TDA9901TS [NXP]

Wideband differential digital controlled variable gain amplifier; 宽带差分数字控制可变增益放大器器
TDA9901TS
型号: TDA9901TS
厂家: NXP    NXP
描述:

Wideband differential digital controlled variable gain amplifier
宽带差分数字控制可变增益放大器器

放大器
文件: 总20页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA9901  
Wideband differential digital  
controlled variable gain amplifier  
Product specification  
1999 Oct 08  
Supersedes data of 1998 Apr 15  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
FEATURES  
GENERAL DESCRIPTION  
130 MHz, 3 dB small signal bandwidth  
Digitally controlled gain  
The TDA9901 is a wideband, low noise amplifier with  
differential inputs and outputs. The TDA9901 incorporates  
an AGC function with digital control. The TDA9901 is  
optimized for fast switching between different gain  
settings, preserving small phase and amplitude error.  
TTL/CMOS compatible digital inputs (3.3 or 5 V)  
TTL single ended or differential clock input with PECL  
compatibility  
The TDA9901 presents an excellent combination of low  
noise and good linearity for a wide input frequency range.  
24 dB gain control range  
Five steps of 6 dB plus 6 dB fixed gain  
30 dB gain maximum  
The TDA9901 is optimized for processing IF signals in  
GSM base stations. It is also suited for many other  
applications as a general purpose digitally controlled  
variable gain amplifier.  
High impedance differential inputs  
Low impedance differential outputs  
High power supply rejection  
The TDA9901 is able to operate from 4.75 to 5.25 V  
supply for the analog part and from 3.0 to 5.25 V for the  
digital part.  
125 nV/Hz output voltage noise density at 30 dB gain  
Fast gain settling  
Dual control modes: transparent or latched.  
APPLICATIONS  
Linear AGC systems  
IF amplifier in IF conversion systems (e.g. base stations  
or satellite receivers)  
Instrumentation  
Multi-purpose amplifier  
Driver for differential ADCs (e.g. TDA8768).  
QUICK REFERENCE DATA  
SYMBOL  
VDDA  
PARAMETER  
analog supply voltage  
digital supply voltage  
analog supply current  
digital supply current  
differential gain  
CONDITIONS  
MIN.  
4.75  
TYP.  
5.0  
MAX.  
5.25  
UNIT  
V
V
VDDD  
IDDA  
IDDD  
Gdif  
3.0  
3.3  
5.25  
36  
30  
mA  
mA  
dB  
3.0  
5.0  
6.46  
31.5  
minimum gain  
5.7  
29.3  
110  
6.11  
30.5  
130  
maximum gain  
dB  
B3dB  
Ptot  
3 dB small signal bandwidth  
Vo(dif)(p-p) = 0.125 V;  
Tamb = 25 °C  
MHz  
total power dissipation  
160  
216  
mW  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA9901TS  
1999 Oct 08  
SSOP20 plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
2
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
BLOCK DIAGRAM  
V
GRAY1  
20  
V
GRAY0 CLK CLKN  
TE GRAY2  
DDD  
18  
SSD  
17  
2
19  
1
3
4
DECODER  
LATCHES  
TDA9901  
6
7
15  
14  
OUT  
IN  
OUTN  
INN  
0, 6, 12, 18 or 24 dB  
6 dB  
5
16  
REFERENCE  
GENERATOR  
REFERENCE  
GENERATOR  
CMADC  
CMVGA  
11  
8, 9, 10, 13  
12  
MGM962  
V
n.c.  
V
SSA  
DDA  
Fig.1 Block diagram.  
1999 Oct 08  
3
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
GRAY0  
1
digital control signal bit 0 input  
(LSB)  
TE  
2
3
4
transparent enable input  
CLK  
CLKN  
clock input for gain control setting  
inverting clock input for gain  
control setting (active low)  
handbook, halfpage  
GRAY0  
TE  
20 GRAY1  
1
2
CMVGA  
5
regulator output common mode  
VGA input  
19  
18  
17  
GRAY2  
IN  
6
non-inverting analog input  
inverting analog input (active low)  
not connected  
V
CLK  
3
DDD  
INN  
7
V
CLKN  
4
SSD  
n.c.  
8
CMVGA  
IN  
16 CMADC  
15 OUT  
5
n.c.  
9
not connected  
TDA9901TS  
6
n.c.  
10  
11  
