TZA1047HL/M2 [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.4 MM HEIGHT, PLASTIC, MS-026, SOT314-2, LQFP-64, Consumer IC:Other;
TZA1047HL/M2
型号: TZA1047HL/M2
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.4 MM HEIGHT, PLASTIC, MS-026, SOT314-2, LQFP-64, Consumer IC:Other

商用集成电路
文件: 总69页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TZA1047  
Preprocessor IC for CD and DVD rewritable  
Rev. 02 — 1 June 2005  
Product data sheet  
1. General description  
The TZA1047 is a multipurpose analog preprocessor IC for use in an optical bit engine.  
Typical applications are DVDRW (a compound name that stands for a multitude of writable  
and re-writable DVD standards), high-speed DVD-ROM, the COMBI drive  
(CDR/RW-writer with DVD read-out) and the Double Writer (writes both CDR/RW and  
DVDRW).  
At the input, TZA1047 will interface with many standard OPUs having either voltage or  
current outputs. At the output, TZA1047 will interface with Philips decoder/encoder ICs  
such as the SAA7810, SAA7811, SAA7846, SAA7849 and PNX7850.  
The TZA1047 has four versions:  
TZA1047/M1A: standard functionality  
TZA1047/M1B: Fast Track Count (FTC) circuit with improved signal range  
TZA1047/M2: FTC circuit with improved signal range; Distributor circuit with common  
offset added to Left (L) and Right (R) signals to improve normalized push-pull signal  
(wobble) CNR  
TZA1047/M3: negative segment input offset range and offset compensation is  
possible; increased BWPP bandwidth.  
2. Features  
Operates with DVD-ROM, DVD+RW, DVD+R, DVD-RW, CD-ROM, CD-RW and CD-R  
media  
Specifically suited for double-writer and combination applications  
Operates up to 64× CD-ROM read, 20× DVD-ROM read, 48× CDR/RW write,  
12× DVDR/RW write to 16× DVDR/RW write  
Optimized input interface to operate with Philips optical pick-up IC TZA1045  
Selectable input termination resistors; allows characteristic termination of the flex  
connection to the Optical Pick-Up (OPU) head for high speed performance; no  
external components required  
Programmable RF equalizer function with bandwidth equivalents of 64× CD or  
20× DVD  
Programmable noise filter in RF amplifier for improved signal quality  
Programmable RF gain for DVD-ROM / DVDRW / CD-RW / CDROM applications; AGC  
possible with Philips decoder ICs (SAA7810, SAA7811, SAA7846, SAA7849 or  
PNX7850)  
Differential RF signal input and output for high-speed operation with minimum  
interference  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Programmable DC offset cancellation in RF path to allow DC-coupling to Philips  
decoder ICs (SAA7810, SAA7811, SAA7846, SAA7849 or PNX7850)  
Programmable Differential Phase Detection (DPD) circuit for DVD radial tracking  
Push-Pull (P-P) signal channel for reading Address In Pre-groove (ADIP) information  
on recordable and re-writable media  
Versatile FTC function with programmable filtering  
I2C-bus interface allows the device to be programmed by a decoder IC or  
microcontroller  
Works with externally supplied sample timing signals or on-board Eight-to-Fourteen  
(EFM) signal decoder for write synchronization  
Programmable normalization for servo signals  
Servo outputs programmable as direct unprocessed currents or as error signals  
Fast running Optimum Power Control (OPC) processing for phase change media  
(ALFA loop)  
On-board processing circuit for write power calibration and OPC (BETA loop).  
3. Quick reference data  
Table 1:  
Symbol  
Supply  
VDD  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
4.5  
-
5
-
5.5  
V
[1]  
IDD(tot)  
total positive supply current  
circuit active; highest  
dissipation mode  
175  
mA  
Istby  
supply current in Standby  
mode  
STBY = 1  
-
-
5
mA  
Iq  
quiescent supply current  
IDDQTST = 1  
-
-
-
100  
-
µA  
Vref(int)  
reference voltage for internal  
current settings  
external RREF = 47 kΩ  
2.3  
V
Tamb  
ambient temperature  
operating  
0
-
70  
°C  
Input circuit  
Zi(seg)  
segment signal input  
impedance (pins VIA to VIH  
with respect to pin VREF)  
LDSEG[1:0] = 00  
LDSEG[1:0] = 01  
LDSEG[1:0] = 10  
LDSEG[1:0] = 11  
-
150  
300  
600  
> 10  
-
-
-
-
-
-
-
-
kΩ  
V
Vref  
Vi  
reference voltage for segment programmable by  
and RF inputs  
1.3  
2.8  
parameter VSEG  
input voltage  
pins VIA to VIH  
V
ref 0.05  
-
Vref + 1  
V
RF amplifier (RF AMP)  
Zi(RF)  
RF input impedance (RFPIN  
and RFNIN with respect to  
VREF)  
LDRF[1:0] = 00  
-
75  
150  
300  
> 5  
-
-
-
-
-
kΩ  
V
LDRF[1:0] = 01  
-
LDRF[1:0] = 10  
-
LDRF[1:0] = 11  
-
Vi(dif)  
Vi(se)  
differential input voltage  
pins RFPIN and RFNIN  
pins WRF and RRF  
1.0  
1.0  
V
DD 1  
DD 1  
single-ended input voltage  
-
V
V
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
2 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 1:  
Symbol  
GRF  
Quick reference data …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
gain range RF path  
programmable by  
parameters  
14  
-
+40  
dB  
GRFW/GRFR, GRF  
and HA  
BRF  
3 dB bandwidth of RF path  
ENEQ = 0; ENNF = 0  
180  
16  
-
-
-
MHz  
MHz  
f0(RF)  
noise filter and equalizer  
corner frequency  
programmable by  
parameter BWRF  
180  
Vi(ref)  
RF voltage reference input  
pin RFREF  
1.0  
1  
2  
-
-
-
-
-
2.5  
+1  
+2  
70  
V
V
V
Vo(dif)(RF) RF differential output voltage  
(RFP to RFN)  
VRFREF < 2 V  
VRFREF > 2 V  
pins RFP and RFN  
Zo(RF)  
RF output impedance  
FTC output circuit  
Vo(FTC)  
FTC output voltage  
FTCSL[0] = 1 (digital  
3.3 V output)  
0
2
-
-
3.3  
3
V
V
FTCSL[0] = 0 (analog  
output)  
VCFTC  
CFTC pin voltage  
-
-
2.5  
-
-
V
Zo(FTC)  
FTC output impedance  
300  
Push-pull processor circuit  
VO  
Zo  
Vo  
DC output voltage at pin  
PPNO  
Ii(PPN) = 0 A; no input  
signal  
-
0.5VDD  
-
V
V
output impedance at pin  
PPNO  
-
-
-
130  
AC output voltage at pin  
PPNO  
0.6  
V
DD 0.6  
Write synchronization circuit (EFMTIM)  
Ii(EFM)  
input current on pins  
REF/ECN, RS/ECP, TH1/EDN  
and TH2/EDP  
0
-
5000  
µA  
Ii(dif)H  
differential input current for  
HIGH level  
IP IN or Isig IREF  
IP IN or Isig IREF  
IP IN or Isig IREF  
330  
1800  
5000  
µA  
µA  
µA  
ns  
ns  
Ii(dif)L  
differential input current for  
LOW level  
330  
1800  
5000  
Ii(dif)(th)  
tr(in)(se)  
tr(in)(dif)  
Ri(EFM)  
differential input current  
threshold level  
-
-
-
-
0
-
-
rise time of single-ended input EFMINT = 0; 12× DVD  
signals  
1
2
-
rise time of differential input  
signals  
EFMINT = 1; 4× DVD  
-
input resistance to GND on  
pins REF/ECN, RS/ECP,  
TH1/EDN, TH2/EDP  
70  
Normalizer circuit and servo outputs  
Vo(S),Vo(D) servo output voltage  
S1 and S2, D1 to D4;  
operating  
1.2  
-
0.5VDD  
V
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
3 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 1:  
Symbol  
Quick reference data …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fast running OPC (ALFA) circuit  
Io(ALFA)  
Vo(ALFA)  
Ii(LASP)  
ALFA output current  
Vo(ALFA) = 0 V  
operating  
0
0
5
0
-
-
100  
µA  
V
ALFA output voltage  
LASP control current input  
-
VDD 1.5  
r/w = 0  
-
100  
15  
-
µA  
µA  
V
r/w = 1  
-
Vi(LASP)  
Zi(LASP)  
LASP input voltage  
Ii(LASP) = 100 µA  
1.7  
-
LASP input impedance  
-
2
kΩ  
Write power calibration (BETA) circuit  
Vo(BETA)  
A1, A2 and CALF output  
voltage  
VDD = 5 V  
0
-
-
-
3.3  
V
Zo(BETA)  
A1, A2 and CALF output  
impedance  
300  
Monitor outputs (MON)  
Vo(MON) monitor output voltage  
RL = 10 k; CL = 10 pF  
0.7  
-
VDD 0.7  
V
Vref(MON) monitor voltage reference level Ii = 0 A  
0.5VDD 0.1 0.5VDD  
0.5VDD + 0.1 V  
RO(MON)  
output resistance on pins  
MON1 and MON2  
-
120  
-
I2C-bus interface  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
pins SCL and SDA  
pins SCL and SDA  
0.5  
-
-
1.0  
V
V
2.2  
VDD + 0.5  
Digital inputs  
VIL  
LOW-level input voltage  
pins R/W, SILD, SIDA,  
SICL and IDDQTST  
0.5  
-
-
+1.1  
V
V
VIH  
HIGH-level input voltage  
pins R/W, SILD, SIDA,  
SICL and IDDQTST  
2.1  
VDD + 0.5  
[1] Dependent on the actual register settings; most unused circuits are powered down.  
4. Ordering information  
Table 2:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TZA1047HL/M1A LQFP64  
TZA1047HL/M1B  
plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm SOT314-2  
TZA1047HL/M2  
TZA1047HL/M3  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
4 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
5. Block diagram  
V
V
DD2  
V
GND1  
2, 5, 37, 42  
GND2 GNDD  
30, 32 23  
DD1  
DDD  
8, 11, 44  
29  
22  
31  
RFP  
62  
32  
s/d  
s/d  
WRF  
RF AMPLIFIER  
RFN  
33  
RFREF  
7
6
40,  
39, 38  
RFPIN  
RFNIN  
MUX  
CCALF,  
CA1, CA2  
54,  
BETA  
ALFA  
61  
56, 55  
CALF,  
A1, A2  
RRF  
s/d = single-ended to  
differential converter  
58  
ALFA  
59  
LASP  
10,  
4,  
3,  
VIA,  
VIB,  
VIC,  
VID,  
VIE,  
VIF,  
VIG,  
VIH  
TZA1047  
9,  
D1,  
12,  
64,  
13,  
1
52, 51, 50,  
49, 48, 47,  
OFFSET  
CONTROL  
D2/TLN,  
D3/REN,  
D4/FEN,  
S1/MIRN,  
S2/XDN  
NORM  
SAMPLE-  
AND-HOLD  
INPUT  
V/I  
LPF  
MUX  
CIRCUIT  
63  
43  
VREF  
CMPP  
45  
46  
MON1  
MON2  
MON  
GAIN  
DPD  
24  
25  
26  
27  
21  
L, R  
34  
REF/ECN  
RS/ECP  
TH1/EDN  
TH2/EDP  
R/W  
P-P PROCESSOR  
PPNO  
36  
35  
FTC  
to ALFA and NORM  
r/w  
FTC  
EFMTIM  
CFTC  
control  
switches  
18  
19  
17  
28  
57  
SIDA  
20  
14  
SICL  
control  
currents  
TIMOUT  
RWOUT  
SERIAL BUS  
INTERFACE  
SILD  
SERTST  
SROUT  
REGISTERS  
AND  
DACs  
LOGIC  
15  
16  
SDA  
SCL  
2
I C-BUS  
INTERFACE  
BAND GAP  
REFERENCE  
60  
53  
TEST  
41  
POR  
RREF  
IDDQTST  
001aab187  
Fig 1. TZA1047 block diagram.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
5 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
6. Pinning information  
6.1 Pinning  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VIH  
S1/MIRN  
S2/XDN  
MON2  
GND1  
VIC  
3
4
VIB  
MON1  
5
GND1  
RFNIN  
RFPIN  
V
DD1  
6
CMPP  
GND1  
RREF  
CCALF  
CA2  
7
8
V
DD1  
VID  
TZA1047  
9
10  
11  
12  
13  
14  
15  
16  
VIA  
V
CA1  
DD1  
VIE  
GND1  
FTC  
VIG  
RWOUT  
SDA  
CFTC  
PPNO  
RFREF  
SCL  
001aab182  
Fig 2. TZA1047 pin configuration.  
6.2 Pin description  
Table 3:  
Pin description  
Symbol  
VIH  
Pin  
1
Description  
satellite segment H input  
analog supply 1 ground  
central segment C input  
central segment B input  
analog supply 1 ground  
GND1  
VIC  
2
3
VIB  
4
GND1  
RFNIN  
RFPIN  
VDD1  
VID  
5
6
inverse differential RF input or single-ended RF read input  
differential RF input or single-ended RF write input  
positive analog supply 1 voltage  
7
8
9
central segment D input  
VIA  
10  
11  
central segment A input  
VDD1  
positive analog supply 1 voltage  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
6 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 3:  
Symbol  
VIE  
Pin description …continued  
Description  
satellite segment E input  
Pin  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VIG  
satellite segment G input  
R/W signal output  
I2C-bus data input/output  
I2C-bus clock input  
RWOUT  
SDA  
SCL  
SILD  
strobe line input of serial bus interface  
data line of serial bus interface  
clock line input of serial bus interface  
EFMTIM test output  
SIDA  
SICL  
TIMOUT  
R/W  
external Read/Write signal input  
positive digital supply voltage  
digital supply ground  
reference input for timing signals in EFMTIM bypass mode[1] or  
inverse EFM clock input[2]  
VDDD  
GNDD  
REF/ECN  
RS/ECP  
TH1/EDN  
TH2/EDP  
SERTST  
25  
26  
27  
28  
RF sampling signal[1] or EFM clock input[2]  
segment sampling timing signal[1] or inverse EFM data input [2]  
segment sampling timing signal[1] or EFM data input[2]  
enable test mode input (tie to GND or leave unconnected for  
normal operation)  
VDD2  
29  
30  
31  
32  
33  
positive analog supply 2 voltage  
analog supply 2 ground  
GND2  
RFP  
RF output voltage; positive  
RF output voltage; negative  
RFN  
RFREF  
reference voltage input for differential RF output common mode  
level  
PPNO  
CFTC  
FTC  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
push-pull voltage output  
FTC high-pass filter capacitor  
FTC output  
GND1  
CA1  
analog supply 1 ground  
BETA circuit external capacitor  
BETA circuit external capacitor  
BETA circuit external capacitor  
reference resistor to ground  
CA2  
CCALF  
RREF  
GND1  
CMPP  
VDD1  
analog supply 1 ground  
MPP external capacitor  
positive analog supply 1 voltage  
monitor output 1 voltage  
MON1  
MON2  
S2/XDN  
S1/MIRN  
D4/FEN  
D3/REN  
monitor output 2 voltage  
servo output current or x position voltage output  
servo output current or MIRN error signal output  
servo output current or FEN error signal output  
servo output current or REN error signal output  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
9397 750 14664  
Product data sheet  
Rev. 02 — 1 June 2005  
7 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 3:  
Symbol  
D2/TLN  
D1  
Pin description …continued  
Pin  
51  
52  
53  
Description  
servo output current or TLN error signal output  
servo output current  
IDDQTST  
zero dissipation mode selection input (tie to GND for normal  
operation)  
CALF  
A2  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
RF average level signal input  
RF bottom level signal output  
RF top level signal output  
A1  
SROUT  
ALFA  
LASP  
TEST  
RRF  
WRF  
VREF  
VIF  
shift register output for register test mode  
ALFA current output  
laser power setpoint signal input  
test output; leave unconnected  
single-ended RF read input  
single-ended RF write input  
photodiode IC (PDIC) reference voltage output  
satellite segment F input  
[1] Only in EFM bypass mode.  
