TDA8765H/4 [NXP]

10-bit high-speed Analog-to-Digital Converter ADC; 10位高速模拟数字转换器ADC
TDA8765H/4
型号: TDA8765H/4
厂家: NXP    NXP
描述:

10-bit high-speed Analog-to-Digital Converter ADC
10位高速模拟数字转换器ADC

转换器 模数转换器
文件: 总20页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8765  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
1999 Jan 06  
Preliminary specification  
Supersedes data of 1998 May 08  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
FEATURES  
APPLICATIONS  
10-bit resolution  
High-speed analog-to-digital conversion for  
– Video signal digitizing  
Sampling rate up to 55 MHz  
• −3 dB bandwidth of 200 MHz  
5 V power supplies  
– High Definition TV (HDTV)  
– Imaging (camera scanner)  
– Medical imaging  
Binary or twos-complement CMOS outputs  
In-range CMOS-compatible output  
TLL- CMOS-compatible static digital inputs  
3 to 5 V CMOS-compatible digital outputs  
– Telecommunication  
– Base-station receiver.  
GENERAL DESCRIPTION  
Differential clock input; Positive Emitter Coupled Logic  
(PECL) compatible  
The TDA8765 is a bipolar 10-bit Analog-to-Digital  
Converter (ADC) optimized for telecommunications and  
professional imaging. It converts the analog input signal  
into 10-bit binary coded digital words at a maximum  
sampling rate of 55 MHz. All static digital inputs (SH, CE  
and OTC) are TTL and CMOS compatible and all outputs  
are CMOS compatible. A sine wave clock input signal can  
also be used.  
Power dissipation 325 mW (typical)  
Low analog input capacitance (typical 2 pF), no buffer  
amplifier required  
Integrated sample-and-hold amplifier  
Differential analog input  
External amplitude range control  
Voltage controlled regulator included.  
QUICK REFERENCE DATA  
SYMBOL  
VCCA  
PARAMETER  
CONDITIONS  
MIN.  
4.75  
TYP.  
5.0  
MAX.  
5.25  
UNIT  
analog supply voltage  
digital supply voltage  
output supply voltage  
analog supply current  
digital supply current  
output supply current  
integral non-linearity  
differential non-linearity  
maximum clock frequency  
TDA8765H/4  
V
VCCD  
VCCO  
ICCA  
4.75  
3.0  
5.0  
3.3  
33  
5.25  
5.25  
tbf  
V
V
mA  
mA  
mA  
LSB  
LSB  
ICCD  
30  
tbf  
ICCO  
fCLK = 4 MHz; fi = 400 kHz  
fCLK = 4 MHz; fi = 400 kHz  
fCLK = 4 MHz; fi = 400 kHz  
3.2  
±0.5  
±0.3  
tbf  
INL  
±1.75  
±0.5  
DNL  
fCLK(max)  
40  
55  
MHz  
MHz  
mW  
TDA8765H/5  
Ptot  
total power dissipation  
325  
tbf  
ORDERING INFORMATION  
TYPE  
PACKAGE  
SAMPLING  
NUMBER  
FREQUENCY (MHz)  
NAME  
DESCRIPTION  
VERSION  
SOT307-2  
TDA8765H/4  
QFP44  
plastic quad flat package; 44 leads  
(lead length 1.3 mm); body 10 × 10 × 1.75 mm  
40  
55  
TDA8765H/5  
1999 Jan 06  
2
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
BLOCK DIAGRAM  
V
V
V
V
V
V
CLK  
35  
CLK  
36  
OTC  
18  
CE  
19  
CCA1 CCA2  
CCA3 CCA4  
CCD1 CCD2  
2
9
3
41  
37 15  
D9  
21  
MSB  
TDA8765  
CLOCK DRIVER  
22 D8  
23 D7  
24 D6  
11  
V
ref  
D5  
25  
26 D4  
27  
CMOS  
OUTPUTS  
data outputs  
43  
42  
V
I
D3  
28 D2  
D1  
ANALOG-TO-DIGITAL  
CONVERTER  
AMP  
LATCHES  
V
I
29  
sample-  
and-hold  
30 D0  
LSB  
39  
SH  
33  
V
CCO  
1, 5 to 8,  
12 to 14, 16, 31 and 32  
OVERFLOW/  
UNDERFLOW  
LATCH  
20  
CMOS  
OUTPUT  
IR  
n.c.  
44  
10  
4
40  
38  
17  
34  
