagnostic  
VDIAG(L)  
LOW-level output voltage on  
pin DIAG  
fault condition; IDIAG = 200 µA  
-
-
0.8  
V
V
Vo(offset)  
THDclip  
output voltage when offset is  
detected  
±1.5  
±2  
± 2.5  
THD clip detection level  
D7(IB3) = 0  
D7(IB3) = 1  
-
3.7  
1
-
%
%
°C  
-
-
Tj(warn1)  
Tj(warn2)  
Tj(mute)  
Tj(off)  
average junction temperature for D4(IB3) = 0  
pre-warning 1  
135  
145  
155  
average junction temperature for D4(IB3) = 1  
pre-warning 2  
112  
150  
165  
-
122  
160  
175  
-
132  
170  
185  
6
°C  
°C  
°C  
average junction temperature for VIN = 0.05 V  
3 dB muting  
average junction temperature  
when all outputs are switched off  
Zo(load)  
impedance when a DC-load is  
detected  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
16 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
Table 14: Characteristics …continued  
Tamb = 25 °C; VP = VP1 = VP2 = 14.4 V, RL = 4 ; measured in test circuit Figure 23; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Zo(open)  
impedance when an open  
DC-load is detected  
500  
-
-
Io(load)  
Io(open)  
amplifier current when the  
AC-load bit is set  
550  
-
-
-
-
mA  
mA  
amplifier current when the  
AC-load bit is not set  
150  
Amplifier  
Po  
output power  
RL = 4 ; VP = 14.4 V; THD = 0.5 %  
RL = 4 ; VP = 14.4 V; THD = 10 %  
20  
27  
44  
21  
28  
46  
-
-
-
W
W
W
RL = 4 ; VP = 14.4 V; VIN = 2 V  
(RMS) square wave (maximum power)  
RL = 4 ; VP = 15.2 V; VIN = 2 V  
49  
52  
-
W
(RMS) square wave (maximum power)  
RL = 2 ; VP = 14.4 V; THD = 0.5 %  
RL = 2 ; VP = 14.4 V; THD = 10 %  
37  
51  
83  
41  
55  
87  
-
-
-
W
W
W
RL = 2 ; VP = 14.4 V; VIN = 2 V  
(RMS) square wave (maximum power)  
THD  
total harmonic distortion  
Po = 1 W to 12 W; f = 1 kHz; RL = 4 Ω  
Po = 1 W to 12 W; f = 10 kHz  
Po = 4 W; f = 1 kHz  
-
-
-
-
0.01  
0.2  
0.1  
%
%
%
%
0.5  
0.01  
0.01  
0.03  
0.03  
line driver mode; Vo = 2 V (RMS);  
f = 1 kHz; RL = 600 Ω  
αCS  
channel separation (crosstalk)  
1 kHz to 10 kHz; Rsource = 600 Ω  
Po = 4 W; f = 1 kHz  
50  
-
60  
80  
70  
70  
-
-
-
-
dB  
dB  
dB  
dB  
SVRR  
CMRR  
supply voltage ripple rejection  
common mode ripple rejection  
100 Hz to 10 kHz; Rsource = 600 Ω  
55  
40  
amplifier mode; Vcm = 0.3 V (p-p);  
f = 1 kHz to 3 kHz; Rsource = 0 Ω  
Vcm(max)(rms) maximum common mode voltage f = 1 kHz  
level (RMS value)  
-
-
-
-
0.6  
35  
70  
V
Vn(o)(LN)  
noise output voltage in line driver filter: 20 Hz to 22 kHz; Rsource = 600 Ω  
25  
50  
mV  
mV  
mode  
Vn(o)(amp)  
noise output voltage in amplifier filter: 20 Hz to 22 kHz; Rsource = 600 Ω  
mode  
Gv(amp)  
Gv(LN)  
Zi  
voltage gain in amplifier mode  
voltage gain in line driver mode  
input impedance  
single-ended input to differential output  
single-ended input to differential output  
CIN = 220 nF  
25  
19  
55  
80  
-
26  
20  
70  
90  
70  
20  
27  
21  
-
dB  
dB  
kΩ  
dB  
αmute  
Vo(mute)  
Bp  
mute attenuation  
Vo(on)/Vo(mute)  
-
mute output voltage  
VIN = 1 V (RMS)  
-
mV  
kHz  
power bandwidth  
1 dB; THD = 1 %  
-
-
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
17 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
V
P
DIAG  
DB2 bit D7  
POR  
IB1 bit D0  
start enable  
t
wake  
STB  
SVR  
soft  
t
mute  
mute(off)  
amplifier  
output  
soft  
mute  
001aaa589  
Fig 8. Start-up and shut-down timing  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
18 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
headroom protection activated:  
1) fast mute  
2) discharge of SVR  
V
(V)  
O
V
P
14.4  
low V mute activated  
P
8.8  
output  
voltage  
headroom voltage  
SVR voltage  
8.6  
7.2  
low V mute released  
P
3.5  
t (s)  
DIAG  
DB2 bit D7  
001aaa590  
Fig 9. Low VP behavior (VP > 5.5 V)  
V
O
(V)  
V
P
14.4  
low V mute activated  
P
POR activated  
8.8  
8.6  
7.2  
5.5  
3.5  
SVR voltage  
output voltage  
t (s)  
DIAG  
POR has occurred  
DB2 bit D7  
001aaa591  
Fig 10. Low VP behavior (VP < 5.5 V)  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