[2] EFM clock and data when not in EFM bypass mode.  
7. Functional description  
7.1 Detector layout  
The TZA1047 supports OPUs having the detector layout shown in Figure 3. The detector  
segments are denoted A to H which conforms to the generally accepted standard for  
8 segment PDICs.  
CENTRAL SEGMENTS  
(HIGH BANDWIDTH)  
A
D
B
C
E
F
G
H
SATELLITE SEGMENTS  
mce511  
Fig 3. Detector layout supported.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
8 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.2 Supported servo modes  
The TZA1047 supports several servo modes. The definitions of output signals FTC and  
Q1 to Q6 depend on the servo mode that is selected via the I2C-bus. The bits that define  
the servo mode and their meaning are summarized in Table 4.  
The various servo signals are generated in the Normalizer (Norm), DPD and FTC blocks.  
For details, refer to the appropriate sections in this Chapter.  
Table 4:  
Name  
Servo modes  
Value  
Conditions  
Meaning  
CA/PP  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DPD = 0  
DPD = 0  
push-pull signal processing  
3-spot Central Aperture signal processing  
non-DPD based radial error signal  
DPD-based radial error signal  
DTD based on individual segments  
DTD based on combined segments  
DTD4 or DTD4a detection method  
DTD2a method  
DPD  
DTDC/I  
PD1  
DPD = 1  
DPD = 1  
DPD = 1  
DPD = 1  
SP3/1  
FSEL  
D/F  
D/F = 0; FSEL = 1  
D/F = 0; FSEL = 1  
FTC based on 1-spot push-pull  
FTC based on 3-spot push-pull  
FTC based on 1-spot Central Aperture  
other FTC method  
FSEL = 1  
FSEL = 1  
non-DPD based FTC  
DPD based FTC  
7.3 Diagram conventions  
Single-bit control names have the format X/Y. When:  
X/Y = 0: port Y is selected, or Y is TRUE  
X/Y = 1: port X is selected, or X is TRUE.  
Some internal signals control sampling switches. The switch is on when the signal is  
1 (HIGH).  
Many signals to and from the TZA1047 are currents. External currents which sink via the  
TZA1047 are positive and currents sourced by the TZA1047 are negative.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
9 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.4 Input circuit  
Refer to Figure 4.  
GSEG  
VUA to VUD  
DPD  
TH1  
TH2  
VRA to VRD  
VRA to VRH  
VSA to VSH  
+
VIA to VIH  
LDSEG  
SAMPLE-AND-HOLD (8×)  
VSEG  
R
0
R
1
R
2
R
3
(8×) (8×) (8×) (8×)  
REFERENCE  
CIRCUIT  
V
REF  
001aab193  
V
REF  
Fig 4. Input circuit.  
The Input circuit comprises a voltage reference circuit, sample-and-hold circuit, and a  
programmable gain amplifier. The input signals to the Input circuit are VIA to VIH, and can  
be either currents or voltages. The signal names correspond to the PDIC segments shown  
in the detector layout Figure 3. Each signal is connected to reference voltage VREF by a  
termination resistor that is selectable by the control word LDSEG[1:0]. The currents of  
input signals, for example from the TZA1045, are converted to voltages across the input  
termination resistors.  
The voltage reference circuit is a DAC which is programmable by control word VSEG[3:0]  
to allow different PDICs to be supported. The voltage reference circuit has a sufficiently  
large sink capability for the 150 termination resistors, allowing the TZA1047 to work  
with a characteristically terminated flex connection to the OPU.  
Note that when the TZA1047 is in Standby mode (STBY = 1), VREF and the input resistors  
remain active to allow the TZA1045 to deliver current to the TZA1047 without the risk of  
‘latch-up’.  
The reference voltage is subtracted from the input signals and the resulting signals VRA  
to VRH are optionally sampled by a sample-and-hold circuit. The sampling signals TH1  
and TH2 originate either directly from the codec IC or from the EFMTIM circuit. The  
resultant signals VSA to VSH are sent to the Distributor for further processing. If sampling  
is disabled (bit SMPLON = 0), both switches remain closed and the sample-and-hold  
circuit is transparent.  
The central signals VRA to VRD are amplified for DPD use at a gain programmable by  
control word GSEG[1:0]. The resultant four signals VUA to VUD go to the DPD circuit. The  
GSEG gain is enabled when bit DPD = 1 and is disabled, to save power, when bit  
DPD = 0.  
The input signal range for VIA to VIH Vref is 1 V maximum.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
10 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7.5 Distributor  
A detailed block diagram of the distributor is shown in Figure 5.  
R
FTC  
VSA to VSH  
FA to FH  
V/I  
FE to FH  
FB  
FC FA  
FD  
to FTC  
FAD  
FBC  
R/L  
R
PP  
VSA to VSD  
PA to PD  
V/I  
I
I
PA  
PD PB  
PC  
RLOFF  
PPOFF  
R
BWPP1  
LPF2  
BWPP2  
LPF3  
×2  
to P-P processor  
×2  
L
×0.2  
QA to QD  
Q
to DPD  
S
CALSAT  
Q1 = QA  
CALRL  
Q2 = QB  
Q3 = QD  
Q4 = QC  
A to D  
E to H  
CALSAT  
GCAL  
f
A to H  
servo  
R
Q
from  
Input  
circuit  
+
VSA to VSH  
r/w  
QA to QD  
V/I  
LPF1  
Q1 to Q6  
to Normalizer  
R, L  
+
GCAL  
CA/PP  
Q5, Q6  
OA to OH  
DAC (8×)  
A to H  
E to H  
A to D  
γ
OWA to OWH  
ORA to ORH  
OFFSET  
CANCELLATION  
GRAT,  
AT  
DAC  
001aab184  
Fig 5. Distributor.  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
The Distributor combines and processes the (optionally sampled) signals VSA to VSH  
coming from the Input circuit to produce the servo signals Q1 to Q6 and the input signals  
for the FTC and for the push-pull processor. Sections Section 7.5.1 to Section 7.5.4  
describe how the Distributor output signals are derived.  
7.5.1 Signals Q1 to Q6  
Refer to Figure 5.  
The servo currents Q1 to Q4 are offset-free and filtered current versions of the segment  
voltages VSA to VSD. They are converted from voltage to current by the resistance RQ.  
The signals Q5 and Q6 depend on the servo mode (3-spot CA, 3-spot PP or DPD).  
Segment signals VSA to VSH are converted from voltages to currents. The currents are  
low-pass filtered to remove the EFM noise from the signals if no sampling is applied  
during read and write.  
Offset compensation can be applied by adding an offset current to each of the 8 segment  
signals to cancel the offset in the segment signal from the PDIC. Separate offsets can be  
specified to cancel the different offsets for read and write. For read, the offsets are set by  
5-bit registers ORA to ORH, for write, by registers OWA to OWH. In order to specify the  
correct value for a specific offset register, the offset for the corresponding segment is  
measured externally via signals Q1 to Q4. The gain control bits GCAL[1:0] set the  
measured offset current to within the range of the measuring device; a range of 0 µA  
to 10 µA is suitable for most Philips decoders. The gain adjusted central segment signals  
QA to QD and satellite segment signals QE to QH can be swapped by setting bit  
CALSAT to logic 1 to allow all QA to QH signals to be measured externally via Q1 to Q4.  
After offset cancelling, the central segment signals Q1 to Q4 are routed to the Distributor  
output as offset-free and filtered current signal versions of the segment voltage signals  
VSA to VSD.  
Note that Q3 corresponds to QD and that Q4 corresponds to QC. These signal  
associations were swapped over in earlier Philips preprocessor devices.  
The characteristics of signals Q5 and Q6 depend on the status of bit CA/PP and bit DPD;  
see Table 5.  
Table 5:  
Q5/Q6 modes  
Servo Mode  
3-spot PP  
3-spot CA  
CA/PP  
Q5  
Q6  
0
1
γ × (QE + QG)  
γ × (QE + QF)  
γ × (QF + QH)  
γ × (QG + QH)  
Symbol γ is the gain factor which compensates for the power difference between the  
central spot and the satellite spot. This is determined by the grating ratio of the OPU and  
possibly gain differences between the central and satellite segments in the PDIC. The  
value of γ is controlled by bit GRAT and control word AT[7:0].  
7.5.2 Signal Qs  
Qs is the sum of the central segment signals and is used in the DPD circuit for drop-out  
concealment detection. It is defined by: QS = 0.2 × (QA + QB + QC + QD)  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
12 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.5.3 FTC circuit signals  
The signals to the FTC circuit comprise the following:  
FA = VSA/RFTC to FH = VSH/RFTC  
FAD = FA + FD  
FBC = FB + FC  
Where RFTC is the conversion resistance.  
These signals are combined in the FTC block to provide various Fast Track Count  
methods.  
7.5.4 Signals L and R  
The output currents L and R represent the signals from the left and right halves,  
respectively, of the PDIC pupil. They are processed by the P-P Normalizer/Balancer to  
obtain a P-P signal suitable for wobble detection. Signals L and R are defined by:  
PA = VSA/RPP to PD = VSD/RPP  
L = 2(PA + PD + IRLOFF) + IPPOFF for bit R/L = 0; L = 2(PA + PD) + IPPOFF for bit R/L = 1  
R = 2(PB + PC + IPPOFF) for bit R/L = 0; R = 2(PB + PC + IRLOFF) for bit R/L = 1  
Where RPP is the conversion resistance; IRLOFF is the offset current between signals  
L and R.  
The bandwidth of signals L and R is determined by low-pass filter LPF2 and can be  
selected using the control bits BWPP1[2:0].  
In order to set IRLOFF, the offset of signals L and R must be measured separately by  
setting bit CALRL to logic 1. In this mode, R is sent to Q1 and L is sent to Q2 and are NOT  
available to the push-pull circuit.  
When the P-P Normalizer/Balancer circuit is not used (bit PPBAL = 0), the related circuit  
in the Distributor is switched off to save power.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
13 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.6 RF amplifier  
A detailed block diagram of the RF amplifier is shown in Figure 6.  
TSTVRF  
(open)  
r/w  
V
WRF  
DIFFW  
G
RFW  
+
s/d  
WRF  
G
RFR  
RFPIN  
RFNIN  
r/w  
TSTDPD1  
LDRF  
REFON  
rfp  
rfn  
R0  
R1  
R2  
R3  
(2×) (2×) (2×) (2×)  
(open)  
dtdtst  
V
REF  
+
VWRF  
VRRF  
s/d  
RRF  
DIFFR  
V
V
WRF  
RRF  
REF  
CIRCUIT  
(open)  
V
RRF  
TSTVRF  
PDCRF  
RDCRF  
ENEQ  
KEQ  
DC  
RF  
HA GRF  
VGA  
BWRF ENNF BWRF  
DRVON  
5X  
rfp  
RFP  
RFN  
+
+
rf  
rf  
DC CONTROL  
a
EQ  
NF  
b
rfn  
RFREF  
1/2  
RFItest  
rf-beta1  
rf-beta2  
R
rf  
OFFSET  
CONTROL  
V/I  
rf-norm  
rftst  
1/3  
OFF  
rf-cal  
RFW  
OFF  
RFCAL  
001aab183  
RFR  
r/w  
Fig 6. RF amplifier.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
14 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
The RF amplifier input supports many of the different signal configurations that are  
produced by the various types of PDIC available. The possible input signals are either a  
differential pair RFPIN and RFNIN which can be either currents or voltages, or two  
single-ended voltages WRF and RRF.  
7.6.1 Input section  
The differential inputs RFPIN and RFNIN are connected to each other by programmable  
termination resistors. These resistors provide a characteristic termination of the  
connection to the OPU and convert current to voltage in the case of a current output PDIC  
such as the TZA1045. The midpoint of these resistors is either connected to VREF  
(bit REFON = 1) or is left floating (bit REFON = 0). The resistor values are 75 , 150 ,  
300 or high-ohmic (> 5 k) and are selectable by word LDRF[1:0].  
Both differential inputs can be used for read or write (bit DIFFR = 1, bit DIFFW = 1). Of the  
single-ended inputs, RRF can be used for read (bit DIFFR = 0, signal r/w = 1) and WRF  
for write (bit DIFFW = 0, signal r/w = 0). Depending on the setting of bit DIFFR and bit  
DIFFW, the non-active inputs are disabled to save power. The single-ended input signals  
are made differential by subtracting programmable reference voltages VWRF from WRF  
and VRRF from RRF. Reference voltages VWRF and VRRF are programmable by word  
VWRF[3:0] and word VRRF[3:0] respectively.  
The control bit TSTVRF is intended for test purposes only and should be set to logic 0 for  
normal operation.  
7.6.2 Differential data path  
The r/w multiplexer outputs one common differential RF signal for all possible modes,  
which is amplified at a gain set by word GRFW[3:0] during write and a gain set by word  
GRFR[3:0] during read.  
A DC-control block allows the output signal to be DC-coupled to a channel decoder. The  
relationship between input and output of the DC-control block is given by rfb = rfa DCRF  
Where DCRF is the RF DC control voltage controlled by word DCRF[5:0] set via the Fast  
Serial Bus (FSB).  
.
The DC control block has two functions: the first function allows the output signal to be  
DC-coupled to a channel decoder in which the DC control is adjusted in a closed-loop by  
the decoder IC. This function requires both PDCRF and RDCRF bits to be set to logic 0.  
The second function allows a DC offset calibration to be performed which is required if a  
DC measurement for OPC is performed via the differential data path (BETA measurement  
in PNX7850). For this purpose, the DC control polarity can be set by bit PDCRF and the  
DAC accuracy can be increased (at the cost of decreasing the range) by setting bit  
RDCRF. The relationship between input and output of the DC-control block is given by:  
0.01  
1 + RDCRF  
rfb = rfa DCRF, where DC  
=
1 (2 × PDCRF) ×  
× DCRF  
-----------------------------  
RF  
If bit PDCRF is logic 0, DCRF is subtracted from rfa; if bit PDCRF is logic 1, DCRF is added  
to rfa. The step size is 10 mV when bit RDCRF = 0 and 5 mV when RDCRF = 1. The  
control word DCRF[5:0] and bits PDCRF and RDCRF are set via the FSB.  
A Variable Gain Amplifier (VGA), also controlled via the FSB (word GRF[3:0]), is used to  
create an AGC loop in conjunction with the decoder IC.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
15 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
If the DC-control loop is used, it provides sufficient headroom to select an additional gain  
of 12 dB in the VGA (bit HA = 1). This allows the amplitude of the signal into the filters to  
be scaled and optimized, which improves SNR.  
