TDA8764HL/4 [NXP]

10-bit high-speed low-power ADC with internal reference regulator; 10位高速低功耗ADC,内置电压基准稳压器
TDA8764HL/4
型号: TDA8764HL/4
厂家: NXP    NXP
描述:

10-bit high-speed low-power ADC with internal reference regulator
10位高速低功耗ADC,内置电压基准稳压器

转换器 模数转换器 稳压器 信息通信管理
文件: 总28页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8764  
10-bit high-speed low-power ADC  
with internal reference regulator  
1999 Jan 12  
Preliminary specification  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
FEATURES  
APPLICATIONS  
High-speed analog-to-digital conversion for:  
10-bit resolution (binary or gray code)  
Sampling rate up to 40 MHz (/4 version)  
Sampling rate up to 80 MHz (/8 version)  
DC sampling allowed  
Video data digitizing  
Radar pulse analysis  
Transient signal analysis  
High energy physics research  
• Σ∆ modulators  
One clock cycle conversion only  
High signal-to-noise ratio over a large analog input  
frequency range (9.5 effective bits at 5 MHz; full-scale  
input at fclk = 40 MHz)  
Medical imaging.  
No missing codes guaranteed  
GENERAL DESCRIPTION  
In-Range (IR) CMOS output  
The TDA8764 is a 10-bit high-speed low-power  
Analog-to-Digital Converter (ADC) for professional video  
and other applications. It converts the analog input signal  
into 10-bit binary or gray coded digital words at a maximum  
sampling rate of 40 MHz (/4 version) and 80 MHz  
(/8 version). All digital inputs and outputs are TTL  
compatible, although a low-level sine wave clock input  
signal is allowed.  
TTL and CMOS levels compatible digital inputs  
2.7 to 3.6 V CMOS digital outputs  
Low-level AC clock input signal allowed  
Internal reference voltage regulator  
Power dissipation only 250 mW (typical for /4 version)  
Power dissipation only 375 mW (typical for /8 version)  
Low analog input capacitance, no buffer amplifier  
required  
The device includes an internal voltage reference  
regulator.  
No sample-and-hold circuit required.  
ORDERING INFORMATION  
PACKAGE  
DESCRIPTION  
TYPE  
NUMBER  
SAMPLING  
FREQUENCY (MHz)  
NAME  
VERSION  
TDA8764TS/4  
TDA8764TS/8  
TDA8764HL/4  
TDA8764HL/8  
SSOP28 plastic shrink small outline package; 28 leads;  
body width 5.3 mm  
SOT341-1  
40  
80  
40  
80  
LQFP32 plastic low profile quad flat package; 32 leads;  
SOT401-1  
body 5 × 5 × 1.4 mm  
1999 Jan 12  
2
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
QUICK REFERENCE DATA  
SYMBOL  
VCCA  
PARAMETER  
CONDITIONS  
MIN.  
4.75  
TYP.  
5.0  
MAX.  
5.25  
UNIT  
analog supply voltage  
V
VCCD  
VCCO  
ICCA  
digital supply voltage  
4.75  
2.7  
5.0  
3.3  
5.25  
3.6  
V
V
output stages supply voltage  
analog supply current  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
digital supply current  
25  
45  
tbf  
tbf  
mA  
mA  
ICCD  
ICCO  
INL  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
output stages supply current  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
integral non-linearity  
25  
30  
tbf  
tbf  
mA  
mA  
f
clk = 40 MHz; ramp input  
clk = 80 MHz; ramp input  
0
0
tbf  
tbf  
mA  
mA  
f
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
differential non-linearity  
fclk = 40 MHz; ramp input  
fclk = 80 MHz; ramp input  
±0.8  
±0.8  
tbf  
tbf  
LSB  
LSB  
DNL  
fclk(max)  
Ptot  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
maximum clock frequency  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
total power dissipation  
fclk = 40 MHz; ramp input  
±0.25  
±0.25  
tbf  
tbf  
LSB  
LSB  
fclk = 80 MHz; ramp input  
40  
80  
MHz  
MHz  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
f
clk = 40 MHz; ramp input  
clk = 80 MHz; ramp input  
250  
375  
tbf  