MGK801  
AGND1 AGND2 AGND3 AGND4  
DGND1 DGND2  
OGND  
Fig.1 Block diagram.  
1999 Jan 06  
3
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
PINNING  
SYMBOL PIN  
DESCRIPTION  
not connected  
SYMBOL PIN  
DESCRIPTION  
n.c.  
1
2
3
4
5
6
7
8
9
D7  
23 data output; bit 7  
24 data output; bit 6  
VCCA1  
VCCA3  
AGND3  
n.c.  
analog supply voltage 1 (+5 V)  
analog supply voltage 3 (+5 V)  
analog ground 3  
D6  
D5  
25 data output; bit 5  
26 data output; bit 4  
27 data output; bit 3  
28 data output; bit 2  
29 data output; bit 1  
30 data output; bit 0 (LSB)  
31 not connected  
D4  
not connected  
D3  
n.c.  
not connected  
D2  
n.c.  
not connected  
D1  
n.c.  
not connected  
D0  
VCCA2  
AGND2  
Vref  
analog supply voltage 2 (+5 V)  
n.c.  
n.c.  
VCCO  
OGND  
CLK  
10 analog ground 2  
11 reference voltage input  
12 not connected  
32 not connected  
33 output supply voltage (3 to 5.25 V)  
34 output ground  
n.c.  
n.c.  
13 not connected  
complementary clock input; active  
35  
LOW  
n.c.  
14 not connected  
CLK  
36 clock input  
VCCD2  
n.c.  
15 digital supply voltage 2 (+5 V)  
16 not connected  
VCCD1  
DGND1  
SH  
37 digital supply voltage 1 (+5 V)  
38 digital ground 1  
DGND2  
OTC  
17 digital ground 2  
39 sample-and-hold enable input  
(CMOS level; active HIGH)  
control input twos complement  
output; active HIGH  
18  
AGND4  
VCCA4  
VI  
40 analog ground 4  
CE  
chip enable input  
19  
(CMOS level; active LOW)  
41 analog supply voltage 4 (+5 V)  
42 positive analog input voltage  
43 negative analog input voltage  
44 analog ground 1  
IR  
20 in-range output  
D9  
D8  
21 data output; bit 9 (MSB)  
22 data output; bit 8  
VI  
AGND1  
1999 Jan 06  
4
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
V
33  
n.c.  
1
2
CCO  
V
V
32 n.c.  
31 n.c.  
CCA1  
CCA3  
3
D0  
4
30  
29 D1  
28  
AGND3  
n.c.  
5
TDA8765H  
n.c.  
6
D2  
7
27 D3  
26 D4  
25 D5  
24 D6  
23 D7  
n.c.  
n.c.  
8
V
9
CCA2  
10  
11  
AGND2  
V
ref  
MGK800  
Fig.2 Pin configuration.  
1999 Jan 06  
5
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VCCA  
PARAMETER  
analog supply voltage  
CONDITIONS  
MIN.  
0.3  
MAX.  
+7.0  
UNIT  
note 1  
note 1  
note 1  
V
V
V
VCCD  
VCCO  
VCC  
digital supply voltage  
output supply voltage  
supply voltage difference  
0.3  
0.3  
+7.0  
+7.0  
V
V
V
CCA VCCD  
CCD VCCO  
CCA VCCO  
1.0  
1.0  
1.0  
0.3  
+1.0  
+4.0  
+4.0  
VCCA  
VCCD  
V
V
V
V
V
VI  
input voltage at pins 42 and 43  
referenced to AGND  
Vi(p-p)  
input voltage at pins 35 and 36 for  
differential clock drive (peak-to-peak  
value)  
IO  
output current  
10  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
operating ambient temperature  
junction temperature  
55  
0
+150  
+85  
150  
Note  
1. The supply voltages VCCA, VCCD and VCCO may have any value between 0.3 and +7.0 V provided that the supply  
voltage differences VCC are respected.  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITION  
in free air  
VALUE  
UNIT  
thermal resistance from junction to ambient  
75  
K/W  
1999 Jan 06  
6
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
CHARACTERISTICS  
V
V
CCA = V2 to V44, V9 to V10, V3 to V4 and V41 to V40 = 4.75 to 5.25 V; VCCD = V37 to V38 and V15 to V17 = 4.75 to 5.25 V;  
