TEA1612T/N1,518 [NXP]

Zero voltage switching resonant converter controller;
TEA1612T/N1,518
型号: TEA1612T/N1,518
厂家: NXP    NXP
描述:

Zero voltage switching resonant converter controller

文件: 总19页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TEA1612T  
Zero voltage switching resonant converter controller  
Rev. 01 — 24 September 2009  
Product data sheet  
1. General description  
The TEA1612T is a monolithic integrated circuit implemented in a high-voltage double  
Diffused Metal Oxide Semiconductor (DMOS) process. The circuit is a high voltage  
controller for a zero-voltage switching resonant converter. The IC provides the drive  
function for two discrete power MOSFETs in a half-bridge configuration. It also includes a  
level-shift circuit, an oscillator with an accurately-programmable frequency range, a  
latched shut-down function, burst mode operation and a transconductance error amplifier.  
The oscillator signal passes through a divide-by-two flip-flop before being fed to the output  
drivers in order to guarantee an accurate 50 % switching duty factor.  
The circuit is very flexible and enables a broad range of applications for different mains  
voltages.  
V
drv(hs)  
bridge voltage  
supply  
V
DD  
(high side)  
MOSFET  
SWITCH  
HALF-  
BRIDGE  
CIRCUIT  
RESONANT  
CONVERTER  
TEA1612T  
signal  
ground  
power ground  
014aaa825  
Fig 1. Basic configuration  
2. Features  
I Adjustable burst mode operation at low loads for low standby power  
I Integrated high voltage level-shift function  
I Integrated high voltage bootstrap diode  
I Low start-up current  
I Adjustable non-overlap time  
I Internal Over Temperature Protection (OTP)  
I Over Current Protection (OCP) that activates a shut-down timer  
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
I Soft start timing pin  
I Brown Out (BO) detection  
I Transconductance error amplifier for ultra high-ohmic regulation feedback  
I Latched shut-down circuit for Over Voltage Protection (OVP)  
I Adjustable minimum and maximum frequencies  
I Under Voltage Lock Out (UVLO)  
I Fault latch reset input  
I Wide (max. 20 V) supply voltage range  
I PFC-off output  
3. Applications  
I TV and monitor power supplies  
I High power adapter  
I PC power supplies  
I High voltage power supplies  
I Office equipment  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TEA1612T  
SO24  
plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
2 of 19  
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
5. Block diagram  
V
DD  
15  
10k  
12  
VDD(FLOAT)  
16  
VAUX  
11  
GH  
12.6 V  
LEVEL  
SHIFTER  
HIGH SIDE  
DRIVER  
10  
9
SH  
n.c.  
14  
8
GL  
13  
LOW SIDE  
DRIVER  
SGND  
SUPPLY  
PGND  
1
PFC  
7
OCP  
SD  
2
BO  
0.3 V  
1.25 V  
5 V  
LOGIC  
21  
17  
23  
RESET  
HYST  
2.33 V  
24  
3
BURST  
P
gm  
6
TIMER  
CT  
2.5 V  
1.8 V  
: 2  
2.7 V  
×2  
start-up  
OSCILLATOR  
19  
×16  
3 V  
5
4
600 mV 20  
IRS  
22  
600 mV 18  
IFS  
VCO  
VREF  
CF  
014aaa847  
CSS  
Fig 2. Block diagram  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
3 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
6. Pinning information  
6.1 Pinning  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PFC  
BURST  
HYST  
VREF  
SD  
BO  
3
P
VCO  
4
5
CSS  
IRS  
6
CT  
CF  
TEA1612T  
7
OCP  
IFS  
8
PGND  
n.c.  
RESET  
VAUX  
9
10  
11  
12  
SH  
V
DD  
GH  
GL  
VDD(FLOAT)  
SGND  
014aaa824  
Fig 3. Pin configuration  
6.2 Pin description  
Table 2.  
Symbol  
PFC  
BO  
Pin description, proposal  
Pin  
1
Description  
PFC-control output  
brownout input  
2
P
3
error amplifier non-inverting input  
error amplifier output  
VCO  
CSS  
CT  
4
5
soft start capacitor input  
timer capacitor input  
6
OCP  
PGND  
n.c.  
7
overcurrent protection input  
8
power ground  
not connected[1]  
9
SH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
high side switch source connection  
high side switch gate connection  
floating supply high side driver  
signal ground  
GH  
VDD(FLOAT)  
SGND  
GL  
low side switch gate connection  
supply voltage  
VDD  
VAUX  
RESET  
IFS  
auxiliary supply voltage  
latch reset input  
oscillator discharge current input  
oscillator capacitor  
CF  
IRS  
oscillator charge input current  
shut-down input  
SD  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
4 of 19  
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
Table 2.  
Pin description, proposal  
Symbol  
VREF  
Pin  
22  
23  
24  
Description  
reference voltage  
HYST  
hysteresis reference input for burst mode  
burst comparator input  
BURST  
[1] Provided as a high voltage spacer  
7. Functional description  
7.1 Start-up  
When the applied voltage at pin VDD reaches VDD(init) (see Figure 4), the low side power  
switch is turned-on while the high side power switch remains in the non-conducting state.  
This start-up output state guarantees the initial charging of the bootstrap capacitor (Cboot  
)
used for the floating supply of the high side driver.  
During start-up, the voltage on the frequency capacitor (Cf) is zero and defines the  
start-up state. The voltage at the soft start pin (CSS) is set to 2.7 V. The CSS pin voltage  
is copied to the VCO pin via a buffer and switching starts at about 80 % of the maximum  
frequency at the moment VDD reaches the start level.  
The start-up state is maintained until VDD reaches the start level (13.5 V), the oscillator is  
activated and the converter starts operating.  
V
V
V
DD  
0
DD(startup)  
DD(init)  
GH-SH  
0
GL  
0
t
014aaa036  
Fig 4. Start-up  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
5 of 19  
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
7.2 Oscillator  
The internal oscillator is a current-controlled oscillator that generates a sawtooth output.  
The frequency of the sawtooth is determined by the external capacitor Cf and the currents  
flowing into the IFS and IRS pins.  
The minimum frequency and the non-overlap time are set by the capacitor Cf and  
resistors Rf(min) and Rno. The maximum frequency is set by resistor Rf (see Figure 7).  
The oscillator frequency is exactly twice the bridge frequency to achieve an accurate 50 %  
duty factor. An overview of the oscillator and driver signals is given in Figure 5.  
CF  
GH-SH  
0
GL  
0
non-overlap time (high to low)  
non-overlap time (low to high)  
t
014aaa685  
Fig 5. Oscillator and driver signals  
7.3 Non-overlap time resistor  
The non-overlap time resistor Rno is connected between the 3 V reference pin VREF, and  
the IFS current input pin (see Figure 7). The voltage on the IFS pin is kept constant at a  
temperature independent value of 0.6 V. The current that flows into the IFS pin is  
determined by resistor's Rno 2.4 V voltage drop divided by its value. The IFS input current  
equals 1/16 of the discharge current of capacitor Cf and determines the falling slope of the  
oscillator.  
The falling slope time is used to create a non-overlap time (tno) between two successive  
switching actions of the half-bridge switches:  
2.4V  
Rno  
IIFS  
=
-----------  
C f × ∆VCf  
tno  
=
--------------------------  
16 × IIFS  
tIFS = tno  
7.4 Minimum frequency resistor  
The Rf(min) resistor is connected between the VREF pin (3 V reference voltage) and the  
IRS current input pin (held at a temperature independent voltage level of 0.6 V). The  
charge current of the capacitor Cf is twice the current flowing into the IRS pin.  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
6 of 19  
 