tbf  
mW  
mW  
f
1999 Jan 12  
3
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
BLOCK DIAGRAM  
V
V
CCD2  
DEC  
5 (10)  
CLK  
1 (5)  
OE GRAY  
CCA  
3 (7)  
11 (17) 10  
(16)  
15 (21)  
REFERENCE  
VOLTAGE  
REGULATOR  
CLOCK DRIVER  
2 (6)  
TC  
9 (15)  
V
RT  
25 (31)  
24 (30)  
D9  
MSB  
D8  
D7  
D6  
23 (29)  
22 (28)  
21 (27)  
20 (26)  
19 (25)  
18 (24)  
17 (23)  
16 (22)  
V
8 (14)  
7 (13)  
analog  
voltage input  
I
ANALOG-TO-DIGITAL  
CONVERTER  
D5  
CMOS  
OUTPUTS  
data outputs  
LATCHES  
D4  
D3  
D2  
V
RM  
R
LAD  
D1  
LSB  
D0  
13 (19)  
6 (12)  
V
V
CCO  
RB  
26 (2)  
28 (4)  
CMOS  
OUTPUT  
IR output  
IN-RANGE LATCH  
TDA8764  
V
CCD1  
4 (8)  
12 (18)  
14 (20)  
OGND  
27 (3)  
DGND1  
FCE099  
AGND  
DGND2  
analog ground  
digital ground  
output ground  
digital ground  
The pin numbers given in parenthesis refer to the LQFP32 package.  
Fig.1 Block diagram.  
1999 Jan 12  
4
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
PINNING  
PINS  
SYMBOL  
DESCRIPTION  
SSOP28  
LQFP32  
CLK  
TC  
1
5
clock input  
2
6
twos complement input (input active LOW)  
analog supply voltage (+5 V)  
analog ground  
VCCA  
AGND  
DEC  
VRB  
VRM  
VI  
3
7
4
8
5
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2
decoupling input  
6
reference voltage BOTTOM input  
reference voltage MIDDLE input  
analog input voltage  
7
8
VRT  
9
reference voltage TOP input  
output enable input (input active LOW)  
digital supply voltage 2 (+5 V)  
digital ground 2  
OE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VCCD2  
DGND2  
VCCO  
OGND  
GRAY  
D0  
supply voltage for output stages (2.7 to 3.6 V)  
output ground  
gray code input (input active HIGH)  
data output; bit 0 (LSB)  
data output; bit 1  
D1  
D2  
data output; bit 2  
D3  
data output; bit 3  
D4  
data output; bit 4  
D5  
data output; bit 5  
D6  
data output; bit 6  
D7  
data output; bit 7  
D8  
data output; bit 8  
D9  
data output; bit 9 (MSB)  
in-range data output  
digital ground 1  
IR  
DGND1  
VCCD1  
n.c.  
3
4
digital supply voltage 1 (+5 V)  
1, 9, 11 and 32 not connected  
1999 Jan 12  
5
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
handbook, halfpage  
V
CLK  
TC  
1
2
28  
27  
26  
25  
24  
23  
22  
CCD1  
DGND1  
IR  
V
3
CCA  
AGND  
DEC  
D9  
4
D8  
5
V
6
D7  
RB  
V
D6  
7
RM  
TDA8764TS  
V
I
8
21 D5  
V
D4  
D3  
D2  
D1  
D0  
9
20  
19  
18  
17  
16  
RT  
OE  
10  
11  
12  
13  
14  
V
CCD2  
DGND2  
V
CCO  
OGND  
15 GRAY  
FCE100  
Fig.2 Pin configuration (SSOP28).  
D2  
D1  
n.c.  
IR  
1
2
3
4
5
6
7
8
24  
23  
DGND1  
22 D0  
V
21 GRAY  
20 OGND  
CCD1  
TDA8764HL  
CLK  
TC  
V
19  
18  
17  
CCO  
V
DGND2  
CCA  
V
AGND  
CCD2  
FCE125  
Fig.3 Pin configuration (LQFP32).  
6
1999 Jan 12  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
analog supply voltage  
CONDITIONS  
note 1  
MIN.  
0.3  
MAX.  
+7.0  
UNIT  
VCCA  
VCCD  
VCCO  
VCC  
V
V
V
digital supply voltage  
note 1  
note 1  
0.3  
0.3  
+7.0  
+7.0  
output stages supply voltage  
supply voltage difference  
V
V
V
CCA VCCD  
CCA VCCO  
CCD VCCO  
1.0  
1.0  
1.0  
+1.0  
+4.0  
+4.0  
+7.0  
VCCD  
10  
V
V
V
V
V
VI  
input voltage  
referenced to AGND 0.3  
Vi(sw)(p-p) AC input voltage for switching (peak-to-peak value) referenced to DGND  
IO  
output current  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
operating ambient temperature  
junction temperature  
55  
40  
+150  
+85  
150  
Note  
1. The supply voltages VCCA, VCCD and VCCO may have any value between 0.3 V and +7.0 V provided that the supply  
voltage differences VCC are respected.  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
SSOP28  