12  
13  
14  
15  
16  
not connected  
INN  
n.c.  
OUTN  
14  
7
VDDA  
VSSA  
n.c.  
analog supply voltage  
analog ground  
8
13 n.c.  
V
not connected  
n.c.  
9
12  
11  
SSA  
DDA  
OUTN  
OUT  
CMADC  
inverting analog output (active low)  
non-inverting analog output  
V
n.c.  
10  
MGM963  
regulator output common mode  
ADC input  
VSSD  
17  
18  
19  
digital ground  
VDDD  
digital supply voltage  
GRAY2  
digital control signal bit 2 input  
(MSB)  
Fig.2 Pin configuration.  
GRAY1  
20  
digital control signal bit 1 input  
FUNCTIONAL DESCRIPTION  
The TDA9901 provides a digitally controlled variable gain function for high-frequency applications.  
The TDA9901 can be operated in two different modes, depending on the value at pin TE. When TE is at logic 1, the gain  
can be instantly controlled when the clock signal is HIGH (transparent mode). The gain is fixed during the LOW period  
of the clock. When TE is at logic 0 the gain of the TDA9901 is changed at the rising edge of the clock signal.  
1999 Oct 08  
4
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDDA  
PARAMETER  
MIN.  
0.3  
MAX.  
UNIT  
analog supply voltage  
digital supply voltage  
+7.0  
+7.0  
+4.0  
+7.0  
10  
V
V
V
V
VDDD  
VDD  
VI  
0.3  
1.0  
0.3  
supply voltage difference between VDDA and VDDD  
input voltage level  
IO  
output current  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
55  
40  
+150  
+85  
150  
ambient temperature  
junction temperature  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
120  
K/W  
CHARACTERISTICS  
VDDA = V11 to V12 = 4.75 to 5.25 V; VDDD = V18 to V17 = 3.0 to 5.25 V; VSSA and VSSD shorted together;  
amb = 40 to +85 °C; typical values measured at VDDA = 5.0 V; VDDD = 3.3 V and Tamb = 25 °C; unless otherwise  
T
specified; note 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDDA  
analog supply voltage  
digital supply voltage  
4.75  
5.0  
3.3  
5.25  
V
VDDD  
3.0  
5.25  
+2.5  
V
V
VDD  
voltage difference  
0.2  
between VDDA and VDDD  
IDDA  
IDDD  
analog supply current  
digital supply current  
30  
36  
mA  
mA  
3.0  
5.0  
Variable gain amplifier transfer characteristics  
B3dB  
3 dB small signal  
bandwidth  
Vo(dif)(p-p) = 0.125 V; 110  
Tamb = 25 °C  
130  
2.5  
MHz  
ns  
td(g)  
group delay time  
up to fi = 20 MHz;  
minimum gain;  
Tamb = 25 °C  
td(g)  
group delay difference  
6 dB gain step;  
300  
ps  
Tamb = 25 °C  
1999 Oct 08  
5
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
SYMBOL  
PARAMETER  
settling time  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
ns  
tst  
10 to 90% maximum −  
3.6  
output transition;  
CL(max) = 5 pF on  
each output;  
Tamb = 25 °C  
Gstep  
gain step size  
DC input  
T
amb = 25 °C  
all temperatures  
DC input  
amb = 25 °C  
all temperatures  
DC input  
amb = 25 °C  
all temperatures  
5.88  
6.09  
6.09  
6.28  
6.56  
dB  
dB  
5.6  
G(min)  
G(max)  
G/T  
minimum gain setting  
maximum gain setting  
T
5.76  
5.7  
6.11  
6.11  
6.40  
6.46  
dB  
dB  
T
29.9  
29.3  
30.5  
30.5  
1.0  
7.5  
15  
30.9  
31.5  
dB  
dB  
gain stability as a function minimum gain  
mdB/°C  
mdB/°C  
mdB/V  
of temperature  
maximum gain  
|∆G/VDD  
Vi(offset)  
F
|
gain stability as a function minimum gain  
of power supply  
25  
input offset voltage  
difference  
6 dB gain step  
0.8  
mV  
noise figure  
Rs = 100 ;  
fi = 20 MHz  
minimum gain  
maximum gain  
29.1  
9.9  
dB  
dB  
Vn(o)(eq)  
equivalent output noise  
voltage spectral density  
Rs = 100 ;  
fi = 20 MHz;  
Tamb = 25 °C  
G = 6 dB  
75  
82  
97  
91  
124  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
G = 12 dB  