CCO = V33 to V34 = 3.0 to 5.25 V; AGND and DGND shorted together; Tamb = 0 to 85 °C; typical values measured at  
VCCA = VCCD = 5 V and VCCO = 3.3 V, Tamb = 25 °C, VI(p-p) VI(p-p) = 2.0 V and CL = 10 pF; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCCA  
VCCD  
VCCO  
ICCA  
analog supply voltage  
digital supply voltage  
output supply voltage  
analog supply current  
digital supply current  
output supply current  
4.75  
5.0  
5.25  
5.25  
5.25  
45  
V
4.75  
3.0  
5.0  
3.3  
33  
V
V
mA  
mA  
mA  
mA  
ICCD  
30  
37  
ICCO  
fCLK = 4 MHz; fi = 400 kHz  
3.2  
11  
tbf  
fCLK = 40 MHz;  
fi = 4.43 MHz  
tbf  
Inputs  
CLK AND CLK (REFERENCED TO DGND)  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input impedance  
VCCD = 5 V; note 1  
VCCD = 5 V; note 1  
VCLK or VCLK = 3.19 V  
VCLK or VCLK = 3.83 V  
fCLK = 40 MHz  
3.19  
3.83  
10  
3.52  
4.12  
V
VIH  
V
IIL  
µA  
µA  
kΩ  
pF  
V
IIH  
10  
Zi  
2
Ci  
input capacitance  
fCLK = 40 MHz  
2
VCLK(p-p)  
differential AC input voltage  
DC voltage level = 2.5 V  
0.5  
2.0  
for switching (VCLK VCLK  
;
peak-to-peak value)  
OTC, SH AND CE (REFERENCED TO DGND); see Tables 2 and 3  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
0
0.8  
VCCD  
V
2.0  
20  
V
VIL = 0.8 V  
VIH = 2.0 V  
µA  
µA  
IIH  
20  
VI AND VI (REFERENCED TO AGND; see Table 1); VREF = VCCA 1.825 V  
IIL  
LOW-level input current  
HIGH-level input current  
input resistance  
10  
10  
2
µA  
µA  
kΩ  
pF  
IIH  
Ri  
fi = 4.43 MHz  
fi = 4.43 MHz  
100  
Ci  
input capacitance  
VI(CM)  
common mode input voltage VI = VI; output code 511  
V
V
CCA = 5 V  
tbf  
tbf  
tbf  
3.6  
tbf  
tbf  
tbf  
V
V
V
CCA = 4.75 V  
3.35  
3.85  
VCCA = 5.25 V  
1999 Jan 06  
7
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Voltage controlled regulator input Vref (referenced to AGND); note 2  
Vref  
full-scale fixed voltage  
VCCA = 5 V  
3.175  
2.0  
V
VI(p-p) VI(p-p) input voltage amplitude  
Vref = VCCA 1.825 V  
V
(peak-to-peak value)  
Iref  
input current at Vref  
0.5  
10  
µA  
Outputs (referenced to OGND)  
DIGITAL OUTPUTS D11 TO D0 AND IR (REFERENCED TO OGND)  
VOL  
VOH  
Io  
LOW-level output voltage  
HIGH-level output voltage  
output current in 3-state  
IOL = 2 mA  
0
0.5  
V
IOH = 0.4 mA  
V
CCO 0.5  
VCCO  
+20  
V
output level between 0.5 V 20  
µA  
and VCCO  
Switching characteristics  
CLOCK FREQUENCY fCLK; see Fig.5  
fCLK(min)  
minimum clock frequency  
SH = HIGH  
SH = LOW  
1
1
MHz  
kHz  
fCLK(max)  
maximum clock frequency  
TDA8765H/4  
40  
MHz  
MHz  
ns  
TDA8765H/5  
55  
tCLKH  
tCLKL  
clock pulse width HIGH  
clock pulse width LOW  
8.5  
8.5  
ns  
Analog signal processing; 50% clock duty factor; VI VI = 2.0 V; Vref = VCCA1.825 V; see Table 1  
LINEARITY  
INL  
integral non-linearity  
fCLK = 4 MHz; fi = 400 kHz  
CLK = 4 MHz; fi = 400 kHz;  
no missing code  
VCCA = VCCD = VCCO = 5 V; tbf  
amb = 25 °C; VI = VI;  
output code = 511  
gain error amplitude; spread VCCA = VCCD = VCCO = 5 V; 5  
from device to device Tamb = 25 °C;  
I(p-p) VI(p-p) = 2.0 V  
±0.5  
±0.3  
±1.75  
±0.5  
LSB  
LSB  
DNL  
differential non-linearity  
f
Eoffset  
offset error  
11  
tbf  
+5  
mV  
T
EG  
%FS  
V
BANDWIDTH (fCLK = 55 MHz); note 3  
B
analog bandwidth  