LQFP32  
110  
90  
K/W  
K/W  
1999 Jan 12  
7
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
CHARACTERISTICS  
The characteristics given refer to the SSOP28 package. VCCA = V3 to V4 = 4.75 to 5.25 V;  
VCCD = V11 to V12 and V28 to V27 = 4.75 to 5.25 V; VCCO = V13 to V14 = 2.7 to 3.6 V; AGND and DGND shorted  
together; Tamb = 0 to 70 °C; typical values measured at VCCA = VCCD = 5 V and VCCO = 3.3 V; CL = 10 pF and  
Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
Supplies  
VCCA  
analog supply voltage  
4.75  
5.0  
5.25  
5.25  
5.25  
3.6  
V
VCCD1  
VCCD2  
VCCO  
digital supply voltage 1  
digital supply voltage 2  
output stages supply voltage  
supply voltage difference  
4.75  
4.75  
2.7  
5.0  
5.0  
3.3  
V
V
V
VCC  
VCCA VCCD  
VCCA VCCO  
VCCD VCCO  
0.20  
0.20  
0.20  
+0.20  
+2.55  
+2.55  
V
V
V
ICCA  
ICCD  
ICCO  
analog supply current  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
digital supply current  
25  
45  
tbf  
tbf  
mA  
mA  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
output stages supply current  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
25  
30  
tbf  
tbf  
mA  
mA  
f
clk = 40 MHz; ramp input  
0
0
tbf  
tbf  
mA  
mA  
fclk = 80 MHz; ramp input  
Inputs  
CLOCK INPUT; CLK (REFERENCED TO DGND); note 1  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
0
2
2
0.8  
VCCD  
+1  
V
2
V
VCLK = 0.8 V  
VCLK = 2 V  
1  
µA  
µA  
pF  
IIH  
Ci  
10  
INPUTS OE, TC AND GRAY (REFERENCED TO DGND); see Tables 3 and 4  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
0
0.8  
VCCD  
V
2
V
VIL = 0.8 V  
VIH = 2 V  
1  
µA  
µA  
IIH  
1
1999 Jan 12  
8
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
VI (ANALOG INPUT VOLTAGE REFERENCED TO AGND)  
IIL  
IIH  
Yi  
LOW-level input current  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
HIGH-level input current  
VI = VRB  
0
µA  
VI = VRB  
0
µA  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
VI = VRT  
45  
85  
µA  
µA  
VI = VRT  
input admittance  
fi = 5 MHz; note 2  
TDA8764TS/4; TDA8764HL/4  
input resistance  
70  
5
kΩ  
input capacitance  
3
7
pF  
input admittance  
fi = 5 MHz; note 2  
TDA8764TS/8; TDA8764HL/8  
input resistance  
45  
5
kΩ  
input capacitance  
3
7
pF  
Reference voltages for the resistor ladder using the internal voltage regulator; see Table 1  
VRB  
reference voltage BOTTOM  
reference voltage TOP  
tbf  
tbf  
tbf  
1.3  
3.7  
2.4  
tbf  
tbf  
tbf  
V
V
V
VRT  
Vdiff(ref)  
differential reference voltage  
VRT VRB  
TCVdiff  
temperature coefficient of  
tbf  
mV/K  
differential reference voltage  
Voffset(B)  
Voffset(T)  
VI(p-p)  
offset voltage BOTTOM  
offset voltage TOP  
note 3  
note 3  
note 4  
161  
161  
2.08  
mV  
mV  
V
analog input voltage  
(peak-to-peak value)  
tbf  
tbf  
Outputs  
DIGITAL OUTPUTS D9 TO D0 AND IR (REFERENCED TO OGND)  
VOL  
VOH  
IOZ  
LOW-level output voltage  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
HIGH-level output voltage  
I
OL = 1 mA  
OL = 2 mA  
0
0
0.5  
0.5  
V
V
I
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
output current in 3-state mode  
IOH = 1 mA  
OH = 2 mA  
0.5 V < Vo < VCCO  
V
CCO 0.5 −  
VCCO  
VCCO  
+20  
V
I
V
CCO 0.5 −  
V
20  
µA  
1999 Jan 12  
9
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
Switching characteristics  
CLOCK INPUT; CLK; see Fig.5; note 1  
fclk(max)  
maximum clock frequency  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
clock pulse width HIGH  
40  
80  
MHz  
MHz  
tCPH  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
clock pulse width LOW  
7
5
ns  
ns  
tCPL  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
7
5
ns  
ns  
Analog signal processing  
LINEARITY  
INL  
integral non-linearity  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
differential non-linearity  
TDA8764TS/4; TDA8764HL/4  
TDA8764TS/8; TDA8764HL/8  
offset error  
f
clk = 40 MHz; ramp input  
±0.8  
±0.8  
tbf  
tbf  
LSB  
LSB  
fclk = 80 MHz; ramp input  
DNL  
fclk = 40 MHz; ramp input  
±0.25 tbf  
±0.25 tbf  
LSB  
LSB  
LSB  
%
fclk = 80 MHz; ramp input  
middle code  
Eoffset  
EG  
±1  
gain error (from device to device)  
using internal reference voltage  
note 5  
tbf  
BANDWIDTH (fclk = 40 MHZ)/4 VERSION;  
B
analog bandwidth  
full-scale sine wave; note 6  
20  
30  
MHz  
MHz  
75% full-scale sine wave;  
note 6  
small signal at mid-scale;  
VI = ±10 LSB at code 512;  
note 6  
350  
MHz  
tstLH  
tstHL  
analog input settling time  
LOW-to-HIGH  
full-scale square wave;  
see Fig.7 and note 7  
tbf  
tbf  
tbf  
tbf  
ns  
ns  
analog input settling time  
HIGH-to-LOW  
full-scale square wave;  
see Fig.7 and note 7  
1999 Jan 12  
10  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
BANDWIDTH (fclk = 80 MHZ) /8 VERSION;  
B
analog bandwidth  
full-scale sine wave; note 6  
40  
MHz  
75% full-scale sine wave;  
note 6  
60  
MHz  
small signal at mid-scale;  
Vi = ±10 LSB at code 512;  
note 6  
700  
MHz  
tstLH  
tstHL  
analog input settling time  
LOW-to-HIGH  
full-scale square wave;  
see Fig.7 and note 7  
tbf  
tbf  
tbf  
tbf  
ns  
ns  
analog input settling time  
HIGH-to-LOW  
full-scale square wave;  
see Fig.7 and note 7  
HARMONICS (fclk = 40 MHZ) /4 VERSION;  
Hall(FS)  
harmonics (full-scale);  
all components  
fi = 5 MHz  
second harmonics  
third harmonics  
70  
90  
tbf  
tbf  
tbf  
dBc  
dBc  
dBc  
dB  
SFDR  
THD  
spurious free dynamic range  
total harmonic distortion  
fi = 5 MHz  
fi = 5 MHz  
70  
HARMONICS (fclk = 80 MHZ)/8 VERSION;  
Hall(FS)  
harmonics (full-scale);  
all components  
fi = 5 MHz  
second harmonics  
third harmonics  
71  
87  
tbf  
tbf  
tbf  
dBc  
dBc  
dBc  
dB  
SFDR  
THD  
spurious free dynamic range  
total harmonic distortion  
fi = 5 MHz  
fi = 5 MHz  
70  
SIGNAL-TO-NOISE RATIO; note 8  
SNR(FS)  
signal-to-noise ratio (full-scale)  
without harmonics;  
fi = 5 MHz  
f
clk = 40 MHz; /4 version  
clk = 80 MHz; /8 version  
tbf  
tbf  
58  
58  
dB  
dB  
f
EFFECTIVE BITS; note 8  
EB  
effective bits  
fclk = 40 MHz  
TDA8764TS/4; TDA8764HL/4  
fi = 5 MHz  
tbf  
tbf  
tbf  
tbf  
9.5  
9.2  
9.0  
tbf  
tbf  
tbf  
tbf  
tbf  
bits  
bits  
bits  
bits  
fi = 7.5 MHz  
fi = 10 MHz  
fi = 20 MHz  
effective bits  
TDA8764TS/8; TDA8764HL/8  
fclk = 80 MHz  
fi = 5 MHz  
tbf  
tbf  
tbf  
tbf  
9.5  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
bits  
bits  
bits  
bits  
fi = 10 MHz  
fi = 20 MHz  
fi = 40 MHz  
1999 Jan 12  
11  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
TWO-TONE; note 9  
TTID  
two-tone intermodulation distortion fclk = 40 MHz  
clk = 80 MHz  
tbf  
dB  
f
tbf  
dB  
BIT ERROR RATE  
BER  
bit error rate  
fi = 5 MHz; Vi = ±16 LSB at  
code 512  
f
clk = 40 MHz  
1013  
1013  
times/  
sample  
fclk = 80 MHz  
times/  
sample  
Timing (fclk = 40 MHz; CL = 10 pF) /4 version; see Fig.5 and note 10  
tds  
th  
sampling delay time  
output hold time  
2
ns  
5
ns  
td  
output delay time  
VCCO = 2.7 V  
tbf  
tbf  
12  
11  
tbf  
tbf  
10  
tbf  
ns  
VCCO = 3.3 V  
ns  
CL  
digital output load capacitance  
slew rate  
pF  
V/µs  
SR  
VCCO = 2.7 V; CL = 10 pF  
Timing (fclk = 80 MHz; CL = 10 pF) /8 version; see Fig.5 and note 10  
tds  
th  
sampling delay time  
output hold time  
8
7
2
ns  
4
ns  
td  
output delay time  
VCCO = 2.7 V  
VCCO = 3.3 V  
tbf  
