TJA1102A [NXP]

100BASE-T1 dual/single PHY for automotive Ethernet;
TJA1102A
型号: TJA1102A
厂家: NXP    NXP
描述:

100BASE-T1 dual/single PHY for automotive Ethernet

文件: 总67页 (文件大小:695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Rev. 1 — 7 June 2021  
Product data sheet  
1 General description  
The TJA1102A is a 100BASE-T1-compliant dual-port Ethernet PHY optimized for  
automotive use cases such as gateways, IP camera links, radar modules, driver  
assistance systems and back-bone networks. The device provides 100 Mbit/s transmit  
and receive capability over two unshielded twisted-pair cables, supporting a cable length  
of up to at least 15 m. The TJA1102A has been designed for automotive robustness,  
while minimizing power consumption and system costs. For added flexibility, a single  
PHY version is available (TJA1102AS) in which one of the PHYs is disabled. Unless  
otherwise specified, all references in this document to TJA1102A encompass both the  
dual- and single-PHY variants.  
The TJA1102A supports OPEN Alliance TC-10-compliant sleep and wake-up request  
forwarding, with an always-on power domain connected directly to the battery supply  
without the need for a dedicated voltage regulator.  
2 Features and benefits  
2.1 General  
Dual-port 100BASE-T1 PHY; single-port operation possible  
Single-port variant available  
MII- and RMII-compliant interfaces  
HVQFN 56-pin package (8 × 8 mm)  
2.2 Optimized for automotive use cases  
Transmitter optimized for capacitive coupling to unshielded twisted-pair cable  
Adaptive receive equalizer optimized for automotive cable length of up to at least 15 m  
Enhanced integrated PAM-3 pulse shaping for low RF emissions  
EMC-optimized output driver strength for MII and RMII  
MDI pins meet class IV conducted emission limit as per OPEN Alliance EMC  
Specification 2.0  
MDI pins protected against ESD to ±6 kV HBM and ±6 kV IEC61000-4-2  
MDI pins protected against transients in automotive environment  
MDI pins do not need external filtering or ESD protection  
Automotive-grade temperature range from -40 °C to +125 °C  
Automotive product qualification in accordance with AEC-Q100  
Host-configurable MDI polarity  
Automated polarity detection and correction  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
2.3 Low-power mode  
OPEN Alliance TC-10-compliant sleep and wake-up forwarding  
Robust remote wake-up detection via bus lines  
Wake-up forwarding at PHY level (supporting global system wake-up)  
Inhibit output for voltage regulator control  
Dedicated PHY enable/disable input pin to minimize power consumption  
Local wake-up pin  
Wake-up via SMI-access  
2.4 Diagnosis  
Signal Quality Indicator for real-time monitoring of link stability and transmitted data  
quality  
Diagnosis of cable errors (shorts and opens)  
Gap-free supply undervoltage detection with fail-silent behavior  
Internal, external and remote loopback modes  
2.5 Miscellaneous  
Internal reverse MII mode for repeater operation  
On-chip regulators to provide 3.3 V single-supply operation  
Supports optional 1.8 V external supply for digital core  
On-chip termination resistors for the differential cable pair  
Jumbo frame support up to 16 kB  
3 Ordering information  
Table 1.ꢀOrdering information  
Type number  
Package  
Name  
Description  
Version  
TJA1102AHN[1]  
TJA1102AHN/S[2]  
HVQFN56  
plastic thermal enhanced very thin quad flat package; no leads; 56  
terminals; body 8 × 8 × 0.85 mm  
SOT684-13  
[1] Dual PHY.  
[2] Single PHY.  
4 Block diagram  
A block diagram of the TJA1102A is shown in Figure 1. The 100BASE-T1 sections  
contain the functional blocks specified in the 100BASE-T1 standard that make up the  
Physical Coding Sublayer (PCS) and the Physical Medium Attachment (PMA) layer for  
both the transmit and receive signal paths. The MII/RMII interface (including the Serial  
Management Interface (SMI)) conforms to IEEE 802.3 clause 22.  
Additional blocks are defined for mode control, register configuration, interrupt control,  
system configuration, reset control, local wake-up, remote wake-up, undervoltage  
detection and configuration control. A number of power-supply-related functional blocks  
are defined: an internal 1.8 V regulator for the digital core, a Very Low Power (VLP)  
supply for Sleep mode, the reset circuit, supply monitoring and inhibit control.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
2 / 67  
 
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
The clock signals needed for the operation of the PHY are generated in the PLL block,  
derived from an external crystal or an oscillator input signal.  
Pin strapping allows a number of default PHY settings (e.g. Master or Slave  
configuration) to be hardware-configured at power-up.  
P0_V  
P0_V  
DDA(TX)  
PMA  
TRANSMITTER  
P0_TXER  
P0_TXEN  
PCS-TX  
DDA(TX)  
100BASE-T1  
P0_TXD[3:0]  
P0_TXC  
P0_TRX_P  
P0_TRX_M  
FRONT-END/  
HYBRID  
RMII/MII  
LOGIC  
PHY0  
PHY CONTROL  
P0_RXD[3:0]  
P0_RXDV/P0_CRSDV  
P0_RXER  
PMA  
RECEIVER  
PCS-RX  
PLL  
P0_RXC/P0_REF_CLK  
V
V
DDD(1V8)  
DDD(3V3)  
ACTIVITY  
DETECT  
LDO 1V8 DIG AND  
1.8 V/3V3 UV DETECTION  
PHY MODE  
CONTROL  
SEL_1V8  
INT_N  
1V8 SELECT  
INT_N CONTROL  
SMI  
TOP MODE CONTROL  
AND REGISTERS  
V
V
V
V
DD(IO)  
DD(IO)  
DD(IO)  
DD(IO)  
UV 3V3  
DETECTION  
BASIC CONTROL  
BASIC STATUS  
MDC  
MDIO  
MODE CONTROL  
CONFIGURATION  
INTERRUPT SOURCE  
INTERRUPT MASK  
EXTENDED STATUS  
UV 3V3  
DETECTION  
V
V
DDA(3V3)  
BAT  
CONFIG[7:0]  
RST_N  
CONFIG CONTROL  
RESET CONTROL  
1V2  
VLP/RESET/  
UV VBAT  
reset  
INH  
EN  
INH  
CLK_IN_OUT  
WAKE_IN_OUT  
XI  
XO-OSC/  
CLOCK  
ACTIVITY  
DETECT  
PHY MODE  
CONTROL  
XO  
VDDD_1V8  
P1_V  
P1_V  
DDA(TX)  
P1_TXER  
P1_TXEN  
PMA  
TRANSMITTER  
PCS-TX  
DDA(TX)  
100BASE-T1  
P1_TXD[3:0]  
P1_TXC  
P1_TRX_P  
P1_TRX_M  
FRONT-END/  
HYBRID  
RMII/MII  
LOGIC  
PHY1  
PHY CONTROL  
P1_RXD[3:0]  
P1_RXDV/P1_CRSDV  
P1_RXER  
PMA  
RECEIVER  
PLL  
P1_RXC/P1_REF_CLK  
PCS-RX  
GND  
aaa-022037  
Figure 1.ꢀBlock diagram (PHY1 is disabled in TJA1102AS)  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
3 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
5 Pinning information  
5.1 TJA1102A pinning  
The pin configuration of the TJA1102A dual PHY is shown in Figure 2. Separate interface  
and supply pins are provided for each PHY block. The SMI is shared between the  
two PHYs. Since 100BASE-T1 allows for full-duplex bidirectional communication, the  
standard MII signals COL and CRS are not needed.  
terminal 1  
index area  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P0_RXD3/CONFIG5  
P0_RXD2/CONFIG6  
P0_RXD1/CONFIG7  
P0_RXD0  
P1_TXD3  
P1_TXEN  
P1_TXC  
3
4
V
DD(IO)  
5
P0_RXC/P0_REF_CLK  
P1_RXC/P1_REF_CLK  
P1_RXD0/PHYAD3  
6
V
DD(IO)  
7
P0_TXC  
P0_TXEN  
P0_TXD3  
P0_TXD2  
P0_TXD1  
P0_TXD0  
P0_TXER  
RST_N  
P1_RXD1/PHYAD2  
TJA1102A  
8
P1_RXD2/PHYAD1  
9
P1_RXD3/CONFIG3  
10  
11  
12  
13  
14  
P1_RXDV/P1_CRSDV/CONFIG2  
P1_RXER/CONFIG1/P0_TXCLK  
V
DD(IO)  
MDC  
MDIO  
aaa-039085  
Figure 2.ꢀPin configuration: TJA1102A  
Table 2.ꢀTJA102A pin description  
Symbol  
Pin Type[1] Description  
P0_RXD3  
CONFIG5  
P0_RXD2  
CONFIG6  
1
1
2
2
O
I
P0 MII mode: receive data output, bit 3 of RXD[3:0] nibble  
pin strapping configuration input 5  
O
I
P0 MII mode: receive data output, bit 2 of RXD[3:0] nibble  
pin strapping configuration input 6  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
4 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 2.ꢀTJA102A pin description...continued  
Symbol  
Pin Type[1] Description  
P0_RXD1  
3
O
P0 MII mode: receive data output, bit 1 of RXD[3:0] nibble  
P0 RMII mode: receive data output, bit 1 of RXD[1:0] nibble  
CONFIG7  
P0_RXD0  
3
4
I
pin strapping configuration input 7  
O
P0 MII mode: receive data output, bit 0 of RXD[3:0] nibble  
P0 RMII mode: receive data output, bit 0 of RXD[1:0] nibble  
P0_RXC  
5
5
I
P0 MII reverse mode: external 25 MHz clock input  
O
I
P0 MII mode: 25 MHz receive clock output  
P0_REF_CLK  
P0 RMII mode: interface reference clock input (50 MHz external oscillator)  
O
P0 RMII mode: interface reference clock output (25 MHz crystal at PHY or 25 MHz clock  
at input of pin CLK_IN_OUT)  
[2]  
VDD(IO)  
6
7
P
I
3.3 V digital I/O supply voltage  
P0_TXC  
P0 MII reverse mode: external 25 MHz transmit clock input  
P0 MII mode: 25 MHz transmit clock output  
O
I
P0_TXEN  
P0_TXD3  
P0_TXD2  
P0_TXD1  
8
P0 MII/RMII mode: transmit enable input (active-HIGH, weak pull-down)  
P0 MII mode: transmit data input, bit 3 of TXD[3:0] nibble (weak pull-down)  
P0 MII mode: transmit data input, bit 2 of TXD[3:0] nibble (weak pull-down)  
9
I
10  
11  
I
I
P0 MII mode: transmit data input, bit 1 of TXD[3:0] nibble (weak pull-down)  
P0 RMII mode: transmit data input, bit 1 of TXD[1:0] nibble (weak pull-down)  
P0_TXD0  
12  
I
P0 MII mode: transmit data input, bit 0 of TXD[3:0] nibble (weak pull-down)  
P0 RMII mode: transmit data input, bit 0 of TXD[1:0] nibble (weak pull-down)  
P0_TXER  
RST_N  
13  
14  
15  
16  
17  
18  
19  
I
P0 MII/RMII: transmit error input (weak pull-down)  
reset input (active-LOW; weak pull-up)  
I
SEL_1V8  
I
1.8 V LDO mode selection (external or internal; weak pull-down)  
3.3 V analog supply voltage for the P0 transmitter  
+ terminal for P0 transmit/receive signal  
[3]  
P0_VDDA(TX)  
P
P0_TRX_P  
P0_TRX_M  
AIO  
AIO  
P
- terminal for P0 transmit/receive signal  
[3]  
P0_VDDA(TX)  
3.3 V analog supply voltage for the P0 transmitter  
local/forwarding wake-up input/output (configurable)  
battery supply voltage  
WAKE_IN_OUT 20  
AIO  
P
VBAT  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
INH  
AO  
P
inhibit output for voltage regulator control (VBAT-related, active-HIGH)  
3.3 V analog supply voltage for the P1 transmitter  
- terminal for P1 transmit/receive signal  
[4]  
P1_VDDA(TX)  
P1_TRX_M  
P1_TRX_P  
P1_VDDA(TX)  
EN  
AIO  
AIO  
P
+ terminal for P1 transmit/receive signal  
[4]  
3.3 V analog supply voltage for the P1 transmitter  
PHY enable input (active-HIGH, weak pull-down)  
interrupt output (active-LOW, open-drain output, level-based)  
SMI data I/O (weak pull-up)  
I
INT_N  
O
MDIO  
IO  
I
MDC  
SMI clock input (weak pull-down)  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
5 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 2.ꢀTJA102A pin description...continued  
Symbol  
Pin Type[1] Description  
[2]  
VDD(IO)  
31  
32  
32  
32  
33  
33  
33  
34  
34  
35  
35  
P
O
I
3.3 V digital I/O supply voltage  
P1_RXER  
CONFIG1  
P0_TXCLK  
P1_RXDV  
P1_CRSDV  
CONFIG2  
P1_RXD3  
CONFIG3  
P1_RXD2  
PHYAD1  
P1 MII/RMII receive error output  
pin strapping configuration input 1  
O
O
O
I
P0 transmit clock output in test mode and during slave jitter test  
P1 MII receive data valid output  
P1 RMII carrier sense/receive data valid output  
pin strapping configuration input 2  
O
I
P1 MII mode: receive data output, bit 3 of RXD[3:0] nibble  
pin strapping configuration input 3  
O
I
P1 MII mode: receive data output, bit 2 of RXD[3:0] nibble  
pin strapping configuration input for bit 1 of the PHY address used for the SMI address/  
Cipher scrambler  
P1_RXD1  
36  
O
P1 MII mode: receive data output, bit 1 of RXD[3:0] nibble  
P1 RMII mode: receive data output, bit 1 of RXD[1:0] nibble  
PHYAD2  
36  
37  
I
pin strapping configuration input for bit 2 of the PHY address used for the SMI address/  
Cipher scrambler  
P1_RXD0  
O
P1 MII mode: receive data output, bit 0 of RXD[3:0] nibble  
P1 RMII mode: receive data output, bit 0 of RXD[1:0] nibble  
PHYAD3  
P1_RXC  
37  
38  
I
pin strapping configuration input for bit 3 of the PHY address used for the SMI address/  
Cipher scrambler  
I
P1 MII reverse mode: external 25 MHz clock input  
O
I
P1 MII mode: 25 MHz receive clock output  
P1_REF_CLK  
38  
P1 RMII mode: interface reference clock input (50 MHz external oscillator)  
O
P1 RMII mode: interface reference clock output (25 MHz crystal at PHY or 25 MHz clock  
at input of pin CLK_IN_OUT)  
[2]  
VDD(IO)  
39  
40  
P
I
3.3 V digital I/O supply voltage  
P1_TXC  
P1 MII reverse mode: external 25 MHz transmit clock input  
P1 MII mode: 25 MHz transmit clock output  
O
I
P1_TXEN  
P1_TXD3  
P1_TXD2  
P1_TXD1  
41  
42  
43  
44  
P1 MII/RMII mode: transmit enable input (active-HIGH, weak pull-down)  
P1 MII mode: transmit data input, bit 3 of TXD[3:0] nibble (weak pull-down)  
P1 MII mode: transmit data input, bit 2 of TXD[3:0] nibble (weak pull-down)  
I
I
I
P1 MII mode: transmit data input, bit 1 of TXD[3:0] nibble (weak pull-down)  
P1 RMII mode: transmit data input, bit 1 of TXD[1:0] nibble (weak pull-down)  
P1_TXD0  
45  
I
P1 MII mode: transmit data input, bit 0 of TXD[3:0] nibble (weak pull-down)  
P1 RMII mode: transmit data input, bit 0 of TXD[1:0] nibble (weak pull-down)  
P1_TXER  
VDDD(1V8)  
VDDD(3V3)  
GND[5]  
46  
47  
48  
49  
I
P1 MII/RMII: transmit error input (weak pull-down)  
1.8 V digital supply voltage (configurable internal or external supply)  
3.3 V digital supply voltage  
P
P
G
ground reference  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
6 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 2.ꢀTJA102A pin description...continued  
Symbol  
Pin Type[1] Description  
XI  
50  
AI  
crystal input - used in all MII/RMII and Reverse MII modes when a 25 MHz crystal is  
used  
XO  
51  
AO  
crystal feedback - used in all MII/RMII and reverse MII modes when a 25 MHz crystal is  
used  
VDDA(3V3)  
52  
53  
54  
55  
55  
55  
56  
56  
56  
P
P
IO  
O
I
3.3 V analog supply voltage  
[2]  
VDD(IO)  
3.3 V digital I/O supply voltage  
CLK_IN_OUT  
P0_RXER  
CONFIG0  
25 MHz reference clock input/output (configurable)  
P0 MII/RMII receive error output  
pin strapping configuration input 0  
P1_TXCLK  
P0_RXDV  
P0_CRSDV  
CONFIG4  
O
O
O
I
P1 transmit clock output in test mode and during slave jitter test  
P0 MII receive data valid output  
P0 RMII carrier sense/receive data valid output  
pin strapping configuration input 4  
[1] AIO: analog input/output; AO: analog output; AI: analog input; I: digital input (VDD(IO) related);  
O: digital output (VDD(IO) related); IO: digital input/output (VDD(IO) related); P: power supply; G: ground.  
[2] VDD(IO) pins are connected internally and should be connected together on the PCB (pins 6, 31, 39 and 53).  
[3] P0_VDDA(TX) pins are connected internally and should be connected together on the PCB (pins 16 and 19).  
[4] P1_VDDA(TX) pins are connected internally and should be connected together on the PCB (pins 23 and 26).  
[5] HVQFN56 package die supply ground is connected to both the GND pin and the exposed center pad. The GND pin must be soldered to board ground.  
For enhanced thermal and electrical performance, it is also recommended to connect the exposed center pad to board ground.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
7 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
5.2 TJA1102AS pinning  
The pin configuration of the TJA1102AS single PHY is shown in Figure 3.  
terminal 1  
index area  
P0_RXD3/CONFIG5  
P0_RXD2/CONFIG6  
P0_RXD1/CONFIG7  
P0_RXD0  
n.c.  
n.c.  
n.c.  
V
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
3
4
DD(IO)  
P0_RXC/P0_REF_CLK  
n.c.  
5
V
PHYAD3  
6
DD(IO)  
P0_TXC  
P0_TXEN  
P0_TXD3  
P0_TXD2  
P0_TXD1  
P0_TXD0  
P0_TXER  
RST_N  
PHYAD2  
7
TJA1102AS  
PHYAD1  
8
CONFIG3  
CONFIG2  
CONFIG1/P0_TXCLK  
9
10  
11  
12  
13  
14  
V
DD(IO)  
MDC  
MDIO  
aaa-039094  
Figure 3.ꢀPin configuration: TJA1102AS  
Table 3.ꢀTJA1102AS pin description  
Symbol  
Pin Type[1] Description  
P0_RXD3  
CONFIG5  
P0_RXD2  
CONFIG6  
P0_RXD1  
1
1
2
2
3
O
I
P0 MII mode: receive data output, bit 3 of RXD[3:0] nibble  
pin strapping configuration input 5  
O
I
P0 MII mode: receive data output, bit 2 of RXD[3:0] nibble  
pin strapping configuration input 6  
O
P0 MII mode: receive data output, bit 1 of RXD[3:0] nibble  
P0 RMII mode: receive data output, bit 1 of RXD[1:0] nibble  
CONFIG7  
P0_RXD0  
3
4
I
pin strapping configuration input 7  
O
P0 MII mode: receive data output, bit 0 of RXD[3:0] nibble  
P0 RMII mode: receive data output, bit 0 of RXD[1:0] nibble  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
8 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 3.ꢀTJA1102AS pin description...continued  
Symbol  
Pin Type[1] Description  
P0_RXC  
5
5
I
P0 MII reverse mode: external 25 MHz clock input  
O
I
P0 MII mode: 25 MHz receive clock output  
P0_REF_CLK  
P0 RMII mode: interface reference clock input (50 MHz external oscillator)  
O
P0 RMII mode: interface reference clock output (25 MHz crystal at PHY or 25 MHz clock  
at input of pin CLK_IN_OUT)  
[2]  
VDD(IO)  
6
7
P
I
3.3 V digital I/O supply voltage  
P0_TXC  
P0 MII reverse mode: external 25 MHz transmit clock input  
P0 MII mode: 25 MHz transmit clock output  
O
I
P0_TXEN  
P0_TXD3  
P0_TXD2  
P0_TXD1  
8
P0 MII/RMII mode: transmit enable input (active-HIGH, weak pull-down)  
P0 MII mode: transmit data input, bit 3 of TXD[3:0] nibble (weak pull-down)  
P0 MII mode: transmit data input, bit 2 of TXD[3:0] nibble (weak pull-down)  
9
I
10  
11  
I
I
P0 MII mode: transmit data input, bit 1 of TXD[3:0] nibble (weak pull-down)  
P0 RMII mode: transmit data input, bit 1 of TXD[1:0] nibble (weak pull-down)  
P0_TXD0  
12  
I
P0 MII mode: transmit data input, bit 0 of TXD[3:0] nibble (weak pull-down)  
P0 RMII mode: transmit data input, bit 0 of TXD[1:0] nibble (weak pull-down)  
P0_TXER  
RST_N  
13  
14  
15  
16  
17  
18  
19  
I
P0 MII/RMII: transmit error input (weak pull-down)  
reset input (active-LOW; weak pull-up)  
I
SEL_1V8  
I
1.8 V LDO mode selection (external or internal; weak pull-down)  
3.3 V analog supply voltage for the P0 transmitter  
+ terminal for P0 transmit/receive signal  
[3]  
P0_VDDA(TX)  
P
P0_TRX_P  
P0_TRX_M  
AIO  
AIO  
P
- terminal for P0 transmit/receive signal  
[3]  
P0_VDDA(TX)  
3.3 V analog supply voltage for the P0 transmitter  
local/forwarding wake-up input/output (configurable)  
battery supply voltage  
WAKE_IN_OUT 20  
AIO  
P
VBAT  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
32  
33  
INH  
AO  
P
inhibit output for voltage regulator control (VBAT-related, active-HIGH)  
3.3 V analog supply voltage for the P0 transmitter  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
3.3 V analog supply voltage for the P0  
[3]  
P0_VDDA(TX)  
n.c.  
-
n.c.  
-
[3]  
P0_VDDA(TX)  
EN  
P
I
PHY enable input (active-HIGH, weak pull-down)  
interrupt output (active-LOW, open-drain output, level-based)  
SMI data I/O (weak pull-up)  
INT_N  
MDIO  
MDC  
O
IO  
I
SMI clock input (weak pull-down)  
[2]  
VDD(IO)  
P
3.3 V digital I/O supply voltage  
CONFIG1  
P0_TXCLK  
CONFIG2  
I
pin strapping configuration input 1  
O
I
P0 transmit clock output in test mode and during slave jitter test  
pin strapping configuration input 2  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
9 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 3.ꢀTJA1102AS pin description...continued  
Symbol  
Pin Type[1] Description  
CONFIG3  
PHYAD1  
34  
35  
I
I
pin strapping configuration input 3  
pin strapping configuration input for bit 1 of the PHY address used for the SMI address/  
Cipher scrambler  
PHYAD2  
PHYAD3  
n.c.  
36  
37  
I
I
pin strapping configuration input for bit 2 of the PHY address used for the SMI address/  
Cipher scrambler  
pin strapping configuration input for bit 3 of the PHY address used for the SMI address/  
Cipher scrambler  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
-
not connected; pin can be left open or shorted to GND  
3.3 V digital I/O supply voltage  
[2]  
VDD(IO)  
P
-
n.c.  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
not connected; pin can be left open or shorted to GND  
1.8 V digital supply voltage (configurable internal or external supply)  
3.3 V digital supply voltage  
n.c.  
-
n.c.  
-
n.c.  
-
n.c.  
-
n.c.  
-
n.c.  
-
VDDD(1V8)  
VDDD(3V3)  
GND[4]  
XI  
P
P
G
AI  
ground reference  
crystal input - used in all MII/RMII and Reverse MII modes when a 25 MHz crystal is  
used  
XO  
51  
AO  
crystal feedback - used in all MII/RMII and reverse MII modes when a 25 MHz crystal is  
used  
VDDA(3V3)  
52  
53  
54  
55  
55  
56  
56  
56  
P
P
IO  
O
I
3.3 V analog supply voltage  
[2]  
VDD(IO)  
3.3 V digital I/O supply voltage  
CLK_IN_OUT  
P0_RXER  
CONFIG0  
25 MHz reference clock input/output (configurable)  
P0 MII/RMII receive error output  
pin strapping configuration input 0  
P0 MII receive data valid output  
P0_RXDV  
P0_CRSDV  
CONFIG4  
O
O
I
P0 RMII carrier sense/receive data valid output  
pin strapping configuration input 4  
[1] AIO: analog input/output; AO: analog output; AI: analog input; I: digital input (VDD(IO) related);  
O: digital output (VDD(IO) related); IO: digital input/output (VDD(IO) related); P: power supply; G: ground.  
[2] VDD(IO) pins are connected internally and should be connected together on the PCB (pins 6, 31, 39 and 53).  
[3] P0_VDDA(TX) pins are connected internally and should be connected together on the PCB (pins 16, 19, 23 and 26).  
[4] HVQFN56 package die supply ground is connected to both the GND pin and the exposed center pad. The GND pin must be soldered to board ground.  
For enhanced thermal and electrical performance, it is also recommended to connect the exposed center pad to board ground.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
10 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6 Functional description  
6.1 System configuration  
The TJA1102A comprises two 100BASE-T1 compliant Ethernet PHYs, with 100 Mbit/s  
transmit and receive capability over two unshielded twisted-pair cables. The TJA1102A  
supports a cable length of up to at least 15 m, with a bit error rate of 1E-10 or less. It is  
optimized for capacitive signal coupling to the twisted-pair lines. A common-mode choke  
is typically inserted into the signal path to comply with automotive EMC requirements.  
The TJA1102A is designed to provide a cost-optimized system solution for automotive  
Ethernet links. It communicates with the Media Access Control (MAC) unit via the MII  
or RMII interface. In combination with other devices (e.g. SJA1105 in Figure 4), it offers  
a highly flexible 4-port switch solution, with two TJA1102A dual PHYs providing the  
100BASE-T1 physical layer ports.  
The TJA1102A can operate with a crystal or an external clock. The clock can be  
forwarded to other PHYs (in the application diagram in Figure 4, the clock of one  
TJA1102A is used as reference for a second TJA1102A). The clocking and power supply  
schemes are independent of each other.  
The TJA1102A can be powered via a single 3.3 V supply. An internal LDO generates the  
required 1.8 V supply, requiring only the addition of a decoupling capacitor.  
When the TJA1102A is used in a switch application with several PHY ports, it may be  
more efficient to use an external SMPS to provide the 1.8 V supply. In this configuration,  
the internal LDO is switched off to allow an external supply to be used.  
The state of SEL_1V8 is captured and copied to bit LDO_MODE (see Table 12) when the  
device is powered up. A bit value of 0 enables the internal 1.8 V LDO. If LDO_MODE =  
1, the internal LDO is disabled and VDDD(1V8) must be supplied externally. The value of  
LDO_MODE can be changed after power-up via register access.  
Control and status information is exchanged with the host controller via the SMI interface.  
The INH output can be used to switch off the external regulator when all ports are in  
Sleep mode.  
Note that the dual-port PHY can be configured to operate as a single PHY via pin  
strapping or the SMI. Alternatively, a TJA1102AS could be used when only a single PHY  
is needed.  
A PCB layout based on the system diagrams shown in Section 6.1.1 and Section 6.1.2  
would be able to accommodate any switch configuration comprising between one and  
four ports.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
11 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.1.1 Clocking scheme with MII and clock provided by the switch and one of the  
TJA1102A devices  
switch supply  
V
BAT  
VREG  
25 MHz  
±100 ppm  
XO  
XI  
MII (2x)  
CON  
CON  
P0  
P1  
EN  
RST_N  
INT_N  
DUAL PHY  
TJA1102A  
0
MDC  
MDIO  
SJA1105  
MII (2x)  
CON  
CON  
P0  
P1  
EN  
RST_N  
INT_N  
DUAL PHY  
TJA1102A  
1
MDC  
MDIO  
XI  
XO  
25 MHz  
±100 ppm  
HOST CONTROLLER  
aaa-039095  
One of the TJA1102A devices could be replaced by a TJA1102AS if only three PHYs are needed.  
Figure 4.ꢀTypical TJA1102A MII switch application with SJA1105  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
12 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.1.2 Clocking scheme with RMII and clock provided by the switch  
switch supply  
V
BAT  
VREG  
25 MHz  
±100 ppm  
XO  
XI  
RMII (2x)  
CON  
CON  
P0  
P1  
EN  
RST_N  
INT_N  
DUAL PHY  
TJA1102A  
0
MDC  
MDIO  
REF_CLK (50 MHz)  
REF_CLK (50 MHz)  
SJA1105  
RMII (2x)  
CON  
CON  
P0  
P1  
EN  
RST_N  
INT_N  
DUAL PHY  
TJA1102A  
1
MDC  
MDIO  
HOST CONTROLLER  
aaa-039096  
One of the TJA1102A devices could be replaced by a TJA1102AS if only three PHYs are needed.  
Figure 5.ꢀTypical RMII switch application with SJA1105 (XTAL at SJA1105)  
6.2 MII and RMII  
The TJA1102A supports a number of MII modes that can be selected via pin strapping  
or the SMI. The PHYs should be configured to operate in the same mode, with common  
clocking. The following modes are supported:  
MII  
RMII (25 MHz XTAL or external 50 MHz via REF_CLK)  
Reverse MII (connected externally or internally to the second PHY)  
Refer to the SMI register description (Section 6.11) for further configuration options.  
The strength of the (R)MII output driver signals can be limited in all modes (via bit  
MII_DRIVER; Table 22) to optimize EMC behavior.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
13 / 67  
 