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
The Rf(min) resistor has a voltage drop of 2.4 V and its resistance defines the minimum  
charge current (rising slope) of the Cf capacitor if the control current is zero. The minimum  
frequency is defined by this minimum charge current (IIRS1) and the discharge current:  
2.4V  
Rf (min)  
IIRS1  
=
=
-----------------  
C f × ∆VCf  
tIRS1  
--------------------------  
2 × IIRS1  
1
f osc(min)  
=
------------------------  
tno + tIRS1  
f osc(min)  
f bridge(min)  
=
---------------------  
2
7.5 Maximum frequency resistor  
The output voltage is regulated by changing the frequency of the half-bridge converter.  
The maximum frequency is determined by the Rf resistor which is connected between  
the error amplifier output VCO and the oscillator current input pin IRS. The current that  
flows through the Rf resistor (IIRS2) is added to the current flowing through the Rf(min)  
resistor. As a result, the charge current ICF increases and the oscillation frequency  
increases. As the falling slope of the oscillator is constant, the relationship between the  
output frequency and the charge current is not a linear function (see Figure 6 and  
Figure 7):  
VVCO 0.6  
IIRS2  
=
=
--------------------------  
Rf  
C f × ∆VCf  
--------------------------------------------  
2 × (IIRS1 + IIRS2  
tIRS2  
)
The maximum output voltage of the error amplifier and the value of Rf determine the  
maximum frequency:  
VVCO(max) 0.6  
IIRS2(max)  
=
---------------------------------------  
Rf  
C f × ∆VCf  
tIRS(min)  
=
---------------------------------------------------------  
2 × (IIRS2 + IIRS2(max)  
)
1
f osc(max)  
=
------------  
TOSC  
f osc(max)  
f bridge(max)  
=
---------------------  
2
TOSC = tIRS(min) + tIFS  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
7 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
Bridge frequency accuracy is optimum in the low frequency region. At higher frequencies  
both the non-overlap time and the oscillator frequency show a decay.  
The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak  
voltage swing VCF, and the charge and discharge currents. However, at higher  
frequencies the accuracy decreases due to delays in the circuit.  
f
osc  
f
osc(max)  
f
osc(start)  
f
osc(min)  
0
I
IRS  
014aaa038  
Fig 6. Frequency range  
7.6 Error amplifier  
The error amplifier is a transconductance amplifier. Thus the output current at pin VCO is  
determined by the amplifier transconductance, the differential voltage on input pin P, and  
the internal reference voltage (2.5 V). The output current IVCO is fed to the IRS input of the  
current-controlled oscillator.  
The source capability of the error amplifier increases current in the IRS pin when the  
differential input voltage is positive. Therefore the minimum current is determined by  
resistor Rf(min) and the minimum frequency setting is independent of the characteristics of  
the error amplifier.  
The error amplifier has a maximum output current of 0.5 mA for an output voltage up to  
2.5 V. If the source current decreases, the oscillator frequency also decreases resulting in  
a higher regulated output voltage.  
During start-up, the output voltage of the amplifier is connected to the soft start (CSS) pin  
via a buffer. This will hold the VCO pin at a constant value of VVCO(start)  
.
7.7 Soft start  
The CSS pin voltage is copied to the VCO pin via a buffer. This buffer only has a source  
capability i.e. it can only charge the VCO pin. This means that the error amplifier output  
can increase the VCO pin voltage above the CSS voltage level.  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
8 of 19  
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
At start-up the soft start capacitor is charged to VVCO(start) setting a start-up frequency of  
about 80 % of the maximum frequency. After start-up the external soft start capacitor is  
discharged by Istart(soft). The VCO pin voltage follows the CSS voltage (discharging takes  
place via Rf) and the frequency sweeps down. The CSS capacitor determines the  
frequency sweep rate.  
When the circuit comes into regulation, the error amplifier output controls the VCO pin  
voltage and the CSS voltage sweeps down further to zero volt.  
7.8 VAUX input  
The TEA1612T can start up either via a start-up bleeder resistor (connected to the high  
voltage and VDD) or via the VAUX input. In the latter case the internal 10 kresistor (from  
VAUX to VDD) initiates charging of the VDD capacitor after which the series regulator takes  
over. The series regulator is active up to the moment that VDD equals VDD(reg). Further  
charging to VDD(startup) is done via the internal 10 kresistor.  
In oscillation state the start-up resistor is no longer capable of delivering the VDD supply  
current, so an auxiliary supply (for instance, via an auxiliary winding or a dV/dt supply)  
needs to take over. The VAUX input facilitates a series regulator which regulates its output  
voltage (= VDD) to VDD(reg)  
.
7.9 Burst mode  
In the application the amount of converted power can be estimated from the actual  
operating frequency: the higher the frequency, the lower the output power. This frequency  
is proportional to the feedback current to the IRS pin which is measured via a sense  
resistor Rfb2 (see Figure 7). The actual feedback current equals 1/Rfb2 × (VBURST VIRS).  
When the voltage at the BURST pin exceeds Vref(BURST), the TEA1612T output drivers  
(GL, GH) are made inactive (i.e. low). The output drivers are enabled again when the  
voltage at the BURST pin falls below the preset voltage at the HYST pin.  
7.10 Shut-down  
The shut-down input on pin SD has an accurate threshold level of 2.33 V. When the  
voltage on input SD reaches 2.33 V, the TEA1612T enters shut-down mode.  
During shut-down mode, VDD is clamped by an internal Zener diode at 12.0 V with 1 mA  
input current. This clamp prevents VDD rising above the rating of 14 V due to low supply  
current to the TEA1612T in shut-down mode.  
When the TEA1612T is in shut-down mode, it can only be activated again by lowering VDD  
to below the VDD(rst) level (typically 5.3 V) or by making the reset input active. The  
shut-down latch is then reset and a new start-up cycle can commence.  
In shut-down mode the GL pin is high and the GH pin is low. In this way the bootstrap  
capacitor remains charged so that after a reset a new cycle can start well defined.  
7.11 Latch reset input  
The internal shut-down latch can be reset via the reset input.This input is active low.  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
9 of 19  
 
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
7.12 Overcurrent protection and timer  
The OCP input continuously compares the voltage on pin OCP with Vref(OCP). When the  
OCP pin voltage is higher than Vref(OCP), the timer capacitor CT will be charged with Ich  
during the next full CF cycle or else the timer capacitor will be discharged with Ileak  
.
In case the CT voltage exceeds Vtrip(H)(CT) the TEA1612T will switch to shut-down mode.  
The timer capacitor will be discharged with Idch until the CT voltage reaches Vtrip(L)(CT)  
after which a soft start cycle is started.  
7.13 Overtemperature protection  
The TEA1612T continuously monitors its temperature. When the temperature exceeds the  
Totp(act) level, the TEA1612T will switch to the shut-down mode.  
7.14 Brownout protection  
The brownout protection compares the actual BO pin with the Vtrip(bo) voltage. If the BO  
voltage (see Figure 7) is lower than Vtrip(bo), the TEA1612T switches to start-up mode and  
activates an internal current source Ibo(hys) to create a brownout hysteresis. When the BO  
pin voltage becomes larger than Vtrip(bo), the TEA1612T will start-up again.  
7.15 PFC disable function  
The PFC output pin is an open-drain output. Operation of the PFC pin is internally enabled  
when the voltage on the BO pin is higher than Vtrip(bo). When the voltage is lower than  
Vtrip(bo), the PFC output is always in the open-drain state.  
The PFC output is pulled low when:  
The overtemperature protection is active.  
The OCP timer has timed out.  
The TEA1612T has been set to shut-down.  
During the off-time in burst mode.  
This PFC output signal can be used to switch off the power corrector in the application  
during Burst mode (and during protection) to further reduce standby power losses.  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
10 of 19  
 
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
8. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Supply Voltages  
Vdrv(hs) high-side driver voltage  
VDD  
Parameter  
Conditions  
Min  
Max  
Unit  
0
0
0
600  
14  
V
V
V
[1]  
[1]  
supply voltage  
Vaux  
auxiliary voltage  
20  
Voltages on pins P, SD, RESET, OCP, BO, PFC, BURST, HYST and CT  
VI  
input voltage  
0
5
V
Currents  
IIFS  
current on pin IFS  
current on pin IRS  
current on pin VREF  
-
-
-
1 ÷ 16  
1
mA  
mA  
mA  
IIRS  
IVREF  
2  
Power and temperature  
Ptot  
total power dissipation  
Tamb < 70 °C  
-
0.8  
W
Tamb  
ambient temperature  
storage temperature  
operating  
25  
25  
+70  
+150  
°C  
°C  
Tstg  
Handling  
VESD  
[2]  
[3]  
electrostatic discharge voltage  
-
-
2000  
200  
V
V
[1] It is recommended that a 100 nF capacitor be placed as close as possible to the VDD pin (as indicated in  
Figure 7, and in the application note).  
[2] Human body model class 2: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[3] Machine model class 2: equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and 10 Ω  
resistor.  
9. Thermal characteristics  
Table 4.  
Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction  
to ambient  
in free air  
100  
K/W  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
11 of 19  
 
 
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
10. Characteristics  
Table 5.  
Characteristics  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 7, unless otherwise specified.  
Symbol  
High voltage pins VDD(FLOAT), GH and SH  
Ileak leakage current  
Supply pins VDD, VAUX  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD(float), VGH and VSH = 600 V  
low side on; high side off  
-
-
30  
µA  
VDD(init)  
initial supply voltage  
-
4
5
V
V
V
V
V
V
VDD(startup) start-up supply voltage  
12.9  
9.0  
3.8  
-
13.4  
9.4  
13.9  
9.8  
4.2  
-
VDD(stop)  
VDD(hys)  
VDD(reg)  
VDD  
stop supply voltage  
hysteresis of supply voltage  
regulation supply voltage  
supply voltage  
4.0  
Vaux = 17 V  
12.6  
12.3  
Vaux = 17 V, IVDD = 50 mA,  
oscillation state  
-
-
clamp voltage in shut-down state;  
low side on; high side off;  
11.0  
4.5  
12.0  
5.6  
13.0  
6.3  
V
V
IDD = 1 mA  
VDD(rst)  
IDD  
reset supply voltage  
supply current:  
low side on; high side off;  
Cf = 100 pF; IIFS = 0.5 mA;  
I
IRS = 50 µA; low side off;  
high side off; VDD = 9 V[1]  
start-up  
210  
260  
2.0  
310  
-
µA  
mA  
µA  
operating  
-
-
shut-down  
220  
270  
Reference voltage on pin VREF  
Vref  
Iref  
Zo  
reference voltage  
reference current  
output impedance  
temperature coefficient  
Iref = 0 mA  
2.9  
3.0  
-
3.1  
V
source only  
2.0  
-
-
-
mA  
Iref = 1 mA  
-
-
5.0  
0.3  
TC  
Iref = 0 mA; Tj = 25 °C to 150 °C  
mV/K  
Current controlled oscillator pins IRS, IFS, CF  
Ich(CF)min minimum charge current on IIRS = 15 µA; VCF = 2 V  
28  
30  
32  
µA  
µA  
pin CF  
Ich(CF)max  
maximum charge current on IIRS = 200 µA; VCF = 2 V  
340  
380  
420  
pin CF  
VIRS  
voltage on pin IRS  
IIRS = 200 µA  
590  
47  
620  
50  
650  
53  
mV  
Idch(CF)min  
minimum discharge current IIFS = 50 µA ÷ 16; VCF = 2 V  
µA  
on pin CF  
Idch(CF)max  
maximum discharge current IIFS = 1 mA ÷ 16; VCF = 2 V  
0.89  
0.94  
0.99  
mA  
on pin CF  
VIFS  
voltage on pin IFS  
IIFS = 1 mA ÷ 16  
590  
156  
620  
167  
650  
178  
mV  
fbridge(min)  
minimum bridge frequency  
Cf = 100 pF; IIFS = 0.5 mA ÷ 16;  
IIRS = 50 µA; fbridge = f OSC ÷ 2  
kHz  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
12 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
Table 5.  
Characteristics …continued  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 7, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
fbridge(max)  
maximum bridge frequency Cf = 100 pF; IIFS = 1 mA ÷ 16;  
IIRS = 200 µA; fbridge = f OSC ÷ 2  
395  
440  
485  
kHz  
Vtrip(L)  
Vtrip(H)  
VCF(p-p)  
LOW-level trip voltage  
HIGH-level trip voltage  
pin CF; DC level  
pin CF; DC level  
-
1.27  
2.97  
1.7  
-
V
V
V
-
-
peak-to-peak voltage on pin DC level  
CF  
1.6  
1.8  
tno  
non-overlap time  
Cf = 100 pF; IIFS = 0.5 mA ÷ 16;  
IRS = 50 µA  
0.58  
14.4  
0.63  
16  
0.68  
17.6  
µs  
I
Idch(osc)/IIFS oscillator discharge current  
to current on pin IFS ratio  
IIFS = 0.5 mA ÷ 16;  
-
Output drivers  
Isource(GH)  
source current on pin GH  
high side; VDD(float) = 11.2 V;  
-
-
300  
480  
-
-
mA  
mA  
V
SH = 0 V; VGH = 0 V  
high side; VDD(float) = 11.2 V;  
SH = 0 V; VGH = 11.2 V  
Isink(GH)  
sink current on pin GH  
V
Isource(GL)  
Isink(GL)  
VOH  
source current on pin GL  
sink current on pin GL  
HIGH-level output voltage  
low side; VGL = 0 V  
low side; VGL = 13 V  
pin GH; high side;  
-
-
-
300  
580  
10.9  
-
-
-
mA  
mA  
V
VDD(float) = 11.2 V; VSH = 0 V;  
IGH = 10 mA  
pin GL; low side; IGL = 10 mA  
pin GH; high side;  
-
-
12.6  
0.17  
-
-
V
V
VOL  
LOW-level output voltage  
VDD(float) = 11.2 V; VSH = 0 V;  
IGH = 10 mA  
pin GL; low side; IGL = 10 mA  
IO = 5 mA  
-
0.18  
1.6  
-
V
V
VFd(bs)  
bootstrap diode forward  
voltage  
1.3  
1.9  
Shut-down input pin SD  
II  
input current  
VSD = 2.33 V  
-
-
0.5  
µA  
Vth(SD)  
threshold voltage on pin SD  
2.26  
2.33  
2.40  
V
Error amplifier pins P, VCO  
II(cm)  
common-mode input current VI(cm) = 1 V  
-
0.1  
-
0.5  
2.5  
+2  
-
µA  
VI(cm)  
common-mode input voltage  
offset input voltage  
-
V
VI(offset)  
gm  
VI(cm) = 1 V; IVCO = 10 mA  
VI(cm) = 1 V; source only  
