TEA1066T [NXP]

Versatile telephone transmission circuit with dialler interface; 与拨号接口的多功能电话传输电路
TEA1066T
型号: TEA1066T
厂家: NXP    NXP
描述:

Versatile telephone transmission circuit with dialler interface
与拨号接口的多功能电话传输电路

光电二极管 电话
文件: 总24页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1066T  
Versatile telephone transmission  
circuit with dialler interface  
1996 Apr 04  
Product specification  
Supersedes data of September 1990  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
Receiving amplifier for magnetic, dynamic or  
piezoelectric earpieces  
FEATURES  
Voltage regulator with adjustable static resistance  
Provides supply for external circuitry  
Large gain setting range on microphone and earpiece  
amplifiers  
Symmetrical low-impedance inputs for dynamic and  
magnetic microphones  
Line loss compensation facility, line current dependent  
(microphone and earpiece amplifiers)  
Symmetrical high-impedance inputs for piezoelectric  
microphone  
Gain control adaptable to exchange supply  
DC line voltage adjustment facility.  
Asymmetrical high-impedance input for electret  
microphone  
GENERAL DESCRIPTION  
Dual-tone multi-frequency (DTMF) signal input with  
confidence tone  
The TEA1066T is a bipolar integrated circuit that performs  
all speech and line interface functions required in fully  
electronic telephone sets. The circuit performs electronic  
switching between dialling and speech.  
Mute input for pulse or DTMF dialling  
Power down input for pulse dial or register recall  
QUICK REFERENCE DATA  
SYMBOL  
VLN  
Iline  
ICC  
PARAMETER  
CONDITIONS  
Iline = 15 mA  
MIN. TYP. MAX. UNIT  
line voltage  
line current  
4.25  
10  
4.45  
4.65  
140  
1.3  
82  
V
normal operation  
mA  
mA  
µA  
V
internal supply current  
power down input LOW  
power down input HIGH  
0.96  
55  
VCC  
supply voltage for peripherals  
Iline = 15 mA; MUTE  
2.8  
3.05  
input HIGH; Ip = 1.2 mA  
Iline = 15 mA; MUTE  
2.5  
V
input HIGH; Ip = 1.7 mA  
Gv  
voltage gain range for microphone amplifier  
low impedance inputs (pins 7 and 9)  
high impedance inputs (pins 8 and 10)  
receiving amplifier  
44  
60  
dB  
dB  
dB  
°C  
30  
46  
17  
39  
Tamb  
operating ambient temperature  
25  
+75  
Line loss compensation  
Gv  
gain control  
5.5  
24  
5.9  
6.3  
dB  
V
Vexch  
Rexch  
exchange supply voltage  
exchange feeding bridge resistance  
60  
400  
1000  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TEA1066T  
SO20  
plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
1996 Apr 04  
2
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
BLOCK DIAGRAM  
V
CC  
LN  
17  
1
13  
IR  
6
5
4
GAR  
QR+  
QR−  
TEA1066T  
9
MICL+  
10  
MICH+  
2
3
GAS1  
GAS2  
dB  
8
MICH−  
7
MICL−  
15  
DTMF  
dB  
16  
14  
MUTE  
PD  
SUPPLY AND  
REFERENCE  
AGC  
CIRCUIT  
CURRENT  
REFERENCE  
12  
18  
REG  
19  
AGC  
11  
20  
V
STAB  
MEA009 - 1  
SLPE  
EE  
The blocks marked ‘dB’ are attenuators.  
Fig.1 Block diagram.  
1996 Apr 04  
3
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
PINNING  
SYMBOL PIN  
DESCRIPTION  
positive line terminal  
LN  
1
2
GAS1  
gain adjustment transmitting  
amplifier  
GAS2  
3
gain adjustment transmitting  
amplifier  
QR−  
4
5
inverting output receiving amplifier  
QR+  
non-inverting output receiving  
amplifier  
handbook, halfpage  
LN  
GAS1  
GAS2  
QR−  
1
2
3
4
5
6
7
8
9
20 SLPE  
AGC  
REG  
19  
18  
17  
GAR  
6
7
gain adjustment receiving amplifier  
MICL−  
inverting microphone input, low  
impedance  
V
CC  
MICH−  
MICL+  
MICH+  
8
9
inverting microphone input, high  
impedance  
16 MUTE  
15 DTMF  
14 PD  
QR+  
TEA1066T  
GAR  
non-inverting microphone input, low  
impedance  
MICL−  
10  
non-inverting microphone input,  
high impedance  
MICH−  
MICL+  
13 IR  
V
12  
EE  
STAB  
VEE  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