G = 18 dB  
G = 24 dB  
G = 30 dB  
PSRR(VDDA)  
PSRR(VDDD)  
CMRR  
power supply ripple  
rejection of VDDA  
minimum gain  
0 to 20 MHz  
20 to 100 MHz  
minimum gain  
0 to 20 MHz  
20 to 100 MHz  
0 to 20 MHz  
20 to 150 MHz  
57  
39  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
power supply ripple  
rejection of VDDD  
67  
51  
75  
45  
common mode rejection  
ratio  
1999 Oct 08  
6
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Analog inputs  
Vi(max)(p-p)  
maximum input voltage  
(peak-to-peak value)  
minimum gain  
maximum gain  
1.0  
V
V
60.4  
2.7  
mV  
V
Vi(cm)  
common mode input  
voltage  
2.0  
DDA 1.9  
Ii  
input current  
Vi(cm) = 2.7 V  
55  
5
µA  
kΩ  
pF  
Ri  
Ci  
input resistance  
input capacitance  
10  
Analog outputs; note 2  
Vo(max)(p-p)  
maximum differential  
output voltage  
(peak-to-peak value)  
maximum gain  
minimum gain  
2.0  
2.0  
V
V
Vo(cm)  
common mode output  
voltage  
referenced to VDDA  
Tamb = 25 °C  
;
VDDA 2.56 VDDA 2.42 VDDA 2.29 V  
Vo(cm)/T  
common mode output  
voltage variation with  
temperature  
1.8  
mV/°C  
V/µs  
SRo(se)  
single-ended output slew  
rate  
275  
Ro  
Co  
output resistance  
15  
3
26  
output capacitance  
pF  
Variable gain amplifier dynamic performance; CL = 5 pF; RL = 680 (see Figs 6, 7, 8, 9 and 10)  
HD2  
2nd harmonic distortion  
Vo = Vo(max)  
fi = 0.5 MHz  
fi = 4.43 MHz  
fi = 12.5 MHz  
fi = 21.4 MHz  
80  
77  
76  
74  
67  
67  
65  
62  
dBc  
dBc  
dBc  
dBc  
HD3  
3rd harmonic distortion  
Vo = Vo(max);  
Tamb = 25 °C  
fi = 0.5 MHz  
fi = 4.43 MHz  
fi = 12.5 MHz  
fi = 21.4 MHz  
fi = 21.4 MHz  
64  
64  
62  
61  
80  
60  
59  
58  
57  
dBc  
dBc  
dBc  
dBc  
HD3/T  
3rd harmonic distortion  
mdB/°C  
variation with temperature  
Reference voltage output ADC: pin CMADC  
Vref(CMADC)  
ADC reference output  
voltage  
referenced to VDDA  
Tamb = 25 °C  
;
VDDA 1.64 VDDA 1.45 VDDA 1.26 V  
Ro(CMADC)  
output resistance  
Tamb = 25 °C  
17  
26  
Vref(CMADC)/T ADC reference output  
voltage variation with  
0.11  
mV/°C  
temperature  
1999 Oct 08  
7
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
mA  
pF  
Io(CMADC)(max)  
Co(CMADC)  
maximum output current  
output capacitance  
1.0  
3
Reference voltage output VGA: pin CMVGA  
Vref(CMVGA)  
VGA reference output  
voltage  
referenced to VDDA  
Tamb = 25 °C  
;
VDDA 2.48 VDDA 2.30 VDDA 2.17 V  
Ro(CMVGA)  
output resistance  
Tamb = 25 °C  
9
20  
Vref(CMVGA)/T VGA reference output  
voltage variation with  
1.75  
mV/°C  
temperature  
Io(CMVGA)(max)  
Co(CMVGA)  
maximum output current  
output capacitance  
1.0  
3
mA  
pF  
Gain switching characteristics (in latched mode); fCLK = 52 MHz; Tamb = 25°C; (see Fig.3)  
th  
input data hold time  
input data set-up time  
input data pulse width  
propagation delay time  
gain settling time  
2.0  
3.8  
5.8  
ns  
ns  
ns  
ns  
ns  
tsu  
tW  
tPD1  
tset1  
4.2  
2.6  
5.9  
3.2  
10 to 90% full scale  
if ±6 dB gain  
change; note 3  
Gain switching characteristics (in transparent mode); fCLK = 52 MHz; Tamb = 25°C; (see Fig.4)  
tPD2  
tset2  
propagation delay time  
gain settling time  
6.7  
5.4  
9.5  
6.9  
ns  
ns  
10 to 90% full scale  
if ±6 dB gain  
change; note 4  
Clock timing input: pins CLK and CLKN (see Fig.3)  
fCLK(max)  
maximum clock frequency  
clock LOW pulse width  
clock HIGH pulse width  
rise time  
52  
4.0  
4.0  
4
4
MHz  
ns  
tCPL  
tCPH  
tr  
ns  
ns  
tf  
fall time  
ns  
Digital inputs: pins TE, GRAY0, GRAY1 and GRAY2  
VIL  
VIH  
IIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
HIGH-level input current  
LOW-level input current  