tbf  
tbf  
tbf  
10  
tbf  
ns  
ns  
CL  
digital output load capacitance  
slew rate  
pF  
V/µs  
SR  
VCCO = 2.7 V; CL = 10 pF  
3-state output delay times (fclk = 40 MHz) /4 version; see Fig.6  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
enable LOW  
disable HIGH  
disable LOW  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
ns  
ns  
ns  
ns  
3-state output delay times (fclk = 80 MHz) /8 version; see Fig.6  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
enable LOW  
disable HIGH  
disable LOW  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
tbf  
ns  
ns  
ns  
ns  
1999 Jan 12  
12  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
Notes  
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock  
must not be less than 0.5 ns.  
1
Ri  
2. The input admittance is Vi=  
+ Cijw  
----  
3. Analog input voltages producing code 0 up to and including code 1023:  
a) Voffset(B) (offset voltage BOTTOM) is the difference between the analog input which produces data equal to 00  
and the reference voltage BOTTOM (VRB) at Tamb = 25 °C.  
b) Voffset(T) (offset voltage TOP) is the difference between reference voltage TOP (VRT) and the analog input which  
produces data outputs equal to code 1023 at Tamb = 25 °C.  
4. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities  
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to  
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.4.  
V
RT VRB  
a) The current flowing into the resistor ladder is IL=  
to cover code 0 to code 1023, is V I = R L × I L =  
and the full-scale input range at the converter,  
-----------------------------------------  
R
OB + RL + ROT  
R L  
× (V RT VRB) = 0.866 × (VRT VRB  
)
-----------------------------------------  
R
OB + RL + ROT  
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio  
RL  
will be kept reasonably constant from device to device. Consequently variation of the output  
-----------------------------------------  
OB + RL + ROT  
R
codes at a given input voltage depends mainly on the difference VRT VRB and its variation with temperature and  
supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the  
matching between each of them is then optimized.  
(V 1023 V0) Vi (p p)  
5.  
E G  
=
× 100  
-----------------------------------------------------------  
Vi (p p)  
6. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device.  
No glitches greater than 2 LSBs, nor any significant attenuation are observed in the reconstructed signal.  
7. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale  
input (square wave signal) in order to sample the signal and obtain correct output data.  
8. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 K acquisition points per equivalent  
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency  
(NYQUIST frequency). Conversion to signal-to-noise ratio: SINAD = EB × 6.02 + 1.76 dB.  
9. Intermodulation measured relative to either tone with analog input frequencies of 5 and 5.1 MHz. The two input  
signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.  
10. Output data acquisition: the output data is available after the maximum delay time of td(max). For the 80 MHz version  
it is recommended to have the lowest possible output load.  
1999 Jan 12  
13  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
handbook, halfpage  
V
RT  
R
OT  
code 1023  
code 0  
R
L
V
I
RM  
L
R
LAD  
R
OB  
V
RB  
MGD281  
Fig.4 Explanation of note 4.  
Table 1 Output coding and input voltage (typical values; referenced to AGND); binary and gray codes  
BINARY OUTPUT BITS GRAY OUTPUT BITS  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
STEP Vi(p-p) IR  
U/F  
0
<tbf  
tbf  
...  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
...  
...  
...  
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  
...  
1022 ...  
1023 tbf  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
O/F  
>tbf  
Table 2 Output coding and input voltage (typical values; referenced to AGND); binary and twos complement codes  
BINARY OUTPUT BITS TWO’S COMPLEMENT OUTPUT BITS  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
STEP Vi(p-p) IR  
U/F  
0
<tbf  
tbf  
...  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
...  
...  
...  
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  
...  
1022 ...  
1023 tbf  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
O/F  
>tbf  
1999 Jan 12  
14  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
Table 3 Mode selection  
TC  
OE  
D9 TO D0  
high impedance  
IR  
IR  
X
0
1
1
0
0
high impedance  
active  
active; two complement  
active; binary  
active  
Table 4 Mode selection  
GRAY  
OE  
1
D9 TO D0  
high impedance  
active; binary  
X
0
1
high impedance  
active  
0
0
active; gray  
active  
t
CPL  
t
CPH  
V
CCO  
50%  
CLK  
0 V  
sample N  
sample N + 1  
sample N + 2  
V
l
t
t
ds  
h
V
CCO  
DATA  
D0 to D9  
DATA  
N - 2  
DATA  
N - 1  
DATA  
N
DATA  
N + 1  
50%  
0 V  
t
d
MBG916  
Fig.5 Timing diagram.  
1999 Jan 12  
15  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
V
CCD  
50%  
OE  
t
t
dHZ  
HIGH  
dZH  
90%  
output  
data  
50%  
t
t
dLZ  
dZL  
LOW  
HIGH  
output  
data  
50%  
LOW  
10%  
TEST  
S1  
V
t
t
V
CCD  
dLZ  
dZL  
CCD  
S1  
V
3.3 kΩ  
CCD  
TDA8764  
t
t
DGND  
dHZ  
dZH  
15 pF  
DGND  
FCE101  
OE  
fOE = 100 kHz.  
Fig.6 Timing diagram and test conditions of 3-state output delay time.  
t
t
STLH  
STHL  
50%  
code 1023  
V
I
50%  
code 0  
2 ns  
2 ns  
CLK  
50%  
50%  
MBE566  
0.5 ns  
0.5 ns  
Fig.7 Analog input settling time diagram.  
16  
1999 Jan 12  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
INTERNAL PIN CONFIGURATIONS  
handbook, halfpage  
handbook, halfpage  
V
V
CCO  
CCA  
D9 to D0  
IR  
V
I
OGND  
AGND  
MBG915  
MGC040 - 1  
Fig.8 CMOS data and in range outputs.  
Fig.9 Analog inputs.  
DEC  
handbook, halfpage  
V
CCA  
handbook, halfpage  
V
CCO  
V
RT  
OE  
R
LAD  
V
REGULATOR  
RM  
TC  
GRAY  
V
RB  
OGND  
FCE102  
AGND  
MBE558 - 1  
Fig.10 OE, GRAY and TC inputs.  
Fig.11 VRB, VRM and VRT.  
1999 Jan 12  
17  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
handbook, halfpage  
V
CCD  
1.5 V  
CLK  
DGND  
FCE103  
Fig.12 CLK input.  
1999 Jan 12  
18  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
APPLICATION INFORMATION  
V
CCD1  
CLK  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(2)  
100 nF  
DGND1  
IR  
TC  
2
V
CCA  
3
(2)  
100 nF  
D9  
AGND  
4
D8  
DEC  
5
4.7 nF  
AGND  
(1)  
V
V
RB  
D7  
6
7
8
9
(1)  
1 nF  
AGND  
RM  
D6  
TDA8764TS  
V
I
D5  
(1)  
1 nF  
AGND  
V
D4  
RT  
1 nF  
AGND  
D3  
OE  
10  
11  
V
D2  
CCD2  
(2)  
100 nF  
100 nF  
D1  
DGND2  
12  
13  
14  
V
D0  
CCO  
(2)  
GRAY  
OGND  
FCE104  
The analog and digital supplies should be separated and well decoupled.  
An application note is available which describes the design and the realization of a demonstration board  
that uses TDA8764HL in an application environment.  
(1) VRB, VRM and VRT are decoupled to AGND.  
(2) Decoupling capacitor for supplies; it must be placed close to the device.  
Fig.13 Application diagram (SSOP28).  
1999 Jan 12  
19  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
n.c.  
32  
D9  
31  
D8  
30  
D7  
29  
D6  
28  
D5  
27  
D4  
26  
D3  
25  
n.c.  
IR  
D2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
D1  
DGND1  