19 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
11.1 Performance diagrams  
11.1.1 THD as function of output power Po for different frequencies.  
001aaa761  
2
10  
THD  
(%)  
10  
1
(1)  
1  
10  
2  
10  
10  
(2)  
(3)  
3  
2  
1  
2
10  
10  
1
10  
10  
P
(W)  
o
(1) VP = 14.4 V; RL = 4 ; f = 10 kHz.  
(2) VP = 14.4 V; RL = 4 ; f = 1 kHz.  
(3) VP = 14.4 V; RL = 4 ; f = 100 Hz.  
Fig 11. THD as function of output power  
11.1.2 THD as function of frequency for different output powers  
001aaa762  
10  
THD  
(%)  
1
1  
10  
2  
10  
(1)  
(2)  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
(1) VP = 14.4 V; RL = 4 ; Po = 1 W.  
(2) VP = 14.4 V; RL = 4 ; Po = 10 W.  
Fig 12. THD as function of frequency  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
20 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
11.1.3 Line driver mode  
001aaa763  
1
THD  
(%)  
1  
2  
3  
10  
10  
10  
1  
2
10  
1
10  
10  
V
(V)  
o(rms)  
VP = 14.4 V; RL = 600 ; f = 1 kHz.  
Fig 13. THD as function of Vo in balanced line driver mode  
11.1.4 Output power as function of frequency for different THD levels  
001aaa764  
30  
P
(W)  
o
(1)  
(2)  
28  
26  
24  
22  
20  
(3)  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
(1) VP = 14.4 V; RL = 4 ; THD = 10 %.  
(2) VP = 14.4 V; RL = 4 ; THD = 5 %.  
(3) VP = 14.4 V; RL = 4 ; THD = 0.5 %.  
Fig 14. Po as function of frequency at 4 load  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
21 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
001aaa765  
60  
P
o
(W)  
(1)  
55  
(2)  
50  
45  
40  
35  
(3)  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
(1) VP = 14.4 V; RL = 2 ; THD = 10 %.  
(2) VP = 14.4 V; RL = 2 ; THD = 5 %.  
(3) VP = 14.4 V; RL = 2 ; THD = 0.5 %.  
Fig 15. Po as function of frequency at 2 load  
11.1.5 Output power as function of supply voltage  
001aaa821  
100  
P
o
(W)  
80  
60  
40  
20  
0
(1)  
(2)  
(3)  
8
10  
12  
14  
16  
18  
20  
V
(V)  
P
(1) f = 1 kHz; RL = 4 ; maximum Po.  
(2) f = 1 kHz; RL = 4 ; THD = 10 %.  
(3) f = 1 kHz; RL = 4 ; THD = 0.5 %.  
Fig 16. Po as function of supply voltage at 4 load  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
22 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
001aaa766  
100  
P
o
(W)  
(1)  
80  
60  
40  
20  
0
(2)  
(3)  
8
10  
12  
14  
16  
18  
20  
V
(V)  
P
(1) f = 1 kHz; RL = 2 ; maximum Po.  
(2) f = 1 kHz; RL = 2 ; THD = 10 %.  
(3) f = 1 kHz; RL = 2 ; THD = 0.5 %.  
Fig 17. Po as function of supply voltage at 2 load  
11.1.6 Supply voltage ripple rejection in operating and mute modes  
001aaa767  
11  
SVRR  
(dB)  
100  
90  
80  
70  
60  
(1)  
(2)  
1  
10  
1
10  
f (kHz)  
(1) VP = 14.4 V; RL = 4 ; Vripple = 2 V (p-p); Rin = 600 ; operating mode.  
(2) VP = 14.4 V; RL = 4 ; Vripple = 2 V (p-p); Rin = 600 ; mute mode.  
Fig 18. SVRR as function of frequency, in operating and mute modes  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
23 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
11.1.7 Channel separation as function of frequency  
001aaa768  
100  
cs  
α
(dB)  
90  
80  
70  
60  
50  
2  
1  
2
10  
10  
1
10  
10  
f (kHz)  
VP = 14.4 V; RL = 4 ; Po = 4 W; Rin = 600 .  
Fig 19. Channel separation as function of frequency  
11.1.8 Power dissipation and efficiency  
001aaa602  
50  
P
tot  
(W)  
40  
30  
20  
10  
0
0
10  
20  
30  
P
(W)  
o
VP = 14.4 V; RL = 4 ; f = 1 kHz.  
Fig 20. Power dissipation as function of output power per channel (4 channels driven)  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
24 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
001aaa603  
100  
η
(%)  
80  
60  
40  
20  
0
0
8
16  
24  
32  
40  
P
(W)  
o
VP = 14.4 V; RL = 4 ; f = 1 kHz.  
Fig 21. Efficiency as function of output power per channel (4 channels driven)  
12. Application information  
TDA8592J  
ACGND  
2.2 µF  
0.22 µF  
1.7 kΩ  
from  
microcontroller  
100 Ω  
47 pF  
001aac645  
Fig 22. Application diagram for beep input  