 
NXP Semiconductors  
6.2.1 MII  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
The connections between the PHY and the MAC are shown in more detail in Figure 6.  
Data is exchanged via 4-bit wide data nibbles on TXD[3:0] and RXD[3:0]. Transmit and  
receive data is synchronized with the transmit (TXC) and receive (RXC) clocks. Both  
clock signals are provided by the PHY and are typically derived from an external clock or  
crystal running at a nominal frequency of 25 MHz (±100 ppm). Normal data transmission  
is initiated with a HIGH level on TXEN, while a HIGH level on RXDV indicates normal  
data reception.  
MII encoding is described in Table 4 and Table 5.  
RXC  
RXER  
RXC  
RXER  
RXDV  
RXD[3:0]  
RXDV  
RXD[3:0]  
RXC  
RXER  
RXC  
RXER  
RXDV  
RXD[3:0]  
TXEN  
TXD[3:0]  
TXER  
TXEN  
TXD[3:0]  
TXER  
TXC  
MAC/  
SWITCH  
PHY  
XO  
RXDV  
RXD[3:0]  
TXC  
TXEN  
TXD[3:0]  
TXER  
TXEN  
TXD[3:0]  
TXER  
TXC  
MAC/  
SWITCH  
PHY  
XO  
CLK_IN_OUT  
XI  
TXC  
CLK_IN_OUT  
XI  
25 MHz clock to  
other PHY or  
25 MHz  
switch (optional)  
aaa-022105  
25 MHz clock from  
other PHY or switch  
aaa-022106  
a. Using external XTAL showing optional 25 MHz clock  
output  
b. Using external reference clock  
Figure 6.ꢀMII signaling  
Table 4.ꢀMII encoding of TXD[3:0], TXEN and TXER  
TXEN  
TXER  
TXD[3:0]  
Indication  
0
0
1
1
0
1
0
1
0000 through 1111  
0000 through 1111  
0000 through 1111  
0000 through 1111  
normal interframe  
reserved  
normal data transmission  
transmit error propagation  
Table 5.ꢀMII encoding of RXD[3:0], RXDV and RXER  
RXDV  
RXER  
RXD[3:0]  
Indication  
0
0
0
0
0
1
0
1
1
1
1
0
0000 through 1111  
0000  
normal interframe  
normal interframe  
reserved  
0001 through 1101  
1110  
false carrier indication  
reserved  
1111  
0000 through 1111  
normal data transmission  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
14 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 5.ꢀMII encoding of RXD[3:0], RXDV and RXER...continued  
RXDV  
RXER  
RXD[3:0]  
Indication  
1
1
0000 through 1111  
data reception with errors  
6.2.2 RMII  
6.2.2.1 Signaling and encoding  
RMII data is exchanged via 2-bit wide data nibbles on TXD[1:0] and RXD[1:0], as  
illustrated in Figure 7. To achieve the same data rate as MII, the interface is clocked at  
a nominal frequency of 50 MHz. A single clock signal, REF_CLK, is provided for both  
transmitted and received data. This clock signal is provided by the PHY and is typically  
derived from an external 25 MHz (±100 ppm) crystal (see Figure 7 (a)). Alternatively, a  
50 MHz clock signal (±50 ppm) generated by an external oscillator can be connected to  
pin REF_CLK (see Figure 7 (b)). A third option is to connect a 25 MHz (±100 ppm) clock  
signal generated by another PHY or switch to pin CLK_IN_OUT (see Figure 7 (c)).  
RMII encoding is described in Table 6 and Table 7.  
Table 6.ꢀRMII encoding of TXD[1:0], TXEN  
TXEN  
TXD[1:0]  
Indication  
0
1
00 through 11  
00 through 11  
normal interframe  
normal data transmission  
Table 7.ꢀRMII encoding of RXD[1:0], CRSDV and RXER  
CRSDV  
RXER  
RXD[1:0]  
Indication  
0
0
0
1
1
0
1
1
0
1
00 through 11  
00  
normal interframe  
normal interframe  
reserved  
01 through 11  
00 through 11  
00 through 11  
normal data transmission  
data reception with errors  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
15 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
CRSDV  
RXD[1:0]  
RXER  
CRSDV  
RXD[1:0]  
RXER  
CRSDV  
CRSDV  
RXD[1:0]  
RXER  
RXD[1:0]  
RXER  
TXEN  
PHY  
TXEN  
MAC/  
SWITCH  
TXD[1:0]  
TXD[1:0]  
TXEN  
TXEN  
MAC/  
SWITCH  
PHY  
XO  
REF_CLK  
REF_CLK  
TXD[1:0]  
TXD[1:0]  
CLK_IN_OUT  
REF_CLK  
XI  
REF_CLK  
XO  
XI  
25 MHz clock to  
other PHYs or  
25 MHz  
switch (optional)  
50 MHz  
aaa-022189  
oscillator  
aaa-022190  
a. Using external XTAL showing optional 25 MHz clock  
output  
b. Using external reference clock  
CRSDV  
RXD[1:0]  
RXER  
CRSDV  
RXD[1:0]  
RXER  
TXEN  
PHY  
TXEN  
MAC/  
SWITCH  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
REF_CLK  
CLK_IN_OUT  
XO  
XI  
25 MHz clock from  
other PHY or switch  
aaa-022191  
c. Using externally generated 25 MHz reference clock  
Figure 7.ꢀRMII signaling  
6.2.3 Reverse MII  
In Reverse MII mode, two PHYs are connected back-to-back via the MII interface to  
realize a repeater function on the physical layer. The MII signals are cross-connected: RX  
output signals from one PHY are connected to the TX inputs on the other PHY. The TXC  
and RXC clock signals become inputs on the PHY connected in Reverse MII mode (P0 in  
Figure 8 and Figure 9). Reverse MII mode is selected by setting bits MII_MODE = 11.  
Two configuration options are available on the TJA1102A. The P0 and P1 MII pins can  
be connected externally on the PCB (INT_REV_MII = 0). Alternatively, the MII ports  
can communicate via existing internal connections (INT_REV_MII = 1), as illustrated in  
Figure 8.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
16 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
TJA1102A  
PHY P1  
IN MII  
PHY P0  
IN REVERSE MII  
P1_TXC  
P0_RXC  
P1_TXER  
P1_TXEN  
P0_RXER  
P0_RXDV  
P0_RXD[3:0]  
P0_TXEN  
P0_TXD[3:0]  
P0_TXER  
P0_TXC  
MDI 100BaseT1  
MDI 100BaseT1  
P1_TXD[3:0]  
P1_RXDV  
P1_RXD[3:0]  
P1_RXER  
P1_RXC  
aaa-039097  
Figure 8.ꢀ100BASE-T1 repeater with TJA1102A Reverse MII  
The TJA1102AS can be configured in reverse MII mode by connecting the MII pins  
externally to a fast Ethernet product, is illustrated in Figure 9.  
TXC  
TXER  
TXEN  
P0_RXC  
P0_RXER  
P0_RXDV  
P0_RXD[3:0]  
TXD[3:0]  
MDI  
Fast Ethernet  
MDI  
100Base-T1  
TJA1102AS  
PHY 100Base-TX  
(Reverse MII)  
RXDV  
RXD[3:0]  
RXER  
P0_TXEN  
P0_TXD[3:0]  
P0_TXER  
P0_TXC  
RXC  
XO  
XI  
XI  
XO  
25 MHz  
XTAL  
25 MHz  
XTAL  
aaa-039099  
Figure 9.ꢀFast Ethernet to 100BASE-T1 media converter with TJA1102AS in Reverse MII  
6.3 System controller  
6.3.1 Operating modes  
6.3.1.1 Power-off mode  
Each PHY has its own dedicated power mode state machine. The TJA1102A remains  
in Power-off mode as long as the voltage on pin VBAT is below the power-on reset  
threshold. The analog blocks are disabled and the digital blocks are in a passive reset  
state in this mode.  
6.3.1.2 Standby mode  
At power-on, when the voltage on pin VBAT rises above the under-voltage recovery  
threshold (Vuvr(VBAT)), the TJA1102A enters Standby mode and switches on the INH  
control output (pin INH HIGH). This control signal may be used to activate the supply to  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
17 / 67  
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
the microcontroller in the ECU. Once the 3.3 V supply voltage is available, the internal  
1.8 V regulator is activated (if selected) and the PHYs are configured according to the pin  
strapping implemented on the CONFIGn and PHYADn pins. No SMI access takes place  
during the power-on settling time (ts(pon)).  
From an operating point of view, Standby mode corresponds to the IEEE 802.3 Power-  
down mode, where the transmit and receive functions (in the PHY) are disabled. Standby  
mode also acts as a fail-silent mode. The TJA1102A switches to Standby mode when an  
undervoltage condition is detected on VDDA(3V3), VDDD(3V3), VDDD(1V8) or VDD(IO)  
.
6.3.1.3 Normal mode  
To establish a communication link, the TJA1102A must be switched to Normal mode,  
either autonomously (AUTO_OP = 1; see Table 31) or via an SMI command from the  
host (AUTO_OP = 0).  
When the TJA1102A is configured for autonomous operation, the PHYs enter Normal  
mode automatically and activate the link on power-on. When the TJA1102A is host-  
controlled, the PHYs must be enabled via the SMI.  
When a PHY is enabled and enters Normal mode, the internal PLL starts running and  
the transmit and receive functions (both PCS and PMA) are enabled. After a period of  
stabilization, tinit(PHY), the PHY is ready to set up a link.  
If link control is enabled (LINK_CONTROL = 1; see Table 21), a PHY configured as  
Master initiates the training sequence by transmitting an idle pattern. The receiver of  
a PHY configured as Slave will attempt to synchronize with the idle pattern. Once the  
descrambler is synchronized (SCR_LOCKED = 1), the slave PHY itself starts sending an  
idle pattern using the recovered clock signal.  
The link is established (LINK_STATUS = 1) when the TJA1102A PHY and the remote  
PHY indicate that their local receiver status is OK.  
6.3.1.4 Disable mode  
When the Ethernet interface is not in use or must be disabled for fail-safe reasons, the  
PHYs can be switched off by pulling pin EN LOW. The PHYs are switched off completely  
in Disable mode, minimizing power consumption. The configuration register settings are  
maintained. EN must be forced HIGH to exit Disable mode and activate the PHYs. The  
PHYs can also be enabled/disabled via bit PHY_EN.  
6.3.1.5 Sleep mode  
If the network manager decides to withdraw a node from the network because it is no  
longer needed, the PHYs can be switched to Sleep mode (powering down the entire  
ECU).  
In Sleep mode, the transmit and receive functions are switched off and no signal is driven  
onto the twisted-pair lines. Transmit requests from the MII interface are ignored and the  
MII output pins are in a high-ohmic state. The only valid SMI operations in Sleep mode  
are reading the POWER_MODE status bits in the Extended control register and issuing a  
Standby mode command (POWER_MODE = 1100; see Table 21).  
Releasing the INH output (INH LOW) allows the ECU to switch off its main power supply  
unit. Typically, the entire ECU is powered-down. The TJA1102A is kept partly alive by  
the permanent battery supply and can still react to activity on the Ethernet lines. Once  
valid Ethernet idle pulses longer than tdet(PHY) are detected on the lines of at least one  
PHY (with REMWUPHY = 1), the TJA1102A wakes up in Standby mode and switches on  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
18 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
the main power unit via the INH control signal. The TJA1102A PHYs enter Normal mode  
via autonomous operation once the supply voltages are stable within their operating  
ranges, or can be switched to Normal mode via an SMI command if host-controlled. The  
communication link to the partner can then be re-established. Only PHY0 switches to  
Normal mode in the TJA1102AS.  
Sleep mode can be entered from Normal mode via the intermediate Sleep Request  
mode as well as from Standby mode, as shown in Figure 10. Note that the configuration  
register settings are maintained in Sleep mode.  
If CLK_IN_OUT is used to provide the clock for other devices (e.g. other PHYs), the clock  
signal can be configured to remain active (CLK_HOLD = 1) along with INH even when  
both PHYs are in Sleep mode or disabled. When CLK_HOLD = 1, the device enters  
Sleep mode automatically but remains active until a FORCE_SLEEP SMI command is  
received. Note that this command forces both PHYs to Sleep mode immediately (if they  
are not already in Sleep mode or disabled).  
6.3.1.6 Sleep Request mode  
Sleep Request mode is an intermediate state used to initiate a transition to Sleep mode.  
In Sleep Request mode, the PHY transmits scrambler code with an encoded LPS  
command to inform the link partner about the request to enter Sleep mode.  
The PHY sleep request timer (tto(req)sleep; see Table 38) starts when the TJA1102A  
enters Sleep Request mode. This timer determines the maximum length of time the PHY  
remains in Sleep Request mode. The PHY switches to Sleep mode (via an intermediate  
step through Silent mode) on receiving LPS confirmation of the sleep request from the  
Link partner. If the timer expires before confirmation is received from the link partner,  
the PHY returns to Normal mode. This process is valid when LPS_ACTIVE = 1 and  
SLEEP_CONFIRM = 1.  
If bit SLEEP_ACK is not set when the PHY enters Sleep Request mode, it switches back  
to Normal mode if data is detected on MII or MDI (see Table 22). The DATA_DET_WU  
flag in the General status register is set and a WAKEUP interrupt is generated (if  
REMWUPHY = 1).  
If SLEEP_ACK is set when the PHY enters Sleep Request mode, the PHY sleep  
acknowledge timer (tto(ack)sleep; see Table 38) is started. While the timer is running, the  
PHY switches back to Normal mode in response to a host command or wake-up request.  
When the timer expires, LPS transmission begins to initiate a transition to Sleep mode.  
Data detected at MII or MDI is ignored.  
INH is released when both PHYs are in Sleep mode or disabled.  
6.3.1.7 Silent mode  
Silent mode is an intermediate state between Sleep Request mode and Sleep mode.  
It is provided to allow time to switch off the transmitter after a sleep request has been  
accepted before entering Sleep mode. The TJA1102A switches to Sleep mode once the  
channel goes silent.  
If the channel remains active for longer than tto(req)sleep, the PHY returns to Normal mode  
and a SLEEP_ABORT interrupt is generated.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
19 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.3.1.8 Reset mode  
The TJA1102A switches to Reset mode from any mode except Power-off or Sleep when  
pin RST_N is held LOW for at least tdet(rst)(max), provided the voltage on VDD(IO) is above  
the undervoltage threshold.  
When RST_N goes HIGH again, or an undervoltage is detected on VDD(IO), the  
TJA1102A switches to Standby mode. All register bits are reset to their default values in  
Reset mode and the state of the pin strapping pins is captured.  
6.3.2 Status of functional blocks in TJA1102A operating modes  
Table 8 presents an overview of the status of TJA1102A functional blocks in each  
operating mode.  
Table 8.ꢀStatus of functional blocks in TJA1102A operating modes  
Functional block  
MII  
Normal  
on  
Standby  
high-ohmic[2] on  
Sleep Request Sleep[1]  
Disable  
high-ohmic  
high-ohmic  
PMA/PCS-TX  
PMA/PCS-RX  
SMI  
on  
off  
on  
off  
off  
on  
off  
on  
off  
on[3]  
off  
on  
on  
on  
off  
Activity detection  
Crystal oscillator  
LDO_1V8  
off  
on  
off  
on  
off[5]  
off  
on/off[4]  
on/off[6]  
on  
off  
on/off[6]  
on/off[4]  
on/off[6]  
on  
off  
off  
off  
RST_N input  
EN input  
on  
off  
on  
on  
on  
on  
off  
on  
WAKE_IN_OUT  
INT_N output  
INH output  
on/off[7]  
on/off[7]  
on/off[7]  
on/off[7]  
high-ohmic  
off  
off  
on  
on  
on  
high-ohmic  
on/off[8]  
off  
on  
on  
on  
Temp detection  
on  
on  
on  
off  
[1] The TJA1102A only switches to Sleep mode if both PHYs are in Sleep mode or disabled via SMI-access (PHY_EN = 0).  
The TJA1102AS will be in Sleep mode if PHY0 is in Sleep mode (since PHY1 is disabled).  
[2] Outputs RXD[3:0], RXER and RXDV are LOW in Standby mode; the other MII pins are configured as inputs via internal  
100 kΩ pull-down resistors.  
[3] Limited access to SMI registers in Sleep mode to allow mode control/wake-up via SMI. VDD(IO) must be available.  
[4] Configurable; depends on bits CLK_MODE in the Common configuration register.  
[5] The crystal will be off in Sleep mode unless bit CLK_HOLD = 1 and bits CLK_MODE = 00 or 01.  
[6] Configurable; VDDD(1V8) can be supplied internally (bit LDO_MODE in the Common configuration register LOW) or  
externally (bit LDO_MODE HIGH).  
[7] Configurable.  
[8] The behavior of the INH output in Disable mode is configurable and depends on bit CONFIG_INH in the Common  
configuration register.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
20 / 67  
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.4 Mode transitions  
A mode transition diagram for the TJA1102A is shown in Figure 10. Abbreviations used in  
the mode transition diagram are defined in Table 9.  
The following events, listed in order of priority, trigger mode transitions:  
Power on/off  
Undervoltage on VDD(IO)  
RST_N input  
EN input  
Overtemperature or Undervoltage on VDDA(3V3), VDDD(3V3), VDDD(1V8)  
SMI command and wake-up (local, remote or forwarding)  
Table 9.ꢀState diagram legend  
Transition  
Abbreviation  
Description  
Silent to Normal  
Normal to Sleep Request  
sleep request timer expired  
Sleep Request command  
autonomous power-down  
t > tto(req)sleep  
POWER_MODE = 1011  
no frame transmission or reception for longer than  
tto(pd)autn AND AUTO_PWD = 1  
LPS code group received  
LPS_WUR_DIS = 0 (LPS/WUR enabled) AND  
LPS_RECEIVED = 1 AND t > tto(req)sleep AND  
LPS_ACTIVE = 1  
no data detected on MDI or MII  
sleep acknowledge timer enabled  
Normal mode command  
wake-up request  
pcs_rx_dv = FALSE AND TXEN = LOW  
SLEEP_ACK = 1  
Sleep Request to Normal  
POWER_MODE = 0011  
(FWDPHYREM = 1 and WAKEUP = 1) OR WUR  
symbols received at the bus pins  
sleep acknowledge timer disabled  
SLEEP_ACK = 0  
sleep acknowledge time-out time not t < tto(ack)sleep  
expired  
data detected on MDI or MII  
LPS enabled  
pcs_rx_dv = TRUE OR TXEN = HIGH  
LPS_WUR_DIS = 0  
t > tto(req)sleep  
sleep request timer expired  
data detected on MDI or MII  
sleep acknowledge timer disabled  
LPS disabled  
Normal to Normal  
pcs_rx_dv = TRUE OR TXEN = HIGH  
SLEEP_ACK = 0  
Sleep Request to Sleep  
LPS_WUR_DIS = 1  
t > tto(req)sleep  
sleep request timer expired  
LPS enabled  
Sleep Request to Silent  
Standby to Normal  
LPS_WUR_DIS = 0  
see Section 6.6  
autonomous operation  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
21 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
sleep request timer expired (t > t  
)
to(req)sleep  
[Sleep Request command OR  
autonomous power-down OR  
(LPS code group received AND  
(no data detected on MDI or MII OR  
sleep acknowledge timer enabled))]  
AND  
no WUR transmitted or received  
Sleep Request command AND  
data detected at MDI or MII AND  
sleep acknowledge timer disabled  
SLEEP  
NORMAL  
INH = on  
REQUEST  
INH = on  
PHY enabled  
PHY enabled  
[(Normal mode command OR wake-up request)  
AND (sleep acknowledge timer disabled OR  
sleep acknowledge timer not expired)]  
OR  
(data detected at MDI or MII AND  
sleep acknowledge timer disabled)  
OR  
LPS enabled AND  
[LPS sent AND  
(SLEEP_CONFIRM = 0 OR  
(SLEEP_CONFIRM = 1  
AND LPS received))  
(LPS enabled AND sleep request timer expired)  
OR LOC_RCVR_STATUS = 0]  
Normal mode command OR  
autonomous operation OR  
(FWDPHYREM = 1 AND local wake-up)  
SILENT  
INH = on  
PHY enabled  
(SEND_Z)  
Standby command  
OR UV  
OR Overtemperature  
Standby command  
OR UV  
OR Overtemperature  
(1)  
(1)  
LPS disabled AND  
sleep request timer  
(3)  
expired  
no bus activity  
Sleep Request command OR  
(4)  
t > t  
to(uvd)  
EN pin HIGH OR  
uv_VDD  
DISABLE  
STANDBY  
INH = on  
SLEEP  
INH = off  
(IO)  
(2)  
INH = on/off  
)
PHY disabled  
PHY disabled  
PHY disabled  
local wake-up OR  
activity detected OR  
Standby mode command  
(PHY_EN = 0 OR  
FORCE_SLEEP = 1)  
AND no UV  
Power-on  
(no uv_VBAT)  
RST_N HIGH OR uv_VDD  
EN pin LOW AND  
RST_N HIGH AND  
(IO)  
no uv_VDD  
(Normal OR Standby OR Sleep_Request)  
) AND  
(IO)  
Power-off  
RST_N LOW AND (no uv_VDD  
)
RESET  
(INH =  
no change)  
(uv_VBAT)  
(IO)  
from any  
POWER-OFF  
(INH = off)  
state  
from any state other than  
Power-off or Sleep  
aaa-038965  
1. UV means undervoltage on one of the power supply pins VDD(IO), VDDA(3V3), VDDD(1V8), VDDD(3V3)  
.
2. INH can be configured to be on or off.  
3. The PHY will not be in Sleep mode, and cannot be woken up, until the timeout associated with the transition has  
expired (after tto(req)sleep).  
4. At power-on, after a transition from Power-off to Standby mode, undervoltage detection timeout is enabled once all  
supply voltages are available. When an undervoltage is detected, the TJA1102A switches to Sleep mode after tto(uvd)  
.
Figure 10.ꢀMode transition diagram  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
22 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.5 Sleep and wake-up forwarding concept  
The sleep and wake-up forwarding concept of the TJA1102A is compliant with the  
OPEN Alliance Sleep/Wake-up specification. The TJA1102A features a wake-up request  
forwarding function that enables fast wake-up forwarding without the need for a switch,  
MAC or μC action. The wake-up forwarding principle is illustrated in Figure 11. The wake-  
up request can be forwarded via non-active (gray PHYs in the figure) or active links  
(white PHY). In the case of a non-active link, a wake-up pulse (WUP; duration tw(wake)  
)
is transmitted, to be detected as activity at the link partner. For an active link, wake up  
request (WUR) scrambler code groups are sent.  
The wake-up behavior of the PHYs can be configured individually. This arrangement  
allows WAKE_IN_OUT to be used as a local wake-up or to have a mixed system with  
only some ports forwarding wake-up requests. The following configuration options are  
available and are selected via the SMI Configuration register 1 (Table 22):  
REMWUPHY determines whether a PHY reacts to a remote wake-up request.  
FWDPHYREM determines whether a PHY forwards a wake-up request (from another  
port or via WAKE_IN_OUT) to its MDI. A WUP or WUR is sent, depending on the link  
status.  
LOCWUPHY determines whether a PHY should be woken up in response to a local  
wake-up event (forwarded from another port or via WAKE_IN_OUT)  
FWDPHYLOC determines whether wake-up event should be forwarded to other ports  
(i.e. should the second PHY be informed and/or the WAKE_IN_OUT signal activated).  
The WAKE_IN_OUT signal features a programmable timeout to enable it to support a  
number of wake-up concepts (e.g. wake-up line). It reacts on a rising edge.  
The wake-up detection time, tdet(wake) (see Table 38), on pin WAKE_IN_OUT is  
determined by register bit settings LOC_WU_TIM (see Table 29). The wake-up pulse  
duration (tp; see Table 38) is also determined by LOC_WU_TIM.  
1.2 V  
V
BAT  
INH  
3.3 V  
WUP pulses  
WUR codes  
WUP pulses  
PHY  
PHY  
PHY  
aaa-022042  
Figure 11.ꢀWake-up request forwarding  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
23 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.6 Autonomous operation  
When the TJA1102A is configured for autonomous operation (either via pin strapping,  
see Section 6.10, or via bit AUTO_OP in the Common configuration register, Table 29),  
it can operate and establish a link without further interaction with a host controller. On  
power-on or wake-up from Sleep mode, the TJA1102A goes directly to Normal mode  
once all supply voltages are available and the link-up process starts automatically.  
Host configuration (e.g. for link or mode control) will not be possible until the device is  
switched from autonomous to managed operation by resetting bit AUTO_OP.  
6.7 Autonomous power-down  
If autonomous power-down is enabled for a PHY (AUTO_PWD = 1), it goes to Sleep  
Request mode automatically if no Ethernet frames have been received at the MDI and  
(R)MII within the timeout time, tto(pd)autn  
.
6.8 Test modes  
Five test modes are supported. Only test modes 1, 2, 4 and 5 are included in the  
100BASE-T1 specification [1]. The test modes can be selected individually via an SMI  
command in Normal mode while link control is disabled. Pin P1_RXER is used as a  
reference clock output for PHY0 test modes 1 to 4; pin P0_RXER is used as a reference  
clock output for PHY1 test modes 1 to 4 (the nominal P1_RXER/P0_RXER function is  
disabled when test modes are active). No load should be connected when the reference  
clock is being measured.  
6.8.1 Test mode 1  
Test mode 1 is used to test transmitter droop. In Test mode 1, the PHY transmits ‘+1’  
symbols for 600 ns followed by ‘-1’ symbols for a further 600 ns. This sequence is  
repeated continuously.  
6.8.2 Test mode 2  
Test mode 2 is used to test transmitter timing jitter in Master mode. In Test mode 2, the  
PHY transmits the data symbol sequence {+1, -1} repeatedly. The transmission of the  
symbols is synchronized with the local external oscillator.  
6.8.3 Test mode 3  
Test mode 3 is used to test transmitter timing jitter in Slave mode. In Test mode 3, the  
PHY transmits the data symbol sequence {+1, -1} repeatedly. The transmission of the  
symbols is synchronized with the local external oscillator.  
6.8.4 Test mode 4  
Test mode 4 is used to test transmitter distortion. In Test mode 4, the PHY transmits the  
sequence of symbols generated by the scrambler polynomial gs1 = 1 + x9 + x11.  
The bit sequence x0n, x1n is derived from the scrambler according to the following  
equations:  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
24 / 67  
 
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
This stream of 3-bit nibbles is mapped to a stream of ternary symbols according to  
Table 10.  
Table 10.ꢀSymbol mapping in test mode 4  
x1n  
0
x0n  
0
PAM-3 transmit symbol  
0
0
1
+1  
0
1
0
1
1
-1  
6.8.5 Test mode 5  
Test mode 5 is used to test the transmit PSD mask. In Test mode 5, the PHY transmits a  
random sequence of PAM-3 symbols.  
6.8.6 Slave jitter test  
To enable the Slave jitter test in Normal mode, bit SLAVE_JITTER_TEST must be set  
to 1 before link control is enabled (LINK_CONTROL = 1; see Table 21). During this test,  
the transmitter reference clock is fed to pin P1_TXCLK for PHY1 and/or P0_TXCLK for  
PHY0 of the TJA1102A. For the TJA1102AS, the transmitter reference clock is fed to pin  
P0_TXCLK.  
6.9 Error diagnosis  
The diagnostic features described in this section are available individually for each dual-  
PHY port, except for undervoltage detection of common supply voltages.  
6.9.1 Undervoltage detection  
The TJA1102A continuously monitors the status of the supply voltages. Once a supply  
voltage drops below the specified minimum operating threshold, the TJA1102A enters the  
fail-silent Standby mode and communication is halted. If an undervoltage is detected on  
VBAT, the TJA1102A switches to Power-off mode.  
At power-on, after a transition from Power-off to Standby mode, undervoltage detection  
timeout is enabled once all supply voltages are available. The timeout timer is started  
when an undervoltage is detected. If the undervoltage is still active when the timer  
expires (after tto(uvd)), the TJA1102A switches from Standby mode to Sleep mode.  
The microcontroller can determine the source of the interruption by reading the contents  
of the External status register (Table 29). The under-voltage detection/recovery range  
is positioned immediately next to the operating range, without a gap. Since parameters  
are specified down to the minimum value of the under-voltage detection threshold, it  
is guaranteed that the behavior of the TJA1102A is fully specified and defined for all  
possible voltage condition on the supply pins.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
25 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.9.2 Cabling errors  
The TJA1102A can detect open and short circuits between the twisted-pair bus lines  
when neither of the link partners is transmitting (link control disabled). It may make sense  
to run the diagnostic before establishing the Ethernet link. When bit CABLE_TEST in  
the Extended Control register (Table 21) is set to 1, test pulses are transmitted onto the  
transmission medium with a repetition rate of 666.6 kHz. The TJA1102A evaluates the  
reflected signals and uses impedance mismatch data along the channel to determine the  
quality of the link. The results of the cable test are available in the External status register  
(Table 29) within tto(cbl_tst). The tests performed and associated results are summarized in  
Table 11.  
Table 11.ꢀCable tests and results  
The cable bus lines are designated BI_DA+ and BI_DA-, in alignment with 100BASE-T1 [1].  
BI_DA+  
BI_DA-  
Result  
open  
open  
open detected  
short detected  
open detected  
open detected  
short detected  
open detected  
open detected  
short detected  
+ shorted to -  
shorted to VDD  
open  
- shorted to +  
open  
shorted to VDD  
shorted to VDD  
open  
shorted to VDD  
shorted to GND  
open  
shorted to GND  
shorted to GND  
shorted to GND  
connected to active link partner connected to active link partner short and open detected  
(master)  
(master)  
6.9.3 Link stability  
The Signal Quality Indicator (SQI) is the parameter used to estimate link stability. The  
PMA receive function monitors the SQI. Once the value falls below a configurable  
threshold (SQI_FAILLIMIT), the link status is set to FAIL and communication is  
interrupted. The TJA1102A allows for adjusting the sensitivity of the PMA receive function  
by configuring this threshold. The microcontroller can always check the current value of  
the SQI via the SMI, allowing it to track a possible degradation in link stability.  
6.9.4 Link-fail counter  
High losses and/or a noisy channel may cause the link to shut down when reception  
is no longer reliable. In such cases, the PHY generates a LINK_STATUS_FAIL  
interrupt. Retraining of the link begins automatically provided link control is enabled  
(LINK_CONTROL = 1).  
Bits LOC_RCVR_COUNTER and REM_RCVR_COUNTER in the Link-fail counter  
register (Table 30) are incremented after every link fail event. Both counters are reset  
when this register is read.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
26 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.9.5 Jabber detection  
The Jabber detection function prevents the PHY being locked in the DATA state of the  
PCS Receive state diagram when the End-of-Stream Delimiters, ESD1 and ESD2, are  
not detected.  
The maximum time the PHY can reside in the DATA state is limited to tto(PCS-RX)  
(rcv_max_timer in the IEEE specification [1]). After this time, the PCS-RX state machine  
is reset, triggering a transition to PHY Idle state.  
6.9.6 Polarity detection  
A polarity error occurs when the two signal wires in the twisted pair cable connected to a  
port are swapped. According to the IEEE specification [1], the polarity is always observed  
to be correct by the Master PHY; only the Slave is allowed to correct the polarity. When  
the TJA1102A is in Slave configuration, it can detect if the ternary symbols sent from the  
Master PHY are received with the wrong polarity and will correct this error internally and  
set the POLARITY_DETECT bit in the External status register (Table 29). Irrespective of  
the Master or Slave mode, the host can overwrite and swap the default MDI polarity by  
setting MDI_POL in Configuration Register 3 (Table 32).  
6.9.7 Interleave detection  
A 100BASE-T1 PHY can send two different interleave sequences of ternary symbols  
(TAn, TBn) or (TBn, TAn). The receivers in the TJA1102A are able to de-interleave both  
sequences. The order of the ternary symbols detected by the receiver is indicated by the  
INTERLEAVE_DETECT bit in the External status register (Table 29).  
6.9.8 Loopback modes  
The TJA1102A supports three loopback modes:  
Internal loopback (PCS loopback in accordance with IEEE 802.3bw)  
External loopback  
Remote loopback  
To run a PHY in loopback mode, the LOOPBACK control bit in the Basic control register  
should be set before enabling link control.  
6.9.8.1 Internal loopback  
In Internal loopback mode, the PCS receive function gets the ternary symbols An and  
Bn directly from the PCS transmit function as shown in Figure 12. This action allows the  
MAC to compare packets sent through the MII transmit function with packets received  
from the MII receive function and, therefore, to validate the functionality of the 100BASE-  
T1 PCS function.  
PMA  
PCS  
RECEIVE  
RECEIVE  
MII Receive  
MDI  
HYBRID  
A , B  
n
n
PMA  
TRANSMIT  
PCS  
TRANSMIT  
MII Transmit  
aaa-019866  
Figure 12.ꢀInternal loopback  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
27 / 67  
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.9.8.2 External loopback  
In External loopback mode, the PMA receive function receives signals directly from the  
PMA transmit function as shown in Figure 13. This external loopback test allows the MAC  
to compare packets sent through the MII transmit function with packets received from the  
MII receive function and, therefore, to validate the functionality of the 100BASE-T1 PCS  
and PMA functions.  
PMA  
RECEIVE  
PCS  
RECEIVE  
MII Receive  
open  
HYBRID  
PMA  
TRANSMIT  
PCS  
TRANSMIT  
MII Transmit  
aaa-019868  
Figure 13.ꢀExternal loopback  
6.9.8.3 Remote loopback  
In Remote loopback mode, the packet received by the link partner at the MDI is passed  
through the PMA receive and PCS receive functions and forwarded to the PCS transmit  
function, which in turn sends it back to the link partner from where it came. The PCS  
receive data is made available at the MII. Remote loopback allows the MAC to compare  
the packets sent to the MDI with the packets received back from the MDI and, therefore,  
to validate the functionality of the physical channel, including both 100BASE-T1 PHYs.  
PMA  
RECEIVE  
PCS  
RECEIVE  
MII Receive  
MII  
MAC  
PHY  
HYBRID  
PMA  
TRANSMIT  
PCS  
TRANSMIT  
MII Transmit  
PHY in Remote loopback mode  
aaa-019869  
Figure 14.ꢀRemote loopback  
6.10 Hardware configuration  
A number of pins are provided to allow default values for a number of features to be  
hardware-configured, without microcontroller interaction. The pull-up/down behavior  
of these pins is sensed at power-up and after a reset. A pull-up behavior is coded  
as logic 1, while a pull-down behavior is coded as logic 0. The results are stored in  
the corresponding SMI registers. All pre-configuration settings (except for the PHY  
addresses) can be overwritten via SMI commands.  
Pin strapping at pins 37 (PHYAD3), 36 (PHYAD2) and 35 (PHYAD1) determines bits  
3, 2 and 1, respectively, of the PHY address used for the SMI address/Cipher scrambler.  
The PHY address cannot be changed once the PHY has been configured. Besides  
the address configured via pin strapping, the TJA1102A can always be accessed via  
address 0.  
Table 12 gives an overview of the functions to be configured via hardware pins.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
28 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 12.ꢀPin strapping configuration[1]  
Symbol  
Pin  
Value  
000[2]  
001  
010  
011  
100  
101  
110  
111  
0
Description  
MASTER_SLAVE/  
PHY_EN  
34 (CONFIG3)  
33 (CONFIG2)  
32 (CONFIG1)  
P0 disabled, P1 Master  
P0 disabled, P1 Slave  
P0 Master, P1 disabled  
P0 Master, P1 Master  
P0 Master, P1 Slave  
P0 Slave, P1 disabled  
P0 Slave, P1 Master  
P0 Slave, P1 Slave  
AUTO_OP  
55 (CONFIG0)  
managed operation  
1
autonomous operation  
bit 3 of PHY address used for the SMI  
bit 2 of PHY address used for the SMI  
bit 1 of PHY address used for the SMI  
PHYAD[3:1]  
37 (PHYAD3)  
36 (PHYAD2)  
35 (PHYAD1)  
-
-
-
MII_CONFIG  
1 (CONFIG5)  
56 (CONFIG4)  
00[3]  
MII mode enabled for both PHYs (bits  
MII_MODE in Table 22 set to 00)  
01[4]  
10[3]  
RMII mode enabled for both PHYs (bits  
MII_MODE in Table 22 set to 01 or 10,  
depending on CLK_MODE)  
Reverse MII mode P0;  
MII mode P1, internal MII  
(bits MII_MODE in Table 22 set to 11 for P0  
and 00 for P1; bit INT_REV_MII in Table 29  
set to 1)  
11[3]  
Reverse MII mode P0;  
MII mode P1; external MII;  
(bits MII_MODE in Table 22 set to 11 for P0  
and 00 for P1; bit INT_REV_MII in Table 29  
set to 0)  
CLK_MODE  
LDO_MODE  
3 (CONFIG7)  
2 (CONFIG6)  
00  
01  
10  
11  
25 MHz XTAL; no clock at CLK_IN_OUT  
25 MHz XTAL; 25 MHz at CLK_IN_OUT  
25 MHz external clock at CLK_IN_OUT  
50 MHz input at REF_CLK; RMII mode only;  
no XTAL; no clock at CLK_IN_OUT  
15 (SEL_1V8)  
0
1
internal 1.8 V LDO enabled  
external 1.8 V supply  
[1] Pin strapping functionality relating to PHY1 is not relevant to the TJA1102AS, since P1 is permanently disabled.  
[2] Ordered from MSB to LSB; for value 011 for example, pin 34 = 0, pin 33 = 1 and pin 32 = 1. Note that PHY1 is always  
disabled in the TJA1102AS, regardless of the value level of on these pins during pin strapping.  
[3] CLK_MODE = 00, 01 or 10.  
[4] All clock modes (CLK_MODE = xx).  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
29 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
6.11 SMI registers  
A dedicated register set is provided for each PHY. Some register bits are only valid for  
block P0 and always return 0 when read from block P1. These bits are indicated in the  
appropriate tables. Two shared configuration registers are provided to configure common  
parameters.  
Access to the register sets for both PHY blocks on the TJA1102A is provided via the  
SMI. Which PHY block is selected by an SMI read/write access depends on the PHY  
address in the SMI frame (read/write access to disabled block P1 is not supported on the  
TJA1102AS).  
6.11.1 Register mapping overview  
Copies of the registers listed in Table 13 are provided for each PHY (except for the  
Common configuration registers which are shared) and are accessible via SMI with the  
appropriate PHY address.  
Table 13.ꢀSMI register mapping  
Register index (dec)  
Register name  
Group  
0
Basic control register  
Basic  
1
Basic status register  
Basic  
2
PHY identification register 1  
PHY identification register 2  
Extended status register  
PHY identification register 3  
Extended control register  
Configuration register 1  
Configuration register 2  
Symbol error counter register  
Interrupt source register  
Interrupt enable register  
Communication status register  
General status register  
External status register  
Link-fail counter register  
Common configuration register  
Configuration register 3  
Extended (P0 only)  
Extended (P0 only)  
Extended  
3
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
NXP specific (P0 only)  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific  
NXP specific (P0 only)  
NXP specific  
Table 14.ꢀRegister notation  
Notation  
Description  
Read/write  
Read only  
R/W  
R
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
30 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 14.ꢀRegister notation...continued  
Notation  
Description  
LH  
LL  
Latched HIGH; must be read out to reset  
Latched LOW; must be read out to reset  
Self-clearing  
SC  
PS  
Pin strapping  
6.11.2 TJA1102A registers  
Table 15.ꢀBasic control register (register 0)  
Bit  
Symbol  
Access  
Value  
Description  
15  
RESET  
R/W  
SC  
software reset control:  
normal operation  
PHY reset  
0[1]  
1
14  
13  
LOOPBACK[2]  
R/W  
R/W  
loopback control:  
normal operation  
loopback mode  
0[1]  
1
[3]  
SPEED_SELECT (LSB)  
speed select (LSB):  
0
10 Mbit/s if SPEED_SELECT (MSB) = 0  
1000 Mbit/s if SPEED_SELECT (MSB) = 1  
1[1]  
0[1]  
100 Mbit/s if SPEED_SELECT (MSB) = 0  
reserved if SPEED_SELECT (MSB) = 1  
12  
11  
AUTONEG_EN  
POWER_DOWN  
R/W  
SC  
Auto negotiation not supported; always 0; a write access is  
ignored.  
R/W  
Standby power down enable:  
0[1]  
normal operation (clearing this bit automatically triggers  
a transition to Normal mode, provided control bits  
POWER_MODE are set to 0011 Normal mode, see  
Table 21)  
1
power down and switch to Standby mode (provided  
ISOLATE = 0; ignored if ISOLATE = 1 and  
CONTROL_ERR interrupt generated)  
10  
ISOLATE  
R/W  
PHY isolation:  
0[1]  
1
normal operation  
isolate PHY from MII/RMII (provided POWER_DOWN =  
0; ignored if POWER_DOWN = 1 and CONTROL_ERR  
interrupt generated)  
9
RE_AUTONEG  
R/W  
SC  
0[1]  
1[1]  
Auto negotiation not supported; always 0; a write access is  
ignored.  
8
7
DUPLEX_MODE  
R/W  
R/W  
R/W  
only full duplex supported; always 1; a write access is  
ignored.  
COLLISION_TEST  
SPEED_SELECT (MSB)  
0[1]  
COL signal test not supported; always 0; a write access is  
ignored.  
[3]  
6
speed select (MSB):  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
31 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 15.ꢀBasic control register (register 0)...continued  
Bit  
Symbol  
Access  
Value  
Description  
0[1]  
10 Mbit/s if SPEED_SELECT (LSB) = 0  
100 Mbit/s if SPEED_SELECT (LSB) = 1  
1
1000 Mbit/s if SPEED_SELECT (LSB) = 0  
reserved if SPEED_SELECT (LSB) = 1  
5
UNIDIRECT_EN  
R/W  
unidirectional enable when bit 12 (AUTONEG_EN) = 0 and bit  
8 (DUPLEX_MODE) = 1:  
0[1]  
enable transmit from MII only when the PHY has  
determined that a valid link has been established  
1
enable transmit from MII regardless of whether the PHY  
has determined that a valid link has been established  
4:0  
reserved  
R/W  
00000[1]  
always write 00000; ignore on read  
[1] Default value.  
[2] The loopback mode is selected via bits LOOPBACK_MODE in the Extended control register (Table 21).  
[3] Speed Select: 00: 10 Mbit/s; 01: 100 Mbit/s; 10: 1000 Mbit/s; 11: reserved; a write access value other than 01 is ignored.  
Table 16.ꢀBasic status register (register 1)  
Bit  
Symbol  
Access Value Description  
15  
100BASE-T4  
R
R
R
R
R
R
R
R
R
0[1]  
PHY not able to perform 100BASE-T4  
1
PHY able to perform 100BASE-T4  
14  
13  
12  
11  
10  
9
100BASE-X_FD  
100BASE-X_HD  
10Mbps_FD  
0[1]  
1
0[1]  
PHY not able to perform 100BASE-X full-duplex  
PHY able to perform 100BASE-X full-duplex  
PHY not able to perform 100BASE-X half-duplex  
PHY able to perform 100BASE-X half-duplex  
PHY not able to perform 10 Mbit/s full-duplex  
PHY able to perform 10 Mbit/s full-duplex  
PHY not able to perform 10 Mbit/s half-duplex  
PHY able to perform 10 Mbit/s half-duplex  
PHY not able to perform 100BASE-T2 full-duplex  
PHY able to perform 100BASE-T2 full-duplex  
PHY not able to perform 100BASE-T2 half-duplex  
PHY able to perform 100BASE-T2 half-duplex  
no extended status information in register 15h  
extended status information in register 15h  
1
0[1]  
1
0[1]  
10Mbps_HD  
1
100BASE-T2_FD  
100BASE-T2_HD  
EXTENDED_STATUS  
UNIDIRECT_ ABILITY  
0[1]  
1
0[1]  
1
8
0
1[1]  
7
0
PHY able to transmit from MII only when the PHY has  
determined that a valid link has been established  
1[1]  
0
PHY able to transmit from MII regardless of whether the  
PHY has determined that a valid link has been established  
6
MF_PREAMBLE_SUPPRESSION  
R
PHY will not accept management frames with preamble  
suppressed  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
32 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 16.ꢀBasic status register (register 1)...continued  
Bit  
Symbol  
Access Value Description  
1[1]  
PHY will accept management frames with preamble  
suppressed  
5
4
3
2
1
0
AUTONEG_COMPLETE  
REMOTE_FAULT  
R
0
Autonegotiation process not completed  
Autonegotiation process completed  
no remote fault condition detected  
remote fault condition detected  
1[1]  
0[1][2]  
1
R
LH  
AUTONEG_ABILITY  
LINK_STATUS  
R
0[1]  
PHY not able to perform Autonegotiation  
1
PHY able to perform Autonegotiation  
R
0[1][2][3] link is down  
LL  
1
0[1][2]  
link is up  
JABBER_DETECT  
EXTENDED_CAPABILITY  
R
no jabber condition detected  
jabber condition detected  
basic register set capabilities only  
extended register capabilities  
LH  
1
R
0
1[1]  
[1] Default value.  
[2] Reset to default value when link control is disabled (LINK_CONTROL = 0).  
[3] According to IEEE 802.3; LINK_STATUS = 1 when LOC_RCVR_STATUS = 1.  
Table 17.ꢀPHY identification register 1 (register 2)  
Bit  
Symbol  
Access  
Value  
0180h[1]  
Description  
bits 3 to 18 of the Organizationally Unique Identifier (OUI)[2]  
15:0  
PHY_ID  
R
[1] Default value (PHY0 only in dual PHY variant; returns all 0s for PHY1).  
[2] OUI = 00.60.37h (PHY0 only in dual PHY variant; returns all 0s for PHY1).  
Table 18.ꢀPHY identification register 2 (register 3)  
Bit  
Symbol  
PHY_ID  
TYPE_NO  
Access  
Value  
Description  
bits 19 to 24 of the OUI[2]  
15:10  
9:4  
R
R
110111[1]  
001000[3]  
001001[4]  
0010[1]  
six-bit manufacturer’s type number  
3:0  
REVISION_NO  
R
four-bit manufacturer’s revision number  
[1] Default value (PHY0 only in dual-PHY variant; returns all 0s for PHY1).  
[2] OUI = 00.60.37h (PHY0 only in dual-PHY variant; returns all 0s for PHY1).  
[3] Default value for TJA1102A dual-PHY variant (PHY0 only; returns all 0s for PHY1).  
[4] Default value for TJA1102AS.  
Table 19.ꢀPHY identification register 3 (Register 16)  
Bit  
Symbol  
Access  
Value  
Description  
15:8  
reserved  
R
-
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
33 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 19.ꢀPHY identification register 3 (Register 16)...continued  
Bit  
Symbol  
Access  
Value  
Description  
7:0  
VERSION_NO  
R
xxh[1]  
8-bit manufacturer's firmware revision number  
[1] Default value (PHY0 only in dual-PHY variant; returns all 0s for PHY1).  
Table 20.ꢀExtended status register (register 15)  
Bit Symbol  
Access Value  
Description  
15  
14  
13  
12  
1000BASE-X_FD  
R
R
R
R
0[1]  
PHY not able to perform 1000BASE-X full-duplex  
PHY able to perform 1000BASE-X full-duplex  
PHY not able to perform 1000BASE-X half-duplex  
PHY able to perform 1000BASE-X half-duplex  
PHY not able to perform 1000BASE-T full-duplex  
PHY able to perform 1000BASE-T full-duplex  
PHY not able to perform 1000BASE-T half-duplex  
PHY able to perform 1000BASE-T half-duplex  
always 0000; ignore on read  
1
1000BASE-X_HD  
1000BASE-T_FD  
1000BASE-T_HD  
0[1]  
1
0[1]  
1
0[1]  
1
0000[1]  
11:8 reserved  
R
R
7
100BASE-T1  
0
PHY not able to 1-pair 100BASE-T1 100 Mbit/s  
PHY able to 1-pair 100BASE-T1 100 Mbit/s  
PHY not able to support RTPGE  
1[1]  
0[1]  
1
6
1000BASE-RTPGE  
R
R
PHY supports RTPGE  
5:0 reserved  
-
ignore on read  
[1] Default value.  
Table 21.ꢀExtended control register (register 17)  
Bit  
Symbol  
Access  
Value  
Description  
[1]  
15  
LINK_CONTROL  
R/W  
link control enable:  
0
link control disabled  
1
link control enabled  
[2]  
14:11  
POWER_MODE  
R/W  
operating mode select:  
no change  
0000[3]  
0011  
1001  
1010  
1011  
1100  
Normal mode (command)  
Silent mode (read only)  
Sleep mode (read only)  
Sleep Request mode (command)  
Standby mode (command)  
enable/disable Slave jitter test  
disable Slave jitter test  
10  
SLAVE_JITTER_TEST[4] R/W  
0[3]  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
34 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 21.ꢀExtended control register (register 17)...continued  
Bit  
Symbol  
Access  
Value  
Description  
1
enable Slave jitter test  
9
TRAINING_RESTART  
R/W  
SC  
Autonegotiation process restart:  
halts the training phase  
forces a restart of the training phase  
test mode selection:  
0[3]  
1
8:6  
TEST_MODE[4]  
R/W  
000[3]  
001  
010  
011  
100  
101  
110  
111  
no test mode  
100BASE-T1 test mode 1  
100BASE-T1 test mode 2  
test mode 3  
100BASE-T1 test mode 4  
100BASE-T1 test mode 5  
scrambler and descrambler bypassed  
reserved; ignore on read  
TDR-based cable test:  
stops TDR-based cable test  
forces TDR-based cable test  
loopback mode select:  
internal loopback  
5
CABLE_TEST  
R/W  
SC  
0[3]  
1
4:3  
LOOPBACK_MODE[4][5] R/W  
00[3]  
01  
external loopback  
10  
external loopback  
11  
remote loopback  
[3]  
2
CONFIG_EN  
R/W  
configuration register access:  
configuration register access disabled  
configuration register access enabled  
ignore on read  
0[3]  
1
1
0
reserved  
R/W  
SC  
-
WAKE_REQUEST  
wake-up request configuration:  
no wake-up signal to be transmitted  
0[3]  
1
LINK_CONTROL = 0: transmit idle symbols as bus wake-up  
request  
LINK_CONTROL = 1: transmit WUR symbols  
[1] Default value is 0 when AUTO_OP = 0; default value is 1 when AUTO_OP = 1.  
[2] Any other value generates a CONTROL_ERR interrupt.  
[3] Default value.  
[4] Link control must be disabled (LINK_CONTROL = 0) before entering this mode.  
[5] The selected loopback mode is enabled when bit LOOPBACK in the Basic control register (Table 15) is set to 1.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
35 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 22.ꢀConfiguration register 1 (register 18)  
Bit  
Symbol  
Access  
Value  
Description  
[1]  
15  
MASTER_SLAVE  
R/W  
PHY Master/Slave configuration:  
PHY configured as Slave  
PHY configured as Master  
local wake-up forwarding:  
wake-up event not forwarded locally  
wake-up event forwarded locally  
ignore on read  
0
1
[2]  
14  
FWDPHYLOC  
R/W  
0
1[3]  
13:12  
11  
reserved  
R/W  
R/W  
-
[2]  
REMWUPHY  
remote wake-up:  
0
1[3]  
PHY does not react to a remote wake-up  
PHY reacts to a remote wake-up  
local wake-up:  
[2] [4]  
10  
LOCWUPHY  
MII_MODE  
R/W  
R/W  
0
1[3]  
PHY does not react to a local wake-up  
PHY reacts to a local wake-up  
MII mode:  
[1]  
9:8  
00  
01  
10  
11  
MII mode enabled  
RMII mode enabled (50 MHz input on Px_REF_CLK)  
RMII mode enabled (25 MHz XTAL output on Px_REF_CLK)  
Reverse MII mode  
7
6
MII_DRIVER  
R/W  
MII output driver strength:  
standard  
0[3]  
1
reduced  
SLEEP_CONFIRM R/W  
sleep confirmation setting:  
0[3]  
1
no confirmation needed from another PHY before going to  
sleep  
confirmation needed from another PHY before going to sleep  
LPS/WUR setting:  
5
4
LPS_WUR_DIS  
SLEEP_ACK  
R/W  
R/W  
0[3]  
1
LPS/WUR enabled  
LPS/WUR disabled  
sleep acknowledge:  
0[3]  
sleep acknowledge timer disabled; auto-transition back from  
Sleep Request mode to Normal mode enabled during data  
transmission on MII or MDI  
1
sleep acknowledge timer enabled; auto-transition back from  
Sleep Request mode to Normal mode disabled during data  
transmission on MII or MDI  
3
2
reserved  
R/W  
R/W  
-
ignore on read  
[2]  
FWDPHYREM  
remote wake-up forwarding:  
remote wake-up event not forwarded  
0[3]  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
36 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 22.ꢀConfiguration register 1 (register 18)...continued  
Bit  
Symbol  
Access  
Value  
Description  
1
remote wake-up event forwarded  
autonomous power down:  
1
AUTO_PWD  
R/W  
0[3]  
1
autonomous power-down disabled  
autonomous power-down enabled  
LPS code group reception:  
0
LPS_ACTIVE  
R/W  
0
automatic transition from Normal to Sleep Request when LPS  
code group received disabled  
1[3]  
automatic transition from Normal to Sleep Request when LPS  
code group received enabled  
[1] Default value determined by pin strapping (see Section 6.10).  
[2] Clear bits FWDPHYLOC, REMWUPHY, LOCWUPHY and FWDPHYREM if the corresponding wake-up/forwarding feature is not being used.  
[3] Default value.  
[4] Setting LOCWUPHY has an activation time of tdet(wake). If a wake-up occurs within the activation time, it may not be detected.  
Table 23.ꢀConfiguration register 2 (register 19)  
Bit  
Symbol  
Access Value  
Description  
[1]  
15:11  
PHYAD[4:0]  
R
PHY address used for the SMI address and for initializing the  
Cipher scrambler key:  
PHYAD[4] is set to 0  
PHYAD[3:1] is predetermined by the hardware configuration  
straps on pins 37, 36 and 35 respectively  
PHYAD[0] set to 0 for P0 and 1 for P1  
Signal Quality Indicator (SQI) averaging:  
SQI averaged 32 symbols  
SQI averaged 64 symbols  
SQI averaged 128 symbols  
SQI averaged 256 symbols  
SQI warning limit:  
[2]  
10:9  
SQI_AVERAGING  
R/W  
00  
01[3]  
10  
11  
8:6  
SQI_WLIMIT  
R/W  
000  
no warning limit  
001[3]  
class A SQI warning limit  
class B SQI warning limit  
class C SQI warning limit  
class D SQI warning limit  
class E SQI warning limit  
class F SQI warning limit  
class G SQI warning limit  
SQI fail limit:  
010  
011  
100  
101  
110  
111  
5:3  
SQI_FAILLIMIT  
R/W  
000[3]  
001  
no fail limit  
class A SQI fail limit  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
37 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 23.ꢀConfiguration register 2 (register 19)...continued  
Bit  
Symbol  
Access Value  
Description  
010  
class B SQI fail limit  
class C SQI fail limit  
class D SQI fail limit  
class E SQI fail limit  
class F SQI fail limit  
class G SQI fail limit  
Jumbo packet support:  
packets up to 4 kB supported  
packets up to 16 kB supported  
sleep request/acknowledge timeout:  
0.4 ms/0.2 ms  
011  
100  
101  
110  
111  
2
JUMBO_ENABLE  
R/W  
0
1[3]  
[4]  
1:0  
SLEEP_REQUEST_TO R/W  
00  
01[3]  
1 ms/0.5 ms  
10  
4 ms/2 ms  
11  
16 ms/8 ms  
[1] Default value determined by pin strapping (see Section 6.10).  
[2] The SQI is derived from the actual internal slicer margin and includes filtering. Averaging the SQI value itself does not, therefore, have any added value.  
[3] Default value.  
[4] The specified values are nominal settings; see parameters tto(req)sleep and tto(ack)sleep, respectively, for the limits.  
Table 24.ꢀSymbol error counter register (register 20)  
Bit  
Symbol  
Access  
Value  
Description  
15:0  
SYM_ERR_CNT  
R
0000h[1]  
The symbol error counter is incremented when an invalid code  
symbol is received (including idle symbols). The counter is  
incremented only once per packet, even when the received packet  
contains more than one symbol error. This counter increments up to  
216. When the counter overflows, the value FFFFh is retained. The  
counter is reset when the register is read.  
[1] Default value. Bits NOT reset to default value when link control is disabled (LINK_CONTROL = 0).  
Table 25.ꢀInterrupt source register (register 21)  
Bit  
Symbol  
Access  
Value  
0[1]  
1
Description  
15  
PWON  
R
power-on not detected  
LH  
power-on detected  
14  
13  
WAKEUP  
R
0[2][3]  
no local or remote wake-up detected  
local or remote wake-up detected  
no dedicated wake-up request detected  
dedicated wake-up request detected  
LH  
1
WUR_RECEIVED  
R
0[2]  
1
LH  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
38 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 25.ꢀInterrupt source register (register 21)...continued  
Bit  
Symbol  
Access  
Value  
0[2]  
1
Description  
12  
LPS_RECEIVED  
R
no LPS code groups received  
LPS code groups received  
LH  
11  
10  
9
PHY_INIT_FAIL  
LINK_STATUS_FAIL  
LINK_STATUS_UP  
SYM_ERR  
R
0[2]  
no PHY initialization error detected  
PHY initialization error detected  
link status not changed  
LH  
1
R
0[2][4]  
1
0[2][4]  
1
0[2][4]  
1
LH  
link status bit LINK_UP changed from ‘link OK’ to ‘link fail’  
link status not changed  
R
LH  
link status bit LINK_UP changed from ‘link fail’ to ‘link OK’  
no symbol error detected  
8
R
LH  
symbol error detected  
7
TRAINING_FAILED  
SQI_WARNING  
CONTROL_ERR  
R
0[2]  
no training phase failure detected  
training phase failure detected  
SQI value above warning limit  
SQI value below warning limit and bit LINK_UP set  
no SMI control error detected  
SMI control error detected  
LH  
1
6
R
0[2][4]  
1
0[2]  
LH  
5
R
LH  
1
4
3
reserved  
UV_ERR  
R
-
ignore on read  
R
0[1]  
no undervoltage detected  
LH  
1
undervoltage detected on VDD(IO), VDDD(3V3), VDDD(1V8) or  
VDDA(3V3)  
2
1
0
UV_RECOVERY  
TEMP_ERR  
R
0[1]  
1
0[1]  
no undervoltage recovery detected  
undervoltage recovery detected  
no overtemperature error detected  
overtemperature error detected  
LH  
R
LH  
1
0[2]  
SLEEP_ABORT  
R
no transition from Sleep Request back to Normal as a result of  
the Sleep Request timer expiring  
LH  
1
transition from Sleep Request back to Normal as a result of the  
Sleep Request timer expiring  
[1] Default value (P0 only; always returns 0 for P1 block).  
[2] Default value.  
[3] Bit WAKEUP may be set when an undervoltage is detected on VDD(IO) in Sleep_Request mode. Ignore this bit when bit UV_VDDIO is set.  
Bit WAKEUP is reset by a read operation; however wake-up detection will not be enabled again until a state transition has been completed.  
[4] Interrupts LINK_STATUS_FAIL, LINK_STATUS_UP, SYM_ERR and SQI_WARNING are cleared on entering Sleep Request mode, on entering Standby  
mode due to an undervoltage and when an undervoltage is detected in Standby mode.  
Table 26.ꢀInterrupt enable register (register 22)  
Disabling an interrupt source disables signaling at pin INT_N for that interrupt. However, the corresponding bit in the  
Interrupt source register (Table 25) remains active.  
Bit  
Symbol  
Access  
Value  
Description  
15  
PWON_EN  
R/W  
0[1]  
PWON interrupt disabled  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
39 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 26.ꢀInterrupt enable register (register 22)...continued  
Disabling an interrupt source disables signaling at pin INT_N for that interrupt. However, the corresponding bit in the  
Interrupt source register (Table 25) remains active.  
Bit  
14  
13  
12  
11  
10  
9
Symbol  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Value  
1[1]  
0[2]  
1
Description  
PWON interrupt enabled  
WAKEUP_EN  
WAKEUP interrupt disabled  
WAKEUP interrupt enabled  
WUR_RECEIVED_EN  
LPS_RECEIVED_EN  
PHY_INIT_FAIL_EN  
LINK_STATUS_FAIL_EN  
LINK_STATUS_UP_EN  
SYM_ERR_EN  
0[2]  
WUR_RECEIVED interrupt disabled  
WUR_RECEIVED interrupt enabled  
LPS_RECEIVED interrupt disabled  
LPS_RECEIVED interrupt enabled  
PHY_INIT_FAIL interrupt disabled  
PHY_INIT_FAIL interrupt enabled  
LINK_STATUS_FAIL interrupt disabled  
LINK_STATUS_FAIL interrupt enabled  
LINK_STATUS_UP interrupt disabled  
LINK_STATUS_UP interrupt enabled  
SYM_ERR interrupt disabled  
1
0[2]  
1
0[2]  
1
0[2]  
1
0[2]  
1
8
0[2]  
1
0[2]  
SYM_ERR interrupt enabled  
7
TRAINING_FAILED_EN  
SQI_WARNING_EN  
CONTROL_ERR_EN  
TRAINING_FAILED interrupt disabled  
TRAINING_FAILED interrupt enabled  
SQI_WARNING interrupt disabled  
SQI_WARNING interrupt enabled  
CONTROL_ERR interrupt disabled  
CONTROL_ERR interrupt enabled  
always write 0; ignore on read  
UV_ERR interrupt disabled  
1
6
0[2]  
1
0[2]  
5
1
4
3
reserved  
R/W  
R/W  
0[2]  
0[2]  
1
UV_ERR_EN  
UV_ERR interrupt enabled  
2
1
0
UV_RECOVERY_EN  
TEMP_ERR_EN  
R/W  
R/W  
R/W  
0[2]  
UV_RECOVERY interrupt disabled  
UV_RECOVERY interrupt enabled  
TEMP_ERR interrupt disabled  
TEMP_ERR interrupt enabled  
SLEEP_ABORT interrupt disabled  
SLEEP_ABORT interrupt enabled  
1
0[2]  
1
0[2]  
SLEEP_ABORT_EN  
1
[1] Default value is 1 for block P0 and 0 for block P1 (TJA1102A).  
[2] Default value.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
40 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 27.ꢀCommunication status register (register 23)  
Bit  
Symbol  
Access Value  
Description  
15  
LINK_UP  
R
R
0[1][2]  
link failure  
1
link OK  
14:13 TX_MODE  
00[1][2]  
01  
transmitter disabled  
transmitter in SEND_N mode  
transmitter in SEND_I mode  
transmitter in SEND_Z mode  
local receiver not OK  
local receiver OK  
10  
11  
12  
11  
10  
9
LOC_RCVR_STATUS  
R
0[1][2]  
1
0[1][2]  
1
0[1][2]  
1
0[1][2]  
1
0[1][2]  
1
LL  
REM_RCVR_STATUS  
SCR_LOCKED  
SSD_ERR  
R
remote receiver not OK  
remote receiver OK  
LL  
R
descrambler unlocked  
descrambler locked  
R
no SSD error detected  
SSD error detected  
LH  
8
ESD_ERR  
R
no ESD error detected  
ESD error detected  
LH  
7:5  
SQI  
R
000[1][2]  
001  
010  
011  
100  
101  
110  
111  
0[1][2]  
0
worse than class A SQI (unstable link)  
class A SQI (unstable link)  
class B SQI (unstable link)  
class C SQI (good link)  
class D SQI (good link; bit error rate < 1e-10)  
class E SQI (good link)  
class F SQI (very good link)  
class G SQI (very good link)  
no receive error detected  
receive error detected since register last read  
no transmit error detected  
transmit error detected since register last read  
PHY Idle  
4
RECEIVE_ERR  
TRANSMIT_ERR  
PHY_STATE  
R
LH  
3
R
0[1][2]  
LH  
1
2:0  
R
000[1]  
001  
010  
011  
100  
101  
110  
111  
PHY Initializing  
PHY Configured  
PHY Offline  
PHY Active  
PHY Isolate  
PHY Cable test  
PHY Test mode  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
41 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
[1] Default value.  
[2] Reset to default value when link control is disabled (LINK_CONTROL = 0).  
Table 28.ꢀGeneral status register (register 24)  
Bit  
Symbol  
Access  
Value  
0[1]  
1
Description  
15  
INT_STATUS  
R
all interrupts cleared  
unmasked interrupt pending  
PLL unstable and not locked  
PLL stable and locked  
no local wake-up detected  
local wake-up detected  
no remote wake-up detected  
remote wake-up detected  
14  
13  
12  
11  
PLL_LOCKED  
LOCAL_WU  
R
0[1]  
LL  
1
R
0[1][2]  
1
0[1][2]  
1
LH  
REMOTE_WU  
DATA_DET_WU  
R
LH  
R
0[1][3]  
no 100BASE-T1 data detected at MDI or MII in Sleep  
Request mode  
LH  
1
100BASE-T1 data detected at MDI (pcs_rx_dv = TRUE; see  
[1]) or MII (TXEN = 1) in Sleep Request mode  
10  
9
EN_STATUS  
R
0[4]  
1
0[4]  
EN HIGH  
LH  
EN switched LOW since register last read  
no hardware reset detected  
hardware reset detected since register last read  
ignore on read  
RESET_STATUS  
R
LH  
1
8
reserved  
R
R
R
-
7:3  
2:0  
LINKFAIL_CNT  
reserved  
00000[1][5] number of link fails since register last read  
-
ignore on read  
[1] Default value.  
[2] Status bit is cleared by a read operation; however wake-up detection will not be enabled again until a state transition has been completed.  
[3] Bit DATA_DET_WU may be set when an undervoltage is detected on VDD(IO) in Sleep_Request mode. Ignore this bit when bit UV_VDDIO is set.  
[4] Default value (P0 only; always returns 0 for P1 block).  
[5] Bits NOT reset to default value when link control is disabled (LINK_CONTROL = 0).  
Table 29.ꢀExternal status register (register 25)  
Bit  
Symbol  
Access  
Value  
0[1]  
1
Description  
15  
UV_VDDD_3V3  
R
no undervoltage detected on pin VDDD(3V3)  
undervoltage detected on pin VDDD(3V3)  
no undervoltage detected on pin VDDA(3V3)  
undervoltage detected on pin VDDA(3V3)  
no undervoltage detected on pin VDDD(1V8)  
undervoltage detected on pin VDDD(1V8)  
ignore on read  
LH  
14  
13  
UV_VDDA_3V3  
UV_VDDD_1V8  
R
0[1]  
LH  
1
R
0[1]  
1
LH  
12  
11  
reserved  
R
-
UV_VDDIO  
R
0[1]  
no undervoltage detected on pin VDD(IO)  
undervoltage detected on pin VDD(IO)  
LH  
1
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
42 / 67  
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 29.ꢀExternal status register (register 25)...continued  
Bit  
Symbol  
Access  
Value  
0[1]  
1
Description  
10  
TEMP_HIGH  
R
temperature below high level  
LH  
temperature above high level  
9
TEMP_WARN  
R
0[1]  
temperature below warning level  
temperature above warning level  
no short circuit detected  
LH  
1
8
SHORT_DETECT  
OPEN_DETECT  
POLARITY_DETECT  
INTERLEAVE_DETECT  
reserved  
R
0[2]  
1
0[2]  
LH  
short circuit detected since register last read  
no open circuit detected  
7
R
LH  
1
open circuit detected since register last read  
no polarity inversion detected at MDI  
polarity inversion detected at MDI  
interleave order of detected ternary symbols: TAn, TBn  
interleave order of detected ternary symbols: TBn, TAn  
ignore on read  
6
R
R
R
0[2]  
1
0[2]  
5
1
4:0  
-
[1] Default value (P0 only; always returns 0 for P1 block).  
[2] Default value; bit NOT reset to default value when link control is disabled (LINK_CONTROL = 0).  
Table 30.ꢀLink fail counter register (register 26)  
Bit  
Symbol  
Access  
Value  
Description  
15:8  
LOC_RCVR_CNT  
R
00h[1][2]  
The counter is incremented when local receiver is NOT_OK;  
when the counter overflows, the value FFh is retained. The  
counter is reset when the register is read.  
7:0  
REM_RCVR_CNT  
R
00h[1][2]  
The counter is incremented when remote receiver is NOT_OK;  
when the counter overflows, the value FFh is retained. The  
counter is reset when the register is read.  
[1] Default value.  
[2] Bits NOT reset to default value when link control is disabled (LINK_CONTROL = 0).  
Table 31.ꢀCommon configuration register (register 27)[1]  
Bit  
Symbol  
Access  
Value  
Description  
[2]  
15  
AUTO_OP  
R/W  
managed/autonomous operation:  
managed operation  
0
1
autonomous operation  
[2]  
14  
INT_REV_MII  
CLK_MODE  
R/W  
R/W  
PHY Master/Slave configuration (P0 in Reverse MII mode; P1 in  
MII mode)  
0
P1 must be connected externally to P0 (external PHY must be  
connected to P0 in the TJA1102AS)  
1
P1 connected internally to P0 (TJA1102A)  
clock mode:  
[2]  
13:12  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
43 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 31.ꢀCommon configuration register (register 27)[1]...continued  
Bit  
Symbol  
Access  
Value  
00  
Description  
25 MHz XTAL; no clock at CLK_IN_OUT  
01  
25 MHz XTAL; 25 MHz output at CLK_IN_OUT  
25 MHz external clock at CLK_IN_OUT  
10  
11  
50 MHz input at REF_CLK; RMII mode only; no XTAL; no  
clock at CLK_IN_OUT  
[2]  
11  
10  
9
LDO_MODE  
CLK_DRIVER  
CLK_HOLD  
R/W  
R/W  
R/W  
LDO mode:  
0
1
internal 1.8 V LDO enabled  
external 1.8 V supply  
output driver strength on CLK_IN_OUT:  
standard output driver strength at output of CLK_IN_OUT  
reduced output driver strength at output of CLK_IN_OUT  
local wake-up:  
0[3]  
1
0[3]  
1
XTAL and CLK_IN_OUT output switched off when not needed  
by P0 and P1  
XTAL and CLK_IN_OUT output remain active until device  
switched to Sleep mode via SMI  
8:7  
LOC_WU_TIM  
R/W  
local wake-up timer:  
00[3]  
01  
longest (10 ms to 20 ms)  
long (250 μs to 500 μs)  
short (100 μs to 200 μs)  
shortest (10 μs to 40 μs)  
local wake configuration:  
absolute input threshold  
10  
11  
6
CONFIG_WAKE  
CONFIG_INH  
reserved  
R/W  
R/W  
R/W  
0
1[3]  
ratiometric input threshold (VDD(IO)  
)
5
INH configuration:  
0[3]  
1
INH switched off in Disable mode  
INH switched on in Disable mode  
ignore on read  
4:0  
-
[1] Read/write operations valid for P0 only (read operation always returns 0 for P1 block).  
[2] Default value determined by pin strapping (see Section 6.10).  
[3] Default value.  
Table 32.ꢀConfiguration register 3 (register 28)  
Bit  
Symbol  
Access  
Value  
Description  
15:3  
reserved  
R/W  
-
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
44 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 32.ꢀConfiguration register 3 (register 28)...continued  
Bit  
Symbol  
Access  
Value  
Description  
MDI polarity:  
regular polarity:  
2
MDI_POL  
R/W  
0[1]  
pin 17 = P0_TRX_P; pin 18 = P0_TRX_M  
pin 25 = P1_TRX_P; pin 24 = P1_TRX_M  
1
swapped polarity:  
pin 17 = P0_TRX_M; pin 18 = P0_TRX_P  
pin 25 = P1_TRX_M; pin 24 = P1_TRX_P  
1
0
FORCE_SLEEP  
PHY_EN  
R/W  
SC  
forced sleep operation:  
0[2]  
forced sleep inactive  
1
force both PHYs to Sleep mode and device to system sleep  
[3]  
R/W  
PHY enable:  
PHY disabled  
PHY enabled  
0
1
[1] Default value.  
[2] Default value (P0 only; always returns 0 for P1 block).  
[3] Default value determined by pin strapping (see Section 6.10).  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
45 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
7 Limiting values  
Table 33.ꢀLimiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol Parameter  
Conditions  
Min Max  
Unit  
V
Vx  
voltage on pin x[1]  
on pin VBAT  
-0.3 +40  
on pin INH  
-0.3 VBAT + 0.3  
V
on pin WAKE_IN_OUT  
-36  
+42  
V
on pins VDDA(3V3), P0_VDDA(TX), P1_VDDA(TX)  
VDDD(3V3), VDD(IO), P0_TRX_P, P0_TRX_M,  
P1_TRX_P, P1_TRX_M  
,
-0.3 +4.6  
V
on pins VDDD(1V8), XI, XO  
-0.3 +2.5  
V
V
on input pins MDC, MDIO, RST_N, INT_N, EN,  
CLK_IN_OUT, SEL_1V8 and MII digital input  
pins  
-0.3 min(VDD(IO)  
0.3, +4.6)  
+
on digital output pins  
-0.3 VDD(IO) + 0.3  
V
IO(INH)  
Vtrt  
output current on pin INH  
transient voltage  
-2  
-
mA  
[2]  
on pins WAKE_IN_OUT, VBAT, P0_TRX_P,  
P0_TRX_M, P1_TRX_P, P1_TRX_M  
pulse 1  
-100  
-
V
V
V
V
pulse 2a  
-
75  
-
pulse 3a  
-150  
-
pulse 3b  
100  
[3]  
[4]  
VESD  
electrostatic discharge  
voltage  
IEC 61000-4-2; 150 pF, 330 Ω  
on pins P0_TRX_P, P0_TRX_M, P1_TRX_P,  
P1_TRX_M  
-8.0 +8.0  
kV  
[5]  
[6]  
on pin WAKE_IN_OUT  
on pin VBAT to GND  
Human Body Model (HBM)  
on any pin  
-8.0 +8.0  
-8.0 +8.0  
kV  
kV  
[7]  
-2.0 +2.0  
-6.0 +6.0  
kV  
kV  
on pins P0_TRX_P, P0_TRX_M, P1_TRX_P,  
P1_TRX_M  
[8]  
[9]  
on pin WAKE_IN_OUT  
on pin VBAT  
-6.0 +6.0  
-6.0 +6.0  
kV  
kV  
Charged Device Model (CDM)  
on any pin  
[10]  
-500 +500  
V
Tamb  
Tstg  
ambient temperature  
storage temperature  
-40  
-55  
+125  
+150  
°C  
°C  
[1] The device can sustain voltages up to the specified values over the product lifetime, provided applied voltages (including transients) never exceed these  
values.  
[2] Verified by an external test house according to IEC TS 62228, Section 4.2.4; parameters for standard pulses defined in ISO7637.  
[3] Verified by an external test house according to IEC TS 62228, Section 4.3.  
[4] Tested with a common mode choke and 100 nF coupling capacitors.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
46 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
[5] Tested with 10 nF capacitor to GND and 10 kΩ in series between the capacitor and the WAKE_IN_OUT pin.  
[6] Tested with 100 nF capacitor from VBAT to GND.  
[7] According to AEC-Q100-002.  
[8] With 10 nF capacitor to GND and 10 kΩ in series between the capacitor and the WAKE_IN_OUT pin.  
[9] With 100 nF from VBAT to GND.  
[10] According to AEC-Q100-011.  
8 Thermal characteristics  
Table 34.ꢀThermal characteristics  
Symbol Parameter  
Conditions  
Typ  
Unit  
[1]  
Rth(j-a)  
Rth(j-c)  
Ψj-top  
thermal resistance from junction to ambient  
HVQFN56 package; in free air  
LDO disabled (LDO_MODE = 1)  
LDO enabled (LDO_MODE = 0)  
HVQFN56 package; in free air  
LDO disabled (LDO_MODE = 1)  
LDO enabled (LDO_MODE = 0)  
HVQFN36 package; in free air  
LDO disabled (LDO_MODE = 1)  
LDO enabled (LDO_MODE = 0)  
26  
31  
K/W  
K/W  
[2]  
[1]  
thermal resistance from junction to case  
3
8
K/W  
K/W  
thermal characterization parameter from  
junction to top of package  
1
6
K/W  
K/W  
[1] According to JEDEC JESD51-2, JESD51-5 and JESD51-7 at natural convection on 2s2p board. Board with two inner copper layers( thickness: 35 μm)  
and thermal via array under the exposed pad connected to the first inner copper layer.  
[2] Determined using an isothermal cold plate.  
9 Static characteristics  
Table 35.ꢀSupply characteristics  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Battery supply: pin VBAT  
VBAT  
Vuvd  
Vuvr  
battery supply voltage  
operating range  
3.1  
2.8  
-
-
36  
-
V
undervoltage detection voltage  
undervoltage recovery voltage  
undervoltage hysteresis voltage  
battery supply current  
-
V
-
3.1  
-
V
Vuvhys  
IBAT  
15  
-
100  
-
mV  
mA  
TJA1102A; all modes except  
Sleep; VBAT < 36 V; IINH = 0 μA  
2.7  
TJA1102AS; all modes except  
Sleep; VBAT < 36 V; IINH = 0 μA  
-
-
-
1.7  
mA  
μA  
Sleep mode; Tvj ≤ 85 °C;  
VBAT < 7.4 V  
150  
300  
Sleep mode; Tvj ≤ 85 °C;  
7.4 V < VBAT < 30 V  
-
-
45  
-
100  
6.5  
μA  
VBAT < 40 V; IINH = 0 μA  
mA  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
47 / 67  
 
 
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 35.ꢀSupply characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
3.3 V analog supply: pin VDDA(3V3)  
VDDA(3V3) analog supply voltage (3.3 V)  
Vuvd  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
operating range  
3.1  
2.9  
-
3.3  
-
3.5  
-
V
undervoltage detection voltage  
undervoltage recovery voltage  
undervoltage hysteresis voltage  
analog supply current (3.3 V)  
V
Vuvr  
-
3.1  
-
V
Vuvhys  
IDDA(3V3)  
50  
-
80  
43  
mV  
mA  
TJA1102A; Normal/Sleep  
Request modes  
55  
TJA1102AS; Normal/Sleep  
Request modes  
-
22  
27  
mA  
Standby mode  
-
-
130  
4
250  
50  
μA  
μA  
Disable/Reset modes  
3.3 V digital supply: pin VDDD(3V3)  
VDDD(3V3) digital supply voltage (3.3 V)  
Vuvd  
operating range  
3.1  
2.9  
-
3.3  
-
3.5  
-
V
undervoltage detection voltage  
undervoltage recovery voltage  
undervoltage hysteresis voltage  
digital supply current (3.3 V)  
V
Vuvr  
-
3.1  
-
V
Vuvhys  
IDDD(3V3)  
50  
-
80  
100  
mV  
mA  
TJA1102A: Normal/Sleep  
120  
Request modes; LDO_MODE = 0  
TJA1102AS: Normal/Sleep  
Request modes; LDO_MODE = 0  
-
-
-
51  
5
61  
8
mA  
mA  
mA  
TJA1102A; Normal/Sleep  
Request modes; LDO_MODE = 1  
TJA1102AS; Normal/Sleep  
2.5  
4
Request modes; LDO_MODE = 1  
Standby mode; LDO_MODE = 0  
Disable/Reset modes  
-
-
0.2  
1
10  
50  
mA  
μA  
1.8 V digital supply: pin VDDD(1V8)  
VDDD(1V8) digital supply voltage (1.8 V)  
Vuvd  
operating range; LDO_MODE = 1  
LDO_MODE = 1  
1.745  
1.84 1.95  
V
undervoltage detection voltage  
undervoltage recovery voltage  
undervoltage hysteresis voltage  
digital supply current (1.8 V)  
1.65  
-
-
V
Vuvr  
LDO_MODE = 1  
-
-
1.745  
-
V
Vuvhys  
IDDD(1V8)  
LDO_MODE = 1  
20  
-
35  
95  
mV  
mA  
[1]  
[1]  
TJA1102A; Normal/Sleep  
Request modes; LDO_MODE = 1  
115  
TJA1102AS; Normal/Sleep  
Request modes; LDO_MODE = 1  
-
48  
57  
mA  
V
Transmitter analog supply: pins P0_VDDA(TX) and P1_VDDA(TX)  
VDDA(TX)  
transmitter analog supply voltage operating range  
3.1  
3.3  
3.5  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
48 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 35.ꢀSupply characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
27  
0
Max  
33  
Unit  
mA  
μA  
IDDA(TX)  
transmitter analog supply current Normal/Sleep Request modes  
Standby/Disable/Reset modes  
-
-
50  
Input/output supply: pin VDD(IO)  
VDD(IO) input/output supply voltage  
Vuvd  
operating range  
3.1  
2.9  
-
3.3  
-
3.5  
-
V
undervoltage detection voltage  
undervoltage recovery voltage  
undervoltage hysteresis voltage  
input/output supply current  
V
Vuvr  
-
3.1  
-
V
Vuvhys  
IDD(IO)  
50  
-
80  
10  
mV  
mA  
[1]  
TJA1102A; Normal/Sleep  
Request modes; Cload on MII pins  
= 15 pF  
15  
TJA1102AS; Normal/Sleep  
Request modes; Cload on MII pins  
= 15 pF  
-
-
5
3
7.5  
40  
mA  
μA  
Standby/Disable modes;  
no currents in pull-up resistors on  
digital inputs  
[1]  
Reset mode; no currents in pull-  
up resistors on digital inputs  
-
35  
80  
μA  
Power consumption  
P
power dissipation  
TJA1102A; Normal/Sleep  
Request modes; LDO_MODE = 0  
-
-
-
-
700  
360  
560  
290  
900  
480  
760  
400  
mW  
mW  
mW  
mW  
TJA1102AS; Normal/Sleep  
Request modes; LDO_MODE = 0  
TJA1102A; Normal/Sleep  
Request modes; LDO_MODE = 1  
TJA1102AS; Normal/Sleep  
Request modes; LDO_MODE = 1  
[1] Not measured in production; guaranteed by design.  
Table 36.ꢀxMI interfaces characteristics  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SMI interface: pins MDC and MDIO  
VIH  
VIL  
Ci  
HIGH-level input voltage  
LOW-level input voltage  
input capacitance  
2
-
-
-
-
-
-
V
0.8  
8
V
[1]  
[1]  
pin MDC  
pin MDIO  
-
pF  
pF  
-
10  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
49 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 36.ꢀxMI interfaces characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
HIGH-level output voltage  
pin MDIO; IOH = -4 mA  
VDD(IO)  
- 0.4  
-
-
V
VOL  
IIH  
LOW-level output voltage  
HIGH-level input current  
LOW-level input current  
pin MDIO; IOL = 4 mA  
VIH = VDD(IO)  
-
-
0.4  
20  
-
V
-
-
μA  
μA  
μA  
kΩ  
kΩ  
IIL  
pin MDC; VIL = 0 V  
pin MDIO; Vi = 0 V  
on pin MDC  
-20  
-100  
262.5  
70  
-
-
-20  
-
Rpd  
Rpu  
pull-down resistance  
pull-up resistance  
500  
100  
on pin MDIO  
130  
(R)MII interface: pins P0_TXER, P0_TXEN, P0_TXDx, P0_TXC, P0_RXDx, P0_RXDV, P0_RXER, P0_RXC, P1_TXER,  
P1_TXEN, P1_TXDx, P1_TXC, P1_RXDx, P1_RXDV, P1_RXER, P1_RXC[2]  
VIH  
VIL  
Ci  
HIGH-level input voltage  
LOW-level input voltage  
input capacitance  
2
-
-
-
-
-
-
V
0.8  
8
V
[1]  
-
pF  
V
VOH  
HIGH-level output voltage  
IOH = -4 mA  
VDD(IO)  
- 0.4  
-
VOL  
IIH  
LOW-level output voltage  
HIGH-level input current  
LOW-level input current  
pull-down resistance  
IOL = 4 mA  
VIH = VDD(IO)  
VIL = 0 V  
-
-
0.4  
200  
-
V
-
-
μA  
μA  
kΩ  
IIL  
-20  
70  
-
Rpd  
on pins P0_TXER, P0_TXEN,  
P0_TXDx, P1_TXER, P1_TXEN,  
P1_TXDx  
100  
130  
on pins P0_TXC and P1_TXC;  
Reverse MII mode  
70  
100  
130  
kΩ  
[1] Not measured in production; guaranteed by design.  
[2] Pins P1_xxx only valid for TJA1102A.  
Table 37.ꢀGeneral electrical characteristics  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pins RST_N, EN  
VIH  
VIL  
Vhys(i)  
Ci  
HIGH-level input voltage  
LOW-level input voltage  
input hysteresis voltage  
input capacitance  
2
-
-
V
-
-
0.8  
-
V
0.36  
0.5  
V
[1]  
-
-
-
-
8
pF  
μA  
μA  
IIH  
HIGH-level input current  
LOW-level input current  
at pin RST_N; VIH = VDD(IO)  
at pin EN; VIL = 0 V  
-
20  
-
IIL  
-20  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
50 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 37.ꢀGeneral electrical characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Rpd  
Parameter  
Conditions  
on pin EN  
Min  
70  
Typ  
100  
100  
Max  
130  
130  
Unit  
kΩ  
pull-down resistance  
pull-up resistance  
Rpu  
on pin RST_N  
70  
kΩ  
pin INT_N  
VOL  
LOW-level output voltage  
IOL = 2 mA  
-
-
0.4  
-
V
pin SEL_1V8  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
input hysteresis voltage  
0.7 ×  
-
-
-
V
V
V
VDD(IO)  
VIL  
-
0.3 ×  
VDD(IO)  
Vhys(i)  
0.1 ×  
-
VDD(IO)  
IIL  
LOW-level input current  
pull-down resistance  
VIL = 0 V  
-5  
-
+5  
μA  
kΩ  
Rpd  
on pin SEL_1V8  
70  
100  
130  
pin CLK_IN_OUT  
VIH  
HIGH-level input voltage  
0.7 ×  
-
-
-
-
-
V
V
V
V
VDD(IO)  
VIL  
LOW-level input voltage  
input hysteresis voltage  
HIGH-level output voltage  
-
0.3 ×  
VDD(IO)  
Vhys(i)  
0.1 ×  
-
VDD(IO)  
VOH  
CLK_MODE = 01; IOH = -4 mA  
VDD(IO)  
- 0.4  
-
VOL  
IIL  
LOW-level output voltage  
LOW-level input current  
pull-down resistance  
CLK_MODE = 01; IOL = 4 mA  
CLK_MODE = 00 or 11; VIL = 0 V  
CLK_MODE = 00 or 11  
-
-
0.4  
+5  
V
-5  
-
μA  
kΩ  
Rpd  
70  
100  
130  
pins P0_RXD[3:0], P0_RXER, P0_RXDV, P1_RXD[3:0], P1_RXER, P1_RXDV during pin strapping[2]  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
2
-
-
-
-
V
V
0.8  
pin WAKE_IN_OUT  
VIH HIGH-level input voltage  
CONFIG_WAKE = 0 (see Table  
29)  
2.8  
-
-
4.1  
V
V
CONFIG_WAKE = 1  
0.44 ×  
VDD(IO)  
0.64 ×  
VDD(IO)  
VIL  
LOW-level input voltage  
input hysteresis voltage  
CONFIG_WAKE = 0  
CONFIG_WAKE = 1  
2.4  
-
-
3.75  
V
V
0.38 ×  
VDD(IO)  
0.55 ×  
VDD(IO)  
Vhys(i)  
CONFIG_WAKE = 0  
0.25  
-
0.8  
V
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
51 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 37.ꢀGeneral electrical characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CONFIG_WAKE = 1  
0.025 × -  
VDD(IO)  
0.2 ×  
V
VDD(IO)  
Ii  
input current  
-5  
-
-
+5  
μA  
V
VOH  
HIGH-level output voltage  
all modes except Sleep and  
Power-off; IWAKE_IN_OUT = 0 mA  
VBAT  
0.8  
-
VBAT  
IOL  
LOW-level output current  
all modes except Sleep, Power-  
off; VWAKE_IN_OUT = 0 V  
-30  
-
-
mA  
pin INH  
VOH  
HIGH-level output voltage  
LOW-level output current  
leakage current  
all modes except Sleep, Power-  
off; IINH = -1 mA  
VBAT - 1 -  
VBAT  
-2  
V
IOL  
all modes except Sleep, Power-  
off; VINH = 0 V  
-15  
-5  
-7  
mA  
μA  
IL  
Sleep, Power-off modes  
-
+5  
pins XI, XO  
Ci  
[1]  
[1]  
input capacitance  
pin XI  
-
3.5  
2
-
pF  
pin XO  
-
-
pF  
gm(DC)  
DC transconductance  
Normal, Sleep Request modes;  
MII_MODE = 00, 01 or 11  
13.3  
25  
47  
mA/V  
Transmitter test results: pins P0_TRX_M, P0_TRX_P, P1_TRX_M, P1_TRX_P[3]  
[1]  
Vdroop/VM  
droop voltage to peak voltage  
ratio  
100BASE-T1 test mode 1; with  
respect to initial peak value  
-45  
-
-
-
+45  
15  
%
[1]  
[1]  
Vdist(M)  
PSDM  
peak distortion voltage  
100BASE-T1 test mode 4  
100BASE-T1 test mode 5  
f = 1 MHz  
mV  
power spectral density mask  
-70.9  
-75.8  
-89.2  
-
-
-
-
-
-63.3  
-64.8  
-68.5  
-76.5  
dBm/  
Hz  
f = 20 MHz  
dBm/  
Hz  
f = 40 MHz  
dBm/  
Hz  
f = 57 MHz to 200 MHz  
dBm/  
Hz  
Transmitter output amplitude: pins P0_TRX_M, P0_TRX_P, P1_TRX_M, P1_TRX_P[2][3]  
VoM(TX)  
Rterm  
transmitter peak output voltage  
termination resistance  
-
1
-
V
[4]  
on each pin; Normal, Sleep  
Request modes; LINK_  
CONTROL = 1  
47.5  
50  
52.5  
Ω
Temperature protection  
Tj(sd)  
shutdown junction temperature  
180  
-
200  
°C  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
52 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 37.ꢀGeneral electrical characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tj(sd)rel  
release shutdown junction  
temperature  
147  
-
167  
°C  
Tj(warn)  
warning junction temperature  
155  
147  
-
-
175  
167  
°C  
°C  
Tj(warn)rel  
release warning junction  
temperature  
Tj(warn)hys  
warning junction temperature  
hysteresis  
2
8
-
°C  
[1] Not measured in production; guaranteed by design.  
[2] Pins P1_xxx only valid for TJA1102A.  
[3] Test carried out with external common mode choke and coupling capacitors connected.  
[4] Includes the influence of the nominal series resistance of an external common mode choke and 1 kΩ parallel resistors of the common-mode termination  
circuit.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
53 / 67  
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
10 Dynamic characteristics  
Table 38.ꢀDynamic characteristics  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
MII transmit timing (see Figure 15); MII_DRIVER = 0 (standard output driver strength)[1]  
Tclk  
δ
clock period  
pin TXC  
-
40  
-
-
ns  
%
duty cycle  
pin TXC  
35  
14  
14  
65  
-
tWH  
tWL  
tsu  
pulse width HIGH  
pulse width LOW  
set-up time  
pin TXC  
20  
20  
ns  
ns  
pin TXC  
-
TXC to TXD[3:0], TXER, TXEN  
MII  
10  
10  
-
-
-
-
ns  
ns  
Reverse MII  
TXC to TXD[3:0], TXEN, TXER  
MII  
th  
hold time  
0
-
-
-
-
ns  
ns  
Reverse MII  
10  
MII receive timing (see Figure 16); MII_DRIVER = 0 (standard output driver strength)[1]  
Tclk  
δ
clock period  
pin RXC  
-
40  
-
-
ns  
%
duty cycle  
pin RXC  
35  
14  
14  
65  
-
tWH  
tWL  
td  
pulse width HIGH  
pulse width LOW  
delay time  
pin RXC  
20  
20  
ns  
ns  
pin RXC  
-
RXC to RXD[3:0], RXDV, RXER  
MII  
15  
0
-
-
25  
25  
ns  
ns  
Reverse MII  
RMII transmit and receive timing (see Figure 17 and Figure 18); MII_DRIVER = 0 (standard output driver strength)[1]  
Tclk  
δ
clock period  
duty cycle  
pin REF_CLK  
-
20  
-
-
ns  
%
pin REF_CLK  
35  
7
7
4
2
4
65  
-
tWH  
tWL  
tsu  
th  
pulse width HIGH  
pulse width LOW  
set-up time  
pin REF_CLK  
10  
10  
-
ns  
ns  
ns  
ns  
ns  
pin REF_CLK  
-
REF_CLK to TXD[1:0], TXEN, TXER  
REF_CLK to TXD[1:0], TXEN, TXER  
REF_CLK to RXD[1:0], RXER, CRSDV  
-
hold time  
-
-
td  
delay time  
-
13  
(R)MII interface timing[1]  
tf  
fall time[2]  
MII: RXD[3:0], RXDV, RXER  
MII_DRIVER = 0; CL = 15 pF  
MII_DRIVER = 1; CL = 7.5 pF  
MII: TXC, RXC; CL = 15 pF  
RMII: RXD[1:0], CRSDV, RXER  
1.3  
2
-
-
-
5
ns  
ns  
ns  
7.7  
5
1.3  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
54 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 38.ꢀDynamic characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
MII_DRIVER = 0; CL = 15 pF  
Min  
0.7  
0.9  
0.7  
Typ  
Max Unit  
-
-
-
2.5  
3.4  
2.5  
ns  
ns  
ns  
MII_DRIVER = 1; CL = 7.5 pF  
RMII: REF_CLK; CL = 15 pF  
MII: RXD[3:0], RXDV, RXER  
MII_DRIVER = 0; CL = 15 pF  
MII_DRIVER = 1; CL = 7.5 pF  
MII: TXC, RXC; CL = 15 pF  
RMII: RXD[1:0], CRSDV, RXER  
MII_DRIVER = 0; CL = 15 pF  
MII_DRIVER = 1; CL = 7.5 pF  
RMII: REF_CLK; CL = 15 pF  
tr  
rise time[3]  
1.3  
2
-
-
-
5
ns  
ns  
ns  
7.7  
5
1.3  
0.7  
0.9  
0.7  
-
-
-
2.5  
3.4  
2.5  
ns  
ns  
ns  
SMI timing (see Figure 19)[1]  
Tclk(MDC)  
tWH(MDC)  
tWL(MDC)  
tsu(MDIO)  
th(MDIO)  
MDC clock period  
MDC pulse width HIGH  
MDC pulse width LOW  
MDIO set-up time  
400  
160  
160  
10  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
-
to rising edge on MDC  
-
MDIO hold time  
from rising edge on MDC  
10  
-
td(MDC-MDIO) delay time from MDC to MDIO  
WAKE timing; pin WAKE_IN_OUT[1]  
from rising edge on MDC; read from  
PHY  
0
300  
tdet(wake)  
wake-up detection time  
LOC_WU_TIM = 00  
LOC_WU_TIM = 01  
LOC_WU_TIM = 10  
LOC_WU_TIM = 11  
LOC_WU_TIM = 00  
LOC_WU_TIM = 01  
LOC_WU_TIM = 10  
LOC_WU_TIM = 11  
10  
-
-
-
-
-
-
-
-
2
20  
ms  
μs  
μs  
μs  
ms  
250  
100  
20  
500  
200  
40  
tp  
pulse duration  
20  
40  
500  
200  
40  
1000 μs  
400  
80  
μs  
μs  
μs  
ton  
toff  
turn-on time  
turn-off time  
RL = 100 kΩ; CL = 50 pF; VWAKE_IN_OUT  
= 2 V  
0
50  
RL = 100 kΩ; CL = 50 pF; VWAKE_IN_OUT  
= 2 V  
5
50  
65  
μs  
INH timing[1]; pin INH  
ton turn-on time  
toff turn-off time  
RL = 100 kΩ; CL = 50 pF; Vth(INH) = 2 V  
RL = 100 kΩ; CL = 50 pF; Vth(INH) = 2 V  
0
5
2
50  
65  
μs  
μs  
50  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
55 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 38.ꢀDynamic characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
interrupt timing[1]; pin INT_N  
ton  
toff  
turn-on time  
turn-off time  
Rpu = 10 kΩ; CL = 15 pF  
Rpu = 10 kΩ; CL = 15 pF  
8
8
-
-
20  
20  
μs  
μs  
PCS-RX timeout timing  
[4]  
tto(PCS-RX)  
PCS-RX time-out time  
Normal and Sleep Request modes  
JUMBO_ENABLE = 0  
-
-
1.1  
2.2  
-
-
ms  
ms  
JUMBO_ENABLE = 1  
Cable test timing  
tto(cbl_tst)  
cable test time-out time  
Normal mode; CABLE_TEST = 1  
-
100  
-
μs  
pins RST_N, EN[1]  
tdet(rst)  
reset detection time  
on pin RSTN;  
5
5
-
-
20  
20  
μs  
μs  
Vuvd(VDDIO) < VDD(IO) ≤ 3.5 V  
tdet(EN)  
detection time on pin EN  
Vuvd(VDDIO) < VDD(IO) ≤ 3.5 V  
Transmitter test results  
tjit(RMS)  
RMS jitter time  
Master mode  
-
-
-
-
50  
ps  
ps  
[1]  
[5]  
Slave mode (with link); SLAVE_  
JITTER_TEST = 1  
150  
Undervoltage detection[1]  
tdet(uv)  
undervoltage detection time  
on pin VBAT; VBAT = 2.7 V  
on pin VDDA(3V3); VDDA(3V3) = 2.8 V  
on pin VDDD(3V3); VDDD(3V3) = 2.8 V  
on pin VDDD(1V8)  
0
-
-
-
-
-
-
-
-
-
-
30  
30  
30  
30  
30  
30  
30  
30  
30  
670  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ms  
2
2
2
VDD(IO) = 2.8 V  
2
trec(uv)  
undervoltage recovery time  
on pin VDDA(3V3); VDDA(3V3) = 3.2 V  
on pin VDDD(3V3); VDDD(3V3) = 3.2 V  
on pin VDDD(1V8)  
2
2
2
on pin VDD(IO); VDD(IO) = 3.2 V  
2
tto(uvd)  
undervoltage detection time-out  
time  
for transition from Standby to Sleep  
mode (see Section 6.9.1)  
300  
General timing parameters[1]  
ts(pon)  
power-on settling time  
from power-on to Standby mode  
from Standby mode to Normal mode  
SLEEP_REQUEST_TO = 00  
SLEEP_REQUEST_TO = 01  
SLEEP_REQUEST_TO = 10  
-
-
-
-
-
-
2
ms  
ms  
μs  
tinit(PHY)  
tto(req)sleep  
PHY initialization time  
-
2
sleep request time-out time  
360  
900  
3.6  
500  
1150 μs  
4.4 ms  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
56 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Table 38.ꢀDynamic characteristics...continued  
Tvj = -40 °C to +150 °C; VDD(IO) = 2.9 V to 3.5 V; VBAT = 2.8 V to 40 V; VDDA(3V3) = VDDA(TX) = VDDD(3V3) = 2.9 V to 3.5 V; all  
voltages are defined with respect to ground unless otherwise specified; positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
14.4  
180  
450  
1.8  
7.2  
-
Typ  
Max Unit  
SLEEP_REQUEST_TO = 11  
SLEEP_REQUEST_TO = 00  
SLEEP_REQUEST_TO = 01  
SLEEP_REQUEST_TO = 10  
SLEEP_REQUEST_TO = 11  
-
-
-
-
-
-
17.6 ms  
tto(ack)sleep  
sleep acknowledge time-out time  
250  
575  
2.2  
8.8  
0.7  
μs  
μs  
ms  
ms  
ms  
[6]  
tdet(PHY)  
tto(pd)autn  
tPD  
PHY detection time  
on bus pins P0_TRX_P, P0_TRX_M,  
P1_TRX_P and P1_TRX_M  
autonomous power-down time-out Normal mode; AUTO_PWD = 1  
time  
1
-
2
s
propagation delay  
from MII to MDI; Normal mode  
from MDI to MII; Normal mode  
from RMII to MDI; Normal mode  
from MDI to RMII; Normal mode  
140  
760  
190  
700  
0.7  
-
300  
920  
540  
ns  
ns  
ns  
-
-
-
1070 ns  
1.3 ms  
tw(wake)  
wake-up pulse width  
Normal mode; no active link; wake-up  
forwarding  
1.0  
[1] Not measured in production; guaranteed by design.  
[2] From 2 V to 0.8 V.  
[3] From 0.8 V to 2 V.  
[4] rcv_max_timer in the IEEE specificatio [1].  
[5] Measured at the P0_RXER pin, representing the transmit clock (TX_CLK) of P1, or measured at the P1_RXER pin, representing the transmit clock of P0.  
[6] Pins P1_xxx only valid for TJA1102A.  
T
t
t
WL(TXC)  
clk(TXC)  
WH(TXC)  
TXC  
t
t
t
t
h(MII)  
su(MII)  
su(MII)  
h(MII)  
TXEN  
TXD[3:0]  
TXER  
aaa-038936  
Figure 15.ꢀMII transmit timing diagram  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
57 / 67  
 
 
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
T
t
t
WL(RXC)  
clk(RXC)  
WH(RXC)  
RXC  
t
t
d(MIIrx)  
d(MIIrx)  
RXDV  
t
t
d(MIIrx)  
d(MIIrx)  
RXD[3:0]  
RXER  
aaa-038937  
Figure 16.ꢀMII receive timing diagram  
t
t
T
WH(REF_CLK) WL(REF_CLK)  
clk(REF_CLK)  
REF_CLK  
t
t
t
t
h(RMII)  
su(RMII)  
h(RMII)  
su(RMII)  
TXEN  
TXD[1:0]  
aaa-038938  
Figure 17.ꢀRMII transmit timing diagram  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
58 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
T
clk(REF_CLK)  
REF_CLK  
t
t
d(RMIIrx)  
d(RMIIrx)  
CRSDV  
RXER  
RXD[1:0]  
aaa-038939  
Figure 18.ꢀRMII receive timing diagram  
t
t
WL(MDC)  
T
WH(MDC)  
clk(MDC)  
MDC  
t
t
d(MDC-MDIO)  
d(MDC-MDIO)  
MDIO  
(Data-out)  
t
t
h(MDIO)  
su(MDIO)  
MDIO  
(Data-in)  
aaa-038940  
Figure 19.ꢀSMI timing diagram  
11 Application information  
The MDI circuit used for each PHY port is shown in Figure 20. The common mode  
termination depends on OEM requirements and might vary, depending on the application.  
The common mode choke is expected to be compliant with the OPEN Alliance CMC  
specification. The 100 nF coupling capacitors should have a voltage range ≥ 50 V with  
10 % (max) tolerance.  
The TJA1102A provides an ESD robustness of ±6 kV according to IEC61000-4-2 and  
HBM at the IC pins. With CMC and coupling capacitors, it is able to withstand ≥ ±8 kV for  
IEC 61000-4-2 on the connector pins.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
59 / 67  
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
common  
mode choke  
100 nF  
TRX_P  
TRX_M  
BI_DA+  
PHY  
BI_DA-  
200 µH  
according to  
OPEN Alliance CMC Spec  
100 nF  
1 kΩ  
1 kΩ  
100 kΩ  
4.7 nF  
optional  
according to OPEN Alliance  
System Implementation Spec  
aaa-022043  
Figure 20.ꢀMDI circuit diagram  
Further information can be found in the TJA1102A application hints [2].  
12 Package information  
The TJA1102A comes in the HVQFN-56 package as shown in Figure 21. Measuring  
just 64 mm2 with a pitch of 0.5 mm, it is particularly suited to PCB space-constrained  
applications, such as an integrated IP camera module. The package features wettable  
sides/flanks to allow for optical inspection of the soldering process. The exposed die pad  
shown in the package diagram must be connected to ground.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
60 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
13 Package outline  
HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;  
56 terminals; body 8 x 8 x 0.85 mm  
SOT684-13  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
v
w
C
C
A B  
C
b
e
1/2 e  
y
1
y
C
b
1
L
15  
28  
29  
14  
K
e
E
e
2
h
1/2 e  
1
42  
terminal 1  
index area  
56  
43  
X
K
D
h
0
5
10 mm  
scale  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
Unit  
A
A
b
b
c
D
D
h
E
E
e
e
1
e
2
L
K
v
w
y
y
1
1
1
h
max 1.00 0.05 0.30 0.32  
nom 0.85 0.02 0.25 0.27  
min 0.80 0.00 0.20 0.22  
8.1 5.15 8.1 5.15  
8.0 5.00 8.0 5.00  
7.9 4.85 7.9 4.85  
0.6  
0.5  
0.4 0.8  
mm  
0.2  
0.5 6.5 6.5  
0.1 0.05 0.05 0.1  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot684-13_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
15-05-29  
15-07-13  
SOT684-13  
Figure 21.ꢀPackage outline SOT684-13 (HVQFN56)  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
61 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
14 Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
14.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached  
to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides  
both the mechanical and the electrical connection. There is no single soldering method  
that is ideal for all IC packages. Wave soldering is often preferred when through-hole  
and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is  
not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
14.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming  
from a standing wave of liquid solder. The wave soldering process is suitable for the  
following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
14.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
14.4 Reflow soldering  
Key characteristics in reflow soldering are:  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
62 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads  
to higher minimum peak temperatures (see Figure 22) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board  
is heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder  
paste characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 39 and Table 40  
Table 39.ꢀSnPb eutectic process (from J-STD-020D)  
Package thickness (mm)  
Package reflow temperature (°C)  
Volume (mm³)  
< 350  
235  
≥ 350  
< 2.5  
≥ 2.5  
220  
220  
220  
Table 40.ꢀLead-free process (from J-STD-020D)  
Package thickness (mm)  
Package reflow temperature (°C)  
Volume (mm³)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 22.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
63 / 67  
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Figure 22.ꢀTemperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
15 References  
[1] IEEE 802.3bw-2015 — IEEE Standard for Ethernet Amendment 1: Physical Layer Specifications and Management  
Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair Cable (100BASE-  
T1)  
[2] AN13171  
— Application note for TJA1102A 100BASE-T1 dual/single PHY for automotive Ethernet, NXP  
Semiconductors  
16 Revision history  
Table 41.ꢀRevision history  
Document ID  
Release date  
20210607  
Data sheet status  
Change notice  
Supersedes  
TJA1102A v.1  
Product data sheet  
-
-
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
64 / 67  
 
 
 
 
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
17 Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
17.2 Definitions  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Draft — A draft status on a document indicates that the content is still  
under internal review and subject to formal approval, which may result  
in modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included in a draft version of a document and shall have no  
liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP product has  
been qualified for use in automotive applications. If this product is used  
by customer in the development of, or for incorporation into, products or  
services (a) used in safety critical applications or (b) in which failure could  
lead to death, personal injury, or severe physical or environmental damage  
(such products and services hereinafter referred to as “Critical Applications”),  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
65 / 67  
 
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
then customer makes the ultimate design decisions regarding its products  
and is solely responsible for compliance with all legal, regulatory, safety,  
and security related requirements concerning its products, regardless of  
any information or support that may be provided by NXP. As such, customer  
assumes all risk related to use of any products in Critical Applications and  
NXP and its suppliers shall not be liable for any such use by customer.  
Accordingly, customer will indemnify and hold NXP harmless from any  
claims, liabilities, damages and associated costs and expenses (including  
attorneys’ fees) that NXP may incur related to customer’s incorporation of  
any product in a Critical Application.  
their lifecycles to reduce the effect of these vulnerabilities on customer’s  
applications and products. Customer’s responsibility also extends to other  
open and/or proprietary technologies supported by NXP products for use  
in customer’s applications. NXP accepts no liability for any vulnerability.  
Customer should regularly check security updates from NXP and follow up  
appropriately. Customer shall select products with security features that best  
meet rules, regulations, and standards of the intended application and make  
the ultimate design decisions regarding its products and is solely responsible  
for compliance with all legal, regulatory, and security related requirements  
concerning its products, regardless of any information or support that may  
be provided by NXP. NXP has a Product Security Incident Response Team  
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,  
reporting, and solution release to security vulnerabilities of NXP products.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
Security — Customer understands that all NXP products may be subject  
to unidentified or documented vulnerabilities. Customer is responsible  
for the design and operation of its applications and products throughout  
NXP — wordmark and logo are trademarks of NXP B.V.  
TJA1102A  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1 — 7 June 2021  
66 / 67  
NXP Semiconductors  
TJA1102A  
100BASE-T1 dual/single PHY for automotive Ethernet  
Contents  
1
2
General description ............................................ 1  
6.9.6  
6.9.7  
6.9.8  
6.9.8.1  
6.9.8.2  
6.9.8.3  
6.10  
6.11  
6.11.1  
6.11.2  
7
8
9
10  
11  
12  
13  
14  
Polarity detection ............................................. 27  
Interleave detection ......................................... 27  
Loopback modes ............................................. 27  
Internal loopback ............................................. 27  
External loopback ............................................ 28  
Remote loopback .............................................28  
Hardware configuration ....................................28  
SMI registers ................................................... 30  
Register mapping overview ............................. 30  
TJA1102A registers ......................................... 31  
Limiting values ..................................................46  
Thermal characteristics ....................................47  
Static characteristics ........................................47  
Dynamic characteristics ...................................54  
Application information ....................................59  
Package information .........................................60  
Package outline .................................................61  
Soldering of SMD packages .............................62  
Introduction to soldering .............................  
Features and benefits .........................................1  
General .............................................................. 1  
Optimized for automotive use cases ..................1  
Low-power mode ............................................... 2  
Diagnosis ........................................................... 2  
Miscellaneous .................................................... 2  
Ordering information .......................................... 2  
Block diagram ..................................................... 2  
Pinning information ............................................ 4  
TJA1102A pinning ..............................................4  
TJA1102AS pinning ........................................... 8  
Functional description ......................................11  
System configuration ....................................... 11  
Clocking scheme with MII and clock  
2.1  
2.2  
2.3  
2.4  
2.5  
3
4
5
5.1  
5.2  
6
6.1  
6.1.1  
provided by the switch and one of the  
TJA1102A devices ...........................................12  
Clocking scheme with RMII and clock  
6.1.2  
provided by the switch .....................................13  
MII and RMII ....................................................13  
MII ....................................................................14  
RMII ................................................................. 15  
Signaling and encoding ................................... 15  
Reverse MII ..................................................... 16  
System controller .............................................17  
Operating modes ............................................. 17  
Power-off mode ............................................... 17  
Standby mode ................................................. 17  
Normal mode ...................................................18  
Disable mode ...................................................18  
Sleep mode ..................................................... 18  
Sleep Request mode .......................................19  
Silent mode ......................................................19  
Reset mode ..................................................... 20  
Status of functional blocks in TJA1102A  
14.1  
14.2  
14.3  
14.4  
15  
6.2  
6.2.1  
6.2.2  
6.2.2.1  
6.2.3  
Wave and reflow soldering .........................  
Wave soldering ...........................................  
Reflow soldering .........................................  
References .........................................................64  
Revision history ................................................ 64  
Legal information ..............................................65  
16  
17  
6.3  
6.3.1  
6.3.1.1  
6.3.1.2  
6.3.1.3  
6.3.1.4  
6.3.1.5  
6.3.1.6  
6.3.1.7  
6.3.1.8  
6.3.2  
operating modes ..............................................20  
Mode transitions .............................................. 21  
Sleep and wake-up forwarding concept ...........23  
Autonomous operation .....................................24  
Autonomous power-down ................................24  
Test modes ...................................................... 24  
Test mode 1 .....................................................24  
Test mode 2 .....................................................24  
Test mode 3 .....................................................24  
Test mode 4 .....................................................24  
Test mode 5 .....................................................25  
Slave jitter test .................................................25  
Error diagnosis ................................................ 25  
Undervoltage detection ....................................25  
Cabling errors ..................................................26  
Link stability .....................................................26  
Link-fail counter ............................................... 26  
Jabber detection .............................................. 27  
6.4  
6.5  
6.6  
6.7  
6.8  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
6.9  
6.9.1  
6.9.2  
6.9.3  
6.9.4  
6.9.5  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 7 June 2021  
Document identifier: TJA1102A  

相关型号:

TJA1102AHN

100BASE-T1 dual/single PHY for automotive Ethernet
NXP

TJA1102AHNS

100BASE-T1 dual/single PHY for automotive Ethernet
NXP

TJA1102HN

100BASE-T1 dual/single PHY for automotive Ethernet
NXP

TJA1102SHN

100BASE-T1 dual/single PHY for automotive Ethernet
NXP

TJA1124

Quad LIN master transceiver
NXP

TJA1124AHG

Quad LIN master transceiver
NXP

TJA1124BHG

Quad LIN master transceiver
NXP

TJA1128BTK/0Z

Analog Circuit
NXP

TJA1145A

High-speed CAN transceiver for partial networking
NXP

TJA1145AT

High-speed CAN transceiver for partial networking
NXP

TJA1145ATFD

High-speed CAN transceiver for partial networking
NXP

TJA1145ATK

High-speed CAN transceiver for partial networking
NXP