current stabilizer  
MICH+ 10  
11 STAB  
negative line terminal  
IR  
receiving amplifier input  
power-down input  
MBH120  
PD  
DTMF  
MUTE  
VCC  
dual-tone multi-frequency input  
mute input  
supply voltage decoupling  
voltage regulator decoupling  
automatic gain control input  
slope (DC resistance) adjustment  
REG  
AGC  
SLPE  
Fig.2 Pin configuration.  
FUNCTIONAL DESCRIPTION  
The DC current flowing into the set is determined by the  
exchange supply voltage (Vexch), the feeding bridge  
resistance (Rexch), the DC resistance of the telephone line  
(Rline) and the DC voltage on the subscriber set  
(see Fig.7).  
Supplies: VCC, LN, SLPE, REG and STAB  
Power for the TEA1066T and its peripheral circuits is  
usually obtained from the telephone line. The TEA1066T  
develops its own supply voltage at VCC and regulates its  
voltage drop. The supply voltage VCC may also be used to  
supply external peripheral circuits, e.g. dialling and control  
circuits.  
If the line current Iline exceeds the current ICC + 0.5 mA  
required by the circuit itself (approximately 1 mA) plus the  
current Ip required by the peripheral circuits connected to  
VCC, then the voltage regulator diverts the excess current  
via LN.  
The supply has to be decoupled by connecting a  
smoothing capacitor between VCC and VEE; the internal  
voltage regulator has to be decoupled by a capacitor from  
REG to VEE. An internal current stabilizer is set by a  
resistor of 3.6 kbetween STAB and VEE  
.
1996 Apr 04  
4
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
The voltage regulator adjusts the average voltage on  
LN to:  
and > 3 V, this being the minimum supply voltage for most  
CMOS circuits, including voltage drop for an enable diode.  
If MUTE is LOW, the available current is further reduced  
when the receiving amplifier is driven.  
VLN = Vref + ISLPE × R9  
or  
VLN = Vref + (Iline ICC 0.5 × 103A Ip) × R9  
Microphone inputs MICL+, MICH+, MICLand MICH−  
and amplification adjustment connections GAS1 and  
GAS2  
where Vref is an internally generated temperature  
compensated reference voltage of 4.2 V and R9 is an  
external resistor connected between SLPE and VEE  
.
The TEA1066T has symmetrical microphone inputs.  
The MICL+ and MICLinputs are intended for  
The preferred value for R9 is 20 Ω. Changing the value of  
R9 will also affect microphone gain, DTMF gain, gain  
control characteristics, side-tone level and the maximum  
output swing on LN.  
low-sensitivity, low-impedance dynamic or magnetic  
microphones. The input impedance is 8.2 k(2 × 4.1 k)  
and its voltage gain is typically 52 dB. The MICH+ and  
MICHinputs are intended for a piezoelectric microphone  
or an electret microphone with a built-in FET source  
follower. Its input impedance is 40.8 k(2 × 20.4 k) and  
its voltage gain is typical 38 dB.  
Under normal conditions, when ISLPE >> ICC + 0.5 mA + Ip,  
the static behaviour of the circuit is that of a 4.2 V regulator  
diode with an internal resistance equal to that of R9. In the  
audio frequency range, the dynamic impedance is largely  
determined by R1 (see Fig.3).  
The arrangements with the microphone types mentioned  
are shown in Fig.9.  
The gain of the microphone amplifier in both types can be  
adjusted over a range of ±8 dB to suit the sensitivity of the  
transducer used. The gain is proportional to external  
resistor R7 connected between GAS1 and GAS2.  
LN  
handbook, halfpage  
An external capacitor C6 of 100 pF between GAS1 and  
SLPE is required to ensure stability. A larger value may be  
chosen to obtain a first-order low-pass filter. The cut-off  
frequency corresponds with the time constant R7 × C6.  
L
R1  
V
R
eq  
V
p
REG  
CC  
ref  
R9  
20 Ω  
C3  
4.7 µF  
C1  
100 µF  
Mute input MUTE  
A HIGH level at MUTE enables the DTMF input and  