The output of the VGA is connected to a filter section that comprises an Equalizer (EQ)  
and a Noise Filter (NF), which are controlled by bits KEQ, ENEQ, ENNF and word  
BWRF[6:0]. The equalizer has a transfer function He(s) shown by Equation 1.  
s2  
1 k ×  
--------------  
ω
2
1
0RF  
He(s) =  
×
(1)  
------------------------------------------------------ -------------------------------  
s2  
s
s
1 + τ ×  
------------  
1 +  
+ α ×  
------------  
---------------  
2
ω0RF  
ω0RF  
ω0RF  
This represents a 3rd degree equi-ripple phase filter with a good delay response. The  
boost factor k is programmable by control bit KEQ via the I2C-bus. The corner frequency  
ω0RF = 2 π f0RF is programmable by control word BWRF[6:0]. The equalizer is activated by  
control bit ENEQ.  
The noise filter is a 3rd-order Butterworth low-pass filter which has a transfer function  
Hn(s) shown by equation Equation 2.  
1
1
Hn(s) =  
×
(2)  
-------------------------------------------- ----------------------  
s2  
s
s
1 +  
------------  
1 +  
+
--------------- ------------  
ω0RF  
2
ω0RF  
ω0RF  
The corner frequency ω0RF in this filter is equal to the corner frequency of the equalizer  
filter. The noise filter is activated by bit ENNF. To reduce power dissipation, the filters  
auxiliary circuits, such as the DACs, are switched off when bit ENNF and bit ENEQ are  
both logic 0.  
The low-ohmic differential output voltage is produced by a driver stage, where the  
externally sourced reference voltage at pin RFREF defines the common mode voltage of  
output signals RFP and RFN. The driver stage can be disabled to save power by setting  
bit DRVON to logic 0.  
A low-power, low-speed mode is anticipated for applications such as slim line notebooks,  
where maximum speed is less important than power dissipation. By setting bit 5X, the  
output bandwidth is limited to approximately 5× DVD. Note that the maximum speed of the  
output is influenced by the output load. Therefore it may be possible to use the ‘low  
dissipation’ mode up to higher speeds in applications having lower output loads, such as  
Magnetic Core Memory (MCM).  
To enable testing of the DPD filters, signal dtdtst from the input filter of the DPD circuit can  
be routed to the output by setting bit TSTDPD1 to logic 1. Due to the implementation, not  
all settings of word GRFR[3:0] or GRFW[3:0] are possible in this mode.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
16 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.6.3 Single-ended current path  
Apart from the RF output signal, the RF amplifier also produces four identical derivative rf  
signals in the current domain for use in other circuits. They are called rf-beta1, rf-beta2,  
rf-norm and rf-cal, and are routed to blocks BETA and Normalizer and to the XDN output.  
VRFa + VOO(RF)  
The outgoing signals are offset-compensated rf-currents: rf =  
----------------------------------------  
Rrf  
The offset voltage VOO(RF) is set via the I2C-bus interface. In read mode (r/w = 1), VOO(RF)  
is controlled by OFFRF[5:0]. In write mode (r/w = 0), VOO(RF) is controlled by  
OFFRFW[5:0]. Voltage VRFa is the output voltage of the first output stage across rfp and  
rfn; Rrf is the RF V-to-I conversion resistance. Separate offset settings for read and write  
are necessary because the combined offset of PDIC and the TZA1047 RF path will be  
different in read and write modes. Read and write modes use different gain settings set by  
GRFR[3:0] and GRFW[3:0], so an offset at the input to the DC-control block will have a  
different effect on VRFa in read and write mode.  
The offset is calibrated by measuring the voltage of the calibration signal rf-cal via the  
output at pin XDN with the laser off. Avoid adding other rf currents as they may  
significantly increase the offset since it is assumed that all rf currents are offset-free after  
calibration of rf-cal.  
The control signal RFItest is intended only for test and evaluation purposes. It is set by  
I2C-bus control bits TST[2:0]. For normal operation these bits should all be set to logic 0.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
17 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7.7 DPD circuit  
The block diagram of the DPD circuit is shown in Figure 7.  
DPD  
DL  
Q
S
DPD CIRCUIT  
I
I
T
N
φ1  
s1, s2  
φ
DTDC/I  
SEL  
PD1, PD2  
SEL  
FDPD,  
TST2  
FLL,  
TST2  
TST1  
PHASE  
DETECTOR  
dtd1  
dtd2  
DTD  
p
LPF2  
s1 to s4  
DOC  
and  
POL  
VUA to  
VUD  
to Distributor  
and to FTC  
I/V  
from  
Input  
circuit  
I
D0  
LEAD  
(V/I)  
DL  
LPF1  
HPF  
DPOL,  
TST2  
DTD  
n
φ2  
φ
s3, s4  
DROP-OUT  
CONCEALMENT  
and  
mce515  
PHASE  
DETECTOR  
dtdtst  
(diff)  
I/V  
POLARITY  
Fig 7. DPD circuit.  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
The DPD circuit is enabled by control bit DPD. If DPD = 0 the entire circuit is switched off  
to reduce power dissipation in applications where DPD is not used.  
The four input signals VUA to VUD, generated in the Input circuit, correspond to the  
signals from the four central segments of the PDIC. There are four possible DPD methods  
available DTD4, DTD4a, DTD2a or DTD2 which are specified by bits PD1, PD2 and  
DTDC/I. The relationship between signals VUA to VUD and signals s1 to s4 for each DPD  
method is shown in Table 6.  
Table 6:  
DPD selection method  
PD1  
0
PD2  
0
DTDC/I  
S1  
S2  
S3  
S4  
0
0
0
0
1
VUA  
VUA  
VUA  
VUA  
VUB  
VUD  
VUB  
VUD  
VUC  
VUC  
VUA  
VUA  
VUD  
VUB  
VUB  
VUD  
0
1
1
0
1
1
X
X
VUA + VUC VUB + VUD VUA + VUC VUB + VUD  
The signals VUA to VUD are fed through a low-pass filter LPF1 to filter out noise, then  
through a high-pass filter (HPF) to remove the DC content and finally through a lead  
network (equalizer) to boost the I3 amplitude. The cut-off frequency of LPF1 is controlled  
via I2C-bus word FDPD[1:0] while the lead filter is controlled by word FLL[1:0]. The  
selected signals s1 to s4 are then sliced to produce two pairs of binary value signals (Φ1)  
and (Φ2). Each signal pair is fed to the input of a phase detector. The outputs of both  
phase detectors are combined and low-pass filtered by LPF2 to produce signals dtd1 and  
dtd2 as shown by equations Equation 3 and Equation 4.  
1
T p  
dtd1 = D0 + kDTD  
dtd2 = D0 + kDTD  
×
×
× avg(D(s1, s2) + D(s3, s4))  
× avg(D(s2, s1) + D(s4, s3))  
(3)  
(4)  
------  
1
------  
T p  
Where Tp is the average period of s1 to s4, and D0 is an offset depending on the delay  
parameter set by word DL[2:0] (D0 = DL/TP), via the I2C-bus, which is introduced to reduce  
the sensitivity to noise. kDTD is the sensitivity of the phase detector (typically equal to 1)  
and D(sx, sy) represents the delay time between signal sx and signal sy, given by:  
D(sx, sy) = del(sx, sy) if del(sx, sy) ≥ 0  
D(sx, sy) = 0 if del(sx, sy) < 0  
where del(sx, sy) is the time delay between signal sx and signal sy; if signal sx leads  
signal sy then del(sx, sy) > 0.  
The difference between dtd1 and dtd2 (dtd1 dtd2) is multiplied with a drop-out  
concealed normalization current IN and added to a fixed offset current ID0. Two outputs are  
produced which have an opposite sign in the modulation term, the polarity is specified by  
bit DPOL. The possible values for the output signals are shown in Table 7.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
19 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 7:  
DTDP and DTDn output values  
DPOL  
QS  
DTDP  
DTDn  
0
0
1
1
QS > IT  
QS < IT  
QS > IT  
QS < IT  
IDo + (dtd1 dtd2)IN  
I
Do (dtd1 dtd2)IN  
IDo + (dtd1 dtd2)INQS/IT  
IDo (dtd1 dtd2)INQS/IT  
IDo (dtd1 dtd2)IN  
IDo + (dtd1 dtd2)IN  
IDo (dtd1 dtd2)INQS/IT  
IDo + (dtd1 dtd2)INQS/IT  
QS is the central-spot sum signal generated by the Distributor. IT is the level of threshold  
current for dropout concealment with which it is compared. IN is an output-scaling current.  
IT and IN are programmable via the I2C-bus by IN[3:0] and IT[3:0].  
7.7.1 Test mode  
The control bits TSTDPD1 and TSTDPD2 are intended for test and evaluation purposes  
only and should be set to logic 0 for normal operation.  
7.8 FTC circuit  
A detailed block diagram of the FTC subcircuit is shown in Figure 8. The entire FTC block  
can be powered down by setting bit FTCON to logic 0.  
FTCON  
FAD + FBC  
3.0  
SP3/1  
FE to FH  
FTC CIRCUIT  
FAD, FBC  
from  
γ
Distributor  
FF + FH  
FE + FG  
FAD, FBC  
X
CA/PP2  
FSEL  
FTCSL  
[FAD + γ × (FF + FH)]  
[FBC + γ × (FE + FG)]  
D/F  
GFTC  
I/V  
FTCF  
LPF  
γ
HPF  
R
FTCOUT  
FTC  
FE + FF  
FG + FH  
X
CFTC  
γ
D
AT, GRAT  
V
FTC(DC)  
DTDp, DTDn  
001aab188  
from DPD  
3.0  
Fig 8. FTC circuit.  
The FTC circuit supports detection modes: CA, PP, DPD with either 1 or 3-spot tracking.  
The FTC mode is controlled by bits FSEL, CA/PP2, SP3/1 and D/F. The different modes of  
signal ftc (output FTC before filtering and slicing) that are possible are given in Table 8.  
Note that bit CA/PP2 is not the same as bit CA/PP which is used to control the operation  
of the Distributor. Having two CA/PP bits allows different settings for FTC and servo  
signals in the application.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
20 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 8:  
FTC Modes  
FSEL  
CA/PP2 SP3/1 D/F  
FTC  
3 × RFTCOUT × (FAD + FBC)  
0
1
1
1
1
X
0
0
1
X
X
0
X
0
0
0
1
R
R
R
FTCOUT × (FAD FBC)  
1
FTCOUT × {[FAD + γ × (FF + FH)] [FBC + γ × (FE + FG)]}  
FTCOUT × γ × (FE + FF FG FH)  
X
X
3 × RFTCOUT × (DTDp DTDn)  
RFTCOUT is a programmable I to V conversion resistance, set by control word GFTC[1:0].  
The parameter γ is a programmable gain representing the ratio between the satellite and  
central segment signals. It is equal to the γ used in the Distributor and is controlled by  
GRAT and word AT[7:0].  
The FTC signal is high-pass filtered in order to limit the offset and then low-pass filtered to  
suppress noise. The low-pass filter LPF is a second order filter with a target transfer  
function Ht(s):  
1
Ht(s) =  
; where QFTC is a filter quality factor.  
-----------------------------------------------------------------------  
s2  
------------------ ------------------------------------  
s
1 +  
+
2
Q
FTC × ω0FTC  
ω0FTC  
The filter corner frequency is selectable by FTCF[1:0]. The filter can be bypassed by  
setting FTCF to logic 11.  
The FTC output can be either an analog AC voltage superimposed on a DC bias level  
(FTCSL = 0) or it can be sliced (FTCSL = 1), producing a digital output signal at 3.3 V  
CMOS levels. The bias level VFTC(DC) is generated inside TZA1047.  
7.9 Push-pull processor  
The detailed block diagram of the P-P processor is shown in Figure 9.  
PPTST1  
PPBAL  
IPPN  
D/A  
BAL  
TBAL  
P-P PROCESSOR  
DACdump  
I
PPN  
V
c
GPP  
BWPP PPTST1  
LPF  
R
L
PPOUT  
L
B
ppn  
I/V  
from  
Distributor  
GAIN  
BALANCER  
NORMALIZER  
PPN  
R
R
B
I/V  
0.5 × (L + R )  
B
B
001aab185  
R
PPTST  
Fig 9. P-P processor.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
21 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
The left-hand side of this diagram shows the Balancer and Normalizer sections. The input  
signals L and R are low-pass filtered before processing. When balancing is switched on  
(bit BAL = 1), it outputs a normalized, current mode, push-pull signal that can be used for  
wobble read-out of a pre-groove. The gain balancer is used to balance the low-pass  
filtered left and right central spot signals in such a way that the resultant normalized output  
signal (ppn) is free of DC. The integrator time constant of the Balancer, τPP, is controlled  
by parameter TBAL[1:0].  
The relationship between the Gain Balancer and Normalizer is given in the following  
equations:  
LB = (1 Vc)L  
RB = (1 + Vc)R  
(RB LB)  
ppn =  
------------------------  
(LB + RB)  
1
τPP  
Vc  
=
(ppn)dt if BAL = 1  
--------  
Vc = 0 if BAL = 0  
On the right-hand side of the diagram, the balanced and normalized signal ppn is scaled  
by current IPPN, converted to a voltage by RPPOUT and finally amplified at a gain selected  
by GPP[3:0]. The output signal is low-pass filtered at an adjustable bandwidth of between  
2 MHz and 20 MHz to improve signal-to-noise ratio. The various amplifiers and filters are  
controlled by IPPN[3:0], GPP[3:0] and BWPP[2:0]. The components of the output signal  
PPN are:  
PPN = ppn × IPPN × RPPOUT × GPP  
0.05 × kPPN × IPPN  
I
= I  
× 10  
0, PPN  
PPN  
where IPPN is the decimal value of control word IPPN[3:0], and kPPN is the scaling current  
factor.  
If not used, the P-P Normalizer/Balancer can be switched off to save power by setting bit  
PPBAL to logic 0.  
The output signal at pin PPN is a bipolar voltage around 0.5VDD  
.
7.9.1 Test mode  
The control bit PPTST1 is intended for test and evaluation use only and should be set to  
logic 0 for normal operation.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
22 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.10 EFMTIM Timing  
The EFMTIM circuit supplies the various timing signals that are required for the writing  
functions. The input and output signals of this circuit are shown in Figure 10.  
EFMINT  
TH1  
TH2  
RS  
EFMINT  
REF/ECN  
RS/ECP  
INPUT  
CIRCUIT  
TH1,  
TH2,  
RS,  
r/w  
TH1/EDN  
TH2/EDP  
efmcp  
efmcn  
efmdp  
RWOUT  
r/w  
EFMTIM  
CORE  
R/W  
SELECT  
TIM8  
TIMOUT  
SMPLON, P/L, L/T, FR, FW, RST,  
EFMON, ENRW, ENRS, EFMTST  
001aab195  
Fig 10. EFMTIM.  
The EFMTIM can operate in internal mode (bit EFMINT = 1) or external mode (bit  
EFMINT = 0). In internal mode, the various write sampling signals are generated inside  
the TZA1047. In external mode, the internal EFMTIM block is disabled and the separate  
signals: r/w, RS TH1 and TH2 can be controlled externally via the appropriate pins. In  
internal mode, the EFMTIM block can be switched off by setting bit EFMON to logic 0.  