3 dB; full-scale input  
tbf  
200  
MHz  
1999 Jan 06  
8
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
SYMBOL  
HARMONICS (fCLK = 40 MHz)  
Hfund(FS) fundamental harmonics  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
fi = 4.43 MHz  
0
dB  
(full scale)  
Htot(FS)  
harmonics (full scale);  
all components  
fi = 4.43 MHz  
second harmonic  
third harmonic  
75  
70  
66  
dB  
dB  
dB  
THD  
total harmonic distortion  
fi = 4.43 MHz; note 4  
grounded input;  
THERMAL NOISE  
Nth(rms)  
thermal noise (RMS value)  
0.2  
tbf  
LSB  
fCLK = 40 MHz  
SPURIOUS FREE DYNAMIC RANGE  
DRsf  
spurious free dynamic range fi = 4.43 MHz  
tbf  
tbf  
tbf  
71  
68  
67  
dB  
dB  
dB  
fi = 10 MHz  
fi = 20 MHz  
SIGNAL-TO-NOISE RATIO; note 5  
S/N  
signal-to-noise ratio  
without harmonics;  
fCLK = 40 MHz;  
fi = 4.43 MHz  
59  
dB  
EFFECTIVE NUMBER OF BITS; see Figs 3 and 4 and note 5  
Nbit  
effective number of bits  
TDA8765H/4  
(fCLK = 40 MHz)  
fi = 4.43 MHz  
fi = 10 MHz  
fi = 15 MHz  
fi = 4.43 MHz  
fi = 10 MHz  
fi = 15 MHz  
fi = 20 MHz  
9.0  
9.6  
9.6  
9.5  
9.6  
9.4  
9.3  
9.1  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
effective number of bits  
TDA8765H/5  
(fCLK = 55 MHz)  
INTERMODULATION; note 6  
TTIR  
two-tone intermodulation  
rejection  
f
CLK = 40 MHz  
tbf  
tbf  
66  
67  
dB  
dB  
d3  
third-order intermodulation  
distortion  
fCLK = 40 MHz  
BIT ERROR RATE  
BER  
bit error rate  
fCLK = 40 MHz;  
1015  
tbf  
times/  
fi = 4.43 MHz;  
sample  
VI = ±16 LSB at code 511  
1999 Jan 06  
9
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Timing (CL = 10 pF); see Fig.5 and note 7  
td(s)  
th  
sampling delay time  
output hold time  
4
2
ns  
ns  
ns  
ns  
td  
output delay time  
VCCO = 5.25 V  
CCO = 3.0 V  
10  
13  
15  
18  
V
3-state output delay times; see Fig.6  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
enable LOW  
disable HIGH  
disable LOW  
14  
16  
16  
14  
18  
20  
20  
18  
ns  
ns  
ns  
ns  
Notes  
1. The circuit has two clock inputs: CLK and CLK. There are four modes of operation:  
a) PECL mode 1 (DC level varies equal to DC level of VCCD): CLK and CLK inputs are at differential PECL levels.  
b) PECL mode 2 (DC level varies equal to DC level of VCCD): CLK input is at PECL level and sampling is taken on  
the falling edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a  
100 nF capacitor.  
c) PECL mode 3 (DC level varies equal to DC level of VCCD): CLK input is at PECL level and sampling is taken on  
the rising edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a  
100 nF capacitor.  
d) AC driving mode 4: when driving the CLK input directly and with any AC signal of minimum 0.5 V (p-p) and with  
a DC level of 2.5 V, the sampling takes place at the falling edge of the clock signal.  
When driving the CLK input with the same signal, sampling takes place at the rising edge of the clock signal. It is  
recommended to decouple the CLK or CLK input to DGND via a 100 nF capacitor.  
2. It is possible with an external reference connected to pin Vref to adjust the ADC input range. This voltage has to be  
referenced to VCCA. For VCCA 1.825 V, the differential input voltage amplitude is 2 V (p-p).  