input capacitance  
0
0.8  
VDDD  
+10  
+10  
3
V
2.0  
10  
10  
V
µA  
µA  
pF  
Ci  
Clock inputs in TTL mode  
VIL  
VIH  
IIH  
LOW-level input voltage  
note 5  
note 5  
0
0.8  
V
HIGH-level input voltage  
HIGH-level input current  
LOW-level input current  
2.0  
15  
40  
VDDD  
80  
V
µA  
µA  
IIL  
10  
1999 Oct 08  
8
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
pF  
Ci  
input capacitance  
2
Clock inputs in differential mode  
VIL  
LOW-level input voltage  
VDDA = 5.0 V; note 6 3.19  
3.52  
4.12  
80  
V
VIH  
HIGH-level input voltage  
HIGH-level input current  
LOW-level input current  
input capacitance  
VDDA = 5.0 V; note 6 3.83  
V
IIH  
15  
40  
µA  
µA  
pF  
V
IIL  
5  
Ci  
2
Vi(CLK )(p-p)  
differential AC input  
voltage for switching  
CLK or CLKN  
DC voltage  
0.1  
2.0  
level = 2.5 V  
(peak-to-peak value)  
Notes  
1. Due to on-chip regulator behaviour a warm-up time of 1 minute (typical) is recommended for optimal performance.  
2. The analog output voltages are positive with respect to AGND.  
3. In latching mode (TE = 0), the gain settling is latched at the rising edge of the clock input.  
4. In transparent mode, the gain settling is directly controlled by the input data pattern.  
5. The circuit may be used with a single TTL clock on CLK or CLKN. The non used clock pin has to be decoupled to  
ground with a 100 nF capacitance.  
6. There are four modes of operation for the clock inputs in non TTL mode:  
a) PECL mode 1: (DC level vary 1 : 1 with VDDA) CLK and CLKN inputs are differential PECL levels.  
b) PECL mode 2: (DC level vary 1 : 1 with VDDA) CLK input is at PECL level and gain change takes place on the  
rising edge of the clock input signal when in latched mode. A DC level of 3.65 V has to be applied on CLKN  
decoupled to VSSD via a 100 nF capacitor.  
c) PECL mode 3: (DC level vary 1 : 1 with VDDA) CLKN input is at PECL level and gain change takes place on the  
rising edge of the clock input signal when in latched mode. A DC level of 3.65 V has to be applied on CLK  
decoupled to VSSD via a 100 nF capacitor.  
d) AC driving mode 4: when driving the CLK input directly and with any AC signal of minimum 0.1 V (p-p) and with  
a DC level of 2.5 V, the gain change takes place on the rising edge of the clock signal. When driving the CLKN  
input with the same signal, gain change takes place on the falling edge of the clock signal. It is recommended to  
decouple the CLKN or CLK input to VSSD via a 100 nF capacitor.  
Table 1 Input coding  
GREY INPUT DATA CODE  
STATE  
GAIN (dB)  
minimum  
D2  
D1  
D0  
0
0
0
0
0
1
0
0
1
1
1
0
1
1
0
0
1
minimum + 6  
minimum + 12  
minimum + 18  
minimum + 24  
minimum + 24  
2
3
4
Other  
1999 Oct 08  
9
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
t
t
f
r
LOW  
HIGH  
CLK  
50 %  
t
t
CPL  
CPH  
LOW  
HIGH  
GRAY0  
GRAY1  
GRAY2  
gain N + 1  
gain N  
50 %  
t
t
su  
h
V
o(max)  
OUT  
and  
OUTN  
90 %  
10 %  
gain N + 1  
gain N  
0.5V  
0 V  
o(max)  
t
set1  
t
PD1  
MGM964  
Fig.3 Latched mode timing diagram.  
LOW  
GRAY0  
GRAY1  
GRAY2  
gain N + 1  
gain N  
50 %  
HIGH  
V
o(max)  
OUT  
and  
OUTN  
90 %  
10 %  
gain N + 1  
gain N  
0.5V  
0 V  
o(max)  
t
set2  
t
PD2  
MGM965  
Fig.4 Transparent mode timing diagram with CLK HIGH.  
10  
1999 Oct 08  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
47 nF  
V
CMVGA  
5
OUT  
i
42  
15  
(1)  
C1  
IN  
680 Ω  
6
FILTER  
12  
D0...11  
TDA9901TS  
TDA8768  
100  
(ADC)  
sine wave  
generator  
100 Ω  
100  
nF  
680 Ω  
V
7
INN  
OUTN  
i
14  
43  
36  
(1)  
47 nF  
C2  
CLK  
30 MHz  
(2)  
(3)  
dB  
FCE306  