This mode can be used to conserve current in sample-less systems. An overview of  
EFMTIM modes is given in Table 9.  
Table 9:  
EFMTIM modes  
EFMINT EFMON  
Mode  
Expected input signals  
EFM clock and data  
EFM clock and data  
N/A  
1
1
0
0
1
0
1
0
internal; active  
internal; inactive (power save)  
do not use[1]  
external  
sample signals: RS, TH1 and TH2  
[1] This mode is not harmful to the device but does not produce useful results.  
7.10.1 Input signals  
As the inputs of EFMTIM, in both internal and external modes, are high frequency digital  
signals, a special interface is provided to enable the transfer of these signals from the  
decoder IC to TZA1047. The exception to this is the signal R/W, which has less stringent  
timing requirements and is a normal 3.3 V CMOS level signal. The general principle of the  
input circuit is shown in Figure 11.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
23 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
PCB or  
PCB or  
driver IC  
driver IC TZA1047  
driver IC  
1
driver IC  
TZA1047  
1
1
RS,  
TH1,  
TH2  
R
R
70  
70  
RS,  
TH1,  
TH2,  
efmdp, efmcp,  
efmdn, efmcn  
N.C.  
1  
EFMD,  
EFMC  
R
2 × R  
70  
70  
REF/ECN  
EFMINT = 1  
EFMINT = 0  
001aab197  
Fig 11. EFMTIM input signal connections.  
The input circuit is designed to present a low-ohmic, appropriate characteristic termination  
to the PCB tracks. To limit EMI, the voltage swing on the PCB track can be kept small by  
series resistors placed close to, or inside, the driver IC.  
In internal mode, the driving EFMclock and EFMdata signals are supplied as  
complementary signals. The inputs of EFMTIM on the TZA1047 act as current  
comparators:  
efmdp = 1 if ITH2/EDP > ITH1/EDN; efmcp = 1 if IRS/ECP > IREF/ECN  
In external mode, the input signals are single-ended. The input circuit operates in the  
same manner as in internal mode, as a current comparator. A reference current equal to  
half the maximum input current is supplied to pin EFMREF to provide a threshold value:  
RS = 1 if IRS/ECP > IREF/ECN; TH1 = 1 if ITH1/EDN > IREF/ECN etc.  
Note that for the same input slew rate, the resistor values in external mode should be half  
the value in internal mode.  
To ensure good signal integrity, the currents through the series resistors must not be too  
low. The maximum allowable input current for TZA1047 is larger than 5 mA. Using higher  
value resistors will reduce power dissipation and will also reduce speed.  
7.10.2 Signal generation in internal mode  
In the following, the EFM clock and data signals that are routed to the input circuit in  
current mode, are represented by the symbols efmc and efmd.  
7.10.2.1 r/w signal  
The r/w signal selects the read or write mode and can be produced either automatically or  
it can be forced externally. In internal mode (bit EFMON = 1, bit FR = 0 and bit FW = 0)  
signal r/w is derived from the EFM input signals as shown in Figure 12.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
24 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
READ  
WRITE  
T
EFMc  
EFMd  
15 × T  
r/w  
(18 + D ) × T  
1
WRITE  
READ  
EFMc  
EFMd  
(18 + D ) × T  
1
r/w  
mce520  
Fig 12. Generation of r/w in internal mode.  
When bit FR = bit FW = 0, a transition from read to write is indicated by the occurrence of  
two edges in signal efmd within an interval of 15T or less, where T is the period of efmc.  
Then r/w goes LOW after (18 + D1) × T after the first edge in efmd, where D1 is a  
programmable parameter. A transition from write to read occurs when during an interval of  
15T no edges are detected in efmd. Then r/w becomes HIGH after (18 + D1) × T after the  
final edge in efmd. Note that the HIGH or LOW state of efmd is irrelevant for read/write  
detection, only the occurrence of transitions matter. In general, both efmc and efmd will  
become stationary in either LOW or HIGH states during read, although this is not  
required.  
The status of bits FR and FW control the mode of the r/w signal as shown in Table 10.  
Table 10: R/W modes  
FW  
FR  
Mode  
r/w  
EFMINT = 1  
EFMINT = 0  
0
0
internal  
determined by  
EFM clock and  
data  
undefined  
0
1
1
1
0
1
forced read  
forced write  
external  
1
0
1
0
determined by  
external R/W  
determined by  
external R/W  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
25 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.10.2.2 TH1 and TH2  
TH1 and TH2 are the sampling signals used in the Input circuit. When bit EFMON equals  
bit SMPLON = 1 they are generated according to the timing diagram in Figure 13.  
T
T/2  
EFMc  
EFMd  
pit  
land  
pit  
land  
pit  
(17 + D ) × T  
2
pit  
land  
pit  
land  
LIGHT  
N × T  
m × T/2  
(L/T = 0)  
n × T/2  
m × T/2  
(L/T = 1)  
TH1  
(P/L = 1)  
2T  
TH2  
(P/L = 1)  
m × T/2  
(L/T = 1)  
m × T/2  
(L/T = 0)  
n × T/2  
TH1  
(P/L = 0)  
2T  
TH2  
(P/L = 0)  
mce521  
Fig 13. Sampling signals TH1 and TH2.  
The auxiliary signal LIGHT represents the laser light. It has a delay (17 + D2) × T with  
respect to signal efmd, where D2 is a programmable parameter that is used to  
synchronize signals within TZA1047 with the actual laser light pulse. If bit P/L = 1, TH1  
starts in a pit region, if bit P/L = 0, TH1 starts in a land region. The leading edge of TH1  
occurs ‘m’ periods of T/2 either after the start (bit L/T = 1) or before the end (bit L/T = 0) of  
a pit (bit P/L = 1) or a land (bit P/L = 0). The width of TH1 equals ‘n’ periods of T/2. The  
signal TH2 has its rising edge at the falling edge of TH1, and its falling edge 2T later, for all  
EFM run lengths.  
In the timing diagram, two versions of TH1 and TH2 are shown, for the first version,  
bit P/L = 1, bit L/T = 1, m = 1, n = 3; for the second version, bit P/L = 0, L/T = 0, m = 3,  
n = 2. If bit SMPLON = 0, EFMON = 0 or r/w = 1, signals TH1 and TH2 are always HIGH.  
It is possible to disable sampling for a specific run length of N < NDIS1, where N is the run  
length and NDIS1 is the run length discrimination parameter. TH1 and TH2 will remain  
LOW when N < NDIS1, bit EFMON = bit SMPLON = 1, r/w = 0, and the sample-and-hold  
remains in hold. This feature is called run length discrimination and is added, if needed,  
to avoid critical timing at very high speeds.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
26 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Sampling on the current run length with length N is disabled if N < NDIS1. The value of  
NDIS1 can be in the range 3 to 6 selected by TIM9[1:0]. If NDIS1 = 3, all run lengths in a  
regular EFM-sequence are sampled (no discrimination), if NDIS1 = 4, all run lengths >3T  
are sampled, and so on.  
7.10.2.3 Signal RS  
The signal RS is used in the Normalizer for sampling the RF signal to obtain the reflection  
from the disc. It is defined in the timing diagram shown in Figure 14.  
T
T/2  
EFMc  
EFMd  
pit  
land  
pit  
land  
pit  
(17 + D ) × T  
2
pit  
land  
pit  
land  
LIGHT  
RS  
001aab196  
m
× T/2  
(n 2) × T/2  
1
1
Fig 14. Signal RS.  
The signal LIGHT is the same signal shown in the timing diagram for TH1 and TH2,  
Figure 13. Signal RS is synchronously derived from LIGHT. It is either active or inactive,  
defined by bit ENRS and the state of signal r/w. Signal RS is inactive when bit ENRS = 0  
or signal r/w = 1; when inactive, signal RS is always HIGH. Signal RS is active when bit  
ENRS = 1 and signal r/w = 0; when active, RS goes HIGH m1 × T/2 periods after the  
trailing edge of LIGHT (i.e. in the land region), and LOW (n1 2) × T/2 periods after the  
rising edge of LIGHT, where m1 = 0 to 15 and n1 = 0 to 7. For run lengths of length N × T,  
RS remains LOW if m1/2 N (run length discrimination). Also, if for a given land region  
the rising and falling edges of RS coincide or even reverse in places due to the choice of  
values for m1 and n1, RS remains LOW.  
7.10.3 Enabling bits  
In internal mode with EFMTIM active or inactive (EFMINT = 1, EFMON = 0 or 1), the state  
of the various EFMTIM output signals can be overruled by the enabling bits ENRS, ENRW  
and SMPLON according to Table 11. The signals should comply with this table even if  
the EFMTIM block has not been reset.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
27 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 11: EFMTIM enabling bits  
Signal  
r/w  
Enabling bit  
ENRW  
Value when enabling bit = 0  
1
1
RS  
ENRS . (r/w)  
TH1  
TH2  
SMPLON . (r/w)  
SMPLON . (r/w)  
1
1
7.10.4 Signal generation in external mode  
In external mode, the EFM timing signals r/w, TH1, TH2, and RS are simply copies of the  
signals supplied to the appropriate pins.  
7.10.5 Timing parameters  
The timing parameters shown in Figure 12, Figure 13 and Figure 14 are controlled by  
I2C-bus registers TIM0 to TIM5 as shown in Table 12.  
Table 12: Selection of timing parameters  
Timing parameter  
Register  
TIM0[4:0]  
TIM1[5:0]  
TIM2[2:0]  
TIM3[2:0]  
TIM4[3:0]  
TIM5[2:0]  
Range  
0 to 31  
0 to 49[1]  
0 to 7  
D1  
D2  
m
n
0 to 7  
m1  
n1  
0 to 15[2]  
0 to 7[2]  
[1] If the value of register TIM1 > 49, D2 will remain at 49T.  
[2] Certain values of m1 may cause the rising and falling edges of RS to coincide or to reverse position. In  
these cases RS will remain LOW.  
The values of run length discrimination parameter NDIS1 are specified by register TIM9  
and are given in Table 13.  
Table 13: Selection of run length discrimination  
TIM9[1:0]  
NDIS1 value  
00  
01  
10  
11  
3
4
5
6
7.10.6 Miscellaneous  
7.10.6.1 RWOUT  
The r/w signal is available at pin RWOUT and can be used to drive other circuits such as  
the OPU.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
28 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.10.6.2 TIMOUT  
For test purposes, any one of the output signals from the EFMTIM block can be routed to  
pin TIMOUT. Signals will be output from pin TIMOUT when bit EFMINT = 1 or 0. The value  
of register TIM8[2:0] selects which signal is sent to pin TIMOUT as shown in Table 14.  
Note, to allow compatibility with the TZA1039, settings 001 and 010 are not used.  
Table 14: TIMOUT signal selection  
TIM8[2:0]  
000  
Signal at pin TIMOUT  
LOW (0 V)  
LOW (0 V)  
LIGHT  
RS  
001  
010  
011  
100  
r/w  
101  
TH1  
110  
TH2  
111  
HIGH (VDD)  
7.10.6.3 Bit RST  
The EFMTIM block has a local reset input which is software-controlled by bit RST. The  
EFMTIM asynchronous reset circuit has to be loaded serially by setting bit RST with the  
sequence 0, 1, 0. The reset is actually established after less than 16 edges in signal  
EFMc.  
After reset, the output signals are left in read state (r/w = RS = TH1 = TH2 = HIGH).  
7.10.6.4 Bit EFMTST  
Bit EFMTST is used for test purposes only and should be set to logic 0 for normal  
operation.  
7.11 Normalizer  
The Normalizer block produces the servo error signals from the current mode signals Q1  
to Q6. It consists of various sub-blocks shown in Figure 15.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
29 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Q/NE, ALF1/2, S4/8, CA/PP  
mir  
satsum  
Q
Q1 to Q6  
AUX  
SNORM  
QM1 to QM6  
QT1 to QT6  
FEN4/2  
PFEN  
I
OF , OF  
R W  
DOC1  
r/w  
Q1 to Q4  
FEN  
FOC  
MON  
(1) n.c.  
(2) TLN  
(3) REN  
(4) FEN  
(5) MIRN  
(6) XDN  
I
I
DOC2  
DOC3  
REN4/2, PREN, DPD, PXDN,  
RFCAL, S4/8, CA/PP  
rfcal  
Q/NE  
MON  
XDN  
REN  
MON  
Q1 to Q6  
RAD  
DTDp, DTDn  
(1) D1  
(2) D2/TLN  
(3) D3/REN  
(4) D4/FEN  
(5) S1/MIRN  
(6) S2/XDN  
(1) QT1  
(2) QT2  
(3) QT3  
(4) QT4  
RTLN, PTLN,  
CLMP, CA/PP  
I
DOC4  
DPD  
(5) QT5  
(6) QT6  
Q
SNORM  
Q1 to Q6  
satsum  
TL  
TLN  
MON  
(5) DTDp  
(6) DTDn  
VARP, ALF1/2  
MIR1/2,  
BWRS  
I
MIR  
I
I
, I  
,
TW  
, I , I  
r/w  
RS  
TR  
N1 N2 N3  
r/w  
I
rf-norm  
DOC1  
CAN  
DOC  
to  
LASP  
mir  
I
DOC4  
MIRN  
CANORM  
MIRNMON  
SLASP  
srf  
CANMON  
CANALF  
satsum  
001aab194  
Fig 15. Normalizer sub-blocks.  
The normalized error signals FEN, REN, TLN, MIRN and XDN from the Normalizer  
sub-blocks are multiplexed with signals Q1 to Q6, controlled by bit Q/NE. If Q/NE = 1  
(direct mode) the Normalizer circuits and associated DACs are switched off to save power.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
30 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.11.1 Auxiliary block  
Q/NE, ALF1/2,  
S4/8, CA/PP  
mir  
satsum  
AUX  
Q1 to Q6  
Q
SNORM  
QM1 to QM6  
QT1 to QT6  
001aab192  
Fig 16. AUX block.  
The AUX block produces the auxiliary signals QM1 to QM6, QT1 to QT6, QSNORM, satsum  
and mir which are defined as:  
QM1 to QM6 = Q1 to Q6 (routed to MON block).  
QT1 to QT6 = Q1 to Q6 (routed to output).  
Q
SNORM = Q1 + Q2 + Q3 + Q4.  
satsum = Q5 + Q6 (switched off when ALF1/2 = 0).  
The mirror signal mir components are defined in Table 15.  
Table 15: Signal mir components  
Bit S4/8  
Bit CA/PP  
Signal mir  
QSNORM  
0
0
1
1
0
1
0
1
QSNORM  
Q5 + Q6 + QSNORM  
Q5 + Q6  
7.11.2 Dropout concealment block (normalizer sub-block)  
The DOC block produces currents IDOC1 to IDOC4 (IDOCi) for the Normalizer circuits within  
sub-blocks FOC, RAD and TL.  
