TDA8764AHL [NXP]

10-bit high-speed low-power ADC; 10位高速低功耗ADC
TDA8764AHL
型号: TDA8764AHL
厂家: NXP    NXP
描述:

10-bit high-speed low-power ADC
10位高速低功耗ADC

文件: 总24页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8764A  
10-bit high-speed low-power ADC  
Product specification  
2000 Jul 03  
File under Integrated Circuits, IC11  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
FEATURES  
APPLICATIONS  
10-bit resolution (binary or gray code)  
Sampling rate up to 60 MHz  
DC sampling allowed  
High-speed analog-to-digital conversion for:  
Video data digitizing  
Radar pulse analysis  
One clock cycle conversion only  
High energy physics research  
Transient signal analysis  
• Σ∆ modulators  
High signal-to-noise ratio over a large analog input  
frequency range (9.3 effective bits at 5 MHz full-scale  
input at fclk = 60 MHz)  
Medical imaging.  
No missing codes guaranteed  
In Range (IR) CMOS output  
GENERAL DESCRIPTION  
TTL and CMOS levels compatible digital inputs  
2.7 to 3.6 V CMOS digital outputs  
Low-level AC clock input signal allowed  
Power dissipation only 312 mW  
The TDA8764A is a 10-bit high-speed low-power  
Analog-to-Digital Converter (ADC) for professional video  
and other applications. It converts the analog input signal  
into 10-bit binary or gray coded digital words at a maximum  
sampling rate of 60 MHz. All digital inputs and outputs are  
TTL and CMOS compatible, although a low-level sine  
wave clock input signal is allowed.  
Low analog input capacitance, no buffer amplifier  
required  
No sample-and-hold circuit required.  
The device requires an external source to drive its  
reference ladder.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT341-1  
SOT401-1  
TDA8764ATS/6  
TDA8764AHL/6  
SSOP28 plastic shrink small outline package; 28 leads; body width 5.3 mm  
LQFP32 plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
4.75  
4.75  
2.7  
TYP.  
5.0  
MAX. UNIT  
VCCA  
VCCD  
VCCO  
ICCA  
analog supply voltage  
digital supply voltage  
5.25  
5.25  
3.6  
37  
V
5.0  
3.3  
29  
V
output stages supply voltage  
analog supply current  
V
mA  
mA  
mA  
LSB  
LSB  
MHz  
ICCD  
digital supply current  
33  
40  
ICCO  
output stages supply current  
integral non-linearity  
fclk = 60 MHz; ramp input  
0.5  
±0.8  
±0.35  
2.0  
±2  
INL  
f
clk = 60 MHz; ramp input  
clk = 60 MHz; ramp input  
DNL  
fclk(max)  
differential non-linearity  
maximum clock frequency  
f
±0.9  
TDA8764ATS and  
TDA8764AHL  
60  
Ptot  
total power dissipation  
fclk = 60 MHz; ramp input  
312  
411  
mW  
2000 Jul 03  
2
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
BLOCK DIAGRAM  
V
V
CCD  
CLK  
1 (5)  
OE GRAY  
CCA  
3 (7)  
11 (17) 10  
(16)  
15 (21)  
CLOCK DRIVER  
(6) 2  
TC  
9 (15)  
V
RT  
(31) 25  
(30) 24  
(29) 23  
(28) 22  
(27) 21  
(26) 20  
(25) 19  
(24) 18  
(23) 17  
(22) 16  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
MSB  
V
8 (14)  
7 (13)  
analog  
voltage input  
I
ANALOG-TO-DIGITAL  
CONVERTER  
CMOS  
OUTPUTS  
data outputs  
LATCHES  
V
RM  
R
LAD  
D1  
D0  
LSB  
(19) 13  
6 (12)  
V
V
RB  
CCO  
(2) 26  
CMOS  
OUTPUT  
IR output  
IN-RANGE LATCH  
TDA8764A  
5, 27, 28  
4 (8)  
AGND  
12 (18)  
DGND  
(9, 1, 3, 4, 10, 11, 32)  
14 (20)  
OGND  
FCE253  
n.c.  
The pin numbers given in parenthesis refer to the TDA8764AHL.  
Fig.1 Block diagram.  
2000 Jul 03  
3
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
TDA8764ATS  
TDA8764AHL  
CLK  
TC  
1
2
5
clock input  
6
twos complement input (active LOW)  