The beep input circuit is to amplify the beep signal from the microcontroller to all  
4 amplifiers (gain = 0 dB).  
Remark: This circuit will not effect the amplifier performance  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
25 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
12.1 Test and application information  
14.4 V  
(1)  
220  
nF  
(1)  
R
ADSEL  
220  
nF  
2200 µF  
(16 V)  
+5 V  
ADSEL  
SCL  
SDA  
V
V
P1  
P2  
10 kΩ  
1
5
2
21  
7
DIAG  
26  
2
23  
I C-BUS  
STB  
STANDBY/ MUTE  
CLIP DETECT/ DIAGNOSTIC  
INTERFACE  
(3)  
OUTRF+  
R
R
R
R
10  
8
S
S
S
S
INRF 12  
470 nF  
MUTE  
MUTE  
MUTE  
MUTE  
26 dB/  
20 dB  
OUTRF−  
PROTECTION/  
DIAGNOSTIC  
18  
20  
OUTLF+  
OUTLF−  
INLF 16  
26 dB/  
20 dB  
470 nF  
PROTECTION/  
DIAGNOSTIC  
6
4
OUTRR+  
OUTRR−  
INRR 13  
470 nF  
26 dB/  
20 dB  
PROTECTION/  
DIAGNOSTIC  
22  
24  
OUTLR+  
OUTLR−  
INLR 15  
470 nF  
26 dB/  
20 dB  
V
P
PROTECTION/  
DIAGNOSTIC  
27  
TAB  
TEMPERATURE AND LOAD  
DUMP PROTECTION  
AMPLIFIER  
TDA8592J  
11  
14  
17  
9
3
19  
25  
SVR  
SGND  
ACGND PGND1  
PGND2  
PGND3 PGND4  
(2)  
2.2 µF  
(4 × 470 nF)  
22 µF  
coa037  
(1) Supply decoupling:  
The high frequency decoupling capacitors (220 nF) should be connected as close as possible to the supply pins. It is  
important that these capacitors are of good quality. When several channels are shorted to the supply simultaneously, high  
peak voltages can occur at the supply line due to the activation of the protections. The high frequency decoupling  
capacitors should suppress these voltage peaks.  
Good results have been achieved with 0805 case size capacitors (X7R material, 220 nF) connected close to each of the  
supply pins.  
(2) The ACGND capacitor value must be close to four times the input capacitor value.  
(3) A capacitor of 10 nF may be added from every amplifier output to ground for EMC reasons.  
Fig 23. Test and application information  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
26 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
12.2 PCB layout  
001aaa604  
Fig 24. PCB layout of test and application circuit; copper layer top  
001aaa605  
Fig 25. PCB layout of test and application circuit; copper layer bottom  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
27 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
address  
D8 (00)  
sense  
V
P
GND  
DA (01)  
DE (11)  
address  
GND  
DZ 5.6 V  
select  
22 µF 2.2 µF  
D1  
on  
V
P
2200 µF  
2
I C  
supply  
470 nF  
470 nF  
SDA  
+ 5 V  
GND  
SCL  
1 µF  
off  
RR  
RF  
LF  
LR  
10 µF  
OUT  
OUT  
SGND  
DIAG MODE  
RF RR  
LR  
LF  
TDA8593J  
IN  
001aaa606  
Fig 26. PCB layout of test and application circuit; components top  
47 kΩ  
47 k220 nF  
220 nF  
33 kΩ  
4.7 kΩ  
TDA3664  
001aaa607  
Fig 27. PCB layout of test and application circuit; components bottom  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
28 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
13. Package outline  
DBS27P: plastic DIL-bent-SIL (special bent) power package; 27 leads (lead length 7.7 mm)  
SOT767-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
A
2
d
A
A
5
4
β
B
j
E
E
1
A
L
3
L
Q
c
2
v
M
1
27  
e
e
m
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
A
b
c
D
d
D
E
e
e
e
E
E
j
L
L
m
Q
v
w
x
β
Z
2
4
5
p
h
1
2
h
1
3
17.0 4.6 1.15 1.65 0.60 0.5 30.4 28.0  
15.5 4.3 0.85 1.35 0.45 0.3 29.9 27.5  
12.2  
11.8  
10.15 1.85 8.4 2.4  
9.85 1.65 7.0 1.6  
2.4  
1.8  
2.1  
1.8  
6
mm  
12  
2
1
4
4.3  
0.6 0.25 0.03 45°  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
SOT767-1  
02-05-02  
Fig 28. Package outline SOT767-1  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
29 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
14. Revision history  
Table 15: Revision history  
Document ID  
TDA8592_2  
Release date Data sheet status  
20050603 Product data sheet  
The data sheet status changed to Product data sheet  
Table 2 updated: Type number TDA8592Q has been deleted.  
20040608 Preliminary data sheet 9397 750 13007  
Change notice Order number  