(1) C1 and C2 represent the board line capacitance. They represent about 5 pF with the TDA8768 input capacitance. Special  
care has to be taken to minimize this load in order to have the best dynamic performance.  
(2) The HD2 and HD3 of the TDA8768 is lower than that measured on the TDA9901.This measurement method is preferred to  
conventional methods due to its low contribution to the HD2.  
(3) The chain measurement shows the harmonic distortion of the TDA9901 as the measurement from TDA8768 is negligible.  
Fig.5 Dynamic distortion measurement diagram.  
FCE307  
FCE308  
55  
handbook, halfpage  
HD  
55  
handbook, halfpage  
HD  
(dBc)  
(dBc)  
60  
60  
(1)  
(2)  
65  
70  
75  
80  
85  
65  
70  
75  
80  
85  
(1)  
(2)  
1  
2
1  
2
10  
1
10  
10  
10  
1
10  
10  
f (MHz)  
f (MHz)  
(1) HD3  
(2) HD2  
(1) HD3  
(2) HD2  
Typical condition; 2 V (p-p) differential output.  
Typical condition; 2 V (p-p) differential output.  
Fig.6 Harmonic distortion as a function of  
frequency for minimum gain.  
Fig.7 Harmonic distortion as a function of  
frequency for minimum gain plus 6 dB.  
1999 Oct 08  
11  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
FCE309  
FCE310  
55  
handbook, halfpage  
HD  
55  
handbook, halfpage  
HD  
(dBc)  
60  
(dBc)  
60  
(1)  
65  
65  
70  
75  
80  
85  
(1)  
70  
75  
(2)  
(2)  
80  
85  
1  
2
1  
2
10  
10  
1
10  
10  
10  
1
10  
f (MHz)  
f (MHz)  
(1) HD3  
(2) HD2  
(1) HD3  
(2) HD2  
Typical condition; 2 V (p-p) differential output.  
Typical condition; 2 V (p-p) differential output.  
Fig.8 Harmonic distortion as a function of  
Fig.9 Harmonic distortion as a function of  
frequency for minimum gain plus 18 dB.  
frequency for minimum gain plus 12 dB.  
FCE311  
55  
handbook, halfpage  
HD  
(dBc)  
60  
65  
70  
75  
80  
85  
(1)  
(2)  
1  
2
10  
1
10  
10  
f (MHz)  
(1) HD3  
(2) HD2  
Typical condition; 2 V (p-p) differential output.  
Fig.10 Harmonic distortion as a function of  
frequency for minimum gain plus 24 dB.  
1999 Oct 08  
12  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
APPLICATION INFORMATION  
GRAY1  
GRAY2  
GRAY0  
TE  
1
2
3
4
5
20  
19  
18  
17  
16  
100 nF  
CLK  
3.3 V  
(1)  
CLKN  
100  
nF  
47  
µF  
100  
nF  
47  
µF  
(2)  
(2)  
TDA9901TS  
R1  
R2  
47 nF  
47 nF  
100 nF  
IN  
V
6
15  
OUT  
IN  
100 Ω  
100 Ω  
INN  
7
14  
13  
12  
11  
OUTN  
1:1  
n.c.  
n.c.  
n.c.  
n.c.  
8
9
100 nF  
10  
5 V  
MGM966  
(1) Single-ended clock signal can be applied if required.  
(2) R1 and R2 should be at least 680 .  
Fig.11 Application diagram.  
1999 Oct 08  
13  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
PACKAGE OUTLINE  
SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
D
E
A
X
c
y
H
v
M
A
E
Z
11  
20  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
10o  
0o  
0.15  
0
1.4  
1.2  
0.32  
0.20  
0.20  
0.13  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.45  
0.65  
0.45  
0.48  
0.18  
mm  
1.5  
0.65  
1.0  
0.2  
0.25  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
90-04-05  
95-02-25  
SOT266-1  
1999 Oct 08  
14  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Oct 08  
15  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Oct 08  
16  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
NOTES  
1999 Oct 08  
17  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
NOTES  
1999 Oct 08  
18  
Philips Semiconductors  
Product specification  
Wideband differential digital controlled  
variable gain amplifier  
TDA9901  
NOTES  
1999 Oct 08  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545004/25/02/pp20  
Date of release: 1999 Oct 08  
Document order number: 9397 750 05272  