inhibits the microphone inputs and the receiving amplifier;  
a LOW level or an open circuit has the reverse effect.  
Switching the mute input will cause negligible clicks at the  
earpiece outputs and on the line.  
V
EE  
MBA454  
R
p = 17.5 kΩ  
L
eq = C3 × R9 × Rp  
Dual-tone multi frequency input DTMF  
Fig.3 Equivalent impedance circuit.  
When the DTMF input is enabled, dialling tones may be  
sent onto the line. The voltage gain from DTMF to LN is  
typically 25.5 dB and varies with R7 in the same way as  
the gain of the microphone amplifier. The signalling tones  
can be heard in the earpiece at a low level (confidence  
tone).  
The internal reference voltage can be adjusted by means  
of an external resistor RVA. This resistor, connected  
between LN and REG (pins 1 and 18), will decrease the  
internal reference voltage; when connected between REG  
and SLPE (pins 18 and 20) it will increase the internal  
reference voltage.  
Receiving amplifier: IR, QR+, QRand GAR  
The receiving amplifier has one input IR and two  
complementary outputs, a non-inverting output QR+ and  
an inverting output QR.  
Current Ip, available from VCC for supplying peripheral  
circuits, depends on external components and on the line  
current. Figure 8 shows this current for VCC > 2.2 V  
1996 Apr 04  
5
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
These outputs may be used for single-ended or for  
differential drive, depending on the sensitivity and type of  
earpiece used (see Fig.10). Gain from IR to QR+ is  
typically 25 dB. This will be sufficient for low-impedance  
magnetic or dynamic earpieces, which are suited for  
single-ended drive. By using both outputs (differential  
drive), the gain is increased by 6 dB and differential drive  
becomes possible. This feature can be used when the  
earpiece impedance exceeds 450 (high-impedance  
dynamic, magnetic or piezoelectric earpieces).  
bridged by the charge in the smoothing capacitor C1.  
The requirements on this capacitor are relaxed by applying  
a HIGH level to the PD input during the time of the loop  
break, which reduces the supply current from typically  
1 mA to typically 55 µA.  
A HIGH level at PD further disconnects the capacitor at  
REG, with the effect that the voltage stabilizer will have no  
switch-on delay after line interruptions. This results in no  
contribution of the IC to the current waveform during pulse  
dialling or register recall. When this facility is not required  
PD may be left open.  
The output voltage of the receiving amplifier is specified for  
continuous-wave drive. The maximum output voltage will  
be higher under speech conditions, where the ratio of peak  
to RMS value is higher.  
Side-tone suppression  
Suppression of the transmitted signal in the earpiece is  
obtained by the anti-side-tone network consisting of  
R1//Zline, R2, R3, R8, R9 and Zbal (see Fig.14). Maximum  
compensation is obtained when the following conditions  
are fulfilled:  
The receiving amplifier gain can be adjusted over a range  
of ±8 dB to suit the sensitivity of the transducer used.  
The gain is set by the external resistor R4 connected  
between GAR and QR+.  
R9 × R2 = R1 (R3 + [R8//Zbal] )  
(1)  
Two external capacitors, C4 = 100 pF and  
C7 = 10 × C4 = 1 nF, are necessary to ensure stability.  
A larger value of C4 may be chosen to obtain a first-order,  
low-pass filter. The ‘cut-off’ frequency corresponds with  
the time constant R4 × C4.  
Z
bal (Zbal + R8) = Zline (Zline + R1)  
(2)  
If fixed values are chosen for R1, R2, R3, and R9, then  
condition (1) will always be fulfilled, provided that  
R8//Zbal < R3. To obtain optimum side-tone  
Automatic gain control input AGC  
suppression, condition (2) has to be fulfilled, resulting in:  
Automatic line loss compensation is obtained by  
Z