Supersedes  
-
9397 750 14846 TDA8592_1  
Modifications:  
TDA8592_1  
-
-
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
30 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
16. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — wordmark and logo are trademarks of Koninklijke Philips  
Electronics N.V.  
17. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14846  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 3 June 2005  
31 of 32  
TDA8592J  
Philips Semiconductors  
I2C-bus controlled 4 × 50 W power amplifier  
20. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
13  
14  
15  
16  
17  
18  
19  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 30  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contact information . . . . . . . . . . . . . . . . . . . . 31  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Start-up and shut-down timing . . . . . . . . . . . . . 6  
Power-on reset and supply voltage spikes . . . . 6  
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . 6  
Muting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Temperature protection. . . . . . . . . . . . . . . . . . . 6  
Offset detection. . . . . . . . . . . . . . . . . . . . . . . . . 6  
Speaker protection . . . . . . . . . . . . . . . . . . . . . . 7  
Line driver mode. . . . . . . . . . . . . . . . . . . . . . . . 7  
Input and AC ground capacitor values . . . . . . . 7  
DC-load detection. . . . . . . . . . . . . . . . . . . . . . . 7  
I2C-bus address selection. . . . . . . . . . . . . . . . . 7  
AC-load detection . . . . . . . . . . . . . . . . . . . . . . . 7  
Load detection procedure. . . . . . . . . . . . . . . . . 8  
Low headroom protection . . . . . . . . . . . . . . . . . 8  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
8
8.1  
8.2  
I2C-bus specification . . . . . . . . . . . . . . . . . . . . . 9  
Instruction bytes . . . . . . . . . . . . . . . . . . . . . . . 10  
Data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal characteristics. . . . . . . . . . . . . . . . . . 15  
10  
11  
11.1  
11.1.1  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 15  
Performance diagrams . . . . . . . . . . . . . . . . . . 20  
THD as function of output power Po for  
different frequencies. . . . . . . . . . . . . . . . . . . . 20  
THD as function of frequency for different  
11.1.2  
output powers . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Line driver mode. . . . . . . . . . . . . . . . . . . . . . . 21  
Output power as function of frequency for  
11.1.3  
11.1.4  
different THD levels . . . . . . . . . . . . . . . . . . . . 21  
Output power as function of supply voltage . . 22  
Supply voltage ripple rejection in operating  
11.1.5  
11.1.6  
and mute modes. . . . . . . . . . . . . . . . . . . . . . . 23  
Channel separation as function of frequency . 24  
Power dissipation and efficiency. . . . . . . . . . . 24  
11.1.7  
11.1.8  
12  
12.1  
12.2  
Application information. . . . . . . . . . . . . . . . . . 25  
Test and application information . . . . . . . . . . . 26  
PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 3 June 2005  
Document number: 9397 750 14846  
Published in The Netherlands  

相关型号:

TDA8593J

IC 69 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM27, POWER, PLASTIC, SOT-767-1, DIL-BENT-SIL, 27 PIN, Audio/Video Amplifier
NXP

TDA8594

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594J/N1

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594J/N1S

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594SD

I2C-bus controlled 4 X 50 W power amplifier
NXP

TDA8594SD/N1,112

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8594SD/N1S,112

TDA8594 - I²C-bus controlled 4 x 50 W power amplifier ZIP 27-Pin
NXP

TDA8595

I2C-bus controlled 4 ⅴ 45 W power amplifier
NXP

TDA8595J

I2C-bus controlled 4 ⅴ 45 W power amplifier
NXP

TDA8595J/N2,112

TDA8595 - I²C-bus controlled 4 x 45 W power amplifier ZIP 27-Pin
NXP

TDA8595J/N2S,112

TDA8595 - I²C-bus controlled 4 x 45 W power amplifier ZIP 27-Pin
NXP