A Normalizer circuit N with input currents I1 and I2 produces the following  
dropout-concealed output current IO:  
I1 I2  
IO  
=
× I  
---------------  
DOC  
I1 + I2  
where IDOC is a dropout-concealed scaling current, produced by the DOC block, that is  
chosen according to the modulation depth of the signal to be normalized.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
31 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
The dropout-concealed scale currents IDOCi are defined as IDOCi = GDOC × INi, where INi  
are programmable reference currents (IN1 to IN4) and scale factor GDOC is defined by:  
GDOC = 1 if CAN > IT  
GDOC = CAN/IT if CAN IT  
where IT is the threshold level for dropout-concealment with which the normalized sum  
current CAN is compared. If CAN drops below IT, the scale factor GDOC will decrease  
linearly with CAN in order to prevent ‘dividing by zero’. There is a threshold ITW for write  
and a threshold ITR for read: IT = ITW if r/w = 0, IT = ITR if r/w = 1. The currents INi, ITW and  
ITR are programmable via the I2C-bus.  
7.11.3 Focus servo signal block (normalizer sub-block)  
The FOC block produces a normalized focus error signal FEN. A detailed block diagram of  
the FOC block is shown in Figure 17.  
I
DOC1  
N
FEN4/2  
PFEN  
Q1  
Q3  
FEN  
+/−  
0.5  
r/w  
I
DOC1  
N
OF  
W
Q4  
Q2  
OF  
R
mce526  
Fig 17. FOC block.  
Signal FEN is based on either 2 or 4 input currents selected by bit FEN4/2. Setting  
bit FEN4/2 to logic 1 selects all four input currents. The normalizer blocks (N) perform the  
same function in the DOC block described in Section 7.11.3. An offset can be applied to  
compensate for chromatic aberration in the optics. The offset signal (either OFW or OFR)  
is selected by the state of signal r/w; if r/w = 1 (read mode) OFR is used. The polarity of  
signal FEN is reversed by setting bit PFEN to logic 1. Signal FEN is available at output D4  
by setting bit Q/NE to logic 0, and is also routed to the MON block for test purposes. The  
relationship between the FEN signal components is shown in Table 16.  
Table 16: FEN signal (bit PFEN = 0)  
Bit FEN4/2  
Signal FEN[1]  
0
1
N[Q1, Q3] × GDOC × IN1 + OF  
{N[Q1, Q3] × GDOC × IN1 + N[Q4, Q2] × GDOC × IN1} × 0.5 + OF  
[1] OF = OFw if r/w = 0, OF = OFR if r/w = 1.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
32 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.11.4 Radial servo signal block (normalizer sub-block)  
The RAD block produces a normalized radial error signal REN. A detailed block diagram  
of the RAD block is shown in Figure 18.  
S4/8, CA/PP  
I
REN4/2, CA/PP  
S4/8  
DOC2  
N
DPD  
PREN  
Q1 to Q6  
LPF1  
+/−  
REN  
REN to MON  
DTDp  
DTDn  
CMPP  
+
S4/8, CA/PP  
I
DOC3  
N
PXDN  
XDN to MON  
RFCAL  
Q1 to Q6  
+/−  
XDN  
001aab190  
rfcal  
Fig 18. RAD block.  
Signal REN is based on either 2 or 4 input currents selected by bit REN4/2 and bit DPD.  
Setting bit DPD and bit REN4/2 both to logic 0 selects the associated tracking methods:  
1-spot PP (4 segments), 3-spot CA or 3-spot PP. Setting bit DPD to logic 0 and REN4/2 to  
logic 1 selects associated tracking method 1-spot PP (8 segments). For this method the  
offset correction signal obtained from the lower branch is low-pass filtered before it is  
added to the main normalized PP signal. An external capacitor named CCMPP,  
connected to pin CMPP, defines the 3 dB frequency of the filter. If bit DPD = 1 the  
tracking method is DPD, and REN is obtained from the difference between Q5 and Q6.  
The polarity of signal REN is reversed if bit PREN is set to logic 1. If bit Q/NE = 0, signal  
REN is available at servo output pin D3 and is also routed to the MON block for test  
purposes. The relationship between the REN signal components is shown in Table 17.  
Table 17: REN signal (bit PREN = 0)  
Bit S4/8  
Bit CA/PP Bit  
REN4/2  
Bit DPD  
Signal REN  
0
0
1
0
1
X
X
1
1
0
0
X
0
0
0
0
0
0
1
N[(Q1 + Q3), (Q2 + Q4)] × GDOC × IN2  
N[(Q1 + Q3), (Q2 + Q4)] × GDOC × IN2  
N[Q5, Q6] × GDOC × IN2  
1
X
1
N[(Q1 + Q3), (Q2 + Q4)] × GDOC × IN2 + LPF1[N(Q5, Q6) × GDOC × IN3  
N[(Q1 + Q3 + Q6), (Q2 + Q4 + Q5)] × GDOC × IN2  
DTDp DTDn  
]
X
X
An additional signal XDN (normalized spot position) is generated based on 3-spot PP,  
1-spot PP (4 segments) or 1-spot PP (8 segments). The XDN signal can be inverted by  
setting bit PXDN to logic 1. The XDN signal is also routed to the MON block for test  
purposes.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
33 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
If bit RFCAL = 1, output XDN provides an amplified, low-pass filtered version of signal  
rf-cal (see Section 7.6). This can be used to eliminate the offset in the RF path.  
Note that the rf-cal output is unipolar, so only positive outputs are possible. If bit  
Q/NE = 0, signal XDN (or rf-cal) is output at pin S2.  
The relationship between the XDN signal components is shown in Table 18.  
Table 18: XDN signal (bit PXDN = 0)  
Bit S4/8  
Bit CA/PP  
Bit RFCAL  
Signal XDN  
0
X
1
X
0
1
0
X
0
0
0
1
N[Q5, Q6] × GDOC × IN3  
N[(Q1 + Q3), (Q2 + Q4)] × GDOC × IN3  
N[(Q1 + Q3 + Q5), (Q2 + Q4 + Q6)] × GDOC × IN3  
rfcal  
Calculation of XDN gain: In TZA1047/M1 XDN was a voltage output on a 1.3 V bias level,  
made with a conversion resistance of 80 k. This was connected to S2 on centaurus1  
with a 100 series resistor. The reference voltage on S2 was set to 1.2 V. With a second  
resistor, a bias current was added to have a 6 µA bias level. (S2 is a 12 µA range unipolar  
input).  
This situation resulted in a full range (6 µA) swing with IN3 = 0h so Idoc3 = 16 µA.  
Calculating back, the modulation on XDN is (6 µA × 80/100)/16 µA = 30 %. This is more  
than expected but will be accepted as a fact of life.  
Intermezzo: XDN is used to measure lens position. The beam is 3.5 mm diameter through  
the lens, the position shift range required is 0.4mm. This is 11.5 %, but XDN will not be  
linear with position because the beam intensity in the middle is higher than at the edges.  
Calculation for TZA1047/M2: Assume 30 % modulation. XDN will be connected to D2, a  
bipolar input with ±12 µA range. The nominal reference current should be  
12 × (1/0.3) = 40 µA. By using IN3 = 4 + 4 × IN3, this is achieved at IN3 = 9h which is nicely  
in the middle of the range.  
7.11.5 Track loss servo signal block (normalizer sub-block)  
The TL block produces a normalized track loss error signal TLN. A detailed block diagram  
of the TL block is shown in Figure 19.  
RTLN  
I
PTLN  
CLMP  
I
CL  
DOC4  
N
CA/PP  
Q
1/3  
SNORM  
+/−  
CLAMP  
TLN  
Q5, Q6,  
Q
snorm  
TLN to MON  
001aab191  
Fig 19. TL block.  
If bit RTLN = 1, signal TLN is only valid for the tracking methods 3-spot CA and 3-spot PP.  
If bit RTLN = 0, signal TLN is the low-pass filtered central sum signal QS, scaled with a  
factor of 13.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
34 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Signal TLN (both positive and negative components) can be clamped to a maximum value  
ICL in order to deal with media that have a high and low modulation depth of TLN on one  
disc (e.g. written and blank regions). The clamp can be enabled or disabled by bit CLMP.  
The signal should recover from the clamped state within 2 µs. The polarity of TLN is  
reversed by setting bit PTLN to logic 1. Signal TLN is sent as signal D2 to the output if  
bit Q/NE is logic 0. The TLN signal is also routed to the MON block for test purposes. Note  
that this version of the TLN signal routed to the MON block is not clamped. The  
relationship between the TLN signal components is shown in Table 19, (note that  
Q5 + Q6 = satsum):  
Table 19: TLN signal (bit PTLN = 0)  
CA/PP  
RTLN  
TLN  
0
1
X
1
1
0
N[QSNORM, (Q5 + Q6)] × GDOC × IN4  
N[QSNORM, (Q5 + Q6)] × 2 QS] × GDOC × IN4  
QSNORM/3  
When not used, the TLN circuit can be switched off by setting the DOC current to zero,  
IN4[3:0] = 0000.  
7.11.6 CA signal block (normalizer sub-block)  
The CANORM block produces normalized error signal MIRN.  
RS  
BWRS  
LPF2  
MIR1/2  
srf  
rf-norm  
ALF1/2  
mir  
r/w  
I
0
IMIR  
CANtest  
satsum  
INA  
r/w  
0
MIRN  
CAN  
CANT  
MIR1/2  
4.0  
VARP  
RS  
I
01  
I
PR  
18.0  
LPF2  
ALF1/2  
r/w  
LASP  
4.0  
8.0  
BWRS  
SLASP  
001aab186  
0
Fig 20. CANORM block.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
35 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
When signal RS is active, signal rf-norm is sampled and filtered and then normalized to  
the laser power. When rf-norm is sampled and filtered, externally sourced signal LASP  
must also be sampled and filtered in order to obtain a quotient which is a normalized  
reflection signal free of EFM. Signals srf and SLASP are the sampled and filtered versions  
of rf-norm and LASP, respectively, which are used in the ALFA block. The filter corner  
frequency is selectable by bit BWRS. For high speeds, the fingerprint correction loop has  
to be faster than at low write speeds. For dye media, the laser power does not vary during  
sampling, however, the LASP signal does vary during sampling. In these situations, a  
reference current IPR is used as a read power reference. Signal srf is also used to produce  
the disc reflection signal CAN via a divider circuit which is routed to the DOC and MON  
blocks.  
A test mode is entered by setting bit CANtest to logic 1. CANtest is controlled from the  
TEST block via register TST[2:0], bit CANtest is logic 1 if TST[2:0] = 001. In this mode,  
signal CAN can be forced externally via pin TEST (signal CANT). This mode can be used  
to facilitate debugging and testing of the DOC and ALFA blocks without having to set-up  
an RF signal input.  
Mirror signal mir must be normalized to the laser power. Signal mir is derived from signals  
Q1 to Q6 which have been sampled and filtered in the Input circuit. Because signal mir is  
already sampled and filtered, signal LASP must also be sampled and filtered in order to  
produce a quotient signal MIRN which is a normalized reflection signal free of EFM. In  
some situations the laser power does not vary during sampling, while LASP does. In those  
situations, a reference current IPR is used as a read power reference. Signal IPR should be  
used in writing modes for which the LASP input signal is carrying ALFA information (e.g.  
reflection control for phase change media writing). This is because if ALFA information is  
used in the calculation instead of a fixed reference power, it would render the result of the  
block invalid. If signals Q1 to Q6 are not sampled during write, the mirror signal MIRN  
must be based on rf-norm, which is selected by setting bit MIR1/2 to logic 0. If bit  
Q/NE = 0, signal MIRN is routed as signal S1 to the output, and is also routed to the MON  
block for test purposes.  
7.11.7 Output current polarities  
The currents TLN, REN, FEN and XDN are bipolar currents, and if bit Q/NE = 0, are  
routed to servo current outputs D2, D3, D4 and S2 respectively. The current MIRN is  
unipolar, and if bit Q/NE = 0, is routed to servo current output S1. It is negative according  
to the definition used in this document, i.e. sourced by TZA1047. The internal servo  
currents Q1 to Q6 are unipolar currents, and if bit Q/NE = 1, are routed directly to D1 to  
D4, S1 and S2, and are sourced by the TZA1047.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
36 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.11.8 Normalizer block I2C-bus control signal overview  
Table 20: Normalizer single bit I2C-bus controls  
Signal name  
S4/8  
1
0
central 4-segment detector mode  
central aperture mode  
central 8-segment detector mode  
push-pull mode  
CA/PP  
FEN4/2  
PFEN  
normalized focus error signal from 4 inputs  
inverted focus error polarity  
normalized focus error signal from 2 inputs  
normal focus error polarity  
REN4/2  
PREN  
normalized radial error signal from 4 inputs normalized radial error signal from 2 inputs  
inverted radial error polarity  
normal radial error polarity  
normal spot position polarity  
PXDN  
inverted spot position polarity  
connect rf-cal signal to XDN output  
RFCAL  
normal XDN output (x-position output  
voltage)  
DPD  
DPD tracking method ON  
DPD tracking method OFF  
PTLN  
RTLN  
CLMP  
Q/NE  
VARP  
inverted track loss signal polarity  
TLN signal for 3-spot CA and PP methods  
activate TLN signal clamp  
normal track loss signal polarity  
TLN signal derived from central sum signal  
disable TLN signal clamp  
detector signals on servo outputs  
error signals on servo outputs  
use internal read power reference Ipr  
use LASP input signal as read power  
reference  
MIR1/2  
ALF1/2  
MIRN signal based on Q1 to Q6 signals  
INA signal based on Q5 + Q6 signals  
MIRN signal based on rf signal  
INA signal based on rf signal  
Table 21: Normalizer analog control parameters set via I2C-bus  
Register  
IMIR[3:0]  
OFR[3:0]  
OFW[3:0]  
IN1[3:0]  
IN2[3:0]  
IN3[3:0]  
IN4[3:0]  
ITW[3:0]  
ITR[3:0]  
Name # bits Purpose  
Step size Min  
Max  
24  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
IMIR  
OFR  
OFw  
IN1  
4
4
4
4
4
4
4
4
4
current level setting for MIRN signal  
1.5  
0.5  
0.5  
2
1.5  
4  
4  
4
focus error offset for read mode  
+3.5  
+3.5  
34  
focus error offset for write mode  
normalizer reference current for FEN signal  
normalizer reference current for REN signal  
normalizer reference current for XDN signal  
normalizer reference current for TLN signal  
dropout-concealment threshold value for write mode  
dropout-concealment threshold value for read mode  
IN2  
10  
4
10  
4
160  
64  
IN3  
IN4  
10  
0.4  
0.4  
0
150  
6.4  
ITW  
ITR  
0.4  
0.4  
6.4  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
37 of 69  
TZA1047  
Philips Semiconductors  
7.12 ALFA  
Preprocessor IC for CD and DVD rewritable  
7.12.1 ALFA measurement circuit for running OPC  
A detailed block diagram of ALFA is shown in Figure 21.  
SQRT  
INA  
I
LASP  
AN  
alfa-mon  
ALFA  
1/7  
SLASP  
001aab189  
I
ref(ALFA)  
Fig 21. ALFA block.  
The ALFA block measures the ALFA parameter to produce an error signal for use in the  
running-OPC control loop of a phase change media writer. For phase change media, the  
laser power incident at the recording layer is calculated, and is derived from the reflection  
signal (’reflection measurement’). Two methods for measuring the ALFA parameter are  
implemented. Both methods are selected by bit ALF1/2, and are defined below.  
7.12.1.1 Phase change media  
The ALFA measurement is either based on central spot detection (bit ALF1/2 = 0) or on  
satellite spot detection (bit ALF1/2 = 1). In the former case, sampling during the erase  
period of rf-norm takes place using RS in the CANORM block; in the latter case sampling  
is implemented in the input circuit.  
For phase change media the alfa signal produced is either proportional to ‘P × R’ or to  
‘PR’, where P is the optical power and R is the reflection. These quantities are measured  
in the laser power incident on the recording layer. There are two methods defined.  
The first method for phase change media (bit ALF1/2 = 1) uses the signals from the  
satellite spots to measure the disc reflection. The reflection signal is the satellite sum  
signal satsum, normalized to the sampled power signal SLASP. If bit SQRT = 1, a  
square-root operation is applied and the result is multiplied by LASP to give signal alfa-pc.  
The second method for phase change media (bit ALF1/2 = 0) uses the signal from the  
central spot rather than from satellite spots to measure the disc reflection. The reflection  
signal is the sampled rf-signal srf, normalized on the sampled power signal SLASP.  
The switching over between sampled signals rf and satsum, as well as the switching of  
sampled signal LASP by bit ALF1/2 is implemented in the CANORM circuit.  
The relationship between the various signals used to produce the ALFA signal for both  
states of bit SQRT is shown in Equation 5 and Equation 6.  
For SQRT = 0:  
IAN  
------------------------- -----------------  
Iref (ALFA) SLASP  
INA  
ALFA =  
×
× LASP  
(5)  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
38 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
For SQRT = 1:  
IAN  
INA  
ALFA =  
×
----------------- × LASP  
SLASP  
(6)  
-------------------------  
Iref (ALFA)  
The final transfer functions for the ALFA block, including the CANORM block, are given in  
Table 22. LASP (sampled) is the optionally sampled LASP signal in the CANORM block  
(see also Figure 20).  
Table 22: ALFA signal  
Bit ALF1/2  
Bit SQRT  
Signal ALFA  
1
0
IAN  
------------------------- ---------------------------------------------------  
Iref (ALFA) 8 × LASP(sampled)  
satsum  
ALFA =  
ALFA =  
ALFA =  
ALFA =  
×
× LASP  
1
0
0
1
0
1
IAN  
satsum  
×
-------------------------------------------------- × LASP  
8 × LASP(sampled)  
-------------------------  
Iref (ALFA)  
IAN  
srf  
×
× LASP  
------------------------- ---------------------------------------------------  
Iref (ALFA) 4 × LASP(sampled)  
IAN  
srf  
-------------------------------------------------- × LASP  
4 × LASP(sampled)  
×
-------------------------  
Iref (ALFA)  
7.12.1.2 ALFA circuit general  
The ALFA block is enabled by setting bit ENALF to logic 1. When bit ENALF = 0, the ALFA  
output current remains at zero and the circuit is powered down to save power. Signal  
ALFA is also automatically switched off in read mode when bit r/w = 1. A copy of signal  
ALFA (alfa-mon) output current is routed to the MON block for test purposes. The polarity  
of the ALFA output signal current is negative, i.e. the current is sourced by TZA1047.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
39 of 69  
TZA1047  
Philips Semiconductors  
7.13 BETA  
Preprocessor IC for CD and DVD rewritable  
The BETA block delivers signals that are used in the write power calibration procedure at  
disc start-up. A detailed block diagram of the BETA block is shown in Figure 22.  
I
BS  
BCTL  
+
PEAK  
DETECTOR  
V
V
V
A1  
BETA  
BETA  
BETA  
BCTL  
LPF  
rf-beta1  
rf-beta2  
CA1  
CALF  
A2  
BCTL  
CCALF  
+
PEAK  
DETECTOR  
mgw493  
CA2  
Fig 22. BETA block.  
The BETA circuit uses the input signal rf-beta from the RF Amplifier to produce the RF  
average level output signal CALF and the RF top and bottom peak level output signals A1  
and A2. The relationship between the various BETA block signals are given by equation  
Equation 7, Equation 8 and Equation 9, where rf = rf-beta1 = rf-beta2.  
LPF(rf)  
IBS  
CALF =  
× V  
(7)  
(8)  
(9)  
--------------------  
BETA  
[rf LPF(rf )]  
A1 =  
A2 =  
peak × V  
------------------------------------------------  
BETA  
IBS  
[(LPF(rf) rf )]  
peak × V  
---------------------------------------------------  
BETA  
IBS  
The DC gain (in read mode) between signals (RFP to RFN) and signals A1, A2 and CALF  
is given by:  
VBETA  
GBETA  
=
× G  
-------------------------------  
RFR  
IBS × Rrf × 2  
The gain can be controlled by parameter IBS. The typical value of VBETA is 2.5 V and  
value IBS = 5 × (1 + IBS) µA. Furthermore RRF = 2.5 k, resulting in GBETA = 100/(1 + IBS).  
Both the peak detector time constant and the CALF low-pass filter can be adjusted to the  
disk speed by parameter BCTL[2:0]. The seven different time constant settings for the  
low-pass filter allow its frequency range fLPF to be set from 500 Hz to 32 kHz.  
To save power, the BETA block and its DAC can be switched off completely by setting  
parameter BCTL[2:0] to 111. If the BETA block and its DAC are switched off, the 3 dB  
frequency and time constant will not be defined.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
40 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
A graphical representation of the BETA measurement is shown in Figure 23.  
EFM  
signal  
A1  
A2  
A1  
A2  
CALF  
P < Popt  
P > Popt  
mce534  
P = instantaneous laser power.  
Popt = optimum laser write power setting.  
Fig 23. BETA measurement.  
7.14 Monitor block  
The MON block is intended for application tests and is never used during normal  
operation. It converts two bipolar current input signals to two bipolar (w.r.t 0.5VDD) voltage  
mode outputs. The two current input signals can be selected from various internal  
currents by I2C-bus control word MSEL[7:0]. The conversion resistance from current to  
voltage is typically 80 k. The bandwidth of the monitor circuit is 100 kHz. The monitor  
block is specified for an external load of 10 pF and 10 kto GND.  
Table 23 shows the MSEL[7:0] values for selecting the two input currents to be converted  
and sent to monitor outputs MON1 and MON2.  
Table 23: Monitor selection  
MSEL7 MSEL6 MSEL5 MSEL4 MON2 MSEL3 MSEL2 MSEL1 MSEL0 MON1  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
REN  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
REN  
TLN  
TLN  
FEN  
FEN  
MIRN  
ALFA/7  
XDN  
MIRN  
ALFA/7  
XDN  
CAN  
CAN  
res.  
res.  
Q1/10  
Q2/10  
Q3/10  
Q4/10  
Q5/10  
Q1/10  
Q2/10  
Q3/10  
Q4/10  
Q5/10  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
41 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 23: Monitor selection …continued  
MSEL7 MSEL6 MSEL5 MSEL4 MON2 MSEL3 MSEL2 MSEL1 MSEL0 MON1  
1
1
1
1
1
1
0
1
1
1
0
1
Q6/10  
res.  
1
1
1
1
1
1
0
1
1
1
0
1
Q6/10  
res.  
res.  
res.  
The selection tables for MON1 and MON2 are identical so each signal can be sent to  
either output. Selecting the same signal for both monitor outputs (bits  
MSEL[7:4] = MSEL[3:0]) switches off the MON block, which reduces the power dissipation  
during normal operation.  
7.15 I2C-bus interface and registers  
7.15.1 General description  
Most functions in the TZA1047 are controlled via an I2C-bus interface conforming to the  
fast-mode specification, allowing data transfers of up to 400 kHz. The write address of the  
TZA1047 is 34h; this is also the write address of the TZA1039.  
There are 52 read/write data registers. The register that is written to is determined by  
sub-address bits 4 to 0 which is in the first 8-bit word that is transmitted after the device  
address. Bit 7 of the sub-address controls the auto-incrementing of the sub-address:  
bit 7 = 0 enables auto-incrementing and wrap-around, bit 7 = 1 disables  
auto-incrementing so that the same register is written to each time. Examples of valid  
write transmissions are shown in Figure 24.  
write one  
register:  
START  
BIT  
ADDRESS  
34h  
SUB-ADDRESS  
00h  
DATA  
00h  
STOP  
BIT  
write with  
auto-increment:  
START ADDRESS SUB-ADDRESS DATA  
BIT 34h 00h 00h  
DATA  
01h  
DATA  
STOP  
BIT  
write with  
wrap-around:  
START ADDRESS SUB-ADDRESS DATA  
BIT 34h 31h 31h  
DATA  
00h  
DATA  
01h  
DATA  
DATA  
STOP  
BIT  
write without  
auto-increment:  
START ADDRESS SUB-ADDRESS DATA  
BIT 34h 85h 05h  
DATA  
05h  
DATA  
05h  
STOP  
BIT  
001aab425  
Fig 24. Examples of valid write transmissions.  
TZA1047 also supports read back of register data via the I2C-bus. It does not generate  
any data itself. The only possibility is to read back previously written data, e.g. to check  
the connections to the device or to check the registers after start-up. Read-back mode is  
selected by setting the LSB of the device address to logic 1. After sending the device  
address, the TZA1047 will start returning register data starting at the last written  
address. Auto-increment and wrap-around are supported in the same way as for write.  
Before starting read back it is good practice to first initialize the starting address by issuing  
a write command.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
42 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Examples of valid read transmissions are shown in Figure 25.  
READ-BACK  
ADDRESS  
35h  
read one  
register:  
START ADDRESS SUB-ADDRESS STOP START  
BIT 34h 00h BIT BIT  
DATA STOP  
00h BIT  
READ-BACK  
ADDRESS  
35h  
read with  
auto-increment:  
START ADDRESS SUB-ADDRESS STOP START  
BIT 34h 00h BIT BIT  
DATA DATA DATA STOP  
00h 01h BIT  
READ-BACK  
ADDRESS  
35h  
read with  
auto-increment  
wrap-around:  
START ADDRESS SUB-ADDRESS STOP START  
BIT 34h 31h BIT BIT  
DATA DATA DATA DATA STOP  
31h 00h 01h BIT  
READ-BACK  
ADDRESS  
35h  
read without  
auto-increment:  
START ADDRESS SUB-ADDRESS STOP START  
BIT 34h 85h BIT BIT  
DATA DATA DATA DATA STOP  
05h  
05h  
05h  
BIT  
001aab426  
Fig 25. Examples of valid read transmissions.  
7.15.2 Power-on reset  
The TZA1047 is equipped with a Power-on reset circuit to avoid unwanted situations at  
start-up. This will reset some, but not all, registers to a predefined state. Only those  
registers that could cause damage or unwanted states are initialized, all other register bits  
should be initialized by the controller prior to operation; they will contain random data after  
start-up.  
The states of the relevant bits are given below:  
STBY = 1; EFMTST = 0.  
It is decided not to reset RST, ENRS, ENRW and SMPLON. To assure proper operation of  
the sample signals without running EFMTIM these signals need to be set via I2C-bus first.  
Reason not to do this is to limit the complexity of the change to I2C-bus FSB.  
The Power-on reset circuit monitors the supply voltage between GNDD and VDDD. Reset  
occurs when the supply voltage is less than 3.3 V.  
The registers are defined in Table 24.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
43 of 69  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7.15.3 Register definition  
Table 24: Register definitions  
BLOCK  
SUB-ADDR.  
[5:0]  
HEX  
ADDR.  
DEC.  
ADDR.  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
Input  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
1
GSEG[1]  
res  
GSEG[0]  
res  
LDSEG[1]  
res  
LDSEG[0]  
ORA[4]  
ORB[4]  
ORC[4]  
ORD[4]  
ORE[4]  
ORF[4]  
ORG[4]  
ORH[4]  
OWA[4]  
OWB[4]  
OWC[4]  
OWD[4]  
OWE[4]  
OWF[4]  
OWG[4]  
OWH[4]  
AT[4]  
VSEG[3]  
ORA[3]  
ORB[3]  
ORC[3]  
ORD[3]  
ORE[3]  
ORF[3]  
ORG[3]  
ORH[3]  
OWA[3]  
OWB[3]  
OWC[3]  
OWD[3]  
OWE[3]  
OWF[3]  
OWG[3]  
OWH[3]  
AT[3]  
VSEG[2]  
ORA[2]  
ORB[2]  
ORC[2]  
ORD[2]  
ORE[2]  
ORF[2]  
ORG[2]  
ORH[2]  
OWA[2]  
OWB[2]  
OWC[2]  
OWD[2]  
OWE[2]  
OWF[2]  
OWG[2]  
OWH[2]  
AT[2]  
VSEG[1]  
ORA[1]  
ORB[1]  
ORC[1]  
ORD[1]  
ORE[1]  
ORF[1]  
ORG[1]  
ORH[1]  
OWA[1]  
OWB[1]  
OWC[1]  
OWD[1]  
OWE[1]  
OWF[1]  
OWG[1]  
OWH[1]  
AT[1]  
VSEG[0]  
ORA[0]  
ORB[0]  
ORC[0]  
ORD[0]  
ORE[0]  
ORF[0]  
ORG[0]  
ORH[0]  
OWA[0]  
OWB[0]  
OWC[0]  
OWD[0]  
OWE[0]  
OWF[0]  
OWG[0]  
OWH[0]  
AT[0]  
Distributor  
2
res  
res  
res  
3
res  
res  
res  
4
res  
res  
res  
5
res  
res  
res  
6
BWPP1[2] BWPP1[1] BWPP1[0]  
7
CALSAT  
CALRL  
BWSER  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
AT[7]  
GCAL[1]  
GRAT  
GCAL[0]  
CA/PP  
8
9
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
AT[6]  
CA/PP2  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
AT[5]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
R/L  
reserved  
reserved  
FLL[1]  
RLOFF[5]  
DTDC/I  
FLL[0]  
RLOFF[4]  
PD[2]  
RLOFF[3]  
PD[1]  
RLOFF[2]  
DPD  
RLOFF[1]  
reserved  
DL[1]  
RLOFF[0]  
DPOL  
DPD  
reserved  
reserved  
IT[3]  
FDPD[1]  
IT[0]  
FDPD[0]  
IN[3]  
DL[2]  
DL[0]  
IT[2]  
IT[1]  
IN[2]  
IN[1]  
IN[0]  
FTC  
FTCON  
FTCSL  
TBAL[1]  
D/F  
FSEL  
SP3/1  
GFTC[1]  
PPBAL  
IPPN[3]  
GFTC[0]  
BAL  
FTCF[1]  
FTCF[0]  
P-P Processor  
BWPP[2]  
TBAL[0]  
BWPP[1]  
reserved  
BWPP[0]  
PPTST[1]  
BWPP2[1] BWPP2[0]  
IPPN[1] IPPN[0]  
IPPN[2]  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 24: Register definitions …continued  
BLOCK  
SUB-ADDR.  
[5:0]  
HEX  
ADDR.  
DEC.  