bal = (R8/R1) Zline = k × Zline, where k is a scale factor:  
connecting a resistor R6 between AGC and VEE. This  
automatic gain control varies the microphone amplifier  
gain and the receiving amplifier gain in accordance with  
the DC line current.  
k = (R8/R1).  
Scale factor k (dependent on the value of R8) must be  
chosen to meet the following criteria:  
1. Compatibility with a standard capacitor from the E6 or  
E12 range for Zbal  
The control range is 6 dB. This corresponds with a line  
length of 5 km for a 0.5 mm diameter copper twisted-pair  
cable with a DC resistance of 176 /km and an average  
attenuation of 1.2 dB/km.  
2. Zbal//R8 << R3  
3. Zbal + R8 >> R9.  
Resistor R6 should be chosen in accordance with the  
exchange supply voltage and its feeding bridge resistance  
(see Fig.11 and Table 1). Different values of R6 give the  
same ratio of line currents for start and end of the control  
range.  
In practice, Zline varies greatly with line length and cable  
type; consequently, an average value has to be chosen for  
Zbal. The suppression further depends on the accuracy  
with which Zbal/k equals the average line impedance.  
Example: The balanced line impedance Zbal at which  
the optimum suppression is preset can be calculated by:  
If automatic line loss compensation is not required, AGC  
may be left open. The amplifiers then all give their  
maximum gain as specified.  
Assume Zline = 210 + (1265 /140 nF), representing a  
5 km line of 0.5 mm diameter, copper, twisted-pair cable  
matched to 600 (176 /km; 38 nF/km). When k = 0.64,  
then R8 = 390 ; Zbal = 130 + (820 //220 nF).  
Power-down input PD  
During pulse dialling or register recall (timed loop break)  
the telephone line is interrupted, as a consequence it  
provides no supply for the transmission circuit and the  
peripherals connected to VCC. These gaps have to be  
The anti-side-tone network for the TEA1060 family shown  
in Fig.4 attenuates the signal received from the line by  
32 dB before it enters the receiving amplifier.  
1996 Apr 04  
6
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
The attenuation is almost constant over the whole audio  
frequency range. Figure 5 shows a conventional  
Wheatstone bridge anti-side-tone circuit that can be used  
as an alternative. Both bridge types can be used with  
either resistive or complex set impedances.  
with 32 dB. The attenuation is nearly flat over the  
audio-frequency range.  
Instead of the previously-described special TEA1066  
bridge, the conventional Wheatstone bridge configuration  
can be used as an alternative anti-side-tone circuit. Both  
bridge types can be used with either a resistive set  
impedance or a complex set impedance.  
The anti-side-tone network as used in the standard  
application (see Fig.13) attenuates the signal from the line  
LN  
R1  
R2  
Z
line  
IR  
i
m
V
R
t
EE  
R3  
R9  
R8  
Z
bal  
SLPE  
MSA500 - 1  
Fig.4 Equivalent circuit of TEA1060 family anti-side-tone bridge.  
LN  
Z
R1  
bal  
Z
line  
IR  
i
m
V
R
t
EE  
R9  
R8  
R
A
SLPE  
MSA501 - 1  
Fig.5 Equivalent circuit of an anti-side-tone network in a Wheatstone bridge configuration.  
1996 Apr 04  
7
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
12  
UNIT  
positive continuous line voltage  
V
V
VLN(R)  
repetitive line voltage during switch-on or  
line interruption  
13.2  
VLN(RM)  
repetitive peak line voltage for a 1 ms pulse R9 = 20 ;  
28  
V
per 5 s  
R10 = 13 Ω; (Fig.10)  
Iline  
Vn  
line current  
R9 = 20 ; note 1  
R9 = 20 ; note 2  
V
140  
mA  
V
voltage on any other pin  
total power dissipation  
IC storage temperature  
operating ambient temperature  
junction temperature  
EE 0.7 VCC + 0.7  
Ptot  
Tstg  
Tamb  
Tj  
555  
mW  
°C  
°C  
°C  
40  
25  
+125  
+75  
125  
Notes  
1. Mostly dependent on the maximum required Tamb and on the voltage between LN and SLPE (see Fig.6).  