analog supply voltage (5 V)  
analog ground  
VCCA  
AGND  
n.c.  
VRB  
VRM  
VI  
3
7
4
8
5
9
not connected  
6
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2
reference voltage BOTTOM input  
reference voltage MIDDLE input  
analog input voltage  
reference voltage TOP input  
output enable input (active LOW)  
digital supply voltage (5 V)  
digital ground  
7
8
VRT  
OE  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VCCD  
DGND  
VCCO  
OGND  
GRAY  
D0  
supply voltage for output stages (2.7 to 3.6 V)  
output ground  
gray code input (active HIGH)  
data output; bit 0 (LSB)  
data output; bit 1  
D1  
D2  
data output; bit 2  
D3  
data output; bit 3  
D4  
data output; bit 4  
D5  
data output; bit 5  
D6  
data output; bit 6  
D7  
data output; bit 7  
D8  
data output; bit 8  
D9  
data output; bit 9 (MSB)  
in range data output  
not connected  
IR  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
1
3
not connected  
4
not connected  
10  
11  
32  
not connected  
not connected  
not connected  
2000 Jul 03  
4
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
handbook, halfpage  
n.c.  
CLK  
TC  
1
28  
27 n.c.  
IR  
2
3
V
26  
CCA  
AGND  
n.c.  
4
25 D9  
24 D8  
23 D7  
22 D6  
5
V
6
RB  
V
7
RM  
TDA8764ATS  
V
I
D5  
8
21  
20 D4  
D3  
V
9
RT  
OE  
10  
11  
19  
V
18 D2  
CCD  
DGND 12  
17 D1  
V
13  
16 D0  
CCO  
OGND 14  
15 GRAY  
FCE254  
Fig.2 Pin configuration (SSOP28).  
n.c.  
1
2
3
4
5
6
7
8
24 D2  
23 D1  
22 D0  
IR  
n.c.  
n.c.  
GRAY  
21  
20  
19  
18  
17  
TDA8764AHL  
CLK  
TC  
OGND  
V
CCO  
V
DGND  
CCA  
V
AGND  
CCD  
FCE255  
Fig.3 Pin configuration (LQFP32).  
5
2000 Jul 03  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
analog supply voltage  
CONDITIONS  
note 1  
MIN.  
0.3  
MAX.  
+7.0  
UNIT  
VCCA  
VCCD  
VCCO  
VCC  
V
V
V
digital supply voltage  
note 1  
note 1  
0.3  
0.3  
+7.0  
+7.0  
output stages supply voltage  
supply voltage difference between  
V
V
V
CCA VCCD  
CCA VCCO  
CCD VCCO  
1.0  
1.0  
1.0  
0.3  
+1.0  
+4.0  
+4.0  
+7.0  
VCCD  
10  
V
V
V
V
V
VI  
input voltage  
referenced to AGND  
Vi(sw)(p-p) AC input voltage for switching (peak-to-peak value) referenced to DGND  
IO  
output current  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
55  
40  
+150  
+85  
150  
Note  
1. The supply voltages VCCA, VCCD and VCCO may have any value between 0.3 and +7.0 V provided that the supply  
voltage differences VCC are respected.  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
SSOP28  
LQFP32  
110  
90  
K/W  
K/W  
2000 Jul 03  
6
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
CHARACTERISTICS  
VCCA = 4.75 to 5.25 V; VCCD = 4.75 to 5.25 V; VCCO = 2.7 to 3.6 V; AGND and DGND shorted together;  
amb = 0 to 70 °C; typical values measured at VCCA = VCCD = 5 V; VCCO = 3.3 V; VRB = 1.3 V; VRT = 3.7 V; CL = 10 pF  
and Tamb = 25 °C; unless otherwise specified.  
T
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCCA  
VCCD  
VCCO  
VCC  
analog supply voltage  
digital supply voltage  
4.75  
5.0  
5.25  
V
4.75  
2.7  
5.0  
3.3  
5.25  
3.6  
V
V
output stages supply voltage  
supply voltage difference  
between  
V
V
V
CCA VCCD  
CCA VCCO  
CCD VCCO  
0.20  
0.20  
0.20  
+0.20  
+2.55  
+2.55  
37  
V
V
V
ICCA  
ICCD  
ICCO  
analog supply current  
digital supply current  
29  
33  
0.5  
mA  
mA  
mA  
40  
output stages supply current  
fclk = 60 MHz; ramp input  
2.0  
Inputs  
PIN CLK (REFERENCED TO DGND); note 1  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
0
2
2
0.8  
VCCD  