3. The 3 dB analog bandwidth is determined by the 3 dB reduction in the reconstructed output, the input being a  
full-scale sine wave.  
4. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:  
F
THD = 20 log---------------------------------------------------------------------------------------------------------------  
2
2
2
2
2
(2nd) + (3rd) + (4th) + (5th) + (6th)  
where F is the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.  
5. Effective number of bits are obtained via a Fast Fourier Transform (FFT). The calculation takes into account all  
harmonics and noise up to half of the clock frequency (Nyquist frequency). Conversion to SNR:  
SNR = Nbit × 6.02 + 1.76 dB.  
6. Intermodulation measured relative to either tone with analog input frequencies of 4.43 and 4.53 MHz. The two input  
signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter (6 dB  
below full scale for each input signal).  
d3 is the ratio of the RMS-value of either input tone to the RMS-value of the worst case third order intermodulation  
product.  
7. Output data acquisition: the output data is available after the maximum delay of td.  
1999 Jan 06  
10  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
Table 1 Output coding with differential inputs (typical values to AGND); Vi(p-p) Vi(p-p) = 2.0 V; Vref = VCCA 1.825 V  
TWOS COMPLEMENT  
BINARY OUTPUTS  
OUTPUTS  
CODE  
Vi(p-p)  
Vi(p-p)  
IR  
D9 TO D0  
D9 TO D0  
Underflow  
<3.1  
3.1  
>4.1  
4.1  
0
1
1
1
1
1
0
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 00  
1 0 0 0 0 0 0 0 0 1  
0
1
511  
3.6  
3.6  
0 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1  
1022  
1023  
Overflow  
1 1 1 1 1 1 1 1 1 0  
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1  
0 1 1 1 1 1 1 1 1 0  
0 1 1 1 1 1 1 1 1 1  
0 1 1 1 1 1 1 1 1 1  
4.1  
>4.1  
3.1  
<3.1  
Table 2 Mode selection  
OTC  
CE  
D0 TO D9 AND IR  
0
1
X(1)  
0
0
1
binary; active  
twos complement; active  
high impedance  
Note  
1. X = don’t care.  
Table 3 Sample-and-hold selection  
SH  
SAMPLE-AND-HOLD  
1
0
active  
inactive; tracking mode  
1999 Jan 06  
11  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
MGL430  
0
amplitude  
(dB)  
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
f (MHz)  
Effective bits: 9.68; THD = 70.8 dB.  
Harmonic levels (dB): 2nd = 80.3; 3rd = 74.5; 4th = 87.7; 5th = 76.4; 6th = 78.6.  
Fig.3 Typical fast Fourier transform (fCLK = 40 MHz; fi = 4.43 MHz).  
MGL431  
0
amplitude  
(dB)  
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
f (MHz)  
Effective bits: 9.12; THD = 62.5 dB.  
Harmonic levels (dB): 2nd = 73.0; 3rd = 63.4; 4th = 80.9; 5th = 78.1; 6th = 74.4.  
Fig.4 Typical fast Fourier transform (fCLK = 50 MHz; fi = 21.4 MHz).  
1999 Jan 06  
12  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
t
CLKL  
t
CLKH  
HIGH  
50%  
CLK  
LOW  
sample N  
sample N + 1  
sample N + 2  
V
I
t
t
h
d(s)  
HIGH  
50%  
DATA  
D0 to D9  
DATA  
N 2  
DATA  
N 1  
DATA  
N
DATA  
N + 1  
LOW  
t
d
MBH427  
Fig.5 Timing diagram.  
V
CCD  
CE  
50 %  
0 V  
t
t
dHZ  
dZH  
HIGH  
90 %  
output  
data  
50 %  
LOW  
t
t
dZL  
dLZ  
HIGH  
output  
data  
50 %  
LOW  
10 %  
TEST  
S1  
V
CCD  
t
t
t
t
V
V
dLZ  
dZL  
dHZ  
dZH  
CCD  
CCD  
3.3 kΩ  
15 pF  
S1  
TDA8765  
DGND  
DGND  
CE  
MBH423  
fCE = 100 kHz.  