D0  
(2)  
100 nF  
V
CCD1  
GRAY  
OGND  
TDA8764HL  
CLK  
TC  
(2)  
100 nF  
V
CCO  
V
CCA  
DGND2  
(2)  
(2)  
100 nF  
100 nF  
V
AGND  
CCD2  
9
10  
DEC  
11  
n.c.  
12  
13  
14  
15  
16  
OE  
n.c.  
4.7 nF  
AGND  
V
V
V
V
RT  
RB  
RM  
I
(1)  
(1)  
(1)  
1 nF  
1 nF  
AGND AGND  
1 nF  
AGND  
FCE126  
The analog and digital supplies should be separated and well decoupled.  
An application note is available which describes the design and the realization of a demonstration board  
that uses TDA8764HL in an application environment.  
(1) VRB, VRM and VRT are decoupled to AGND.  
(2) Decoupling capacitor for supplies; it must be placed close to the device.  
Fig.14 Application diagram (LQFP32).  
1999 Jan 12  
20  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
PACKAGE OUTLINES  
SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm  
SOT341-1  
D
E
A
X
c
H
v
M
A
y
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
10.4  
10.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
1.1  
0.7  
mm  
2.0  
0.65  
1.25  
0.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
93-09-08  
95-02-04  
SOT341-1  
MO-150AH  
1999 Jan 12  
21  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm  
SOT401-1  
c
y
X
A
E
17  
24  
Z
16  
25  
E
e
A
H
2
E
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
32  
9
L
1
8
detail X  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.5  
0.05 1.3  
0.27 0.18 5.1  
0.17 0.12 4.9  
5.1  
4.9  
7.15 7.15  
6.85 6.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
mm  
1.60  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT401-1  
1999 Jan 12  
22  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
SOLDERING  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
1999 Jan 12  
23  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
not suitable(2)  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, SMS  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Jan 12  
24  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
NOTES  
1999 Jan 12  
25  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
NOTES  
1999 Jan 12  
26  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed low-power ADC with  
internal reference regulator  
TDA8764  
NOTES  
1999 Jan 12  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA61  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
295002/750/01/pp28  
Date of release: 1999 Jan 12  
Document order number: 9397 750 04632  

相关型号:

TDA8764HL/8

10-bit high-speed low-power ADC with internal reference regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8764TS

10-bit high-speed low-power ADC with internal reference regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8764TS/4

10-bit high-speed low-power ADC with internal reference regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8764TS/8

10-bit high-speed low-power ADC with internal reference regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765

10-bit high-speed Analog-to-Digital Converter ADC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H

10-bit high-speed Analog-to-Digital Converter ADC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H/4

10-bit high-speed Analog-to-Digital Converter ADC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H/4B

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H/4B-S

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H/5

10-bit high-speed Analog-to-Digital Converter ADC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8765H/5B-S

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8766

10-bit high-speed 2.7 to 5.25 V analog-to-digital converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP