TJA1042TK/3,118 [NXP]

TJA1042 - High-speed CAN transceiver with Standby mode SON 8-Pin;
TJA1042TK/3,118
型号: TJA1042TK/3,118
厂家: NXP    NXP
描述:

TJA1042 - High-speed CAN transceiver with Standby mode SON 8-Pin

PC 电信 光电二极管 电信集成电路
文件: 总26页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TJA1042  
High-speed CAN transceiver with Standby mode  
Rev. 10 — 24 November 2017  
Product data sheet  
1. General description  
The TJA1042 high-speed CAN transceiver provides an interface between a Controller  
Area Network (CAN) protocol controller and the physical two-wire CAN bus. The  
transceiver is designed for high-speed CAN applications in the automotive industry,  
providing the differential transmit and receive capability to (a microcontroller with) a CAN  
protocol controller.  
The TJA1042 belongs to the third generation of high-speed CAN transceivers from NXP  
Semiconductors, offering significant improvements over first- and second-generation  
devices such as the TJA1040. It offers improved ElectroMagnetic Compatibility (EMC)  
and ElectroStatic Discharge (ESD) performance, and also features:  
Ideal passive behavior to the CAN bus when the supply voltage is off  
A very low-current Standby mode with bus wake-up capability  
TJA1042T/3 and TJA1042TK/3 can be interfaced directly to microcontrollers with  
supply voltages from 3 V to 5 V  
The TJA1042 implements the CAN physical layer as defined in ISO 11898-2:2016 and  
SAE J2284-1 to SAE J2284-5. This implementation enables reliable communication in the  
CAN FD fast phase at data rates up to 5 Mbit/s.  
These features make the TJA1042 an excellent choice for all types of HS-CAN networks,  
in nodes that require a low-power mode with wake-up capability via the CAN bus.  
2. Features and benefits  
2.1 General  
ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5 compliant  
Timing guaranteed for data rates up to 5 Mbit/s in the CAN FD fast phase  
Suitable for 12 V and 24 V systems  
Low ElectroMagnetic Emission (EME) and high ElectroMagnetic Immunity (EMI)  
VIO input on TJA1042T/3 and TJA1042TK/3 allows for direct interfacing with 3 V to 5 V  
microcontrollers  
SPLIT voltage output on TJA1042T for stabilizing the recessive bus level  
Available in SO8 package and leadless HVSON8 package (3.0 mm 3.0 mm) with  
improved Automated Optical Inspection (AOI) capability  
Dark green product (halogen free and Restriction of Hazardous Substances (RoHS)  
compliant)  
AEC-Q100 qualified  
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
2.2 Predictable and fail-safe behavior  
Very low-current Standby mode with host and bus wake-up capability  
Functional behavior predictable under all supply conditions  
Transceiver disengages from the bus when not powered up (zero load)  
Transmit Data (TXD) dominant time-out function  
Bus-dominant time-out function in Standby mode  
Undervoltage detection on pins VCC and VIO  
2.3 Protections  
High ESD handling capability on the bus pins (8 kV)  
High voltage robustness on CAN pins (58 V)  
Bus pins protected against transients in automotive environments  
Thermally protected  
3. Quick reference data  
Table 1.  
Symbol  
VCC  
Quick reference data  
Parameter  
Conditions  
Min  
4.5  
2.8  
3.5  
Typ  
Max Unit  
supply voltage  
-
-
-
5.5  
5.5  
4.5  
V
V
V
VIO  
supply voltage on pin VIO  
Vuvd(VCC)  
undervoltage detection voltage  
on pin VCC  
Vuvd(VIO)  
ICC  
undervoltage detection voltage  
on pin VIO  
1.3  
2.0  
2.7  
V
supply current  
Standby mode  
-
10  
5
15  
10  
70  
14  
A  
mA  
mA  
A  
Normal mode; bus recessive  
Normal mode; bus dominant  
Standby mode; VTXD = VIO  
Normal mode  
2.5  
20  
5
45  
-
IIO  
supply current on pin VIO  
recessive; VTXD = VIO  
dominant; VTXD = 0 V  
15  
80  
200  
A  
-
350  
1000 A  
VESD  
VCANH  
VCANL  
Tvj  
electrostatic discharge voltage IEC 61000-4-2 at pins CANH and CANL  
voltage on pin CANH  
8  
-
-
-
-
+8  
kV  
V
58  
58  
40  
+58  
+58  
voltage on pin CANL  
V
virtual junction temperature  
+150 C  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
2 of 26  
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
4. Ordering information  
Table 2.  
Ordering information  
Type number[1]  
Package  
Name  
SO8  
Description  
Version  
TJA1042T  
plastic small outline package; 8 leads; body width 3.9 mm  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
SOT96-1  
SOT782-1  
TJA1042T/3  
TJA1042TK/3  
SO8  
HVSON8  
plastic thermal enhanced very thin small outline package; no leads;  
8 terminals; body 3 3 0.85 mm  
[1] TJA1042T with SPLIT pin; TJA1042T/3 and TJA1042TK/3 with VIO pin.  
5. Block diagram  
V
V
IO  
5
CC  
3
V
CC  
TJA1042  
TEMPERATURE  
PROTECTION  
(1)  
7
6
V
IO  
CANH  
CANL  
SLOPE  
CONTROL  
AND  
1
TIME-OUT  
DRIVER  
TXD  
(1)  
V
IO  
MODE  
CONTROL  
5
(1)  
SPLIT  
SPLIT  
8
4
STB  
RXD  
MUX  
AND  
DRIVER  
WAKE-UP  
FILTER  
2
015aaa017  
GND  
(1) In a transceiver with a SPLIT pin, the VIO input is internally connected to VCC  
.
Fig 1. Block diagram  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
3 of 26  
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
6. Pinning information  
6.1 Pinning  
7-$ꢀꢁꢂꢃ7.ꢄꢅ  
WHUPLQDOꢈꢀ  
LQGH[ꢈDUHD  
7-$ꢀꢁꢂꢃ7  
7-$ꢀꢁꢂꢃ7ꢄꢅ  
7;'  
67%  
7;'  
67%  
67%  
&$1+  
7;'  
*1'  
*1'  
&$1+  
&$1/  
63/,7  
*1'  
&$1+  
&$1/  
&$1/  
9
&&  
9
9
&&  
&&  
5;'  
9
,2  
5;'  
5;'  
9
,2  
ꢀꢁꢂDDDꢅꢆꢄ  
7UDQVSDUHQWꢈWRSꢈYLHZ  
ꢀꢁꢂDDDꢀꢁꢃ  
ꢀꢁꢂDDDꢀꢁꢄ  
a. TJA1042T: SO8  
Fig 2. Pin configuration diagrams  
b. TJA1042T/3: SO8  
c. TJA1042TK/3: HVSON8  
6.2 Pin description  
Table 3.  
Symbol  
TXD  
Pin description  
Pin Description  
1
transmit data input  
GND  
2[1] ground supply  
VCC  
3
4
5
5
supply voltage  
RXD  
receive data output; reads out data from the bus lines  
SPLIT  
VIO  
common-mode stabilization output; in TJA1042T version only  
supply voltage for I/O level adapter; in TJA1042T/3 and TJA1042TK/3 versions  
only  
CANL  
CANH  
STB  
6
7
8
LOW-level CAN bus line  
HIGH-level CAN bus line  
Standby mode control input  
[1] HVSON8 package die supply ground is connected to both the GND pin and the exposed center pad. The  
GND pin must be soldered to board ground. For enhanced thermal and electrical performance, it is  
recommended that the exposed center pad also be soldered to board ground.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
4 of 26  
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
7. Functional description  
The TJA1042 is a HS-CAN stand-alone transceiver with Standby mode. It combines the  
functionality of the PCA82C250, PCA82C251 and TJA1040 transceivers with improved  
EMC and ESD handling capability and quiescent current performance. Improved slope  
control and high DC handling capability on the bus pins provide additional application  
flexibility.  
The TJA1042 is available in two versions, distinguished only by the function of pin 5:  
The TJA1042T is backwards compatible with the TJA1040 when used with a 5 V  
microcontroller, and also covers existing PCA82C250 and PCA82C251 applications  
The TJA1042T/3 and TJA1042TK/3 allow for direct interfacing to microcontrollers with  
supply voltages down to 3 V  
7.1 Operating modes  
The TJA1042 supports two operating modes, Normal and Standby, which are selected via  
pin STB. See Table 4 for a description of the operating modes under normal supply  
conditions.  
Table 4.  
Mode  
Operating modes  
Pin STB  
Pin RXD  
LOW  
HIGH  
Normal  
LOW  
HIGH  
bus dominant  
bus recessive  
Standby  
wake-up request  
detected  
no wake-up request  
detected  
7.1.1 Normal mode  
A LOW level on pin STB selects Normal mode. In this mode, the transceiver can transmit  
and receive data via the bus lines CANH and CANL (see Figure 1 for the block diagram).  
The differential receiver converts the analog data on the bus lines into digital data which is  
output to pin RXD. The slopes of the output signals on the bus lines are controlled  
internally and are optimized in a way that guarantees the lowest possible EME.  
7.1.2 Standby mode  
A HIGH level on pin STB selects Standby mode. In Standby mode, the transceiver is not  
able to transmit or correctly receive data via the bus lines. The transmitter and  
Normal-mode receiver blocks are switched off to reduce supply current, and only a  
low-power differential receiver monitors the bus lines for activity. The wake-up filter on the  
output of the low-power receiver does not latch bus dominant states, but ensures that only  
bus dominant and bus recessive states that persist longer than tfltr(wake)bus are reflected on  
pin RXD.  
In Standby mode, the bus lines are biased to ground to minimize the system supply  
current. The low-power receiver is supplied by VIO, and is capable of detecting CAN bus  
activity even if VIO is the only supply voltage available. When pin RXD goes LOW to signal  
a wake-up request, a transition to Normal mode will not be triggered until STB is forced  
LOW.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
5 of 26  
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
&$1+  
&$1/  
9
2ꢉGLIꢊ  
W
W
W
W
IOWUꢉZDNHꢊEXV  
IOWUꢉZDNHꢊEXV  
IOWUꢉZDNHꢊEXV  
IOWUꢉZDNHꢊEXV  
WꢈꢋꢈW  
WꢈꢋꢈW  
IOWUꢉZDNHꢊEXV  
IOWUꢉZDNHꢊEXV  
5;'  
DDDꢇꢀꢅꢅꢈꢂꢃ  
Fig 3. Wake-up timing  
7.2 Fail-safe features  
7.2.1 TXD dominant time-out function  
A ‘TXD dominant time-out’ timer is started when pin TXD is set LOW. If the LOW state on  
pin TXD persists for longer than tto(dom)TXD, the transmitter is disabled, releasing the bus  
lines to recessive state. This function prevents a hardware and/or software application  
failure from driving the bus lines to a permanent dominant state (blocking all network  
communications). The TXD dominant time-out timer is reset when pin TXD is set to HIGH.  
The TXD dominant time-out time also defines the minimum possible bit rate of 40 kbit/s.  
7.2.2 Bus dominant time-out function  
In Standby mode a 'bus dominant time-out' timer is started when the CAN bus changes  
from recessive to dominant state. If the dominant state on the bus persists for longer than  
tto(dom)bus, the RXD pin is reset to HIGH. This function prevents a clamped dominant bus  
(due to a bus short-circuit or a failure in one of the other nodes on the network) from  
generating a permanent wake-up request. The bus dominant time-out timer is reset when  
the CAN bus changes from dominant to recessive state.  
7.2.3 Internal biasing of TXD and STB input pins  
Pins TXD and STB have internal pull-ups to VIO to ensure a safe, defined state in case  
one or both of these pins are left floating. Pull-up currents flow in these pins in all states;  
both pins should be held HIGH in Standby mode to minimize standby current.  
7.2.4 Undervoltage detection on pins VCC and VIO  
Should VCC drop below the VCC undervoltage detection level, Vuvd(VCC), the transceiver  
will switch to Standby mode. The logic state of pin STB will be ignored until VCC has  
recovered.  
Should VIO drop below the VIO undervoltage detection level, Vuvd(VIO), the transceiver will  
switch off and disengage from the bus (zero load) until VIO has recovered.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
6 of 26  
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
7.2.5 Overtemperature protection  
The output drivers are protected against overtemperature conditions. If the virtual junction  
temperature exceeds the shutdown junction temperature, Tj(sd), the output drivers will be  
disabled until the virtual junction temperature falls below Tj(sd) and TXD becomes  
recessive again. Including the TXD condition ensures that output driver oscillation due to  
temperature drift is avoided.  
7.3 SPLIT output pin and VIO supply pin  
Two versions of the TJA1042 are available, only differing in the function of a single pin.  
Pin 5 is either a SPLIT output pin or a VIO supply pin.  
7.3.1 SPLIT pin  
Using the SPLIT pin on the TJA1042T in conjunction with a split termination network (see  
Figure 4 and Figure 7) can help to stabilize the recessive voltage level on the bus. This  
will reduce EME in networks with DC leakage to ground (e.g. from deactivated nodes with  
poor bus leakage performance). In Normal mode, pin SPLIT delivers a DC output voltage  
of 0.5VCC. In Standby mode or when VCC is off, pin SPLIT is floating. When not used, the  
SPLIT pin should be left open.  
9
&&  
7-$ꢀꢁꢂꢃ7  
&$1+  
63/,7  
&$1/  
5
5
ꢄꢌꢈȍ  
ꢄꢌꢈȍ  
9
ꢈ ꢈꢌꢍꢅꢈ9  
&&  
63/,7  
LQꢈQRUPDOꢈPRGHꢎꢈ  
RWKHUZLVHꢈIORDWLQJ  
ꢀꢁꢂDDDꢀꢅꢀ  
*1'  
Fig 4. Stabilization circuitry and application for version with SPLIT pin  
7.3.2 VIO supply pin  
Pin VIO on the TTJA1042T/3 and TJA1042TK/3 should be connected to the  
microcontroller supply voltage (see Figure 8). This will adjust the signal levels of  
pins TXD, RXD and STB to the I/O levels of the microcontroller. Pin VIO also provides the  
internal supply voltage for the low-power differential receiver of the transceiver. For  
applications running in low-power mode, this allows the bus lines to be monitored for  
activity even if there is no supply voltage on pin VCC  
.
For versions of the TJA1042 without a VIO pin, the VIO input is internally connected to VCC  
This sets the signal levels of pins TXD, RXD and STB to levels compatible with 5 V  
microcontrollers.  
.
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
7 of 26  
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol  
Parameter  
voltage on pin x[1]  
Conditions  
Min  
58  
0.3  
27  
Max  
+58  
+7  
Unit  
V
Vx  
on pins CANH, CANL and SPLIT  
on any other pin  
V
V(CANH-CANL) voltage between pin CANH  
and pin CANL  
+27  
V
[2]  
Vtrt  
transient voltage  
on pins CANH, CANL  
pulse 1  
100  
-
V
V
V
V
pulse 2a  
-
75  
-
pulse 3a  
150  
pulse 3b  
-
100  
[3]  
[4]  
VESD  
electrostatic discharge voltage IEC 61000-4-2 (150 pF, 330 )  
at pins CANH and CANL  
8  
+8  
kV  
Human Body Model (HBM); 100 pF, 1.5 k  
at pins CANH and CANL  
at any other pin  
8  
4  
+8  
+4  
kV  
kV  
[5]  
[6]  
Machine Model (MM); 200 pF, 0.75 H, 10   
at any pin  
300 +300  
V
Charged Device Model (CDM); field Induced  
charge; 4 pF  
at corner pins  
at any pin  
750 +750  
500 +500  
V
V
[7]  
Tvj  
virtual junction temperature  
storage temperature  
40  
55  
+150  
+150  
C  
C  
Tstg  
[1] The device can sustain voltages up to the specified values over the product lifetime, provided applied voltages (including transients)  
never exceed these values.  
[2] According to IEC TS 62228 (2007), Section 4.2.4; parameters for standard pulses defined in ISO7637 part 2: 2004-06.  
[3] According to IEC TS 62228 (2007), Section 4.3; DIN EN 61000-4-2.  
[4] According to AEC-Q100-002.  
[5] According to AEC-Q100-003.  
[6] According to AEC-Q100-011 Rev-C1. The classification level is C4B.  
[7] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature is: Tvj = Tamb + P Rth(vj-a), where Rth(vj-a) is a  
fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient  
temperature (Tamb).  
9. Thermal characteristics  
Table 6.  
Thermal characteristics  
According to IEC 60747-1.  
Symbol  
Parameter  
Conditions  
Value  
145  
50  
Unit  
K/W  
K/W  
Rth(vj-a)  
thermal resistance from virtual junction to ambient  
SO8 package; in free air  
HVSON8 package; in free air  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
8 of 26  
 
 
 
 
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
10. Static characteristics  
Table 7.  
Static characteristics  
Tvj = 40 C to +150 C; VCC = 4.5 V to 5.5 V; VIO = 2.8 V to 5.5 V[1]; RL = 60 unless specified otherwise; All voltages are  
defined with respect to ground; Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply; pin VCC  
VCC  
supply voltage  
4.5  
3.5  
-
-
5.5  
4.5  
V
V
Vuvd(VCC)  
undervoltage detection  
voltage on pin VCC  
ICC  
supply current  
Standby mode  
[3]  
TJA1042T; includes IIO; VTXD = VIO  
TJA1042T/3 or TJA1042TK/3  
Normal mode  
-
-
10  
-
15  
5
A  
A  
[3]  
recessive; VTXD = VIO  
2.5  
20  
5
10  
mA  
mA  
mA  
dominant; VTXD = 0 V  
45  
80  
70  
dominant; VTXD = 0 V;  
2.5  
110  
short circuit on bus lines;  
3 V VCANH = VCANL) +18 V  
[1]  
I/O level adapter supply; pin VIO  
VIO  
supply voltage on pin VIO  
2.8  
1.3  
-
5.5  
2.7  
V
V
Vuvd(VIO)  
undervoltage detection  
voltage on pin VIO  
2.0  
[3]  
IIO  
supply current on pin VIO  
Standby mode; VTXD = VIO  
5
-
14  
A  
Normal mode  
[3]  
recessive; VTXD = VIO  
15  
-
80  
200  
A  
A  
dominant; VTXD = 0 V  
350  
1000  
Standby mode control input; pin STB  
[4]  
[3]  
[3]  
VIH  
HIGH-level input voltage  
0.7VIO  
-
VIO  
+
V
0.3  
[3]  
VIL  
IIH  
IIL  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
0.3  
1  
-
-
-
0.3VIO  
+1  
V
[3]  
VSTB = VIO  
A  
A  
VSTB = 0 V  
15  
1  
CAN transmit data input; pin TXD  
[4]  
[3]  
[3]  
VIH  
HIGH-level input voltage  
0.7VIO  
-
VIO  
0.3  
+
V
[3]  
VIL  
IIH  
IIL  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
input capacitance  
0.3  
5  
-
0.3VIO  
+5  
V
[3]  
VTXD = VIO  
-
A  
A  
pF  
VTXD = 0 V  
260  
-
150  
30  
10  
[5]  
[3]  
Ci  
5
CAN receive data output; pin RXD  
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
VRXD = VIO 0.4 V  
8  
3  
1  
mA  
mA  
VRXD = 0.4 V; bus dominant  
2
5
12  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
9 of 26  
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
Table 7.  
Static characteristics …continued  
Tvj = 40 C to +150 C; VCC = 4.5 V to 5.5 V; VIO = 2.8 V to 5.5 V[1]; RL = 60 unless specified otherwise; All voltages are  
defined with respect to ground; Positive currents flow into the IC.[2]  
Symbol  
Bus lines; pins CANH and CANL  
VO(dom) dominant output voltage  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VTXD = 0 V; t < tto(dom)TXD  
pin CANH; RL = 50 to 65   
pin CANL; RL = 50 to 65   
2.75  
0.5  
3.5  
1.5  
-
4.5  
V
2.25  
+400  
V
Vdom(TX)sym transmitter dominant voltage Vdom(TX)sym = VCC VCANH VCANL  
400  
mV  
symmetry  
[5]  
[6]  
VTXsym  
transmitter voltage symmetry VTXsym = VCANH + VCANL  
fTXD = 250 kHz, 1 MHz and 2.5 MHz;  
SPLIT = 4.7 nF; VCC = 4.75 V to 5.25 V  
;
0.9VCC  
-
1.1VCC  
V
C
VO(dif)  
differential output voltage  
dominant: Normal mode; VTXD = 0 V;  
t < tto(dom)TXD; VCC = 4.75 V to 5.25 V  
RL = 45 to 65   
RL = 45 to 70   
RL = 2240   
1.5  
1.5  
1.5  
-
-
-
3
V
V
V
3.3  
5
recessive; no load  
[3]  
Normal mode: VTXD = VIO  
50  
0.2  
2
-
+50  
+0.2  
3
mV  
V
Standby mode  
-
VO(rec)  
recessive output voltage  
Normal mode; VTXD = VIO[3]; no load  
0.5VCC  
-
V
Standby mode; no load  
0.1  
+0.1  
V
Vth(RX)dif  
differential receiver threshold 30 V VCANL +30 V;  
voltage  
30 V VCANH +30 V  
Normal mode  
0.5  
0.4  
0.7  
0.7  
0.9  
V
V
[7]  
Standby mode  
1.15  
Vrec(RX)  
receiver recessive voltage  
30 V VCANL +30 V;  
30 V VCANH +30 V  
Normal mode  
Standby mode  
4  
4  
-
-
0.5  
0.4  
V
V
Vdom(RX)  
receiver dominant voltage  
30 V VCANL +30 V;  
30 V VCANH +30 V  
Normal mode  
Standby mode  
0.9  
1.15  
50  
-
9.0  
9.0  
200  
V
-
V
Vhys(RX)dif differential receiver hysteresis 30 V VCANL +30 V;  
voltage 30 V VCANH +30 V  
120  
mV  
IO(sc)dom  
dominant short-circuit output VTXD = 0 V; t < tto(dom)TXD; VCC = 5 V  
current  
pin CANH; VCANH = 15 V to +40 V  
100  
40  
70  
70  
-
40  
100  
+5  
mA  
mA  
mA  
pin CANL; VCANL = 15 V to +40 V  
[3]  
IO(sc)rec  
IL  
recessive short-circuit output Normal mode; VTXD = VIO  
5  
current  
VCANH = VCANL = 27 V to +32 V  
leakage current  
VCC = VIO = 0 V or VCC = VIO = shorted  
to ground via 47 k;  
VCANH = VCANL = 5 V  
5  
-
+5  
28  
A  
k  
[5]  
Ri  
input resistance  
2 V VCANL +7 V;  
2 V VCANH +7 V  
9
15  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
10 of 26  
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
Table 7.  
Static characteristics …continued  
Tvj = 40 C to +150 C; VCC = 4.5 V to 5.5 V; VIO = 2.8 V to 5.5 V[1]; RL = 60 unless specified otherwise; All voltages are  
defined with respect to ground; Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[5]  
[5]  
[5]  
[5]  
Ri  
input resistance deviation  
0 V VCANL +5 V;  
0 V VCANH +5 V  
1  
-
+1  
%
Ri(dif)  
Ci(cm)  
Ci(dif)  
differential input resistance  
2 V VCANL +7 V;  
2 V VCANH +7 V  
19  
-
30  
-
52  
20  
10  
k  
pF  
pF  
common-mode input  
capacitance  
differential input capacitance  
-
-
Common mode stabilization output; pin SPLIT; only for TJA1042T  
VO  
output voltage  
Normal mode  
SPLIT = 500 A to +500 A  
0.3VCC 0.5VCC 0.7VCC  
0.45VCC 0.5VCC 0.55VCC  
V
I
Normal mode; RL = 1 M  
V
IL  
leakage current  
Standby mode  
5  
-
+5  
A  
VSPLIT = 58 V to +58 V  
Temperature detection  
Tj(sd) shutdown junction  
temperature  
[5]  
-
190  
-
C  
[1] Only TJA1042T/3 and TJA1042TK/3 have a VIO pin. With TJA1042T, the VIO input is internally connected to VCC  
.
[2] All parameters are guaranteed over the virtual junction temperature range by design. Factory testing uses correlated test conditions to  
cover the specified temperature and power supply voltage range.  
[3] VIO = VCC for the non-VIO product variant TJA1042T.  
[4] Maximum value assumes VCC < VIO; if VCC > VIO, the maximum value will be VCC + 0.3 V.  
[5] Not tested in production; guaranteed by design.  
[6] The test circuit used to measure the bus output voltage symmetry (which includes CSPLIT) is shown in Figure 10.  
[7] For TJA1042T/3 and TJA1042TK/3: values valid when VIO = 4.5 V to 5.5 V; when VIO = 2.8 V to 4.5 V, values valid when  
12 V VCANL +12 V, 12 V VCANH +12 V.  
11. Dynamic characteristics  
Table 8.  
Dynamic characteristics  
Tvj = 40 C to +150 C; VCC = 4.5 V to 5.5 V; VIO = 2.8 V to 5.5 V[1]; RL = 60 unless specified otherwise. All voltages are  
defined with respect to ground. Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
Transceiver timing; pins CANH, CANL, TXD and RXD; see Figure 5 and Figure 9  
td(TXD-busdom) delay time from TXD to bus dominant  
td(TXD-busrec) delay time from TXD to bus recessive  
td(busdom-RXD) delay time from bus dominant to RXD  
td(busrec-RXD) delay time from bus recessive to RXD  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
-
65  
90  
60  
65  
-
-
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
td(TXDL-RXDL) delay time from TXD LOW to RXD LOW version with SPLIT pin;  
Normal mode  
60  
220  
versions with VIO pin;  
Normal mode  
60  
-
250  
ns  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
11 of 26  
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
Table 8.  
Dynamic characteristics …continued  
Tvj = 40 C to +150 C; VCC = 4.5 V to 5.5 V; VIO = 2.8 V to 5.5 V[1]; RL = 60 unless specified otherwise. All voltages are  
defined with respect to ground. Positive currents flow into the IC.[2]  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
td(TXDH-RXDH) delay time from TXD HIGH to RXD HIGH version with SPLIT pin;  
Normal mode  
60  
-
220  
ns  
versions with VIO pin;  
Normal mode  
60  
-
250  
ns  
[3]  
[3]  
[3]  
[3]  
tbit(bus)  
tbit(RXD)  
trec  
transmitted recessive bit width  
bit time on pin RXD  
tbit(TXD) = 500 ns  
tbit(TXD) = 200 ns  
tbit(TXD) = 500 ns  
tbit(TXD) = 200 ns  
tbit(TXD) = 500 ns  
tbit(TXD) = 200 ns  
VTXD = 0 V; Normal mode  
Standby mode  
435  
155  
400  
120  
65  
45  
0.3  
-
530  
210  
550  
220  
+40  
+15  
5
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
s  
-
-
-
receiver timing symmetry  
-
-
[4]  
tto(dom)TXD  
tto(dom)bus  
tfltr(wake)bus  
TXD dominant time-out time  
bus dominant time-out time  
bus wake-up filter time  
2
2
1
0.3  
5
version with SPLIT pin  
Standby mode  
0.5  
3
versions with VIO pin  
Standby mode  
0.5  
7
1.5  
25  
5
s  
s  
td(stb-norm)  
standby to normal mode delay time  
47  
[1] Only TJA1042T/3 and TJA1042TK/3 have a VIO pin. With TJA1042T, the VIO input is internally connected to VCC  
.
[2] All parameters are guaranteed over the virtual junction temperature range by design. Factory testing uses correlated test conditions to  
cover the specified temperature and power supply voltage range.  
[3] See Figure 6.  
[4] Minimum value of 0.8 ms required according to SAE J2284; 0.3 ms is allowed according to ISO11898-2:2016 for legacy devices.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
12 of 26  
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
+,*+  
ꢇꢌꢈꢑ  
7;'  
ꢂꢌꢈꢑ  
/2:  
&$1+  
&$1/  
GRPLQDQW  
ꢌꢍꢐꢈ9  
9
2ꢉGLIꢊ  
ꢌꢍꢅꢈ9  
UHFHVVLYH  
+,*+  
ꢇꢌꢈꢑ  
5;'  
W
ꢂꢌꢈꢑ  
/2:  
W
Gꢉ7;'ꢏEXVGRPꢊ  
Gꢉ7;'ꢏEXVUHFꢊ  
W
W
GꢉEXVGRPꢏ5;'ꢊ  
GꢉEXVUHFꢏ5;'ꢊ  
W
W
Gꢉ7;'+ꢏ5;'+ꢊ  
Gꢉ7;'/ꢏ5;'/ꢊ  
DDDꢇꢀꢅꢈꢉꢈꢊ  
Fig 5. CAN transceiver timing diagram  
ꢇꢌꢈꢑ  
7;'  
ꢂꢌꢈꢑ  
ꢂꢌꢈꢑ  
ꢅꢈ[ꢈW  
ELWꢉ7;'ꢊ  
W
ELWꢉ7;'ꢊ  
ꢌꢍꢐꢈ9  
9
2ꢉGLIꢊ  
ꢌꢍꢅꢈ9  
W
ELWꢉEXVꢊ  
ꢇꢌꢈꢑ  
5;'  
ꢂꢌꢈꢑ  
W
ELWꢉ5;'ꢊ  
DDDꢇꢀꢅꢁꢊꢈꢉ  
Fig 6. CAN FD timing definitions according to ISO 11898-2:2016  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
13 of 26  
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
12. Application information  
12.1 Application diagrams  
ꢅꢈ9  
%$7  
ꢉꢀꢊ  
9
&&  
9
''  
&$1+  
3[[  
3\\  
&$1+  
67%  
7;'  
5;'  
ꢉꢁꢊ  
0,&52ꢏ  
&21752//(5  
63/,7  
7-$ꢀꢁꢂꢃ7  
7;ꢌ  
5;ꢌ  
&$1/  
&$1/  
*1'  
*1'  
ꢀꢁꢂDDDꢀꢅꢅ  
(1) Optional, depends on regulator.  
(2) Optional common mode stabilization by a voltage source of VCC/2 at pin SPLIT.  
Fig 7. Typical application with TJA1042T and a 5 V microcontroller.  
%$7  
ꢂꢈ9  
ꢅꢈ9  
ꢉꢀꢊ  
RQꢒRIIꢈFRQWURO  
ꢉꢀꢊ  
9
9
,2  
&&  
9
''  
&$1+  
&$1/  
3[[  
3\\  
&$1+  
&$1/  
67%  
7-$ꢀꢁꢂꢃ7ꢄꢅ  
7-$ꢀꢁꢂꢃ7.ꢄꢅ  
0,&52ꢏ  
&21752//(5  
7;'  
5;'  
7;ꢌ  
5;ꢌ  
*1'  
*1'  
ꢀꢁꢂDDDꢀꢅꢁ  
(1) Optional, depends on regulator.  
Fig 8. Typical application with TJA1042T/3 or TJA1042TK/3 and a 3 V microcontroller.  
12.2 Application hints  
Further information on the application of the TJA1042 can be found in NXP application  
hints AH1014 ‘Application Hints - Standalone high speed CAN transceiver  
TJA1042/TJA1043/TJA1048/TJA1051’.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
14 of 26  
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
13. Test information  
+5 V  
47 μF  
100 nF  
(1)  
V
V
CC  
IO  
TXD  
CANH  
TJA1042  
R
L
100 pF  
SPLIT  
CANL  
RXD  
GND  
STB  
15 pF  
015aaa024  
(1) For versions with a VIO pin (TJA1042T/3 and TJA1042TK/3), the VIO pin is connected to pin VCC  
.
Fig 9. Timing test circuit for CAN transceiver  
9
9
,2  
&&  
7;'  
5;'  
&$1+  
Iꢈ ꢈꢁꢅꢌꢈN+]ꢓ  
ꢀꢈ0+]ꢈRU  
ꢁꢍꢅꢈ0+]  
ꢂꢌꢈȍ  
ꢂꢌꢈȍ  
7-$ꢀꢁꢂꢃ  
&
63/,7  
ꢃꢍꢇꢈQ)  
&$1/  
*1'  
DDDꢇꢀꢅꢅꢉꢃꢈ  
Fig 10. Test circuit for measuring transceiver driver symmetry  
13.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 Rev-G - Failure mechanism based stress test qualification for  
integrated circuits, and is suitable for use in automotive applications.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
15 of 26  
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
14. Package outline  
62ꢊꢋꢆSODVWLFꢆVPDOOꢆRXWOLQHꢆSDFNDJHꢌꢆꢊꢆOHDGVꢌꢆERG\ꢆZLGWKꢆꢅꢇꢍꢆPPꢆ  
627ꢍꢎꢏꢀꢆ  
'ꢈ  
(ꢈ  
$ꢈ  
;ꢈ  
Fꢈ  
\ꢈ  
+ꢈ  
(ꢈ  
Yꢈ 0ꢈ  
$ꢈ  
=ꢈ  
ꢅꢈ  
ꢆꢈ  
4ꢈ  
$ꢈ  
ꢁꢈ  
$ꢈ  
ꢉ$ꢈꢈꢊꢈ  
ꢂꢈ  
$ꢈ  
ꢀꢈ  
SLQꢈꢀꢈLQGH[ꢈ  
șꢈ  
/ꢈ  
Sꢈ  
/ꢈ  
ꢀꢈ  
ꢃꢈ  
ꢌꢈ  
Hꢈ  
GHWDLOꢈ;ꢈ  
Zꢈ 0ꢈ  
Eꢈ  
Sꢈ  
ꢁꢍꢅꢈ  
ꢅꢈPPꢈ  
VFDOHꢈ  
',0(16,216ꢆꢈLQFKꢆGLPHQVLRQVꢆDUHꢆGHULYHGꢆIURPꢆWKHꢆRULJLQDOꢆPPꢆGLPHQVLRQVꢉꢆ  
$ꢆ  
ꢈꢀꢉꢆ  
ꢈꢀꢉꢆ  
ꢈꢃꢉꢆ  
81,7ꢆ  
$ꢆ  
ꢀꢆ  
$ꢆ  
ꢃꢆ  
$ꢆ  
ꢅꢆ  
Eꢆ  
Sꢆ  
Fꢆ  
'ꢆ  
(ꢆ  
Hꢆ  
+ꢆ  
(ꢆ  
/ꢆ  
/ꢆ  
Sꢆ  
4ꢆ  
Yꢆ  
Zꢆ  
\ꢆ  
ꢌꢍꢀꢈ  
=ꢆ  
șꢈ  
PD[ꢇꢆ  
ꢌꢍꢁꢅꢈ ꢀꢍꢃꢅꢈ  
ꢌꢍꢀꢌꢈ ꢀꢍꢁꢅꢈ  
ꢌꢍꢃꢐꢈ ꢌꢍꢁꢅꢈ  
ꢌꢍꢂꢄꢈ ꢌꢍꢀꢐꢈ  
ꢅꢍꢌꢈ  
ꢃꢍꢆꢈ  
ꢃꢍꢌꢈ  
ꢂꢍꢆꢈ  
ꢄꢍꢁꢈ  
ꢅꢍꢆꢈ  
ꢀꢍꢌꢈ  
ꢌꢍꢃꢈ  
ꢌꢍꢇꢈ  
ꢌꢍꢄꢈ  
ꢌꢍꢇꢈ  
ꢌꢍꢂꢈ  
PPꢈ  
ꢀꢍꢁꢇꢈ  
ꢌꢍꢌꢅꢈ  
ꢀꢍꢌꢅꢈ  
ꢌꢍꢌꢃꢀꢈ  
ꢌꢍꢁꢅꢈ ꢌꢍꢁꢅꢈ  
ꢀꢍꢇꢅꢈ  
ꢌꢍꢁꢅꢈ  
ꢌꢍꢌꢀꢈ  
Rꢈ  
ꢆꢈ  
Rꢈ  
ꢌꢈ  
ꢌꢍꢌꢀꢌꢈ ꢌꢍꢌꢅꢇꢈ  
ꢌꢍꢌꢌꢃꢈ ꢌꢍꢌꢃꢐꢈ  
ꢌꢍꢌꢀꢐꢈ ꢌꢍꢌꢀꢌꢌꢈ ꢌꢍꢁꢌꢈ ꢌꢍꢀꢄꢈ  
ꢌꢍꢌꢀꢃꢈ ꢌꢍꢌꢌꢇꢅꢈ ꢌꢍꢀꢐꢈ ꢌꢍꢀꢅꢈ  
ꢌꢍꢁꢃꢃꢈ  
ꢌꢍꢁꢁꢆꢈ  
ꢌꢍꢌꢂꢐꢈ ꢌꢍꢌꢁꢆꢈ  
ꢌꢍꢌꢀꢄꢈ ꢌꢍꢌꢁꢃꢈ  
ꢌꢍꢌꢁꢆꢈ  
ꢌꢍꢌꢀꢁꢈ  
LQFKHVꢈ ꢌꢍꢌꢄꢐꢈ  
ꢌꢍꢌꢀꢈ ꢌꢍꢌꢀꢈ ꢌꢍꢌꢌꢃꢈ  
1RWHVꢆ  
ꢀꢍꢈ3ODVWLFꢈRUꢈPHWDOꢈSURWUXVLRQVꢈRIꢈꢌꢍꢀꢅꢈPPꢈꢉꢌꢍꢌꢌꢄꢈLQFKꢊꢈPD[LPXPꢈSHUꢈVLGHꢈDUHꢈQRWꢈLQFOXGHGꢍꢈ  
ꢁꢍꢈ3ODVWLFꢈRUꢈPHWDOꢈSURWUXVLRQVꢈRIꢈꢌꢍꢁꢅꢈPPꢈꢉꢌꢍꢌꢀꢈLQFKꢊꢈPD[LPXPꢈSHUꢈVLGHꢈDUHꢈQRWꢈLQFOXGHGꢍꢈꢈ  
ꢆ5()(5(1&(6ꢆ  
ꢆ-('(&ꢆ ꢆ-(,7$ꢆ  
ꢈ06ꢏꢌꢀꢁꢈ  
287/,1(ꢆ  
9(56,21ꢆ  
(8523($1ꢆ  
352-(&7,21ꢆ  
,668(ꢆ'$7(ꢆ  
ꢆ,(&ꢆ  
ꢐꢐꢏꢀꢁꢏꢁꢇꢈ  
ꢌꢂꢏꢌꢁꢏꢀꢆꢈ  
ꢈ627ꢐꢄꢏꢀꢈ  
ꢌꢇꢄ(ꢌꢂꢈ  
Fig 11. Package outline SOT96-1 (SO8)  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
16 of 26  
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
+9621ꢊꢋꢆSODVWLFꢆWKHUPDOꢆHQKDQFHGꢆYHU\ꢆWKLQꢆVPDOOꢆRXWOLQHꢆSDFNDJHꢌꢆQRꢆOHDGVꢌꢆ  
ꢊꢆWHUPLQDOVꢌꢆERG\ꢆꢅꢆ[ꢆꢅꢆ[ꢆꢁꢇꢊꢐꢆPP  
627ꢑꢊꢃꢏꢀ  
;
%
$
(
'
$
$
F
GHWDLOꢈ;  
WHUPLQDOꢈꢀꢈ  
LQGH[ꢈDUHD  
H
&
WHUPLQDOꢈꢀꢈ  
LQGH[ꢈDUHD  
%
$
Y
Z
&
&
H
E
\
\
&
/
.
(
K
'
K
ꢁꢈPP  
/
VFDOH  
'LPHQVLRQV  
ꢉꢀꢊ  
8QLW  
$
$
E
F
'
'
K
(
(
H
H
.
Y
Z
\
\
K
PD[ꢈ ꢀꢍꢌꢌꢈ ꢌꢍꢌꢅꢈ ꢌꢍꢂꢅꢈ  
PP QRPꢈ ꢌꢍꢆꢅꢈ ꢌꢍꢌꢂꢈ ꢌꢍꢂꢌꢈ ꢌꢍꢁ ꢂꢍꢌꢌꢈ ꢁꢍꢃꢌꢈ ꢂꢍꢌꢌꢈ ꢀꢍꢄꢌꢈ ꢌꢍꢄꢅ ꢀꢍꢐꢅ ꢌꢍꢂꢌꢈ ꢌꢍꢃꢌꢈ ꢌꢍꢀ ꢌꢍꢌꢅ ꢌꢍꢌꢅ ꢌꢍꢀ  
PLQ ꢌꢍꢆꢌ ꢌꢍꢌꢌ ꢌꢍꢁꢅ ꢁꢍꢐꢌ ꢁꢍꢂꢅ ꢁꢍꢐꢌ ꢀꢍꢅꢅ ꢌꢍꢁꢅ ꢌꢍꢂꢅ  
ꢂꢍꢀꢌꢈ ꢁꢍꢃꢅꢈ ꢂꢍꢀꢌꢈ ꢀꢍꢄꢅꢈ  
ꢌꢍꢂꢅꢈ ꢌꢍꢃꢅꢈ  
1RWHꢈ  
ꢀꢍꢈ3ODVWLFꢈRUꢈPHWDOꢈSURWUXVLRQVꢈRIꢈꢌꢍꢌꢇꢅꢈPD[LPXPꢈSHUꢈVLGHꢈDUHꢈQRWꢈLQFOXGHGꢍ  
VRWꢉꢃꢅꢇꢁBSR  
5HIHUHQFHV  
2XWOLQHꢈ  
YHUVLRQ  
(XURSHDQꢈ  
SURMHFWLRQ  
,VVXHꢈGDWH  
,(&  
ꢏꢈꢏꢈꢏ  
-('(&  
-(,7$  
ꢏꢈꢏꢈꢏ  
ꢌꢐꢏꢌꢆꢏꢁꢅꢈ  
ꢌꢐꢏꢌꢆꢏꢁꢆ  
627ꢇꢆꢁꢏꢀ  
02ꢏꢁꢁꢐ  
Fig 12. Package outline SOT782-1 (HVSON8)  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
17 of 26  
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling ensure that the appropriate precautions are taken as  
described in JESD625-A or equivalent standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
18 of 26  
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 13) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 9 and 10  
Table 9.  
SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 10. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 13.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
19 of 26  
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 13. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Soldering of HVSON packages  
Section 16 contains a brief introduction to the techniques most commonly used to solder  
Surface Mounted Devices (SMD). A more detailed discussion on soldering HVSON  
leadless package ICs can found in the following application notes:  
AN10365 ‘Surface mount reflow soldering description”  
AN10366 “HVQFN application information”  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
20 of 26  
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
18. Appendix: ISO 11898-2:2016 parameter cross-reference list  
Table 11. ISO 11898-2:2016 to NXP data sheet parameter conversion  
ISO 11898-2:2016  
NXP data sheet  
Notation Symbol Parameter  
Parameter  
HS-PMA dominant output characteristics  
Single ended voltage on CAN_H  
Single ended voltage on CAN_L  
Differential voltage on normal bus load  
Differential voltage on effective resistance during arbitration  
Optional: Differential voltage on extended bus load range  
HS-PMA driver symmetry  
VCAN_H  
VCAN_L  
VDiff  
VO(dom)  
dominant output voltage  
differential output voltage  
VO(dif)  
Driver symmetry  
VSYM  
VTXsym  
transmitter voltage symmetry  
Maximum HS-PMA driver output current  
Absolute current on CAN_H  
ICAN_H  
ICAN_L  
IO(sc)dom  
dominant short-circuit output  
current  
Absolute current on CAN_L  
HS-PMA recessive output characteristics, bus biasing active/inactive  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
VCAN_H  
VCAN_L  
VDiff  
VO(rec)  
recessive output voltage  
differential output voltage  
TXD dominant time-out time  
VO(dif)  
Optional HS-PMA transmit dominant timeout  
Transmit dominant timeout, long  
tdom  
tto(dom)TXD  
Transmit dominant timeout, short  
HS-PMA static receiver input characteristics, bus biasing active/inactive  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
VDiff  
Vth(RX)dif  
differential receiver threshold  
voltage  
Vrec(RX)  
receiver recessive voltage  
receiver dominant voltage  
Vdom(RX)  
HS-PMA receiver input resistance (matching)  
Differential internal resistance  
RDiff  
Ri(dif)  
Ri  
differential input resistance  
input resistance  
Single ended internal resistance  
RCAN_H  
RCAN_L  
Matching of internal resistance  
HS-PMA implementation loop delay requirement  
Loop delay  
MR  
Ri  
input resistance deviation  
tLoop  
td(TXDH-RXDH) delay time from TXD HIGH to  
RXD HIGH  
td(TXDL-RXDL)  
delay time from TXD LOW to RXD  
LOW  
Optional HS-PMA implementation data signal timing requirements for use with bit rates above 1 Mbit/s up to  
2 Mbit/s and above 2 Mbit/s up to 5 Mbit/s  
Transmitted recessive bit width @ 2 Mbit/s / @ 5 Mbit/s,  
intended  
tBit(Bus)  
tbit(bus)  
transmitted recessive bit width  
Received recessive bit width @ 2 Mbit/s / @ 5 Mbit/s  
Receiver timing symmetry @ 2 Mbit/s / @ 5 Mbit/s  
tBit(RXD)  
tbit(RXD)  
bit time on pin RXD  
tRec  
trec  
receiver timing symmetry  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
21 of 26  
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
Table 11. ISO 11898-2:2016 to NXP data sheet parameter conversion …continued  
ISO 11898-2:2016  
NXP data sheet  
Notation Symbol Parameter  
Parameter  
HS-PMA maximum ratings of VCAN_H, VCAN_L and VDiff  
Maximum rating VDiff  
VDiff  
V(CANH-CANL) voltage between pin CANH and  
pin CANL  
General maximum rating VCAN_H and VCAN_L  
VCAN_H  
VCAN_L  
Vx  
voltage on pin x  
Optional: Extended maximum rating VCAN_H and VCAN_L  
HS-PMA maximum leakage currents on CAN_H and CAN_L, unpowered  
Leakage current on CAN_H, CAN_L  
ICAN_H  
ICAN_L  
IL  
leakage current  
HS-PMA bus biasing control timings  
CAN activity filter time, long  
CAN activity filter time, short  
Wake-up timeout, short  
[1]  
tFilter  
twake(busdom)  
bus dominant wake-up time  
bus recessive wake-up time  
bus wake-up time-out time  
[1]  
twake(busrec)  
tto(wake)bus  
tWake  
Wake-up timeout, long  
Timeout for bus inactivity  
Bus Bias reaction time  
tSilence  
tBias  
tto(silence)  
bus silence time-out time  
td(busact-bias)  
delay time from bus active to bias  
[1] tfltr(wake)bus - bus wake-up filter time, in devices with basic wake-up functionality  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
22 of 26  
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
19. Revision history  
Table 12. Revision history  
Document ID  
TJA1042 v.10  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
20171124  
Product data sheet  
-
TJA1042 v.9  
Updated to comply with ISO 11898-2:2016 and SAE J22884-1 through SAE J2284-5 specifications:  
Section 1: text amended (2nd last paragraph)  
Section 2.1: text amended (1st entry)  
Table 7: values changed and/or measurements conditions amended/added for parameters ICC  
,
V
TXsym, VO(dif), Vrec(RX), Vdom(RX), IO(sc)dom, Ri, Ri and Ri(dif)  
Table 8: Table note 4 added  
Figure 5: thresholds clarified  
Figure 6: title changed  
Table 7: Table note 7 revised  
Figure 7, Figure 8, Figure 10: amended  
TJA1042 v.9  
TJA1042 v.8  
TJA1042 v.7  
TJA1042 v.6  
TJA1042 v.5  
TJA1042 v.4  
TJA1042 v.3  
TJA1042 v.2  
TJA1042 v.1  
20160523  
20150115  
20120508  
20110323  
20110118  
20091006  
20090825  
20090708  
20090309  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
-
-
-
-
TJA1042 v.8  
TJA1042 v.7  
TJA1042 v.6  
TJA1042 v.5  
TJA1042 v.4  
TJA1042 v.3  
TJA1042 v.2  
TJA1042 v.1  
-
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
23 of 26  
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use in automotive applications — This NXP  
20.2 Definitions  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
20.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
24 of 26  
 
 
 
 
 
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
20.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
21. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TJA1042  
All information provided in this document is subject to legal disclaimers.  
© NXP N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 10 — 24 November 2017  
25 of 26  
 
 
TJA1042  
NXP Semiconductors  
High-speed CAN transceiver with Standby mode  
22. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
20  
Legal information . . . . . . . . . . . . . . . . . . . . . . 24  
20.1  
20.2  
20.3  
20.4  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 24  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Predictable and fail-safe behavior . . . . . . . . . . 2  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.3  
21  
22  
Contact information . . . . . . . . . . . . . . . . . . . . 25  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3
4
5
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . 5  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . . 6  
TXD dominant time-out function. . . . . . . . . . . . 6  
Bus dominant time-out function . . . . . . . . . . . . 6  
Internal biasing of TXD and STB input pins . . . 6  
Undervoltage detection on pins VCC and VIO . . 6  
Overtemperature protection . . . . . . . . . . . . . . . 7  
SPLIT output pin and VIO supply pin . . . . . . . . 7  
SPLIT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
VIO supply pin . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.1.1  
7.1.2  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
7.3.1  
7.3.2  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal characteristics . . . . . . . . . . . . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
Dynamic characteristics . . . . . . . . . . . . . . . . . 11  
9
10  
11  
12  
12.1  
12.2  
Application information. . . . . . . . . . . . . . . . . . 14  
Application diagrams . . . . . . . . . . . . . . . . . . . 14  
Application hints . . . . . . . . . . . . . . . . . . . . . . . 14  
13  
13.1  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 15  
Quality information . . . . . . . . . . . . . . . . . . . . . 15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16  
Handling information. . . . . . . . . . . . . . . . . . . . 18  
15  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 18  
Introduction to soldering . . . . . . . . . . . . . . . . . 18  
Wave and reflow soldering . . . . . . . . . . . . . . . 18  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 18  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 19  
16.1  
16.2  
16.3  
16.4  
17  
18  
Soldering of HVSON packages. . . . . . . . . . . . 20  
Appendix: ISO 11898-2:2016 parameter  
cross-reference list . . . . . . . . . . . . . . . . . . . . . 21  
19  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 23  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP N.V. 2017.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 24 November 2017  
Document identifier: TJA1042  
 

相关型号:

TJA1043

High-speed CAN transceiver
NXP

TJA1043T

High-speed CAN transceiver
NXP

TJA1043T,112

TJA1043 - High-speed CAN transceiver SOIC 14-Pin
NXP

TJA1043T,118

TJA1043 - High-speed CAN transceiver SOIC 14-Pin
NXP

TJA1043T/1U

TJA1043 - High-speed CAN transceiver SOIC 14-Pin
NXP

TJA1043TKY

TJA1043 - High-speed CAN transceiver SON 14-Pin
NXP

TJA1044

High-speed CAN transceiver with Standby mode
NXP

TJA1044GT

High-speed CAN transceiver with Standby mode
NXP

TJA1044GT3

High-speed CAN transceiver with Standby mode
NXP

TJA1044GTJ

TJA1044 - High-speed CAN transceiver with Standby mode SOIC 8-Pin
NXP

TJA1044GTK

High-speed CAN transceiver with Standby mode
NXP

TJA1044GTK/3

Interface Circuit
NXP