Fig.6 Timing diagram and test conditions of 3-state output delay time.  
13  
1999 Jan 06  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
APPLICATION INFORMATION  
220 nF  
1 : 1  
5 V  
SH  
mode  
5 V  
V
V
I
I
IN  
100 nF  
100 nF  
100 Ω  
100 Ω  
CLK  
(1)  
CLK  
V
CCA  
5 V  
R1  
100 nF  
44 43 42 41 40 39 38 37 36 35 34  
n.c.  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
n.c  
5 V  
100 nF  
R2  
4.7 µF  
10 nF  
n.c.  
D0 (LSB)  
D1  
3
4
n.c.  
n.c.  
n.c.  
n.c.  
5
6
TDA8765  
D2  
D3  
7
D4  
8
100 nF  
5 V  
9
D5  
(3)  
10  
11  
D6  
100 nF  
D7  
V
ref  
12 13 14 15 16 17 18 19 20 21 22  
n.c.  
n.c.  
n.c.  
IR  
D8  
n.c.  
5 V  
D9  
(MSB)  
MGK802  
100 nF  
chip select input  
output format select  
The analog, digital and output supplies should be separated and decoupled.  
(1) Single-ended clock signals can be applied if required.  
(2) R1 and R2 must be determined in order to obtain a middle voltage of 3.6 V; see common mode input voltage.  
In addition, the minimum current into these resistors should be about 1 mA in order to ensure a sufficient analog input stability.  
(3) Vref must be decoupled to VCCA  
.
Fig.7 Application diagram.  
1999 Jan 06  
14  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
PACKAGE OUTLINE  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
y
X
A
33  
23  
34  
22  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
θ
b
p
L
p
pin 1 index  
L
12  
44  
detail X  
1
11  
w M  
Z
v
M
A
D
b
p
e
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
10o  
0o  
0.25 1.85  
0.05 1.65  
0.40 0.25 10.1 10.1  
0.20 0.14 9.9 9.9  
12.9 12.9  
12.3 12.3  
0.95  
0.55  
1.2  
0.8  
1.2  
0.8  
mm  
2.10  
0.25  
0.8  
1.3  
0.15 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT307-2  
1999 Jan 06  
15  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
If wave soldering is used the following conditions must be  
observed for optimal results:  
SOLDERING  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Jan 06  
16  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Jan 06  
17  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
NOTES  
1999 Jan 06  
18  
Philips Semiconductors  
Preliminary specification  
10-bit high-speed Analog-to-Digital  
Converter (ADC)  
TDA8765  
NOTES  
1999 Jan 06  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA61  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545104/750/02/pp20  
Date of release: 1999 Jan 06  
Document order number: 9397 750 04716  

相关型号:

TDA8765H/4B

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP

TDA8765H/4B-S

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP

TDA8765H/5

10-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8765H/5B-S

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP

TDA8766

10-bit high-speed 2.7 to 5.25 V analog-to-digital converter
NXP

TDA8766G

10-bit high-speed 2.7 to 5.25 V analog-to-digital converter
NXP

TDA8766GB-S

Analog-to-Digital Converter, 10-Bit
ETC

TDA8766GB-T

Analog-to-Digital Converter, 10-Bit
ETC

TDA8767

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H/1

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H/1-T

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 1.75 MM HEIGHT, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP