TDA8933T [NXP]

Class-D audio amplifier; D类音频放大器
TDA8933T
型号: TDA8933T
厂家: NXP    NXP
描述:

Class-D audio amplifier
D类音频放大器

音频放大器
文件: 总47页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8933  
Class-D audio amplifier  
Rev. 01 — 15 May 2007  
Preliminary data sheet  
1. General description  
The TDA8933 is a high efficiency class-D amplifier with low power dissipation.  
The continuous time output power is 2 × 10 W in a stereo half bridge application  
(RL = 8 ) or 1 × 20 W in a mono full bridge application (RL =16 ). Due to the low power  
dissipation the device can be used without any external heat sink when playing music.  
Due to the implementation of Thermal Foldback (TF), even for high supply voltages and/or  
lower load impedances, the device will continue to operate with considerable music output  
power without the need for an external heat sink.  
The device has two full differential inputs driving two independent outputs. It can be used  
in a mono full bridge configuration (Bridge-Tied Load (BTL)) or a stereo half bridge  
configuration (Single-Ended (SE)).  
2. Features  
I High efficiency  
I Application without heat sink using thermally enhanced small outline package  
I Operating voltage from 10 V to 36 V asymmetrical or ± 5 V to ± 18 V symmetrical  
I Thermally protected  
I Thermal foldback  
I Current limiting to avoid audio holes  
I Full short circuit proof to supply lines (using advanced current protection)  
I Switchable internal / external oscillator (master-slave setting)  
I No pop noise  
I Low power dissipation  
I Mono bridge-tied load (full bridge) or stereo single-ended (half bridge) application  
I Full differential inputs  
3. Applications  
I Flat panel television sets  
I Flat panel monitor sets  
I Multimedia systems  
I Wireless speakers  
I Mini/micro systems  
I Home sound sets  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
4. Quick reference data  
Table 1.  
Quick reference data  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
General; Vp = 25 V, fosc = 320 kHz, Tamb = 25 °C unless specified otherwise  
VP  
supply voltage  
asymmetrical supply  
symmetrical supply  
Sleep mode  
10  
5
-
25  
36  
18  
1.0  
50  
V
12.5  
0.6  
40  
V
IP  
supply current  
mA  
mA  
Iq(tot)  
total quiescent  
current  
Operating mode; no load, no  
snubbers or filter connected  
-
Stereo SE channel  
[1]  
Po(RMS) RMS output power continuous time output power  
per channel  
RL = 4 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
RL = 8 ; VP = 25 V  
5.9  
-
6.5  
6.5  
8.3  
8.3  
-
-
-
-
W
W
W
W
7.5  
-
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
7.3  
-
8.1  
-
-
-
-
W
W
W
W
8.1  
9.3  
-
10.3  
10.3  
[2]  
short time output power per  
channel; THD+N = 10 %,  
see Figure 23 for details  
RL = 8 ; VP = 31 V  
THD+N = 0.5 %  
THD+N = 10 %  
11.2  
14.1  
12.4  
15.7  
-
-
W
W
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
2 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 1.  
Quick reference data …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Mono BTL channel  
[1]  
Po(RMS) RMS output power continuous time output power  
THD+N = 10 %; fi = 1 kHz  
RL = 8 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
11.9  
13.2  
13.2  
17.1  
17.1  
-
-
-
-
W
W
W
W
-
15.4  
-
THD+N = 10 %, fi = 100 Hz  
RL = 16 ; VP = 25 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
14.9  
16.5  
16.5  
21  
-
-
-
-
W
W
W
W
-
18.9  
-
THD+N = 10 %, fi = 100 Hz  
21  
[2]  
short time output power;  
THD+N = 10 %, see  
Figure 35 for details  
RL = 16 ; VP = 31 V  
THD+N = 0.5 %  
THD+N = 10 %  
22.8  
28.8  
25.3  
32  
-
-
W
W
[1] Output power is measured indirectly, based on RDSon measurement.  
[2] 2 layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural  
convection.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8933T  
SO32  
plastic small outline package; 32 leads; body width 7.5 mm  
SOT287-1  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
3 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
6. Block diagram  
V
OSCREF  
10  
OSCIO  
31  
V
DDA  
8
DDP1  
29  
OSCILLATOR  
28  
BOOT1  
OUT1  
2
3
IN1P  
IN1N  
V
SSD  
DRIVER  
HIGH  
PWM  
MODULATOR  
27  
26  
CTRL  
DRIVER  
LOW  
V
SSP1  
V
DDA  
25  
STABI 11V  
STAB1  
12  
INREF  
+
V
SSP1  
V
DDA  
V
SSA  
24  
MANAGER  
STABI 11V  
STAB2  
BOOT2  
V
SSP2  
21  
20  
15  
IN2P  
V
DDP2  
DRIVER  
HIGH  
PWM  
MODULATOR  
22  
23  
OUT2  
CTRL  
14  
7
IN2N  
DRIVER  
LOW  
V
SSP2  
PROTECTIONS  
OVP, OCP, OTP  
UVP, TF, WP  
CGND  
18  
11  
REG5V  
DREF  
V
SSD  
4
6
DIAG  
V
DDA  
HVPREF  
POWERUP  
30  
19  
HVP1  
HVP2  
MODE  
5
V
ENGAGE  
SSA  
HALF SUPPLY VOLTAGE  
1, 16, 17, 32  
CGND  
9
13  
010aaa113  
V
TEST  
V
SSD(HW)  
SSA  
Fig 1. Block diagram  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
4 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
7. Pinning information  
7.1 Pinning  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
OSCIO  
HVP1  
3
IN1N  
DIAG  
4
V
DDP1  
5
ENGAGE  
POWER UP  
CGND  
BOOT1  
OUT1  
6
7
V
SSP1  
8
V
STAB1  
STAB2  
DDA  
TDA8933T  
SO32  
9
V
SSA  
10  
11  
12  
13  
14  
15  
16  
OSCREF  
HVPREF  
INREF  
TEST  
V
SSP2  
OUT2  
BOOT2  
V
DDP2  
IN2N  
HVP2  
DREF  
IN2P  
V
V
SSD(HW)  
SSD(HW)  
010aaa114  
Fig 2. Pin configuration diagram  
7.2 Pin description  
Table 3.  
Symbol  
Pinning description  
Pin  
1
Description  
VSSD(HW)  
IN1P  
negative digital supply voltage and handle wafer connection  
positive audio input for channel 1  
2
IN1N  
3
negative audio input for channel 1  
DIAG  
4
diagnostic output; open-drain  
ENGAGE  
POWERUP  
CGND  
VDDA  
5
engage input to switch between Mute mode and Operating mode  
power-up input to switch between Sleep mode and Mute mode  
control ground; reference for POWERUP, ENGAGE and DIAG  
positive analog supply voltage  
6
7
8
VSSA  
9
negative analog supply voltage  
OSCREF  
HVPREF  
INREF  
TEST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
input internal oscillator setting (only master setting)  
decoupling of internal half supply voltage reference  
decoupling for input reference voltage  
test signal input; for testing purpose only  
IN2N  
negative audio input for channel 2  
IN2P  
positive audio input for channel 2  
VSSD(HW)  
VSSD(HW)  
DREF  
negative digital supply voltage and handle wafer connection  
negative digital supply voltage and handle wafer connection  
decoupling of internal (reference) 5 V regulator for logic supply  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
5 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 3.  
Pinning description …continued  
Symbol  
Pin  
Description  
HVP2  
19  
half supply output voltage 2 for charging single-ended capacitor for  
channel 2  
VDDP2  
BOOT2  
OUT2  
VSSP2  
STAB2  
STAB1  
VSSP1  
OUT1  
BOOT1  
VDDP1  
HVP1  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
positive power supply voltage for channel 2  
bootstrap high-side driver channel 2  
Pulse Width Modulated (PWM) output channel 2  
negative power supply voltage for channel 2  
decoupling of internal 11 V regulator for channel 2 drivers  
decoupling of internal 11 V regulator for channel 1 drivers  
negative power supply voltage for channel 1  
PWM output channel 1  
bootstrap capacitor for channel 1  
positive power supply voltage for channel 1  
half supply output voltage 1 for charging single-ended capacitor for  
channel 1  
OSCIO  
31  
32  
oscillator input in slave configuration or oscillator output in master  
configuration  
VSSD(HW)  
negative digital supply voltage and handle wafer connection  
8. Functional description  
8.1 General  
The TDA8933 is a mono full bridge or stereo half bridge audio power amplifier using  
class-D technology. The audio input signal is converted into a Pulse Width Modulated  
(PWM) signal via an analog input stage and PWM modulator. To enable the output power  
Diffusion Metal Oxide Semiconductor (DMOS) transistors to be driven, this digital PWM  
signal is applied to control and handshake block and driver circuits for both the high side  
and low side. A 2nd-order-low-pass filter converts the PWM signal to an analog audio  
signal across the loudspeakers.  
The TDA8933 contains two independent half bridges with full differential input stages. The  
loudspeakers can be connected in the following configurations:  
Mono full bridge: Bridge Tied Load (BTL)  
Stereo half bridge: Single-Ended (SE)  
The TDA8933 contains circuits common to both channels, such as: the oscillator, all  
reference sources, the mode functionality and a digital timing manager.  
The following protections are built-in: thermal foldback, temperature, current and voltage.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
6 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
8.2 Mode selection and interfacing  
The TDA8933 can be switched to one of four operating modes using pins POWERUP and  
ENGAGE:  
Sleep mode: with low supply current  
Mute mode: the amplifiers are switching idle (50 % duty cycle), but the audio signal at  
the output is suppressed by disabling the Vl-converter input stages. The capacitors on  
pins HVP1 and HVP2 have been charged to half the supply voltage (asymmetrical  
supply only)  
Operating mode: the amplifiers are fully operational with an output signal  
Fault mode  
Both pins POWERUP and ENGAGE refer to pin CGND.  
Table 4 shows the different modes as a function of the voltages on the POWERUP and  
ENGAGE pins.  
Table 4.  
Mode  
Mode selection for the TDA8933  
Pin  
POWERUP[1]  
ENGAGE[1]  
< 0.8 V  
DIAG  
Sleep  
< 0.8 V  
undefined  
> 2 V  
Mute  
2 V to 6 V  
2 V to 6 V  
2 V to 6 V  
< 0.8 V  
Operating  
Fault  
3 V to 6 V  
undefined  
> 2 V  
< 0.8 V  
[1] When there are symmetrical supply conditions, the voltage applied to pins POWERUP and ENGAGE must  
never exceed the supply voltage (VDDA, VDDP1 or VDDP2).  
If the transition between Mute mode and Operating mode is controlled via a time constant,  
the start-up will be pop free since the DC output offset voltage is applied gradually to the  
output between Mute mode and Operating mode. The bias current setting of the  
VI-converters is related to the voltage on pin ENGAGE.  
Mute mode: the bias current setting of the VI-converters is zero (VI-converters  
disabled).  
Operating mode: the bias current is at maximum.  
The time constant required to apply the DC output offset voltage gradually between Mute  
mode and Operating mode can be generated by applying a decoupling capacitor on pin  
ENGAGE. The value of the capacitor on pin ENGAGE should be 470 nF.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
7 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
V
P
POWERUP  
DREF  
HVPREF  
HVP1, HVP2  
0.43V  
ENGAGE  
0.3V  
ENGAGE  
ENGAGE  
0.17V  
ENGAGE  
AUDIO  
AUDIO  
AUDIO  
PWM  
audio  
OUT1, OUT2  
PWM  
PWM  
DIAG  
OSCIO  
operating  
mute  
operating  
fault  
operating  
sleep  
001aae788  
Fig 3. Start-up sequence  
8.3 Pulse width modulation frequency  
The output signal of the amplifier is a PWM signal with a carrier frequency of  
approximately 320 kHz. Using a 2nd-order-low-pass filter in the application results in an  
analog audio signal across the loudspeaker. The PWM switching frequency can be set by  
an external resistor Rosc connected between pin OSCREF and VSSD(HW). The carrier  
frequency can be set between 300 kHz and 500 kHz. Using an external resistor of 39 k,  
the carrier frequency is set to an optimized value of 320 kHz (see Figure 4).  
If two or more TDA8933 devices are used in the same audio application, it is  
recommended to synchronize the switching frequency of all devices.This can be done by  
connecting all the OSCIO pins together and configuring one of the TDA8933 devices in  
the application as the clock master. Configure the other TDA8933 devices as slaves.  
Pin OSCIO is a 3-state input or output buffer. Pin OSCIO is configured in master mode as  
oscillator output, and in slave mode as oscillator input. Master mode is enabled by  
applying a resistor between pin OSCREF and VSSD(HW), while slave mode is enabled by  
connecting pin OSCREF directly to VSSD(HW) (without any resistor).  
The value of the resistor also sets the frequency of the carrier and can be calculated with  
Equation 1:  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
8 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
12.45x109  
------------------------  
Rosc  
f osc  
=
(1)  
Where:  
fosc = oscillator frequency (Hz)  
Rosc = oscillator resistor () (on pin OSCREF)  
001aad758  
550  
f
osc  
(kHz)  
450  
350  
250  
25  
30  
35  
40  
45  
Rosc (k)  
Fig 4. Oscillation frequency as a function of Rosc  
Table 5 summarizes how to configure the TDA8933 in master or slave configuration.  
Table 5.  
Master/slave configuration  
Configuration  
Pin  
OSCREF  
OSCIO  
output  
input  
Master  
Slave  
Rosc > 25 kto VSSD(HW)  
Rosc = 0 ; shorted to VSSD(HW)  
8.4 Protections  
The following protections are implemented in the TDA8933:  
Thermal Foldback (TF)  
OverTemperature Protection (OTP)  
OverCurrent Protection (OCP)  
Window Protection (WP)  
Supply voltage protections  
UnderVoltage Protection (UVP)  
OverVoltage Protection (OVP)  
UnBalance Protection (UBP)  
ElectroStatic Discharge (ESD)  
The behavior of the device under the different fault conditions differs according to the  
protection activated and is described in the following sections.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
9 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
8.4.1 Thermal Foldback (TF)  
If the junction temperature of the TDA8933 exceeds the threshold level (Tj > 140 °C), the  
gain of the amplifier is decreased gradually to a level where the combination of  
dissipation (P) and the thermal resistance from junction to ambient (Rth(j-a)) results in a  
junction temperature around the threshold level.  
This means that the device will not switch off completely, but remains operational at lower  
output power levels. With music output signals, this feature enables high peak output  
powers while still operating without any external heat sink other than the printed-circuit  
board area.  
If the junction temperature still increases due to external causes, the OverTemperature  
Protection (OTP) shuts down the amplifier completely.  
8.4.2 OverTemperature Protection (OTP)  
If the junction temperature Tj > 155 °C, the power stage will shut down immediately.  
8.4.3 OverCurrent Protection (OCP)  
When the output current of the device exceeds 2 A due to a short-circuit across the load  
or an impedance drop, the cycle-by-cycle current limitation becomes active. This means  
the device will not switch off, but continue to operate while limiting the current without  
causing audio holes (interruptions). The maximum output current will not go beyond the  
absolute maximum current.  
If the current exceeds 2 A due to a low ohmic short from the demodulated output (after the  
inductor) to either VSS or VDD both power stages become floating. The DIAG is set low for  
50 ms and the internal timer of 100 ms is started. The timer will keep both power stages  
disabled for 100 ms. As long as the short remains, this cycle will repeat. The average  
power dissipation in the TDA8933 will be low because the short-circuit current will flow  
only during a very small part of the timer cycle of 100 ms.  
8.4.4 Window Protection (WP)  
WP checks the PWM output voltage before switching from Sleep mode to Mute mode  
(outputs switching) and is activated:  
During the start-up sequence, when pin POWERUP is switched from Sleep mode to  
Mute mode.  
In the event of a short-circuit at one of the output terminals to VDDP1, VSSP1, VDDP2 or  
VSSP2 the start-up procedure is interrupted and the TDA8933 waits for open-circuit  
outputs. Because the check is done before enabling the power stages, no large  
currents will flow in the event of a short-circuit.  
When the amplifier is shut down completely, due to activation of the OCP because a  
short to one of the supply lines is made, then during restart (after 100 ms) the window  
protection will be activated. As a result, the amplifier will not start up until the short to  
the supply lines is removed.  
8.4.5 Supply voltage protections  
If the supply voltage drops below 10 V, the UVP circuit is activated and the system will  
shut down directly. This switch-off will be silent and without pop noise. When the supply  
voltage rises above the threshold level, the system is restarted again after 100 ms.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
10 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
If the supply voltage exceeds 36 V, the OVP circuit is activated and the power stages will  
shut down. It is re-enabled as soon as the supply voltage drops below the threshold level.  
The system is restarted again after 100 ms.  
It should be noted that supply voltages > 40 V may damage the TDA8933. Two conditions  
should be distinguished:  
If the supply voltage is pumped to higher values by the TDA8933 application itself  
(see also Section 14.8), the OVP is triggered and the TDA8933 is shut down. The  
supply voltage will decrease and the TDA8933 is protected against any overstress.  
If a supply voltage > 40 V is caused by other or external causes, the TDA8933 will  
shut down, but the device can still be damaged since the supply voltage will remain  
> 40 V in this case. The OVP protection is not a supply clamp.  
An additional UBP circuit compares the positive analog supply voltage (VDDA) and the  
negative analog supply voltage (VSSA) and is triggered if the voltage difference between  
them exceeds a certain level. This level depends on the sum of both supply voltages. The  
unbalance threshold levels can be defined as follows:  
LOW-level threshold: VP(th)(ubp)l < 8/5 × VHVPREF  
HIGH-level threshold: VP(th)(ubp)h > 8/3 × VHVPREF  
In a symmetrical supply the UBP is released when the unbalance of the supply voltage is  
within 6 % of its starting value.  
Table 6 shows an overview of all protections and the effect on the output signal.  
Table 6.  
Overview of protections for the TDA8933  
Protection  
Restart  
When fault is removed  
Every 100 ms  
OTP  
OCP  
WP  
no  
yes  
no  
yes  
yes  
no  
no  
UVP  
OVP  
UBP  
yes  
yes  
yes  
no  
no  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
11 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
8.5 Diagnostic input and output  
Whenever one of the protections is triggered, except for TF, pin DIAG is activated to LOW  
level (see Table 6). An internal reference supply will pull up the open-drain DIAG output to  
approximately 2.4 V. This internal reference supply can deliver approximately 50 µA. The  
DIAG pin refers to pin CGND.The diagnostic output signal during different short circuit  
conditions is illustrated in Figure 5. Using pin DIAG as input, a voltage < 0.8 V will put the  
device into Fault mode.  
V
V
o
o
2.4 V  
2.4 V  
amplifier  
restart  
no restart  
0 V  
0 V  
50 ms 50 ms  
short to  
shorted load  
supply line  
001aad759  
Fig 5. Diagnostic output for different kinds of short circuit conditions  
8.6 Differential inputs  
For a high common-mode rejection ratio and for maximum flexibility in the application, the  
audio inputs are fully differential. By connecting the inputs anti-parallel, the phase of one  
of the two channels can be inverted, so that the amplifier can operate as a mono BTL  
amplifier. The input configuration for a mono BTL application is illustrated in Figure 6.  
In the single-ended configuration it is also recommended to connect the two differential  
inputs in anti-phase. This has advantages for the current handling of the power supply at  
low signal frequencies and minimizes supply pumping (see also Section 14.8).  
IN1P  
OUT1  
IN1N  
audio  
input  
IN2P  
OUT2  
IN2N  
001aad760  
Fig 6. Input configuration for a mono BTL application  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
12 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
8.7 Output voltage buffers  
When pin POWERUP is set HIGH, the half supply output voltage buffers are switched on  
in asymmetrical supply configuration. The start-up will be pop free because the device  
starts switching when the capacitor on pin HVPREF and the SE capacitors are completely  
charged.  
Output voltage buffers:  
Pins HVP1 and HVP2: The time required for charging the SE capacitor depends on its  
value. The half supply voltage output is disabled when the TDA8933 is used in a  
symmetrical supply application.  
Pin HVPREF: This output voltage reference buffer charges the capacitor on pin  
HVPREF.  
Pin INREF: This output voltage reference buffer charges the input reference capacitor  
on pin INREF. Pin INREF applies the bias voltage for the inputs.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
13 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
9. Internal circuitry  
Table 7.  
Pin  
Internal circuitry  
Symbol  
Equivalent circuit  
1, 16, 17, 32 VSSD(HW)  
1, 16,  
17, 32  
V
V
DDA  
SSA  
001aad784  
2
IN1P  
IN1N  
INREF  
IN2N  
IN2P  
3
12  
14  
15  
V
V
DDA  
13  
SSA  
001aad795  
4
DIAG  
V
2.5 V  
DDA  
50 µA  
4
5 kΩ  
± 20 %  
V
V
CGND 010aaa198  
SSA  
5
ENGAGE  
4.6 V  
DDA  
I
= 20 µA  
ref  
5
226 kΩ  
± 20 %  
V
SSA  
CGND  
001aad787  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
14 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 7.  
Internal circuitry …continued  
Pin  
Symbol  
Equivalent circuit  
6
POWERUP  
V
DDA  
6
V
CGND  
001aad788  
SSA  
7
CGND  
V
DDA  
7
V
SSA  
001aad789  
8
VDDA  
8
V
V
SSA  
SSD  
001aad790  
9
VSSA  
V
DDA  
9
V
SSD  
001aad791  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
15 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 7.  
Internal circuitry …continued  
Pin  
Symbol  
Equivalent circuit  
10  
OSCREF  
V
DDA  
I
ref  
10  
V
001aad792  
SSA  
11  
HVPREF  
V
DDA  
11  
V
SSA  
010aaa199  
DDA  
13  
TEST  
V
13  
V
SSA  
001aad795  
18  
DREF  
V
DD  
18  
V
SSD  
010aaa200  
19  
30  
HVP2  
HVP1  
V
DDA  
19, 30  
V
SSA  
010aaa201  
20  
23  
26  
29  
VDDP2  
VSSP2  
VSSP1  
VDDP1  
20, 29  
23, 26  
001aad798  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
16 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 7.  
Internal circuitry …continued  
Pin  
21  
Symbol  
BOOT2  
BOOT1  
Equivalent circuit  
21, 28  
28  
OUT1, OUT2  
001aad799  
22  
27  
OUT2  
OUT1  
V
V
DDP1,  
DDP2  
22, 27  
V
SSP1,  
V
SSP2  
010aaa202  
24  
25  
STAB2  
STAB1  
V
DDA  
24, 25  
V
SSP1,  
V
SSP2  
010aaa203  
31  
OSCIO  
DREF  
31  
V
SSD  
010aaa204  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
17 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
10. Limiting values  
Table 8.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VP  
Vx  
supply voltage  
asymmetrical supply  
0.3  
+40  
V
voltage on pin x  
[1]  
[2]  
[3]  
IN1P, IN1N, IN2P, IN2N  
OSCREF, OSCIO, TEST  
5  
+5  
V
V
V
VSSD(HW) - 0.3 5  
POWERUP, ENGAGE,  
DIAG  
VCGND - 0.3  
6
[4]  
[5]  
all other pins  
VSS - 0.3  
2.3  
VDD + 0.3  
-
V
A
IORM  
repetitive peak output  
current  
maximum output  
current limiting  
Tj  
junction temperature  
storage temperature  
ambient temperature  
power dissipation  
-
150  
+150  
+85  
5
°C  
°C  
°C  
W
Tstg  
Tamb  
P
55  
40  
-
[1] Measured with respect to pin INREF; Vx < VDD + 0.3 V.  
[2] Measured with respect to pin VSSD(HW); Vx < VDD + 0.3 V.  
[3] Measured with respect to pin CGND; Vx < VDD + 0.3 V.  
[4] VSS = VSSP1 = VSSP2; VDD = VDDP1 = VDDP2  
.
[5] Current limiting concept.  
11. Thermal characteristics  
Table 9.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Min  
Typ  
-
Max  
Unit  
thermal resistance from  
junction to ambient  
free air natural convection  
JEDEC test board  
[1]  
[2]  
-
-
-
41  
44  
-
44  
-
K/W  
K/W  
K/W  
2 layer application board  
Ψj-lead  
thermal characterization  
parameter from junction to  
lead  
30  
[3]  
Ψj-top  
thermal characterization  
parameter from junction to  
top of package  
-
-
8
K/W  
[1] Measured in a JEDEC high K-factor test board (standard EIA/JESD 51-7) in free air with natural convection.  
[2] 2 layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.  
[3] Strongly dependent on where the measurement is taken on the package.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
18 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
12. Static characteristics  
Table 10. Characteristics  
VP = 25 V, fosc = 320 kHz and Tamb = 25 °C; unless specified otherwise.  
Symbol  
Supply  
VP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
asymmetrical supply  
symmetrical supply  
Sleep mode  
10  
±5  
-
25  
36  
V
±12.5  
0.6  
40  
±18  
1.0  
50  
V
IP  
supply current  
mA  
mA  
Iq(tot)  
total quiescent current  
Operating mode; no load,  
no snubbers or filter  
connected  
-
Series resistance output switches  
RDSon  
drain-source on-state  
resistance  
Tj = 25 °C  
-
-
350  
545  
-
-
mΩ  
mΩ  
Tj = 125 °C  
Power up input: pin POWERUP[1]  
VI  
input voltage  
0
-
-
6.0  
20  
V
II  
input current  
VI = 3 V  
1
-
µA  
V
VIL  
LOW-level input voltage  
0
2
0.8  
6.0  
VIH  
HIGH-level input voltage  
-
V
Engage input: pin ENGAGE[1]  
VO  
VI  
output voltage  
4.2  
0
4.6  
5.0  
6.0  
40  
V
input voltage  
-
V
IO  
output current  
VI = 3 V  
-
20  
-
µA  
V
VIL  
LOW-level input voltage  
0
0.8  
6.0  
VIH  
HIGH-level input voltage  
3
-
V
Diagnostic output: pin DIAG[1]  
VO output voltage  
protection activated; see  
Table 6  
-
-
0.8  
3.3  
V
V
Operating mode  
2
2.5  
Bias voltage for inputs: pin INREF  
VO(bias) bias output voltage  
Reference to VSSA  
-
2.1  
-
V
Half supply voltage  
Pins HVP1 and HVP2  
VO  
output voltage  
half supply voltage to  
charge SE capacitor  
0.5VP −  
0.2 V  
0.5VP  
50  
0.5VP +  
0.2 V  
V
IO  
output current  
output voltage  
VHVP1 = VHVP2 = VO 1 V  
mA  
Pin HVPREF  
VO  
half supply reference  
voltage in Mute mode  
0.5VP −  
0.2 V  
0.5VP  
4.8  
0.5VP +  
0.2 V  
V
V
Reference voltage for internal logic: pin DREF  
VO  
output voltage  
4.5  
5.1  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
19 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 10. Characteristics …continued  
VP = 25 V, fosc = 320 kHz and Tamb = 25 °C; unless specified otherwise.  
Symbol  
Amplifier outputs: pins OUT1 and OUT2  
VO(offset) output offset voltage  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SE; with respect to  
HVPREF  
Mute mode  
Operating mode  
BTL  
-
-
-
-
15  
mV  
mV  
100  
Mute mode  
Operating mode  
-
-
-
-
20  
mV  
mV  
150  
Stabilizer output: pins STAB1, STAB2  
VO output voltage  
Mute mode and  
Operating mode; with  
respect to pins VSSP1 and  
VSSP2  
10  
11  
12  
V
Voltage protections  
VP(uvp)  
undervoltage protection  
supply voltage  
8.0  
36.1  
-
9.5  
9.9  
40  
18  
-
V
V
V
V
VP(ovp)  
overvoltage protection  
supply voltage  
38.5  
VP(th)(ubp)l  
VP(th)(ubp)h  
low unbalance protection  
threshold supply voltage  
VHVPREF = 11 V  
VHVPREF = 11 V  
-
-
high unbalance protection  
threshold supply voltage  
29  
Current protections  
IO(ocp) overcurrent protection  
output current  
Temperature protection  
Tact(th_prot) thermal protection activation  
current limiting  
2.0  
2.3  
-
A
155  
140  
-
-
160  
150  
°C  
°C  
temperature  
Tact(th_fold)  
thermal foldback activation  
temperature  
Oscillator reference: pin OSCIO[2]  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
LOW-level output voltage  
4.0  
0
-
-
-
-
-
5.0  
0.8  
5.0  
0.8  
-
V
V
V
V
-
VIL  
VOH  
4.0  
0
VOL  
Nslave(max)  
maximum number of slaves driven by one master  
12  
[1] Measured with respect to pin CGND.  
[2] Measured with respect to pin VSSD(HW)  
.
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
20 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
13. Dynamic characteristics  
Table 11. Switching characteristics  
VP = 25 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Internal oscillator  
fosc oscillator frequency  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rosc = 39 kΩ  
-
320  
-
-
kHz  
kHz  
range  
300  
500  
Timing PWM output: pins OUT1 and OUT2  
tr  
rise time  
IO = 0 A  
IO = 0 A  
IO = 0 A  
-
-
-
10  
10  
80  
-
-
-
ns  
ns  
ns  
tf  
fall time  
tw(min)  
minimum pulse width  
Table 12. SE characteristics  
VP = 25 V, RL = 2 × 8 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [6] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
Po(RMS)  
RMS output power  
continuous time output power  
per channel  
RL = 4 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
RL = 8 ; VP = 25 V  
5.9  
-
6.5  
6.5  
8.3  
8.3  
-
-
-
-
W
W
W
W
7.5  
-
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
7.3  
-
8.1  
-
-
-
-
W
W
W
W
8.1  
9.3  
-
10.3  
10.3  
[2]  
short time output power per  
channel; THD+N = 10 %,  
see Figure 23 for details  
RL = 8 ; VP = 31 V  
THD+N = 0.5 %  
THD+N = 10 %  
Po = 1 W  
11.2  
14.1  
12.4  
15.7  
-
-
W
W
[3]  
THD+N  
total harmonic  
distortion-plus-noise  
fi = 1 kHz  
-
0.011  
0.06  
30  
0.1  
0.1  
31  
1
%
fi = 6 kHz  
-
%
Gv(cl)  
|GV|  
αcs  
closed-loop voltage gain  
voltage gain difference  
channel separation  
Vi =100 mV; no load  
29  
-
dB  
dB  
dB  
0.5  
Po = 1 W; fi = 1 kHz  
Operating mode  
fi = 100 Hz  
70  
80  
-
[4]  
SVRR  
supply voltage ripple  
rejection  
-
60  
-
-
-
dB  
dB  
kΩ  
fi = 1 kHz  
40  
70  
50  
|Zi|  
input impedance  
differential  
100  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
21 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 12. SE characteristics …continued  
VP = 25 V, RL = 2 × 8 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [6] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
100  
70  
Max  
150  
100  
-
Unit  
µV  
[5]  
[5]  
Vn(o)  
noise output voltage  
Operating mode; Rs = 0 Ω  
Mute mode  
-
-
-
µV  
VO(mute)  
CMRR  
ηpo  
mute output voltage  
Mute mode; Vi = 1 V (RMS)  
and fi = 1 kHz  
100  
µV  
common mode rejection  
ratio  
Vi(cm) = 1 V (RMS)  
-
75  
-
dB  
output power efficiency  
Po = 10 W  
VP = 17 V; RL = 4 Ω  
VP = 25 V; RL = 8 Ω  
86  
89  
87  
90  
-
-
%
%
[1] Output power is measured indirectly; based on RDSon measurement.  
[2] 2 layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.  
[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.  
[4] Maximum Vripple = 2 V (p-p); RS = 0 .  
[5] B = 20 Hz to 20 kHz, AES17 brick wall.  
[6] RS is the series resistance of inductor and capacitor of low-pass LC filter in the application.  
Table 13. BTL characteristics  
VP = 25 V, RL = 16 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [5] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
Po(RMS)  
RMS output power  
continuous time output power:  
THD+N = 10 %; fi = 1 kHz  
RL = 8 ; VP = 17 V  
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
RL = 16 ; VP = 25 V  
11.9  
13.2  
13.2  
17.1  
17.1  
-
-
-
-
W
W
W
W
-
15.4  
-
THD+N = 0.5 %, fi = 1 kHz  
THD+N = 0.5 %, fi = 100 Hz  
THD+N = 10 %, fi = 1 kHz  
THD+N = 10 %, fi = 100 Hz  
14.9  
16.5  
16.5  
21  
-
-
-
-
W
W
W
W
-
18.9  
-
21  
[2]  
short time output power; THD+N  
= 10 %, see Figure 35 for details  
RL = 16 ; VP = 31 V  
THD+N = 0.5 %  
THD+N = 10 %  
Po = 1 W  
22.8  
28.8  
25.3  
32  
-
-
W
W
[3]  
THD+N  
total harmonic  
distortion-plus-noise  
fi = 1 kHz  
-
0.04  
0.18  
36  
0.1  
0.24  
37  
-
%
fi = 10 kHz  
-
%
Gv(cl)  
|Zi|  
closed-loop voltage gain  
input impedance  
35  
35  
dB  
kΩ  
differential  
50  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
22 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
Table 13. BTL characteristics …continued  
VP = 25 V, RL = 16 , fi = 1 kHz, fosc = 320 kHz, RS < 0.1 [5] and Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Rs = 0 Ω  
Min  
Typ  
Max  
Unit  
Vn(o)  
noise output voltage  
[4]  
[4]  
Operating mode  
Mute mode  
-
-
-
100  
70  
150  
100  
-
µV  
µV  
µV  
VO(mute)  
CMRR  
ηpo  
mute output voltage  
Mute mode; Vi = 1 V (RMS) and  
fi = 1 kHz  
100  
common mode rejection  
ratio  
Vi(cm) = 1 V (RMS)  
-
75  
-
dB  
output power efficiency  
Po = 17 W; VP = 17 V; RL = 8 Ω  
Po = 21 W; VP = 25 V; RL = 16 Ω  
87  
90  
89  
92  
-
-
%
%
[1] Output power is measured indirectly; based on RDSon measurement.  
[2] 2 layer application board (55 mm × 45 mm), 35 µm copper, FR4 base material in free air with natural convection.  
[3] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17 brick wall.  
[4] B = 22 Hz to 20 kHz, AES17 brick wall.  
[5] RS is the series resistance of inductor and capacitor of low-pass LC filter in the application.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
23 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14. Application information  
14.1 Output power estimation  
The output power Po at THD+N = 0.5 %, just before clipping, for the SE and BTL  
configurations can be estimated using Equation 2 and Equation 3.  
SE configuration:  
2
RL  
× (1 tw(min) × f osc) × VP  
----------------------------------------------------------  
RL + RDSon + Rs + RESR  
------------------------------------------------------------------------------------------------------------------------------------------  
8 × RL  
Po(0.5 %)  
=
(2)  
(3)  
BTL configuration:  
2
RL  
------------------------------------------------------  
RL + 2 × (RDSon + Rs )  
--------------------------------------------------------------------------------------------------------------------------------------  
2 × RL  
× (1 tw(min) × f osc) × VP  
Po(0.5 %)  
=
Where:  
VP = supply voltage VDDP1 - VSSP1 (V) or VDDP2 - VSSP2 (V)  
RL = load resistance (Ω)  
RDSon = drain-source on-state resistance (Ω)  
Rs = series resistance output inductor (Ω)  
RESR = equivalent series resistance SE capacitance ()  
tw(min) = minimum pulse width (s); 80 ns typical  
fosc = oscillator frequency (Hz); 320 kHz typical with Rosc = 39 kΩ  
The output power Po at THD+N = 10 % can be estimated by:  
Po(10 %) = 1.25 × Po(0.5 %)  
(4)  
Figure 7 and Figure 8 show the estimated output power at THD+N = 0.5 % and  
THD+N = 10 % as a function of the supply voltage for SE and BTL configurations at  
different load impedances. The output power is calculated with: RDSon = 0.35 (at  
Tj = 25 °C), Rs = 0.05 , RESR = 0.05 and IO(ocp) = 2 A (minimum).  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
24 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa143  
010aaa147  
20  
20  
R
L
= 8 Ω  
P
(W)  
o
P
(W)  
o
R
L
= 8 Ω  
16  
15  
R
= 6 Ω  
L
12  
8
R = 6 Ω  
L
10  
5
R
= 4 Ω  
L
R
L
= 4 Ω  
4
0
0
10  
16  
22  
28  
34  
10  
20  
30  
36  
V
(V)  
V (V)  
P
P
a. THD+N = 0.5 %  
b. THD+N = 10 %  
(1) When the maximum current of 2 A is reached, the current limitation feature becomes active. See also Section 8.4.3 for OCP  
details.  
Fig 7. SE output power as a function of supply voltage  
010aaa144  
010aaa145  
40  
40  
R
L
= 16 Ω  
P
P
o
o
(W)  
(W)  
R
L
= 16 Ω  
30  
30  
R
L
= 8 Ω  
20  
10  
0
20  
10  
0
R
L
= 8 Ω  
R
L
= 6 Ω  
R
= 6 Ω  
L
10  
20  
30  
40  
10  
20  
30  
40  
V
(V)  
V (V)  
P
P
a. THD+N = 0.5 %  
b. THD+N = 10 %  
(1) When the maximum current of 2 A is reached, the current limitation feature becomes active. See also Section 8.4.3 for OCP  
details.  
Fig 8. BTL output power as a function of supply voltage  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
25 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14.2 Output current limiting  
The peak output current IOM is internally limited to 2 A (minimum). During normal  
operation the output current should not exceed this threshold level, otherwise the signal is  
distorted. The peak output current in SE or BTL configurations can be calculated using  
Equation 5 and Equation 6.  
SE configuration:  
0.5 × VP  
IO(max)  
2 A  
(5)  
(6)  
----------------------------------------------------------  
RL + RDSon + Rs + RESR  
BTL configuration:  
VP  
IO(max)  
2 A  
-----------------------------------------------------  
RL + 2 × (RDSon + Rs)  
Where:  
VP = supply voltage VDDP1 - VSSP1 (V) or VDDP2 - VSSP2 (V)  
RL = load resistance (Ω)  
RDSon = drain-source on-state resistance (Ω)  
Rs = series resistance (Ω)  
RESR = equivalent series resistance SE capacitance (Ω)  
Example:  
An 8 speaker in the BTL configuration can be used up to a supply voltage of 18 V  
without running into current limiting. Current limiting (clipping) will avoid audio holes but  
produces a similar distortion to voltage clipping.  
14.3 Speaker configuration and impedance  
For a flat frequency response (second order Butterworth filter) it is necessary to change  
the low-pass filter components LLC and CLC according to the speaker configuration and  
impedance. Table 14 shows the required values in practice.  
Table 14. Filter component values  
Configuration  
RL ()  
LLC (µH)  
CLC (nF)  
680  
SE  
4
22  
33  
47  
22  
47  
6
470  
8
330  
BTL  
8
680  
16  
330  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
26 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14.4 Single-ended capacitor  
The SE capacitor forms a high-pass filter with the speaker impedance. So the frequency  
response will roll off with 20 dB per decade below f3dB (3 dB cut-off frequency).  
The 3 dB cut-off frequency is equal to:  
1
f 3dB  
=
(7)  
-----------------------------------  
2π × RL × CSE  
Where:  
3dB = 3 dB cut-off frequency (Hz)  
f
RL = load resistance (Ω)  
CSE = single-ended capacitance (F); see Figure 37.  
Table 15 shows an overview of the required SE capacitor values in the case of 60 Hz,  
40 Hz or 20 Hz 3 dB cut-off frequency.  
Table 15. SE capacitor values  
Impedance ()  
CSE (µF)  
3dB = 60 Hz  
f
f
3dB = 40 Hz  
f3dB = 20 Hz  
4
6
8
680  
470  
330  
1000  
680  
2200  
1500  
1000  
470  
14.5 Gain reduction  
The gain of the TDA8933 is internally fixed at 30 dB for SE, and 36 dB for BTL. The gain  
can be reduced by a resistive voltage divider at the input (see Figure 9).  
R1  
R2  
470 nF  
470 nF  
100  
kΩ  
R3  
audio in  
010aaa137  
Fig 9. Input configuration for reducing gain  
When applying a resistive divider, the total voltage gain Gv(tot) can be calculated using  
Equation 8 and Equation 9:  
REQ  
Gv(tot) = Gv(cl) + 20log  
(8)  
-----------------------------------------  
REQ + (R1 + R2)  
Where:  
Gv(tot) = total voltage gain (dB)  
Gv(cl) = closed-loop voltage gain, fixed at 30 dB for SE (dB)  
REQ = equivalent resistance, R3 and Zi (Ω)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
27 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
R1 = series resistors (Ω)  
R2 = series resistors (Ω)  
R3 × Zi  
REQ  
=
(9)  
------------------  
R3 + Zi  
Where:  
REQ = equivalent resistance (Ω)  
R3 = parallel resistor (Ω)  
Zi = internal input impedance (Ω)  
Example:  
Substituting R1 = R2 = 4.7 k, Zi = 100 kand R3 = 22 kin Equation 8 and Equation 9  
results in a gain of Gv(tot) = 26.3 dB.  
14.6 Device synchronization  
If two or more TDA8933 devices are used in one application it is recommended that all  
devices are synchronized at the same switching frequency to avoid beat tones.  
Synchronization can be realized by connecting all OSCIO pins together and configuring  
one of the TDA8933 devices as master, while the other TDA8933 devices are configured  
as slaves (see Figure 10).  
A device is configured as master when a resistor Rosc is connected between pin OSCREF  
and pin VSSD(HW), setting the carrier frequency. Pin OSCIO of the master is then  
configured as an oscillator output for synchronization. The OSCREF pins of the slave  
devices should be shorted to pin VSSD(HW), configuring pin OSCIO as an input.  
master  
slave  
IC1  
IC2  
TDA8933  
TDA8933  
V
V
SSD(HW) OSCREF  
OSCREF SSD(HW) OSCIO  
OSCIO  
C
R
osc  
39 kΩ  
osc  
100 nF  
010aaa138  
Fig 10. Master/slave concept in two-chip application  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
28 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14.7 Thermal behavior (printed-circuit board considerations)  
The heat sink in an application with a TDA8933 is made using the copper on the  
printed-circuit board. The TDA8933 uses the four corner leads (pins 1, 16, 17 and 32) for  
heat transfer from the die to the PCB. The thermal foldback will limit the maximum junction  
temperature to 140 °C.  
Equation 10 shows the relation between the maximum allowable power dissipation P and  
the thermal resistance from junction to ambient.  
T j(max) Tamb  
Rth( j a)  
=
(10)  
-----------------------------------  
P
Where:  
Rth(j-a) = thermal resistance from junction to ambient (K/W)  
Tj(max) = maximum junction temperature (°C)  
Tamb = ambient temperature (°C)  
P = power dissipation (W), which is determined by the efficiency of the TDA8933  
The power dissipation is shown in Figure 21 (SE) and Figure 33 (BTL).  
The thermal resistance, Rth(j-a), of a 2 layer application board (55 mm × 45 mm), 35 µm  
copper, FR4 base material in free air with natural convection, is 44 K/W (typ.).  
14.8 Pumping effects  
When the amplifier is used in an SE configuration, a so-called ‘pumping effect’ can occur.  
During one switching interval, energy is taken from one supply (e.g. VDDP1), while a part of  
that energy is delivered back to the other supply line (e.g. VSSP1), and vice versa. When  
the power supply cannot sink energy, the voltage across the output capacitors of that  
power supply will increase.  
The voltage increase caused by the pumping effect depends on:  
Speaker impedance  
Supply voltage  
Audio signal frequency  
Value of decoupling capacitors on supply lines  
Source and sink currents of other channels  
The pumping effect should not cause a malfunction of either the audio amplifier or the  
power supply. For instance, this malfunction can be caused by triggering of the  
undervoltage or overvoltage protection of the amplifier.  
Pumping effects in an SE configuration can be minimized by connecting audio inputs in  
anti-phase and changing the polarity of one speaker, as shown in Figure 11.  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
29 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
IN1P  
IN1N  
OUT1  
OUT2  
audio  
in1  
IN2N  
IN2P  
audio  
in2  
010aaa140  
Fig 11. SE application for reducing pumping effect  
14.9 SE curves measured in the reference design  
010aaa158  
2
10  
THD+N  
(%)  
10  
1
1  
(1)  
(3)  
(2)  
10  
10  
10  
2  
3  
2  
1  
2
10  
10  
1
10  
10  
P
(W/channel)  
o
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 100 Hz  
a. VP = 25 V; RL = 2 × 8 Ω  
Fig 12. Total harmonic distortion-plus-noise as a function of output power  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
30 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa156  
2
10  
THD+N  
(%)  
10  
1
(1)  
(3)  
1  
10  
(2)  
2  
10  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
P
(W/channel)  
o
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 100 Hz  
a. VP = 17 V; RL = 2 × 4 Ω  
Fig 13. Total harmonic distortion-plus-noise as a function of output power  
010aaa159  
2
10  
THD+N  
(%)  
10  
1
(1)  
(2)  
1  
10  
2  
10  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
(1) Po = 7 W  
(2) Po = 1 W  
a. VP = 25 V; RL = 2 × 8 Ω  
Fig 14. Total harmonic distortion-plus-noise as a function of frequency  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
31 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa160  
2
10  
THD+N  
(%)  
10  
1
(1)  
(2)  
1  
10  
2  
10  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
(1) Po = 5 W  
(2) Po = 1 W  
a. VP = 17 V; RL = 2 × 4 Ω  
Fig 15. Total harmonic distortion-plus-noise as a function of frequency  
010aaa146  
010aaa155  
35  
0
G
(dB)  
v
SVRR  
(dB)  
30  
20  
(2)  
(1)  
25  
20  
15  
10  
40  
(2)  
(1)  
60  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
i
f (Hz)  
i
Po = 1 W (RMS)  
Vripple = 500 mV (RMS) referenced to ground;  
Ri = 0 (shorted input)  
(1) VP = 17 V; RL = 2 × 4 ; CSE = 1000 µF  
(2) VP = 25 V; RL = 2 × 8 ; CSE = 1000 µF  
(1) VP = 17 V; RL = 2 × 4 Ω  
(2) VP = 25 V; RL = 2 × 8 Ω  
Fig 16. Gain as a function of frequency  
Fig 17. Supply voltage ripple rejection as a function of  
frequency  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
32 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa148  
010aaa153  
120  
20  
α
(dB)  
cs  
S/N  
(dB)  
40  
80  
40  
0
60  
80  
(1)  
(2)  
100  
2  
1  
2
2
3
4
5
10  
10  
1
10  
o
10  
(W/channel)  
10  
10  
10  
10  
10  
P
f (Hz)  
i
Ri = 0 ; 20 kHz brick wall filter AES17  
(1) RL = 2 × 4 ; VP = 17 V  
Po = 1 W; CHVPREF = 47 µF  
(1) VP = 17 V; RL = 2 × 4 Ω  
(2) VP = 25 V; RL = 2 × 8 Ω  
(2) RL = 2 × 8 ; VP = 25 V  
Fig 18. Signal-to-noise ratio as a function of output  
power  
Fig 19. Channel separation as a function of frequency  
010aaa152  
010aaa149  
3.0  
100  
(1)  
(2)  
P
(W)  
η
po  
(%)  
(1)  
(2)  
2.0  
1.0  
0.0  
75  
50  
25  
0
2  
1  
2
10  
10  
1
10  
o
10  
(W/channel)  
P
0
5
10  
P
15  
(W/channel)  
o
ηpo = (2 × Po) / (2 × Po + P)  
Power dissipation in junction only.  
(1) VP = 17 V; RL = 2 × 4 ; fi = 1 kHz  
(2) VP = 25 V; RL = 2 × 8 ; fi = 1 kHz  
(1) VP = 17 V; RL = 2 × 4 ; fi = 1 kHz  
(2) VP = 25 V; RL = 2 × 8 ; fi = 1 kHz  
Fig 20. Output power efficiency as a function of output  
power  
Fig 21. Power dissipation as a function of output power  
per channel (two channels driven)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
33 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa206  
010aaa207  
(2)  
20  
5.0  
P
(W)  
P
o
(W)  
4.0  
15  
(1)  
(1)  
3.0  
2.0  
1.0  
0.0  
(2)  
(3)  
(4)  
10  
5
0
10  
20  
30  
40  
10  
18  
26  
34  
42  
V
(V)  
V (V)  
P
P
fi = 1 kHz  
fi = 1 kHz; power dissipation in junction only; short  
time PO at THD+N = 10 %  
(1) RL = 2 × 8 SE; THD = 10 %  
(2) RL = 2 × 8 SE; THD = 0.5 %  
(3) RL = 2 × 4 SE; THD = 10 %  
(4) RL = 2 × 4 SE; THD = 0.5 %  
(1) RL = 2 × 4 SE  
(2) RL = 2 × 8 SE  
Fig 22. Output power per channel as a function of  
supply voltage  
Fig 23. Power dissipation as a function of supply  
voltage  
010aaa205  
010aaa229  
20  
10  
P
o
P
o
(W/channel)  
(W/channel)  
(1)  
16  
8
(2)  
(1)  
12  
8
6
4
2
4
0
0
0
0
150  
300  
450  
600  
150  
300  
450  
600  
time (s)  
time (s)  
(1) VP = 25 V  
(2) VP = 31 V  
(1) VP = 17 V  
2 layer application board (55 mm × 45 mm), 35 µ  
copper, FR4 base material in free air with natural  
convection.  
a. R = 2 × 8 SE; f = 1 kHz  
b. R = 2 × 4 SE; f = 1 kHz  
L i  
L
i
Fig 24. Output power as a function of time  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
34 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa227  
4
3
2
1
0
V
o
(V)  
OPERATING  
SLEEP  
0.5  
0
1
1.5  
2
2.5  
V
3
(V)  
POWERUP  
fi = 1 kHz; Vi = 100 mV; VENGAGE > 3 V  
Fig 25. Output voltage as a function of voltage on pin POWERUP  
010aaa228  
4
V
o
(V)  
OPERATING  
3
2
1
0
MUTE  
0
0.5  
1
1.5  
2
2.5  
3
V
V)  
ENGAGE (  
fi = 1 kHz; Vi = 100 mV  
Fig 26. Output voltage as a function of voltage on pin ENGAGE  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
35 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14.10 BTL curves measured in the reference design  
010aaa157  
2
10  
THD+N  
(%)  
10  
1
1  
10  
(1)  
2  
(2)  
(3)  
10  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
P
(W)  
o
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 100 Hz  
a. VP = 17 V; RL = 8 Ω  
Fig 27. Total harmonic distortion-plus-noise as a function of output power  
010aaa161  
2
10  
THD+N  
(%)  
10  
1
(1)  
(2)  
1  
10  
2  
10  
(3)  
3  
10  
2  
1  
2
10  
10  
1
10  
10  
P
(W)  
o
(1) fi = 6 kHz  
(2) fi = 1 kHz  
(3) fi = 100 Hz  
a. VP = 25 V; RL = 16 Ω  
Fig 28. Total harmonic distortion-plus-noise as a function of output power  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
36 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa162  
2
10  
THD+N  
(%)  
10  
1
1  
10  
(1)  
(2)  
2  
10  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
(1) Po = 10 W  
(2) Po = 1 W  
a. VP = 17 V; RL = 8 Ω  
Fig 29. Total harmonic distortion-plus-noise as a function of frequency  
010aaa163  
2
10  
THD+N  
(%)  
10  
1
1  
10  
(1)  
2  
10  
(2)  
3  
10  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
(1) Po = 10 W  
(2) Po = 1 W  
a. VP = 25 V; RL = 16 Ω  
Fig 30. Total harmonic distortion-plus-noise as a function of frequency  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
37 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa154  
45  
G
v
(dB)  
(1)  
(2)  
35  
25  
15  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
i
Po = 1 W (RMS)  
(1) VP = 17 V; RL = 8 Ω  
(2) VP = 25 V; RL = 16 Ω  
Fig 31. Gain as a function of frequency  
010aaa150  
(2)  
010aaa151  
100  
3.0  
η
po  
(%)  
P
(W)  
(1)  
(1)  
75  
2.0  
(2)  
50  
25  
0
1.0  
0.0  
2  
1  
2
0
10  
20  
30  
10  
10  
1
10  
10  
P (W/channel)  
o
P
(W)  
o
ηpo = Po / (Po + P)  
Power dissipation in junction only.  
(1) VP = 17 V; RL = 8 ; fi = 1 kHz  
(2) VP = 25 V; RL = 16 ; fi = 1 kHz  
(1) VP = 17 V; RL = 8 ; fi = 1 kHz  
(2) VP = 25 V; RL = 16 ; fi = 1 kHz  
Fig 32. Output power efficiency as a function of output  
power  
Fig 33. Power dissipation as a function of output power  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
38 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
010aaa208  
010aaa210  
40  
5.0  
P
(W)  
P
(W)  
o
4.0  
30  
(2)  
(1)  
3.0  
2.0  
1.0  
0.0  
(2)  
(1)  
(3)  
(4)  
20  
10  
0
10  
15  
20  
25  
30  
35  
10  
18  
26  
34  
42  
V
(P)  
V (V)  
P
P
fi = 1 kHz  
fi = 1 kHz; power dissipation in junction only; short  
time PO at THD+N = 10 %  
(1) RL = 16 BTL; THD = 10 %  
(2) RL = 16 BTL; THD = 0.5 %  
(3) RL = 8 BTL; THD = 10 %  
(4) RL = 8 BTL; THD = 0.5 %  
(1) RL = 8 BTL  
(2) RL = 16 BTL  
Fig 34. Output power as a function of supply voltage  
Fig 35. Power dissipation as a function of supply  
voltage  
010aaa209  
010aaa230  
32  
(2)  
20  
(1)  
P
(W)  
o
P
(W)  
o
16  
24  
(1)  
12  
8
16  
8
4
0
0
0
120  
240  
360  
480  
600  
0
150  
300  
450  
600  
time (s)  
time (s)  
(1) VP = 25 V  
(2) VP = 31 V  
(1) VP = 17 V  
2 layer application board (55 mm × 45 mm), 35 µ  
copper, FR4 base material in free air with natural  
convection.  
a. R = 16 BTL; f = 1 kHz  
b. R = 8 BTL; f = 1 kHz  
L i  
L
i
Fig 36. Output power as a function of time  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
39 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
14.11 Typical application schematics (simplified)  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
V
SSA  
SSA  
Cin  
470 nF  
OSCIO  
HVP1  
+
2
IN1N  
DIAG  
3
Csn  
470 pF  
Cvddp  
100 nF  
Cvssp  
100 nF  
Cin  
V
DDP1  
470 nF  
4
V
V
SS  
DD  
Rsn  
10 Ω  
Rbo  
ENGAGE  
POWERUP  
CGND  
BOOT1  
OUT1  
MUTE  
5
CONTROL  
Cen  
470 nF  
1 M  
Cbo  
15 nF  
LIc  
+
6
SLEEP  
CONTROL  
V
SSP1  
CIc  
7
V
STAB1  
STAB2  
DDA  
8
V
V
DDA  
SSA  
Cosc  
100 nF  
U1  
TDA8933  
V
SSA  
9
Cstab  
100 nF  
Rosc  
V
OSCREF  
HVPREF  
INREF  
TEST  
SSP2  
10  
11  
12  
13  
14  
15  
16  
V
V
SSA  
SS  
SS  
39 Ω  
LIc  
OUT2  
Cbo  
15 nF Rbo  
+
Rsn  
CIc  
BOOT2  
10 Ω  
1 M  
Cinref  
100 nF  
V
DDP2  
V
V
Cvssp  
100 nF  
DD  
Cin  
470 nF  
Cvddp  
100 nF  
Csn  
470 pF  
HVP2  
DREF  
IN2N  
+
IN2P  
Cdref  
100 nF  
Cin  
470 nF  
V
V
SSD(HW)  
SSD(HW)  
V
V
SSA  
SSA  
V
DD  
Rvdda  
Cvddp  
220 µF/25 V  
V
V
DD  
DDA  
SSA  
10 Ω  
Cvdda  
100 nF  
GND  
Cvssa  
100 nF  
Rvssa  
Cvssp  
220 µF/25 V  
V
V
SS  
10 Ω  
V
010aaa142  
SS  
Fig 37. Typical simplified application diagram for 2 × SE (symmetrical supply)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
40 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
V
V
SSD(HW)  
SSD(HW)  
IN1P  
1
2
3
4
5
6
32  
31  
30  
29  
28  
27  
V
V
SSA  
Cin  
470 nF  
SSA  
OSCIO  
HVP1  
+
IN1N  
DIAG  
Cvddp  
100 nF  
Cvssp  
100 nF  
Csn  
470 pF  
Cin  
V
DDP1  
470 nF  
V
V
DD  
SS  
Rbo  
Rsn  
10 Ω  
ENGAGE  
BOOT1  
OUT1  
MUTE  
CONTROL  
Cen  
470 nF  
Cbo  
15 nF  
1 M  
LIc  
POWERUP  
CGND  
V
SSP1  
SLEEP  
CIc  
7
8
26  
25  
CONTROL  
V
STAB1  
STAB2  
DDA  
+
V
V
DDA  
Cosc  
100 nF  
U1  
TDA8933  
V
SSA  
9
24  
23  
22  
21  
20  
19  