+1  
V
2
V
VCLK = 0.8 V  
VCLK = 2 V  
1  
µA  
µA  
pF  
IIH  
Ci  
10  
PINS OE; TC AND GRAY (REFERENCED TO DGND); see Tables 3 and 4  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
0
0.8  
VCCD  
V
2
V
VIL = 0.8 V  
VIH = 2 V  
1  
µA  
µA  
IIH  
1
PIN VI (ANALOG INPUT VOLTAGE REFERENCED TO AGND)  
IIL  
IIH  
Yi  
LOW-level input current  
HIGH-level input current  
input admittance  
VI = VRB = 1.3 V  
VI = VRT = 3.7 V  
fi = 5 MHz; note 2  
0
µA  
µA  
55  
Ri input resistance  
45  
5
kΩ  
Ci input capacitance  
3
7
pF  
2000 Jul 03  
7
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Reference voltages for the resistor ladder; see Table 1  
VRB  
reference voltage BOTTOM  
reference voltage TOP  
1.2  
3.4  
2.2  
1.3  
2.2  
CCA 0.8  
V
VRT  
3.7  
2.4  
V
V
V
Vdiff(ref)  
differential reference voltage  
3.2  
V
RT VRB  
Iref  
reference current  
resistor ladder  
Vdiff = 2.4 V  
17.6  
136  
mA  
RLAD  
TCRLAD  
temperature coefficient of the  
resistor ladder  
1860  
253  
ppm  
m/K  
mV  
mV  
V
Voffset(B)  
Voffset(T)  
VI(p-p)  
offset voltage BOTTOM  
offset voltage TOP  
Vdiff = 2.4 V; note 3  
Vdiff = 2.4 V; note 3  
Vdiff = 2.4 V; note 4  
200  
190  
analog input voltage  
(peak-to-peak value)  
1.95  
2.01  
2.10  
Outputs  
PINS D9 TO D0 AND IR (REFERENCED TO OGND)  
VOL  
VOH  
IOZ  
LOW-level output voltage  
HIGH-level output voltage  
output current in 3-state mode  
IOL = 1 mA  
0
0.5  
V
IOH = 1 mA  
V
CCO 0.5 −  
VCCO  
+20  
V
0.5 V < VO < VCCO  
20  
µA  
Switching characteristics  
PIN CLK; see Fig.5; note 1  
fclk(max)  
tCPH  
maximum clock frequency  
60  
MHz  
ns  
clock pulse width HIGH  
clock pulse width LOW  
Tamb = 25 °C  
Tamb = 25 °C  
7.0  
3.5  
tCPL  
ns  
Analog signal processing  
LINEARITY  
INL  
integral non-linearity  
fclk = 60 MHz; ramp input  
±0.8  
±2  
LSB  
LSB  
DNL  
differential non-linearity  
f
clk = 60 MHz; ramp input;  
±0.35 ±0.9  
no missing code  
Eoffset  
EG  
offset error  
middle code  
±1  
LSB  
%
gain error (from device to device) note 5  
±0.5  
2000 Jul 03  
8
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
BANDWIDTH (fCLK = 60 MHZ)  
B
analog bandwidth  
full-scale sine wave;  
note 6  
30  
MHz  
MHz  
MHz  
75% full-scale sine wave;  
note 6  
45  
small signal at mid-scale;  
VI = ±10 LSB at  
700  
code 512; note 6  
tstLH  
tstHL  
analog input settling time  
LOW-to-HIGH  
full-scale square wave;  
see Fig.7; note 7  
5
5
ns  
ns  
analog input settling time  
HIGH-to-LOW  
full-scale square wave;  
see Fig.7; note 7  
HARMONICS (fCLK = 60 MHZ)  
Hall(FS)  
harmonics (full-scale);  
fi = 5 MHz  
all components  
second harmonic  
68  
67  
72  
dB  
dB  
dB  
dB  
dB  
third harmonic  
SFDR  
THD  
spurious free dynamic range  
total harmonic distortion  
fi = 5 MHz  
fi = 5 MHz  
fi = 15 MHz  
64  
57  
SIGNAL-TO-NOISE RATIO; note 8  
SNRFS  
signal-to-noise ratio (full-scale)  
without harmonics;  
fclk = 60 MHz; fi = 5 MHz  
58  
57  
dB  
dB  
without harmonics;  
53  
f
clk = 60 MHz; fi = 15 MHz  
EFFECTIVE BITS; note 8  
effective bits  
f
clk = 60 MHz  
fi = 5 MHz  
EB  
9.3  
8.9  
8.8  
8.6  
bits  
bits  
bits  
bits  
fi = 10 MHz  
fi = 15 MHz  
fi = 20 MHz  
TWO-TONE; note 9  
TTID two-tone intermodulation  
distortion  
f
clk = 60 MHz  
67  
dB  
BIT ERROR RATE  
BER  
bit error rate  
fclk = 60 MHz; fi = 5 MHz;  
1013  
times/  
VI = ±16 LSB at code 512  
sample  
2000 Jul 03  
9
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Timing (fclk = 60 MHz; CL = 10 pF); see Fig.5 and note 10  