ADDR.  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
Normalizer  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
S4/8  
ITR[3]  
Q/NE  
ITR[2]  
FEN4/2  
ITR[1]  
PFEN  
ITR[0]  
REN4/2  
ITW[3]  
PREN  
ITW[2]  
PXDN  
ITW[1]  
OFR[1]  
IN1[1]  
RFCAL  
ITW[0]  
OFR[0]  
IN1[0]  
OFW[3]  
IN2[3]  
OFW[2]  
IN2[2]  
OFW[1]  
IN2[1]  
OFW[0]  
IN2[0]  
OFR[3]  
IN1[3]  
OFR[2]  
IN1[2]  
CLMP  
RTLN  
PTLN  
reserved  
reserved  
MIR1/2  
SQRT  
IN3[3]  
IN3[2]  
IN3[1]  
IN3[0]  
reserved  
BWRS  
reserved  
IBS[4]  
reserved  
VARP  
reserved  
reserved  
reserved  
IBS[2]  
IN4[3]  
IN4[2]  
IN4[1]  
IN4[0]  
CANORM  
ALFA  
IMIR[3]  
reserved  
IBS[0]  
IMIR[2]  
reserved  
BCTL[2]  
MSEL[2]  
TIM0[2]  
TIM1[2]  
TIM3[2]  
TIM5[2]  
SMPLON  
reserved  
DIFFR  
IMIR[1]  
IAN[1]  
IMIR[0]  
IAN[0]  
ALF1/2  
IBS[3]  
BETA  
IBS[1]  
BCTL[1]  
MSEL[1]  
TIM0[1]  
TIM1[1]  
TIM3[1]  
TIM5[1]  
P/L  
BCTL[0]  
MSEL[0]  
TIM0[0]  
TIM1[0]  
TIM3[0]  
TIM5[0]  
RST  
Monitor  
EFMTIM  
MSEL[7]  
TIM2[2]  
reserved  
reserved  
TIM9[1]  
ENRW  
reserved  
KEQ  
MSEL[6]  
TIM2[1]  
reserved  
TIM4[3]  
TIM9[0]  
ENRS  
MSEL[5]  
TIM2[0]  
TIM1[5]  
TIM4[2]  
TIM8[2]  
ENALF  
EFMINT  
ENNF  
MSEL[4]  
TIM0[4]  
TIM1[4]  
TIM4[1]  
TIM8[1]  
L/T  
MSEL[3]  
TIM0[3]  
TIM1[3]  
TIM4[0]  
TIM8[0]  
reserved  
EFMON  
DIFFW  
GRFW[3]  
BWRF[3]  
VRRF[3]  
reserved  
ENEQ  
EFMTST  
REFON  
GRFR[0]  
BWRF[4]  
VWRF[0]  
FW  
FR  
RF AMP  
LDRF[1]  
GRFW[1]  
BWRF[1]  
VRRF[1]  
LDRF[0]  
GRFW[0]  
BWRF[0]  
VRRF[0]  
GRFR[3]  
HA  
GRFR[2]  
BWRF[6]  
GRFR[1]  
BWRF[5]  
VWRF[1]  
GRFW[2]  
BWRF[2]  
VRRF[2]  
VWRF[3] VWRF[2]  
DRVON  
reserved  
STBY  
5X  
reserved OFFRFW[5] BWRFW[4] BWRFW[3] BWRFW[2] BWRFW[1] BWRFW[0]  
reserved TSTDPD2 TSTDPD1 TSTVRF TST[2] TST[1] TST[0]  
OFFRFR[5] OFFRFR[4] OFFRFR[3] OFFRFR[2] OFFRFR[1] OFFRFR[0]  
Miscellaneous  
All control bits are described in the various block descriptions.  
The I2C-bus control register contains several bits that are intended only for test and evaluation purposes. These bits are  
indicated in italics in the table, and should be set to logic 0.  
Reserved values are not used and can be set to any value without affecting the circuit.  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
7.16 Fast serial bus and registers  
7.16.1 Fast serial bus description  
The fast serial bus interface has three lines: a data line SIDA, a clock line SICL and a  
strobe line SILD. The bus circuitry consists of a serial input shift register and several  
registers that store the data. During a transmission the data is first clocked into the shift  
register. On the rising edge of SILD the contents of the input register are copied into the  
addressed register. From that moment the programmed settings become effective. As  
long as SILD is HIGH, the TZA1047 will not respond to SIDA and SICL. Examples of  
one-word and two-word transmissions are shown in Figure 26 and Figure 27.  
7.16.2 Serial bus control timing  
SICL  
t
t
LOW  
HIGH  
t
SU;STA  
t
T
HD;DAT  
CLK  
t
SU;DAT  
SIDA  
SILD  
D0  
A3  
t
SU;LD  
mce536  
Fig 26. One-word transmission.  
SICL  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 A0 A1 A2 A3  
D0 D1 D2 D3 D4  
A1 A2 A3  
SIDA  
SILD  
t
HIGH;LD  
mce537  
Fig 27. Example of a two-word transmission.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
46 of 69  
TZA1047  
Philips Semiconductors  
7.16.3 Operation  
Preprocessor IC for CD and DVD rewritable  
The fast serial bus is used to program those registers that require a fast update rate: GRF  
(RF path VGA), DCRF (RF path DC compensation, used as a quasi AC-coupling) and  
GPP (P-P Processor Amplifier gain). These three parameters can be controlled in  
closed-loop mode by the codec IC to achieve AGC for both the RF path and the push-pull  
path. The I2C-bus is not fast enough to allow this type of operation. The FSB interface will  
support clock speeds of up to 16 MHz.  
There is no power-on reset function in the TZA1047 fast serial bus interface. Before  
start-up, the registers will contain random data. Therefore, to ensure correct operation, all  
registers must be written to at least once after start-up.  
7.16.4 Fast serial bus control registers  
Table 25: Fast serial bus register layout  
ADDR.  
[3:0]  
D11  
D10 D9 D8 D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0011  
0100  
0101  
1100  
res[1]  
res  
res  
res  
res  
res  
res res GRF[3] GRF[2] GRF[1] GRF[0] res  
res  
res  
res  
res res res  
res res res  
res res res  
res  
res  
res  
DCRF[5] DCRF[4] DCRF[3] DCRF[2] DCRF[1] DCRF[0]  
res  
res  
res  
res  
res  
res  
res  
RDCRF PDCRF  
res  
GPP[3] GPP[2] GPP[1] GPP[0]  
[1] res = reserved.  
The FSB control register addresses are backwards compatible with the TZA1031 and  
TZA1039 devices.  
8. Limiting values  
Table 26: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
0.5  
0
Max  
Unit  
supply voltage  
+5.5  
V
Vi  
input voltage  
VDD + 0.5 V  
Tamb  
Tstg  
ambient temperature  
storage temperature  
70  
°C  
55  
2000  
+125  
+2000  
°C  
[1]  
[2]  
Vesd  
electrostatic discharge voltage human body  
model  
V
machine  
model  
150  
+150  
V
[1] Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor with a rise time of 15 ns.  
[2] Equivalent to discharging a 200 pF capacitor via a 2.5 mH series inductor.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
47 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
9. Characteristics  
Table 27: Characteristics  
Symbol  
Input circuit signal range  
Vi input signal  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
pins VIA to VIH (versions M1A,  
M1B and M2)  
V
REF 0.0  
REF 0.05  
-
-
VREF + 1  
VREF + 1  
V
V
pins VIA to VIH (version M3)  
V
Input circuit fixed parameters  
Zo(VREF)  
external output  
impedance of pin  
VREF  
-
-
-
40  
Io(VREF)  
output current  
0.5  
+25  
mA  
capability of pin VREF  
Input circuit programmable parameters  
Zi(seg)  
G(seg)  
Vref  
segment signal input LDSEG[1:0] = 00  
112  
225  
450  
10  
150  
300  
600  
-
200  
400  
800  
-
impedance (VIA to  
VIH with respect to  
pin VREF)  
LDSEG[1:0] = 01  
LDSEG[1:0] = 10  
LDSEG[1:0] = 11  
GSEG[1:0] = 00  
GSEG[1:0] = 01  
GSEG[1:0] = 10  
GSEG[1:0] = 11  
kΩ  
gain of segment  
signal (VIA to VIH) to  
DPD  
0.45  
0.9  
0.5  
1.0  
2.0  
4.0  
1.3  
2.8  
0.55  
1.1  
1.8  
2.2  
3.6  
4.4  
reference voltage for VSEG[3:0] = 0000  
1.17  
2.52  
1.43  
3.08  
V
V
segment and RF  
inputs  
VSEG[3:0] = 1111;  
VREF = 1.3 + 0.1 × VSEG  
Distributor fixed parameters  
RFTC  
conversion resistance  
for signals to FTC  
17  
17  
20  
20  
23  
23  
kΩ  
kΩ  
RPP  
conversion resistance  
for L and R signals to  
the P-P processor  
RQ  
conversion resistance  
for Q signals  
4
-
5
-
6
4
4
kΩ  
%
fservo  
fservo  
/
matching error LPF1  
between channels  
Qi/Q1234  
matching error  
Q1234 = ΣQi/4 (i = 1 to 4);  
-
-
%
between signals Q1 to input = 0.05 V to 1.0 V;  
Q4  
VA = VB = VC = VD; SMPLON = 0;  
CALSAT = 0; GCAL = 1.0 V  
Qi/Q56  
matching error  
between signals Q5  
and Q6  
Q56 = ΣQi/2 (i = 5 and 6);  
input = 0.05 V to 1.0 V;  
VE = VF = VH = VG; SMPLON = 0;  
CALSAT = 0; GCAL = 1.0; DPD = 0;  
GRAT = 0; AT[7:0] = 128  
-
-
5
%
BLR  
3 dB bandwidth of  
signals L and R  
SMPLON = 0  
SMPLON = 1  
90  
2
-
-
-
-
MHz  
MHz  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
48 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BFTC  
3 dB bandwidth of  
4
-
-
MHz  
FTC input signals  
IPPOFF  
R/L common mode  
offset current  
TZA1047/M1A and M1B  
TZA1047M2  
-
-
0
4
-
-
µA  
µA  
Distributor programmable parameters  
γ
grating ratio factor  
GRAT = 0; γ = 0.5 + 0.0117 × AT  
AT[7:0] = 00h  
-
-
0.5  
3.5  
-
-
AT[7:0] = FFh  
GRAT = 1; γ = 2.0 + 0.0117 × AT  
AT[7:0] = 00h  
-
-
2.0  
5.0  
-
-
AT[7:0] = FFh  
IOO(RL)  
R/L offset current  
IRLOFF = 0.79 µA × RLOFF  
RLOFF[5:0] = 00h  
-
0
-
µA  
µA  
RLOFF[5:0] = 3Fh  
45  
50  
55  
IO(A-H)  
segment signals A to r/w = 0;  
H offset current  
IOi = (10 + WiO × 0.66) µA;  
i = A to H  
r/w = 1;  
IOi = (10 + RiO × 0.66) µA;  
i = A to H  
[1]  
[1]  
control register = 00h  
control register = 1Fh  
-
-
-
10  
10  
-
-
-
µA  
µA  
µA  
IOO(A-H)  
segment signals A to  
H offset current step  
size  
0.66  
Gcal  
segment calibration  
signal gain  
GCAL[1:0] = 00  
GCAL[1:0] = 01  
GCAL[1:0] = 10  
GCAL[1:0] = 11  
BWSER = 0  
0.45  
0.5  
1.0  
2.0  
4.0  
60  
0.55  
0.9  
1.1  
1.8  
2.2  
3.6  
4.4  
BLPF1  
3 dB bandwidth of  
50  
70  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
MHz  
MHz  
MHz  
MHz  
LPF1 (Q signals)  
BWSER = 1  
170  
200  
40  
230  
BLPF2  
3 dB bandwidth of  
LPF2 (L and R  
signals)  
BWPP1[2:0] = 000  
BWPP1[2:0] = 001  
BWPP1[2:0] = 010  
BWPP1[2:0] = 011  
BWPP1[2:0] = 100  
BWPP1[2:0] = 101  
BWPP1[2:0] = 11X  
BWPP2[1:0] = 00  
BWPP2[1:0] = 01  
BWPP2[1:0] = 10  
BWPP2[1:0] = 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
80  
-
160  
320  
640  
1300  
-
-
-
-
> 65000  
BLPF3  
3 dB bandwidth of  
LPF3 (P-P signals)  
-
15  
-
30  
-
60  
> 65  
-
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
49 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF amplifier signal range  
[2]  
[2]  
Vi(dif)  
Vi(se)  
Vi(ref)  
input voltage  
differential inputs  
(RFPIN, RFNIN)  
differential  
0
-
-
2
V
V
single-ended  
1.0  
V
DD 1  
DD 1  
input voltage  
single-ended inputs  
(WRF, RRF)  
1.0  
-
V
V
RF voltage reference DRVON = 1  
input (RFREF)  
1.0  
-
2.5  
V
VRFa(max)  
VRFb(max)  
Vo(dif)(RF)  
maximum voltage rfa r/w = 0  
-
-
-
-
-
2
V
V
V
V
maximum voltage rfb r/w = 1  
-
0.6  
+1  
+2  
RF differential output GRF = 8 dB; HA = 0; ENNF = 1  
1  
2  
voltage (RFP to RFN)  
GRF = 8 dB; HA = 1; ENNF = 0;  
VRFREF = 2 V  
RF amplifier fixed parameters  
Rrf  
RF V-to-I conversion  
resistance  
2.12  
2.5  
2.88  
kΩ  
BRF  
1 dB bandwidth of  
CL = 2 pF × 10 pF; ENEQ = 0;  
signals RFP and RFN ENNF = 0  
5X = 0  
100  
-
-
MHz  
MHz  
5X = 1  
50  
-
-
-
α
τ
α-equalizer parameter ENEQ = 1  
τ-equalizer parameter ENEQ = 1  
k-equalizer parameter ENEQ = 1; KEQ = 0  
ENEQ = 1; KEQ = 1  
1.25  
1.31  
4.0  
6.0  
-
-
-
-
k
-
-
-
-
td(rf)  
RF delay variation  
100 kHz < f < 0.7 × f0RF  
;
-
0.05  
ns  
BWRF[6:0] = 7Fh; f0RF = 180 MHz;  
ENEQ = 1; ENNF = 0  
||H1| − |Hn||  
||H1| − |He||  
Zi(RFREF)  
VCM  
noise filter amplitude 100 kHz < f < f0  
error  
-
-
-
-
-
1.0  
1.5  
-
dB  
dB  
kΩ  
mV  
equalizer amplitude  
error  
100 kHz < f < f0  
-
RFREF input  
impedance  
100  
-
offset of  
Vrfa = 0 V  
80  
(VRFP + VRFN)/2  
compared to RFREF  
VOO(RF)  
VOO(RF)  
IOO(RF)  
Zo(RF)  
RF output offset  
voltage |VRFP VRFN  
DCRF = 0; GRFR = GRFW = 0 dB;  
GRF = 8 dB; zero input signal  
-
-
-
-
-
-
-
-
80  
mV  
mV  
µA  
|
variation of RF output |∆T| = 20 °C; |∆VDD| = 0.2 V  