18  
17  
SSA  
Cstab  
100 nF  
Rosc  
V
OSCREF  
HVPREF  
SSP2  
CIc  
V
V
10  
11  
12  
13  
14  
15  
16  
SS  
SSA  
39 Ω  
LIc  
OUT2  
Cbo  
15 nF Rbo  
Rsn  
10 Ω  
INREF  
TEST  
IN2N  
BOOT2  
Cinref  
100 nF  
1 M  
V
DDP2  
V
V
DD  
SS  
HVP2  
DREF  
Cvddp  
100 nF  
Cvssp  
Csn  
100 nF  
470 pF  
IN2P  
Cdref  
V
V
V
SSD(HW)  
SSD(HW)  
V
SSA  
SSA  
V
DD  
Rvdda  
Cvddp  
220 µF/25 V  
V
V
Cvdda  
100 nF  
DD  
DDA  
10 Ω  
GND  
Cvssa  
100 nF  
Rvssa  
Cvssp  
V
V
220 µF/25 V  
SSA  
SS  
10 Ω  
010aaa141  
V
SS  
Fig 38. Typical simplified application diagram for 1 × BTL (symmetrical supply)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
41 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
VP  
Rvdda  
VP  
VPA  
10 Ω  
Cvdda  
100 nF  
Cvddp  
220 µF/35 V  
GND  
V
V
SSD(HW)  
SSD(HW)  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
Cin  
470 nF  
IN1P  
IN1N  
OSCIO  
HVP1  
Chvp  
2
+
100 nF  
Csn  
470pF  
3
Cvddp  
100 nF  
HVP1  
Cin  
V
DDP1  
DIAG  
470 nF  
4
VP  
Rsn  
10 Ω  
Rbo  
1 M  
BOOT1  
OUT1  
ENGAGE  
POWERUP  
CGND  
MUTE  
CONTROL  
5
Cbo  
15 nF  
Cen  
470 nF  
LIc  
+
6
SLEEP  
V
SSP1  
CONTROL  
7
HVP1  
Cse  
CIc  
V
DDA  
STAB1  
STAB2  
8
VPA  
Cosc  
U1  
TDA8933  
V
SSA  
100 nF  
9
Cstab  
V
100 nF  
SSP2  
Rosc  
OSCREF  
HVPREF  
10  
11  
12  
13  
14  
15  
16  
39 Ω  
LIc  
OUT2  
Cbo  
15 nF Rbo  
+
Chvpref  
47 µF/25 V  
Chvp  
100 nF  
Rsn  
10 Ω  
INREF  
TEST  
IN2N  
BOOT2  
HVP2  
1 M  
Cse  
Cinref  
CIc  
V
DDP2  
100 nF  
VP  
Cvddp  
100 nF  
Cin  
470 nF  
Csn  
HVP2  
DREF  
470 pF  
+
IN2P  
HVP2  
Cdref  
100 nF  
Chvp  
100 nF  
Cin  
470 nF  
V
V
SSD(HW)  
SSD(HW)  
010aaa193  
Fig 39. Typical simplified application diagram for 2 × SE (asymmetrical supply)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
42 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
VP  
Rvdda  
VP  
VPA  
10 Ω  
Cvdda  
100 nF  
Cvddp  
220 µF/35 V  
GND  
V
V
SSD(HW)  
SSD(HW)  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
Cin  
470 nF  
Chvp  
100 nF  
IN1P  
IN1N  
OSCIO  
HVP1  
HVPREF  
2
+
Rhvp  
Csn  
470 pF  
3
Cvddp  
100 nF  
470 Ω  
Cin  
V
DDP1  
DIAG  
470 nF  
4
VP  
Rsn  
10 Ω  
Rbo  
1 M  
BOOT1  
OUT1  
ENGAGE  
MUTE  
CONTROL  
5
Cbo  
15 nF  
Cen  
LIc  
470 nF POWERUP  
6
SLEEP  
CONTROL  
V
CGND  
SSP1  
7
Clc  
Clc  
V
DDA  
STAB1  
STAB2  
+
8
VPA  
Cosc  
100 nF  
U1  
TDA8933  
V
SSA  
9
Cstab  
100 nF  
Rosc  
V
SSP2  
OSCREF  
HVPREF  
10  
11  
12  
13  
14  
15  
16  
39 Ω  
LIc  
OUT2  
HVPREF  
Cbo  
15 nF Rbo  
Chvp  
100 nF  
Rsn  
10 Ω  
INREF  
TEST  
IN2N  
BOOT2  
1 M  
Cinref  
100 nF  
V
DDP2  
VP  
Cvddp  
100 nF  
Csn  
470 pF  
HVP2  
DREF  
Rhvp  
470 Ω  
IN2P  
HVPREF  
Cdref  
100 nF  
Chvp  
100 nF  
V
V
SSD(HW)  
SSD(HW)  
010aaa194  
Fig 40. Typical simplified application diagram for 1 × BTL (asymmetrical supply)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
43 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
15. Package outline  
SO32: plastic small outline package; 32 leads; body width 7.5 mm  
SOT287-1  
D
E
A
X
c
y
H
v
M
A
E
Z
17  
32  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
16  
1
w
M
detail X  
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
E
L
L
Q
v
w
y
Z
θ
p
p
1
2
3
max.  
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.27 20.7  
0.18 20.3  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.2  
1.0  
0.95  
0.55  
mm  
2.65  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25  
0.01  
0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.02 0.011 0.81  
0.01 0.007 0.80  
0.30  
0.29  
0.419  
0.394  
0.043 0.047  
0.016 0.039  
0.037  
0.022  
inches  
0.1  
0.004  
0.055  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-08-17  
03-02-19  
SOT287-1  
MO-119  
Fig 41. Package outline SOT287-1 (SO32)  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
44 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
16. Revision history  
Table 16. Revision history  
Document ID  
Release date  
20070515  
Data sheet status  
Change notice  
Supersedes  
TDA8933_1  
Preliminary data sheet  
-
-
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
45 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
17.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
18. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TDA8933_1  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 15 May 2007  
46 of 47  
TDA8933  
NXP Semiconductors  
Class-D audio amplifier  
19. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
17.3  
17.4  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 46  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.2  
8.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Mode selection and interfacing. . . . . . . . . . . . . 7  
Pulse width modulation frequency . . . . . . . . . . 8  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Foldback (TF) . . . . . . . . . . . . . . . . . . 10  
OverTemperature Protection (OTP) . . . . . . . . 10  
OverCurrent Protection (OCP) . . . . . . . . . . . . 10  
Window Protection (WP). . . . . . . . . . . . . . . . . 10  
Supply voltage protections . . . . . . . . . . . . . . . 10  
Diagnostic input and output . . . . . . . . . . . . . . 12  
Differential inputs . . . . . . . . . . . . . . . . . . . . . . 12  
Output voltage buffers. . . . . . . . . . . . . . . . . . . 13  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.5  
8.6  
8.7  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 14  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal characteristics. . . . . . . . . . . . . . . . . . 18  
Static characteristics. . . . . . . . . . . . . . . . . . . . 19  
Dynamic characteristics . . . . . . . . . . . . . . . . . 21  
10  
11  
12  
13  
14  
Application information. . . . . . . . . . . . . . . . . . 24  
Output power estimation. . . . . . . . . . . . . . . . . 24  
Output current limiting. . . . . . . . . . . . . . . . . . . 26  
Speaker configuration and impedance . . . . . . 26  
Single-ended capacitor. . . . . . . . . . . . . . . . . . 27  
Gain reduction . . . . . . . . . . . . . . . . . . . . . . . . 27  
Device synchronization. . . . . . . . . . . . . . . . . . 28  
Thermal behavior (printed-circuit board  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
considerations) . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pumping effects . . . . . . . . . . . . . . . . . . . . . . . 29  
SE curves measured in the reference design. 30  
BTL curves measured in the reference design 36  
Typical application schematics (simplified) . . . 40  
14.8  
14.9  
14.10  
14.11  
15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 45  
17  
17.1  
17.2  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 46  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 46  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 May 2007  
Document identifier: TDA8933_1  

相关型号:

NXP
NXP

TDA8939

Zero dead time Class-D 7.5 A power comparator
NXP

TDA8939TH

Zero dead time Class-D 7.5 A power comparator
NXP

TDA8941

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8941P

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8942

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P/N1,112

IC 1.5 W, 2 CHANNEL, AUDIO AMPLIFIER, PDIP16, 0.300 INCH, PLASTIC, SOT-38-1, MO-001, DIP-16, Audio/Video Amplifier
NXP

TDA8943

6 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8943SF

6 W mono Bridge Tied Load BTL audio amplifier
NXP