tds  
th  
sampling delay time  
0.7  
2
ns  
output hold time  
4
ns  
td  
output delay time TDA8764ATS  
VCCO = 2.7 V  
CCO = 3.3 V  
output delay time TDA8764AHL VCCO = 2.7 V  
10  
9
14  
13  
17  
16  
10  
ns  
V
ns  
td  
13  
12  
ns  
VCCO = 3.3 V  
ns  
CL  
digital output load capacitance  
slew rate  
pF  
V/ns  
SR  
V
CCO = 2.7 V  
0.2  
0.3  
3-state output delay times (fclk = 60 MHz); see Fig.6  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
enable LOW  
disable HIGH  
disable LOW  
VCCO = 3.3 V  
VCCO = 3.3 V  
VCCO = 3.3 V  
VCCO = 3.3 V  
16  
30  
25  
23  
20  
34  
30  
27  
ns  
ns  
ns  
ns  
Notes  
1. The rise and fall times of the clock signal must not be less than 0.5 ns.  
1
2. The input admittance is Yi =  
+ j ω Ci  
----  
Ri  
3. Analog input voltages producing code 0 up to and including code 1023:  
a) Voffset(B) (offset voltage BOTTOM) is the difference between the analog input which produces data equal to 00  
and the reference voltage BOTTOM (VRB) at Tamb = 25 °C.  
b) Voffset(T) (offset voltage TOP) is the difference between VRT (reference voltage TOP) and the analog input which  
produces data outputs equal to code 1023 at Tamb = 25 °C.  
4. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities  
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to  
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.4.  
V
RT VRB  
-----------------------------------------  
OB + RL + ROT  
a) The current flowing into the resistor ladder is IL  
=
and the full-scale input range at the converter,  
˙
R
R L  
-----------------------------------------  
OB + RL + ROT  
to cover code 0 to 1023, is V = R × I =  
× (VRT VRB ) = 0.8375 × (VRT VRB )  
I
L
L
R
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio  
RL  
will be kept reasonably constant from device to device. Consequently variation of the output  
-----------------------------------------  
OB + RL + ROT  
R
codes at a given input voltage depends mainly on the difference VRT VRB and its variation with temperature and  
supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the  
matching between each of them is then optimized.  
(V 1023 V0) V  
5. E G  
=
i(p-p) × 100  
----------------------------------------------------  
Vi(p-p)  
6. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device.  
No glitches greater than 2 LSBs, nor any significant attenuation are observed in the reconstructed signal.  
2000 Jul 03  
10  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
7. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale  
input (square wave signal) in order to sample the signal and obtain correct output data.  
8. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent  
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency  
(Nyquist frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.  
9. Intermodulation measured relative to either tone with analog input frequencies of 4.5 and 4.3 MHz. The two input  
signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.  
10. Output data acquisition: the output data is available after the maximum delay time of td. It is recommended to have  
the lowest possible output load. These parameters are guaranteed by characterization and not by production test.  
handbook, halfpage  
V
RT  
R
OT  
code 1023  
R
L
V
I
L
RM  
R
LAD  
code 0  
R
OB  
V
RB  
FCE256  
Fig.4 Explanation of note 4.  
2000 Jul 03  
11  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
Table 1 Output coding and input voltage (typical values; referenced to AGND; VRB = 1.3 V; VRT = 3.7 V; binary/gray  