2. Calculated for the maximum ambient temperature specified, Tamb = 75 °C and a maximum junction temperature of  
125 °C.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air mounted on glass epoxy  
90  
K/W  
board 41 × 19 × 1.5 mm  
1996 Apr 04  
8
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
MBH125  
150  
LN  
handbook, halfpage  
I
(mA)  
130  
110  
90  
(1)  
(2)  
(3)  
(4)  
70  
50  
30  
2
4
6
8
10  
V  
12  
V
(V)  
LN  
SLPE  
(1) Tamb = 45 °C; Ptot = 888 mW.  
(2) Tamb = 55 °C; Ptot = 777 mW.  
(3) Tamb = 65 °C; Ptot = 666 mW.  
(4) Tamb = 75 °C; Ptot = 555 mW.  
Fig.6 Safe operating area.  
CHARACTERISTICS  
Iline = 10 to 100 mA; VEE = 0 V; f = 800 Hz; R9 = 20 ; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supplies: LN and VCC (pins 1 and 17)  
VLN  
voltage drop over circuit between  
LN and VEE  
Iline = 5 mA  
3.95  
4.25  
5.40  
4.25  
4.45  
6.10  
4.55  
4.65  
6.70  
7.50  
0
V
Iline = 15 mA  
Iline = 100 mA  
Iline = 140 mA  
Iline = 15 mA  
V
V
V
VLN/T  
voltage drop variation with  
temperature  
4  
2  
mV/K  
VLN  
voltage drop over circuit between  
LN and VEE with external resistor  
RVA  
Iline = 15 mA;  
RVA = R1-18 = 68 kΩ  
3.50  
4.70  
3.80  
5
4.05  
5.30  
V
V
Iline = 15 mA;  
RVA = R18-20 = 39 kΩ  
ICC  
supply current  
PD = LOW; VCC = 2.8 V  
PD = HIGH; VCC = 2.8 V  
0.96  
55  
1.30  
82  
mA  
µA  
V
VCC  
supply voltage available for  
peripheral circuits  
Iline = 15 mA; MUTE = HIGH;  
Ip = 0 mA  
3.50  
3.75  
Iline = 15 mA; MUTE = HIGH;  
Ip = 1.2 mA  
2.80  
3.05  
V
1996 Apr 04  
9
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Microphone inputs MICL+ and MICL−; MICH+ and MICH−  
Zi  
input impedance  
MICL+ (pin 9); MICL(pin 7)  
MICH+ (pin 10); MICH(pin 8)  
common mode rejection ratio  
voltage gain  
3.3  
4.1  
20.4  
82  
4.9  
24.5  
kΩ  
kΩ  
dB  
16.5  
CMRR  
Gv  
Iline = 15 mA; R7 = 68 Ω  
MICL+/MICLto LN  
51  
52  
53  
dB  
dB  
dB  
MICH+/MICHto LN  
37  
38  
39  
Gvf  
gain variation with frequency at  
f = 300 Hz and 3400 Hz  
with respect to 800 Hz  
0.5  
±0.2  
+0.5  
GvT  
gain variation with temperature at  
Tamb = 25 °C and +75 °C  
Iline = 50 mA; with respect to  
800 Hz  
±0.2  
dB  
Dual-tone multi-frequency input DTMF (pin 15)  
Zi  
input impedance  
16.8  
24.5  
0.5  
20.7  
25.5  
±0.2  
24.6  
26.5  
+0.5  
kΩ  
dB  
dB  
Gv  
voltage gain from DTMF to LN  
Iline = 15 mA; R7= 68 kΩ  
Gvf  
gain variation with frequency at  
f = 300 Hz and 3400 Hz  
with respect to 800 Hz  
GvT  
gain variation with temperature at  
Iline = 50 mA; with respect  
±0.2  
dB  
Tamb = 25 °C and +75 °C  
to 25 °C  
Gain adjustment connections GAS1 and GAS2 (pins 2 and 3)  
Gv  
gain variation with R7, transmitting  
amplifier  
8  
+8  
dB  
Transmitting amplifier output LN (pin 1)  
VLN(rms)  
output voltage (RMS value)  
Iline = 15 mA; THD = 2%  
Iline = 15 mA; THD = 10%  
1.9  
2.3  
2.6  
70  
V
V
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R7 = 68 k;  
microphone inputs open;  
psophometrically weighted  
(P53 curve)  
dBmp  
Receiving amplifier input IR (pin 13)  
Zi input impedance  
Receiving amplifier outputs QR+ and QR(pins 5 and 4)  
Zo output impedance single-ended  
Gv  
17  
21  
4
25  
kΩ  
voltage gain from IR to QR+ or QRIline = 15 mA; R4 = 100 kΩ  
single-ended; RL = 300 Ω  
24  
25  
26  
dB  
dB  
dB  
differential; RL = 600 Ω  
30  
31  
32  
Gvf  
gain variation with frequency at  
f = 300 Hz and 3400 Hz  
with respect to 800 Hz  
0.5  
±0.2  
+0.5  
GvT  
gain variation with temperature at  
Iline = 50 mA; with respect to  
±0.2  
dB  
Tamb = 25 °C and +75 °C  
25 °C  
1996 Apr 04  
10  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Vo(rms)  
output voltage (RMS value)  
sine-wave drive; Iline = 15 mA;  
Ip = 0 mA; THD = 2%;  
R4 = 100 kΩ  
single-ended; RL = 150 Ω  
single-ended; RL = 450 Ω  
0.30  
0.40  
0.80  
0.38  
0.52  
1.0  
V
V
V
differential; CL = 47 nF;  
Rseries = 100 ; f = 3400 Hz  
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R4 = 100 kΩ;  
pin 13 (IR) open;  
psophometrically weighted  
(P53 curve)  
single-ended; RL = 300 Ω  
differential; RL = 600 Ω  
50  
µV  
µV  
100  
Gain adjustment GAR (pin 6)  
Gv gain variation with R4 connected  
8  
+8  
dB  
between pin 6 and pin 5 receiving  
amplifier  
MUTE input (pin 16)  
VIH  
HIGH level input voltage  
1.50  
VCC  
0.3  
10  
V
VIL  
LOW level input voltage  
input current  
V
IMUTE  
Gv  
5
µA  
dB  
voltage gain reduction between  
MICL+ (pin 9) and MICL(pin 7) to  
LN (pin 1)  
MUTE = HIGH  
70  
Gv  
voltage gain from DTMF to QR+ or MUTE = HIGH; R4 = 100 k;  
21  
19  
17  
dB  
QR−  
single-ended; RL = 300 Ω  
Power-down input PD (pin 14)  
VIH  
VIL  
IPD  
HIGH level input voltage  
LOW level input voltage  
1.5  
5
VCC  
0.3  
10  
V
V
input current in power-down  
condition  
µA  
1996 Apr 04  
11  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Automatic gain control input AGC (pin 19)  
Gv  
gain control range from IR to  
QR+/QRand from MIC+/MICto  
LN  
Iline = 70 mA; R6 = 110 kΩ  
between AGC and VEE  
5.5  
5.9  
6.3  
dB  
Iline(H)  
Iline(L)  
Gv  
highest line current for maximum  
gain  
R6 = 110 kbetween AGC and  
VEE  
23  
mA  
mA  
dB  
lowest line current for minimum gain R6 = 110 kbetween AGC and  
61  
VEE  
voltage gain variation  
between Iline = 15 mA and  
Iline = 35 mA; R6 = 110 kΩ  
between AGC and VEE  
1.0  
1.5  
2.0  
R
I
R1  
line  
line  
I
I
+ 0.5 mA  
CC  
17  
SLPE  
1
I
p
LN  
V
CC  
TEA1066T  
R
exch  
DC  
AC  
0.5 mA  
peripheral  
circuits  
C1  
V
V
exch  
REG  
18  
STAB  
SLPE  
20  
EE  
11  
12  
I
SLPE  
R5  
C3  
R9  
MBH123  
Fig.7 Supply arrangement.  
1996 Apr 04  
12  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
MBH124  
3
handbook, halfpage  
(1)  
I
p
(mA)  
(2)  
2
(3)  
1
(4)  
0
0
1
2
3
4
V
(V)  
CC  
Curves (1) and (3) are valid when the receiving amplifier is not driven or when MUTE = HIGH. Curves (2) and (4) are valid when MUTE = LOW and the  
receiving amplifier is driven, Vo(rms) = 150 mV, RL = 150 (asymmetrical). Iline = 15 mA; VLN = 4.45 V; R1 = 620 and R9 = 20 .  
(1) Ip = 2.55 mA.  
(2)  
Ip = 2.1 mA.  
(3) Ip = 1.2 mA.  
(4) Ip = 0.75 mA.  
Fig.8 Typical current Ip available from VCC for external (peripheral) circuitry with VCC > 2.2 V and VCC > 3 V.  
17  
V
CC  
9
8
10  
8
MICL+  
MICL−  
MICH−  
MICH+  
(1)  
7
10  
MICH+  
MICH−  
V
EE  
12  
MBH121  
a. Magnetic or dynamic  
microphone.  
b. Electret microphone.  
c. piezoelectric microphone.  
(1) May be connected to lower the terminating impedance.  
Fig.9 Alternative microphone arrangements.  
1996 Apr 04  
13  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
(1)  
(2)  
5
5
5
4
5
4
QR+  
QR+  
QR−  
QR+  
QR−  
QR+  
4
QR−  
4
12  
V
QR−  
EE  
MBH122  
a. Dynamic earpiece  
with less than 450 Ω  
impedance.  
b. Dynamic earpiece with  
more than 450 Ω  
impedance.  
c. Magnetic earpiece  
with more than 450 Ω  
impedance.  
d. piezoelectric  
earpiece.  
(1) May be connected to prevent distortion (inductive load).  
(2) Required to increase the phase margin (capacitive load).  
Fig.10 Alternative receiver arrangements.  
MBH126  
R6 = ∞  
0
G  
v
(dB)  
2  
4  
6  
48.7 k78.7 k110 k140 kΩ  
0
20  
40  
60  
80  
100  
120  
140  
(mA)  
I
line  
R9 = 20 .  
Fig.11 Variation of gain with line current, with R6 as a parameter.  
14  
1996 Apr 04  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
Table 1 Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply  
voltage Vexch and exchange feeding bridge resistance Rexch; R9 = 20 Ω  
R6 (k)  
Vexch (V)  
Rexch = 400 Ω  
Rexch = 600 Ω  
Rexch = 800 Ω  
Rexch = 1000 Ω  
24  
36  
48  
60  
61.9  
100  
140  
X
48.7  
78.7  
110  
X
X
X
68  
60.4  
82  
93.1  
120  
102  
I
R1  
line  
V
620 Ω  
17  
1
4
5
LN  
13  
V
100 µF  
CC  
QR−  
QR+  
IR  
R
o
9, 10  
7, 8  
15  
L
MICL+/MICH+  
MICL/MICH−  
DTMF  
600 Ω  
V
i
C4  
100 pF  
R4  
100 kΩ  
6
2
GAR  
TEA1066T  
100 µF  
C7 1 nF  
C1  
16  
GAS1  
10 to 140 mA  
MUTE  
R7  
68 kΩ  
10 µF  
14  
3
PD  
V
C6  
100 pF  
GAS2  
V
i
EE  
12  
REG AGC STAB SLPE  
18  
19  
11  
20  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBH127  
Voltage gain is defined as: Gv = 20 log Vo/Vi . For measuring the gain from MICL+, MICLor MICH+ and MICH−, the MUTE input should be LOW or  
open; for measuring the DTMF input, MUTE should be HIGH. Inputs not under test should be open.  
Fig.12 Test circuit for defining voltage gain of MICL+, MICL, MICH+ and MICHDTMF inputs.  
1996 Apr 04  
15  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
I
R1  
line  
620 Ω  
17  
1
100 µF  
4
5
LN  
13  
V
CC  
QR−  
QR+  
IR  
600 Ω  
Z
V
o
9, 10  
L
MICL+/MICH+  
MICL/MICH−  
DTMF  
10 µF  
V
7, 8  
15  
R4  
C4  
100 pF  
i
100  
kΩ  
6
2
TEA1066T  
GAR  
C7 1 nF  
C1  
16  
GAS1  
100 µF  
10 to 140 mA  
MUTE  
R7  
14  
C6  
100 pF  
3
PD  
V
GAS2  
EE  
12  
REG AGC STAB SLPE  
18  
19  
11  
20  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBH128  
Voltage gain is defined as: Gv = 20 log Vo/Vi .  
Fig.13 Test circuit for defining voltage gain of the receiving amplifier.  
1996 Apr 04  
16  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
APPLICATION INFORMATION  
R1  
C1  
620 Ω  
100 µF  
R10  
13 Ω  
R2  
130 kΩ  
1
17  
LN  
V
CC  
C5  
100 nF  
R11  
13  
4
IR  
BAS11  
(2x)  
QR−  
5
6
15  
16  
14  
QR+  
DTMF  
MUTE  
PD  
from dial  
and  
control  
circuits  
C4  
100 pF  
R4  
R3  
3.92  
telephone  
line  
TEA1066T  
BZW14  
(2x)  
GAR  
1 nF  
kΩ  
C7  
9, 10  
7, 8  
MICL+/MICH+  
MICL/MICH−  
V
SLPE  
20  
GAS1 GAS2 REG  
AGC  
STAB  
11  
EE  
2
3
18  
19  
12  
R8  
390 Ω  
R7  
R5  
3.6 kΩ  
C3  
4.7 µF  
C6  
100 pF  
R6  
Z
bal  
R9  
20 Ω  
MBH129  
Typical application of the TEA1066, shown with a piezoelectric earpiece and DTMF dialling. The bridge to the left and R10 limit the current into the  
circuit and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.  
Fig.14 Application diagram.  
1996 Apr 04  
17  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
LN  
V
V
DD  
CC  
DTMF  
MUTE  
PD  
TONE  
cradle  
contact  
PCD3310  
TEA1066T  
M1  
DP/FLO  
V
V
EE  
SS  
telephone  
line  
BSN254A  
MEA008 - 1  
The dashed lines show an optional flash (register recall by timed loop break).  
Fig.15 DTMF pulse set with CMOS PCD3310 dialling circuit.  
1996 Apr 04  
18  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
PACKAGE OUTLINE  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.42  
0.39  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-24  
SOT163-1  
075E04  
MS-013AC  
1996 Apr 04  
19  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
SOLDERING  
Introduction  
Wave soldering  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The package footprint must incorporate solder thieves at  
the downstream end.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all SO  
packages.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
1996 Apr 04  
20  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Apr 04  
21  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
NOTES  
1996 Apr 04  
22  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1066T  
NOTES  
1996 Apr 04  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. (02) 805 4455, Fax. (02) 805 4466  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. (01) 60 101-1256, Fax. (01) 60 101-1250  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211,  
Volodarski Str. 6, 220050 MINSK,  
Portugal: see Spain  