RL = 10 kto GND; VI(cm) = 1 V  
RL = 10 kto GND; VI(cm) = 1 V  
operating; RL = 10 kto GND  
operating; VVCO = 1 V  
2  
-
0
mV  
µA/mV  
dB  
transconductance  
330  
70  
5
Gol  
open-loop gain  
-
-
GB  
gain bandwidth product  
maximum VCO voltage  
maximum VCO current  
start VCO voltage  
-
-
MHz  
V
VVCO(max)  
IVCO(max)  
VVCO(start)  
3.2  
0.4  
2.5  
3.6  
0.5  
2.7  
4.0  
0.6  
2.9  
mA  
V
IVCO = 0.3 mA  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
13 of 19  
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
Table 5.  
Characteristics …continued  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 7, unless otherwise specified.  
Symbol  
Reset pin  
Vrst  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
reset voltage  
2.15  
2.4  
0.65  
-
2.65  
V
Vrst(hys)  
II(rst)  
hysteresis of reset voltage  
reset input current  
-
-
-
V
1
µA  
CSS pin  
Istart(soft)  
CT pin  
Ich  
soft start current  
12  
15  
18  
µA  
charge current  
discharge current  
leakage current  
21  
8
27  
33  
12  
1
µA  
µA  
µA  
µA  
Idch  
10  
Ileak  
0.1  
2.4  
0.3  
2.7  
Ich/Idch  
charge current to discharge  
current ratio  
3.0  
Vtrip(H)(CT)  
Vtrip(L)(CT)  
HIGH-level trip voltage on  
pin CT  
2.7  
0.6  
3
3.3  
0.8  
V
V
LOW-level trip voltage on pin  
CT  
0.7  
OCP pin  
Vref(OCP)  
reference voltage on pin  
OCP  
280  
120  
305  
135  
330  
150  
mV  
OTP  
Totp(act)  
activation overtemperature  
protection temperature  
°C  
BO pin  
Vtrip(bo)  
Ibo(hys)  
brownout trip voltage  
1.19  
14  
1.25  
16  
1.31  
18  
V
hysteresis of brownout  
current  
µA  
BURST pin  
Vref(BURST) reference voltage on pin  
BURST  
1.75  
1.8  
1.85  
V
PFC pin  
Ileak  
leakage current  
VPFC = 1 V  
IPFC = 1 mA  
-
-
-
-
1
µA  
Vsat  
saturation voltage  
0.2  
V
HYST pin  
Ileak  
leakage current  
VHYST = 5 V  
-
-
1
µA  
[1] The supply current IDD increases with the increasing bridge frequency to drive the capacitive load of two MOSFETs. Typical MOSFETs  
for the TEA1612T application are 8N50 (NXP type PHX80N50E, QG(tot) = 55 nC (typ) and these will increase the supply current at  
150 kHz according to the following formula:IDD = 2 × QG(tot) × f bridge = 2 × 55nC × 150kHz = 16.5mA  
[2] The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak voltage swing VCF and the charge/discharge  
currents Ich(CF) and Idch(CF)  
.
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
14 of 19  
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
11. Application information  
V
I
C
VDD  
V
DD  
15  
12 VDD(FLOAT)  
12.6 V  
C
VDD  
VAUX 16  
SGND 13  
18 V  
TEA1612  
11 GH  
10 SH  
LEVEL  
SHIFTER  
HIGH SIDE  
DRIVER  
SUPPLY  
on/off  
V
O
9
n.c.  
14 GL  
PFC  
BO  
1
2
PFC  
controller  
LOW SIDE  
DRIVER  
8
7
PGND  
OCP  
1.25 V  
5 V  
RESET 17  
Reset  
VREF  
0.3 V  
LOGIC  
21 SD  
OVP  
HYST 23  
2.33 V  
BURST 24  
6
CT  
gm  
P
3
TIMER  
: 2  
C
T
2.7 V  
1.8 V  
2.5 V  
×2  
OSCILLATOR  
×16  
start-up  
3 V  
600 mV  
20  
600 mV  
18  
5
CSS  
4
22  
19  
VCO  
R
IRS  
VREF IFS  
CF  
R
f(min)  
R
no  
f  
C
SS  
C
f
R
fb2  
A
B
R
fb1  
014aaa848  
Fig 7. Application diagram  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
15 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
12. Package outline  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT137-1  
075E05  
MS-013  
Fig 8. Package outline SOT137-1 (SO24)  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
16 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
13. Revision history  
Table 6.  
Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
TEA1612T_1  
20090924  
Product data sheet  
-
-
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
17 of 19  
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
14. Legal information  
14.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
14.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
14.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
14.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
15. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TEA1612T_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 01 — 24 September 2009  
18 of 19  
 
 
 
 
 
 
TEA1612T  
NXP Semiconductors  
Zero voltage switching resonant converter controller  
16. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Non-overlap time resistor . . . . . . . . . . . . . . . . . 6  
Minimum frequency resistor . . . . . . . . . . . . . . . 6  
Maximum frequency resistor. . . . . . . . . . . . . . . 7  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VAUX input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Shut-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Latch reset input . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overcurrent protection and timer . . . . . . . . . . 10  
Overtemperature protection . . . . . . . . . . . . . . 10  
Brownout protection . . . . . . . . . . . . . . . . . . . . 10  
PFC disable function. . . . . . . . . . . . . . . . . . . . 10  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal characteristics. . . . . . . . . . . . . . . . . . 11  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application information. . . . . . . . . . . . . . . . . . 15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 17  
9
10  
11  
12  
13  
14  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 18  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
14.1  
14.2  
14.3  
14.4  
15  
16  
Contact information. . . . . . . . . . . . . . . . . . . . . 18  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 24 September 2009  
Document identifier: TEA1612T_1  
 

相关型号:

TEA1620P

STARplug
NXP

TEA1620P/N1,112

IC 0.25 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PDIP8, 0.300 INCH, PLASTIC, MO-001, DIP-8, Switching Regulator or Controller
NXP

TEA1622P

STARplugTM
NXP

TEA1622P/N1,112

IC 1 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PDIP8, 0.300 INCH, PLASTIC, MO-001, DIP-8, Switching Regulator or Controller
NXP

TEA1623

TEA1623
ETC

TEA1623P

STARplug switched mode power supply controller IC
NXP

TEA1623PH

STARplug switched mode power supply controller IC
NXP

TEA1623PH/DB/STB,5

STARplug switched mode power supply controller IC, SOT38-1 Package, No Marking, Boards
NXP

TEA1623PH/N1,112

TEA1623P; TEA1623PH - STARplug switched mode power supply controller IC DIP 16-Pin
NXP

TEA1654

GreenChipII SMPS control IC
NXP

TEA1654T

GreenChipII SMPS control IC
NXP
NXP