codes  
BINARY OUTPUT BITS  
GRAY OUTPUT BITS  
STEP  
VI  
IR  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
U/F  
<1.5  
0
1
1
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1.5  
1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1022  
1023  
O/F  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
3.51  
>3.51  
Table 2 Output coding and input voltage (typical values; referenced to AGND; binary/twos complement codes  
BINARY OUTPUT BITS  
TWOS COMPLEMENT OUTPUT BITS  
STEP  
VI  
IR  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
U/F  
<1.5  
0
1
1
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
1
1
1
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1.5  
1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1022  
1023  
O/F  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
3.51  
>3.51  
Table 3 TC mode selection  
TC  
X
OE  
1
D9 to D0  
high-impedance  
IR  
IR  
high-impedance  
active  
0
0
active; twos complement  
active; binary  
1
0
active  
Table 4 Gray mode selection  
GRAY  
OE  
D9 to D0  
X
0
1
1
0
0
high-impedance  
active; binary  
active; gray  
high-impedance  
active  
active  
2000 Jul 03  
12  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
t
CPL  
t
CPH  
V
IH  
50%  
CLK  
V
IL  
sample N  
sample N + 1  
sample N + 2  
V
l
t
t
ds  
h
HIGH  
50%  
DATA  
D0 to D9  
DATA  
N - 2  
DATA  
N - 1  
DATA  
N
DATA  
N + 1  
LOW  
t
d
FCE257  
Fig.5 Timing diagram.  
V
CCD  
OE  
50%  
t
t
dHZ  
dZH  
HIGH  
90%  
50%  
output  
data LOW  
t
t
dLZ  
dZL  
LOW  
HIGH  
50%  
LOW  
10%  
output  
TEST  
S1  
data HIGH  
V
t
t
V
CCD  
dLZ  
dZL  
CCD  
S1  
V
3.3 kΩ  
CCD  
TDA8764A  
t
t
DGND  
dHZ  
dZH  
10 pF  
DGND  
FCE258  
OE  
fOE = 100 kHz.  
Fig.6 Timing diagram and test conditions of 3-state output delay time.  
13  
2000 Jul 03  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
t
t
stLH  
stHL  
50%  
code 1023  
V
I
50%  
code 0  
CLK  
2 ns  
2 ns  
50%  
50%  
0.5 ns  
0.5 ns  
FCE259  
Fig.7 Analog input settling-time diagram.  
2000 Jul 03  
14  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
INTERNAL PIN CONFIGURATIONS  
handbook, halfpage  
handbook, halfpage  
V
V
CCO  
CCA  
D9 to D0  
IR  
V
I
OGND  
AGND  
FCE260  
FCE261  
Fig.8 CMOS data and in range outputs.  
Fig.9 Analog input.  
handbook, halfpage  
V
CCA  
handbook, halfpage  
V
CCO  
V
V
RT  
R
LAD  
RM  
OE  
TC  
V
RB  
GRAY  
OGND  
AGND  
FCE262  
FCE263  
Fig.10 OE, GRAY and TC inputs.  
2000 Jul 03  
Fig.11 VRB, VRM and VRT inputs.  
15  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
handbook, halfpage  
V
CCD  
CLK  
1.5V  
DGND  
FCE264  
Fig.12 CLK input.  
2000 Jul 03  
16  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
APPLICATION INFORMATION  
33 Ω  
handbook, halfpage  
CLK  
n.c.  
n.c.  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(3)  
TC  
V
IR  
CCA  
3
(2)  
100 nF  
AGND  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
4
n.c.  
(1)  
5
V
RB  
6
100 nF  
(1)  
V
V
RM  
7
AGND  
100 nF  
AGND  
TDA8764ATS  
I
8
(1)  
V
RT  
9
100 nF  
100 nF  
100 nF  
OE  
10  
11  
12  
13  
14  
AGND  
V
CCD  
(2)  
DGND  
V
CCO  
D0  
(2)  
GRAY  
OGND  
FCE265  
The analog and digital supplies should be separated and well decoupled.  
An application note is available and describes the design and the realization of a demoboard that uses TDA8764ATS with an application environment.  
(1) VRB, VRM and VRT are decoupled to AGND.  
(2) Decoupling capacitor for supplies must be placed close to the device.  
(3) This resistor is mandatory (33 is its minimum value) and must be near the clock source.  
Fig.13 Application diagram (SSOP28).  
2000 Jul 03  
17  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
n.c.  
32  
D9  
31  
D8  
30  
D7  
29  
D6  
28  
D5  
27  
D4  
26  
D3  
25  
n.c.  
D2  
1
2
3
4
5
6
7
8
24  
IR  
D1  
23  
22  
21  
20  
19  
18  
17  
n.c.  
n.c.  
D0  
GRAY  
TDA8764AHL  
33 Ω  
OGND  
CLK  
TC  
(2)  
(3)  
V
100 nF  
CCO  
V
CCA  
DGND  
(2)  
(2)  
V
100 nF  
100 nF  
CCD  
AGND  
9
10  
11  
n.c.  
12  
13  
14  
15  
16  
OE  
V
n.c.  
n.c.  
V
V
V
RT  
I
RB  
RM  
(1)  
(1)  
(1)  
FCE266  
100 nF  
100 nF  
100 nF  
AGND  
AGND  
AGND  
The analog and digital supplies should be separated and well decoupled.  
An application note is available and describes the design and the realization of a demoboard that uses TDA8764AHL with an  
application environment.  
(1) VRB, VRM and VRT are decoupled to AGND.  
(2) Decoupling capacitor for supplies must be placed close to the device.  
(3) This resistor is mandatory (33 is its minimum value) and must be near the clock source.  
Fig.14 Application diagram (LQFP32).  
2000 Jul 03  
18  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
PACKAGE OUTLINES  
SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm  
SOT341-1  
D
E
A
X
c
H
v
M
A
y
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
10.4  
10.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
1.1  
0.7  
mm  
2.0  
0.25  
0.65  
1.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT341-1  
MO-150  
2000 Jul 03  
19  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm  
SOT401-1  
c
y
X
A
E
17  
24  
Z
16  
25  
E
e
A
H
2
E
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
32  
9
L
1
8
detail X  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.5  
0.05 1.3  
0.27 0.18 5.1  
0.17 0.12 4.9  
5.1  
4.9  
7.15 7.15  
6.85 6.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
mm  
1.60  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-12-27  
00-01-19  
SOT401-1  
136E01  
MS-026  
2000 Jul 03  
20  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Jul 03  
21  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Jul 03  
22  
Philips Semiconductors  
Product specification  
10-bit high-speed low-power ADC  
TDA8764A  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2000 Jul 03  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
70  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613502/01/pp24  
Date of release: 2000 Jul 03  
Document order number: 9397 750 06996  

相关型号:

TDA8764AHL/6

10-bit high-speed low-power ADC
NXP

TDA8764AHL/6/C1

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP32, PLASTIC, SOT-401-1, LQFP-32, Analog to Digital Converter
NXP

TDA8764ATS

10-bit high-speed low-power ADC
NXP

TDA8764ATS/6

10-bit high-speed low-power ADC
NXP

TDA8764ATS/6/C1

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SOT-341-1, SSOP-28, Analog to Digital Converter
NXP

TDA8764HL/4

10-bit high-speed low-power ADC with internal reference regulator
NXP

TDA8764HL/8

10-bit high-speed low-power ADC with internal reference regulator
NXP

TDA8764TS

10-bit high-speed low-power ADC with internal reference regulator
NXP

TDA8764TS/4

10-bit high-speed low-power ADC with internal reference regulator
NXP

TDA8764TS/8

10-bit high-speed low-power ADC with internal reference regulator
NXP

TDA8765

10-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8765H

10-bit high-speed Analog-to-Digital Converter ADC
NXP