Romania: see Italy  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65) 350 2000, Fax. (65) 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (172) 200 733, Fax. (172) 200 773  
Belgium: see The Netherlands  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Brazil: see South America  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. (359) 2 689 211, Fax. (359) 2 689 102  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: see South America  
Tel. (011) 470-5911, Fax. (011) 470-5494  
South America: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
Tel. (011) 821-2333, Fax. (011) 829-1849  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03) 301 6312, Fax. (03) 301 4107  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852) 2319 7888, Fax. (852) 2319 7700  
Colombia: see South America  
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,  
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (01) 488 2211, Fax. (01) 481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212) 279 2770, Fax. (0212) 282 6707  
Ukraine: PHILIPS UKRAINE,  
2A Akademika Koroleva str., Office 165, 252148 KIEV,  
Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181) 730-5000, Fax. (0181) 754-8421  
United States: 811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556  
Uruguay: see South America  
Czech Republic: see Austria  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358) 0-615 800, Fax. (358) 0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01) 4099 6161, Fax. (01) 4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
Tel. (040) 23 53 60, Fax. (040) 23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, BOMBAY 400 018  
Tel. (022) 4938 541, Fax. (022) 4938 722  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01) 7640 000, Fax. (01) 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. (03) 645 04 44, Fax. (03) 648 10 07  
Vietnam: see Singapore  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. (381) 11 825 344, Fax. (359) 211 635 777  
Italy: PHILIPS SEMICONDUCTORS,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO,  
TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556  
Middle East: see Italy  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040) 2783749, Fax. (040) 2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09) 849-4160, Fax. (09) 849-7811  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
Marketing & Sales Communications, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Fax. +31-40-2724825  
SCDS48  
© Philips Electronics N.V. 1996  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022) 74 8000, Fax. (022) 74 8341  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC,  
MAKATI, Metro MANILA,  
Printed in The Netherlands  
Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. (022) 612 2831, Fax. (022) 612 2327  
417021/10/02/pp24  
Date of release: 1996 Apr 04  
9397 750 00783  
Document order number:  

相关型号:

TEA1066TD

Telephone Circuit (Support)
ETC

TEA1066TD-T

Telephone Circuit (Support)
ETC

TEA1067

Low voltage versatile telephone transmission circuit with dialler interface
NXP

TEA1067N

IC TELEPHONE SPEECH CKT, PDIP18, 0.300 INCH, PLASTIC, SOT-102, DIP-18, Telephone Circuit
NXP

TEA1067PN

IC TELEPHONE SPEECH CKT, PDIP18, PLASTIC, SOT-102HE, DIP-18, Telephone Circuit
NXP

TEA1067T

Low voltage versatile telephone transmission circuit with dialler interface
NXP

TEA1067T-T

IC TELEPHONE SPEECH CKT, PDSO20, MINI, SO-20, Telephone Circuit
NXP

TEA1067TD

Telecom IC, Bipolar, PDSO20
PHILIPS

TEA1067TD

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SOT-163, SO-20, Telephone Circuit
NXP

TEA1067TD-T

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SOT-163, SO-20, Telephone Circuit
NXP

TEA1068

Versatile telephone transmission circuit with dialler interface
NXP

TEA1068N

Telephone Circuit, Bipolar, PDIP18
PHILIPS