相关型号:

TDA9901TS/C3

IC,DIGITALLY CONTROLLED GAIN AMPLIFIER,SINGLE,SSOP,20PIN,PLASTIC
NXP

TDA9901TS/C3-T

IC,DIGITALLY CONTROLLED GAIN AMPLIFIER,SINGLE,SSOP,20PIN,PLASTIC
NXP

TDA9910

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling
NXP

TDA9910HW/6

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling
NXP

TDA9910HW/8

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling
NXP

TDA9910HW/8/C1

IC 1-CH 12-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, PLASTIC, SOT545-2, MS-026, HTQFP-48, Analog to Digital Converter
NXP

TDA9917HW/12/C1

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-2, QFP-48, Analog to Digital Converter
NXP

TDA9917HW/25/C1

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-2, QFP-48, Analog to Digital Converter
NXP

TDA9923AHW

IC 4-CH 12-BIT RESISTANCE LADDER ADC, SERIAL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-3, QFP-48, Analog to Digital Converter
NXP

TDA9935

Dual 14-bit, up to 160 Msample/s, 2 ⅴ interpolating Digital-to-Analog Converter (DAC)
NXP

TDA9935HW

Dual 14-bit, up to 160 Msample/s, 2 ⅴ interpolating Digital-to-Analog Converter (DAC)
NXP

TDA9950

CEC/I2C-bus translator
NXP