offset voltage  
0.5  
0.6  
70  
variation of RF output |∆T| = 20 °C; |∆VDD| = 0.2 V  
current offset  
RF output impedance pins RFP and RFN  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
50 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vn(o)(RF)  
effective RF output  
noise voltage  
ENEQ = 0; ENNF = 1;  
BWRF[6:0] = 7Fh; r/w = 1;  
GRF = 0 dB  
HA = 0  
-
-
-
-
2.0  
4.0  
mV  
mV  
HA = 1  
SRRF  
differential slew rate  
for RF output  
maximum bandwidth  
(BWRF[6:0] = FFh); CL < 10 pF;  
5X = 0  
HA = 0  
HA = 1  
200  
400  
-
-
-
-
V/µs  
V/µs  
CL < 10 pF; 5X = 1  
HA = 0  
50  
-
-
-
-
V/µs  
V/µs  
HA = 1  
100  
RF amplifier programmable parameters  
Ri(RF)  
RF input termination  
resistance  
LDRF[1:0] = 00  
56  
75  
150  
300  
-
94  
188  
375  
-
LDRF[1:0] = 01  
112  
225  
5
LDRF[1:0] = 10  
LDRF[1:0] = 11  
kΩ  
VOctrl(RF)  
RF offset control  
voltage  
OFFRF = (95 + 3 × OFFRF) mV  
r/w = 1; OFFRFR[5:0] = 00h  
r/w = 0; OFFRFW[5:0] = 00h  
r/w = 1; OFFRFR[5:0] = 3Fh  
r/w = 0; OFFRFW[5:0] = 3Fh  
OFFRF = 1 or OFFRFW = 1  
105  
75  
-
95  
95  
3
+75  
105  
-
mV  
mV  
mV  
VOctrl(RF)  
RF offset control  
voltage step size  
f0(RF)  
noise filter and  
equalizer corner  
frequency  
f0 = (16 + 1.3 × BWRF) MHz  
BWRF[6:0] = 00h  
BWRF[6:0] = 7Fh  
BWRF = 1  
-
-
-
16  
-
-
-
MHz  
MHz  
MHz  
180  
1.3  
f0(RF)  
noise filter and  
equalizer corner  
frequency step size  
DCRF  
RF DC control voltage normal mode (RDCRF = 0)  
DCRF[5:0] = 0h  
-
0
-
mV  
mV  
mV  
DCRF[5:0] = 63h; PDCRF = 0  
DCRF[5:0] = 63h; PDCRF = 1  
OPC mode (RDCRF = 1)  
500  
500  
630  
630  
700  
700  
DCRF[5:0] = 0h  
-
0
-
mV  
mV  
mV  
mV  
mV  
DCRF[5:0] = 63h; PDCRF = 0  
DCRF[5:0] = 63h; PDCRF = 1  
RF DC control voltage DCRF = 1; RDCRF = 0  
250  
315  
315  
10  
5
350  
250  
350  
DCRF  
-
-
-
-
step size  
DCRF = 1; RDCRF = 1  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
51 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
GRFR  
RF path scaling  
amplifier gain in read  
mode  
GRFR = (10 + 2 × GRFR) dB  
GRFR[3:0] = 0000  
GRFR[3:0] = 1111  
12  
10  
8  
dB  
dB  
18  
20  
22  
GRFW  
RF path scaling  
amplifier gain in write  
mode  
G
RFW = (10 + 2 × GRFW) dB  
GRFW[3:0] = 0000  
12  
18  
-
10  
20  
2
8  
22  
-
dB  
dB  
dB  
GRFW[3:0] = 1111  
GRFR  
GRFW  
GRF  
RF path gain step size GRFR = 1  
in read mode  
RF path gain step size GRFW = 1  
in write mode  
-
2
-
dB  
RF path VGA gain  
GRF = (4 + 0.8 × GRF) dB  
HA = 0; GRF[3:0] = 0000  
HA = 0; GRF[3:0] = 1111  
HA = 1; GRF[3:0] = 0000  
HA = 1; GRF[3:0] = 1111  
GRF = 1  
6  
6
4  
8
2  
10  
10  
22  
-
dB  
dB  
dB  
dB  
dB  
6
8
18  
-
20  
0.8  
GRF  
RF path VGA gain  
step size  
VRRF, VWRF single-ended RF path VRRF = 0.9 + 0.16 × VRRF;  
reference voltage  
VWRF = 0.9 + 0.16 × VWRF  
VRRF[3:0] = 0000;  
VWRF[3:0] = 0000  
0.76  
2.8  
-
0.9  
1.1  
3.8  
-
V
V
V
VRRF[3:0] = 1111;  
VWRF[3:0] = 1111  
3.3  
VRRF  
,
reference voltage step VRRF = 1; VWRF = 1  
0.16  
VWRF  
size  
DPD signal range  
VIU  
DC input voltage level DPD = 1  
for signals VUA to  
VUD  
0.14  
0.1  
-
-
1.0  
1.0  
V
V
Vi(p-p)  
input voltage for  
DPD = 1  
signals VUA to VUD  
(peak-to-peak value)  
DPD fixed parameters  
BHPF  
3 dB bandwidth of  
high-pass filter  
-
-
-
-
100  
3
-
-
-
-
kHz  
LL  
lead length of lead-lag  
filter  
kDTD  
BLPF2  
DTD phase detector  
sensitivity  
1
3 dB bandwidth of  
100  
kHz  
low-pass filter LPF2  
IOB  
IOO  
output bias current  
output offset current  
7.9  
-
8.8  
-
9.7  
1
µA  
µA  
zero phase difference at input;  
signals VUA to VUD > 50 mV;  
IN = 3  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
52 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DPD programmable parameters  
BLPF1  
fstart(LL)  
td(DTD)  
IN  
3 dB bandwidth of  
LPF1, normal mode  
(signals VUA to VUD)  
TSTDPD2 = 0  
FDPD[1:0] = 00  
FDPD[1:0] = 01  
FDPD[1:0] = 10  
FDPD[1:0] = 11  
-
10  
50  
120  
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
-
-
160  
lead-lag network start TSTDPD2 = 0  
frequency, normal  
mode (signals VUA to  
FLL[1:0] = 01  
VUD)  
FLL[1:0] = 00  
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
ns  
5
FLL[1:0] = 10  
12  
16  
30  
15  
7.5  
3.8  
1.9  
FLL[1:0] = 11  
DTD circuit delay  
parameter  
DL[2:0] = 000  
DL[2:0] = 001  
DL[2:0] = 010  
DL[2:0] = 011  
DL[2:0] = 100  
IN = [2.5 × (IN + 1)] µA  
IN[3:0] = 0000  
IN[3:0] = 1111  
IN[3:0] = 1  
ns  
ns  
ns  
ns  
DPD normalization  
current  
-
-
-
2.5  
40  
-
-
-
µA  
µA  
µA  
IN  
DPD normalization  
current step size  
2.5  
IT  
DPD dropout  
concealment  
threshold current  
IT = [1.7 × (IT + 1)] µA  
IT[3:0] = 0000  
IT[3:0] = 1111  
IT[3:0] = 1  
-
-
-
1.7  
-
-
-
µA  
µA  
µA  
27.2  
1.7  
IT  
DPD dropout  
concealment  
threshold current step  
size  
FTC circuit signal range  
Ii(FAD,FBC) input current from  
FTCON = 1  
0
0
-
-
100  
200  
µA  
µA  
central segments (AD  
and BC)  
Ii(FAD)  
Ii(FBC)  
+
sum current of central FTCON = 1  
segments  
Ii(FE)  
input current of  
segments FE  
TZA1047/M1A; FTCON = 1  
0
0
0
-
-
-
12.5  
50  
µA  
µA  
µA  
TZA1047/M1B; M2; FTCON = 1  
FTCON = 1  
Ii(FF-FH)  
input current of  
segments F to H  
50  
Ii(FE+FG),  
combined input  
current of satellite  
segments  
FTCON = 1  
FTCON = 1  
0
0
-
-
100  
100  
µA  
µA  
(FF+FH)  
Ii(FE+FF),  
combined input  
current of satellite  
segments  
(FG+FH)  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
53 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
II  
DC input current from FTCON = 1; DPD = 1  
DPD  
7
-
9
µA  
Ii(p-p)  
input current from  
DPD (peak-to-peak  
value)  
FTCON = 1; DPD = 1  
3
-
15  
µA  
Vo(FTC)  
output voltage  
FTCSL = 1  
FTCSL = 0  
0
-
-
3.3  
-
V
V
VFTC(DC)  
output DC voltage  
level  
2.0  
Vo(FTC)(p-p) voltage output  
(peak-to-peak value)  
FTCSL = 0  
1
-
-
V
V
V
V
VOL(FTC)  
VOH(FTC)  
VCFTC  
LOW-level output  
voltage  
FTCSL = 1; IL = 1 mA  
FTCSL = 1; IL = 1 mA  
0
-
0.6  
3.3  
-
HIGH-level output  
voltage  
2.7  
-
-
voltage on pin CFTC  
1.6  
FTC circuit fixed parameters  
QFTC  
FTC filter quality  
factor  
-
-
-
-
1
-
-
||H1| − |Ht||  
BHPF  
FTC filter amplitude  
error  
100 kHz < f < 2 × f0FTC  
1.5  
1.2  
1
dB  
3 dB bandwidth of  
the high-pass filter  
CFTC = 47 nF to ground  
-
kHz  
ms  
tsu(FTC)  
start-up time after  
FTCON rising edge  
-
FTC circuit programmable parameters  
γ
grating ratio factor  
γ = 0.5 + 0.0117 × AT; GRAT = 0  
AT[7:0] = 00h  
-
-
0.5  
3.5  
-
-
AT[7:0] = FFh  
γ = 2.0 + 0.0117 × AT; GRAT = 1  
AT[7:0] = 00h  
-
2.0  
5.0  
6
-
-
-
-
-
-
-
-
-
-
AT[7:0] = FFh  
-
RFTCOUT  
I-to-V conversion  
resistance  
GFTC[1:0] = 00  
-
kΩ  
GFTC[1:0] = 01  
-
12  
24  
48  
0.25  
0.5  
1.0  
-
kΩ  
GFTC[1:0] = 10  
-
kΩ  
GFTC[1:0] = 11  
-
kΩ  
f0FTC  
FTC filter corner  
frequency  
FTCF[1:0] = 00  
-
MHz  
MHz  
MHz  
MHz  
FTCF[1:0] = 01  
-
FTCF[1:0] = 10  
-
FTCF[1:0] = 11  
2.5  
P-P processor signal range  
Ii(PPN)  
Ii(PPN)(AV)  
Vo  
input current  
signals L and R  
20  
40  
0.6  
-
-
-
200  
100  
µA  
µA  
V
average input current signals L and R  
output voltage at pin  
PPNO  
VDD 0.6  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
54 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
P-P amplifier fixed parameters  
VO  
output voltage at pin  
PPNO  
Ii(PPN) = 0 A; no input signal  
0.5VDD 0.4 0.5VDD 0.5VDD + 0.4 V  
zO  
output impedance at  
pin PPNO  
-
130  
-
RPPOUT  
SRPPNO  
VOO(PPNO)  
Vctrl(ub)  
I-to-V conversion  
resistance  
11  
100  
-
14  
-
17  
-
kΩ  
V/µs  
V
slew rate at output pin BWPP[2:0] = 1XX; CL = 5 pF  
PPNO  
offset voltage at  
output pin PPNO  
L = R; Gpp = 0 dB  
-
0.4  
-
unbalance control  
voltage range  
0.65  
-
V
P-P amplifier programmable parameters  
× IPPN  
× IPPN  
IPPN = I0, PPN × 100.05 × K  
IPPN(ref)  
IPPN scaling current  
reference  
-
-
120  
1.7  
-
-
µA  
PPN  
PPN  
IPPN = I0, PPN × 100.05 × K  
kPPN  
IPPN scaling current  
factor  
dB  
GPP  
voltage gain  
GPP[3:0] = 0000  
GPP[3:0] = 1111  
-
3  
9
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
µs  
µs  
µs  
-
GPP  
voltage gain step size GPP = 1  
-
0.8  
150  
75  
37.5  
-
τPP  
integration time  
constant of PPN  
balancer  
TBAL[1:0] = 00  
-
TBAL[1:0] = 01  
TBAL[1:0] = 10  
TBAL[1:0] = 11  
BWPP[2:0] = 000  
BWPP[2:0] = 001  
BWPP[2:0] = 010  
BWPP[2:0] = 011  
-
-
[3]  
-
BPP  
output bandwidth  
-
2
MHz  
MHz  
MHz  
MHz  
MHz  
-
4
-
8
-
16  
-
BWPP[2:0] = 1XX (versions M1A,  
M1B and M2)  
24  
BWPP[2:0] = 1XX (version M3)  
30  
0
-
-
-
MHz  
EFMTIM signal range  
Ii(EFM)  
input current on pins  
5000  
µA  
REF/ECN, RS/ECP,  
TH1/EDN and  
TH2/EDP  
Ii(dif)H  
Ii(dif)L  
differential input  
current for HIGH level  
IP IN or Isig IREF  
IP IN or Isig IREF  
IP IN or Isig IREF  
330  
330  
-
1800  
5000  
µA  
µA  
µA  
differential input  
current for LOW level  
1800 5000  
Ii(dif)(th)  
differential input  
0
-
current threshold level  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
55 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr(in)(se)  
rise time of  
EFMINT = 0; 12× DVD  
-
-
1
ns  
single-ended input  
signals  
tr(in)(dif)  
rise time of differential EFMINT = 1; 4× DVD  
input signals  
-
-
-
2
-
ns  
EFMTIM fixed parameters  
Ri(EFM)  
input resistance to  
70  
GND on pins  
REF/ECN, RS/ECP,  
TH1/EDN, TH2/EDP  
Ci(EFM)  
tsu(EFM)  
th(EFM)  
td(EFM)  
input capacitance  
set-up time  
-
-
6
2
-
pF  
ns  
ns  
ns  
rising edge; EFMINT = 1  
rising edge; EFMINT = 1  
EFMINT = 1  
-
-
hold time  
2
-
-
propagation delay of  
EFM data to sampling  
signals  
3
-
td1(EFM)  
td2(EFM)  
td3  
propagation delay of  
EFM data to r/w  
EFMINT = 1  
-
-
20  
ns  
ns  
ns  
ns  
propagation delay of  
EFM data to TH1  
EFMINT = 1  
2.8  
5.0  
7.2  
1.5  
0.5  
delay TH1, TH2, RS  
to sampling point  
EFMINT = 0  
-
-
-
-
td3  
delay variation TH1,  
EFMINT = 0; T = 40 °C;  
TH2, RS to sampling VDD = 0.5 V  
point  
tTH1,TH2  
delay difference  
between TH1 and  
TH2  
-
-
0.15  
ns  
fEFM  
EFM clock frequency VDD > 4.5 V  
VDD > 5.0 V  
140  
-
-
-
-
MHz  
MHz  
V
160  
-
VO(EFM)H  
HIGH-level output  
voltage at pins  
I < 12 mA  
0.8VDD  
VDD  
RWOUT and TIMOUT  
VO(EFM)L  
LOW-level output  
voltage at pins  
I < 12 mA  
0
-
0.2VDD  
V
RWOUT and TIMOUT  
Normalizer signal range  
Ii(Qn)  
servo input current on Q/NE = 0; operating  
1
0
20  
0
0
5
0
-
-
110  
12  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
pins Q1 to Q6  
Q/NE = 1; operating  
-
I(RF-NORM)  
RF to Normalizer  
current  
r/w = 1; operating  
-
200  
800  
400  
100  
15  
r/w = 0; RS = 0; operating  
r/w = 0; RS = 1; operating  
-
-
Ii(LASP)  
LASP control current r/w = 0  
-
input  
r/w = 1  
-
Vi(LASP)  
LASP input voltage  
Ii(LASP) = 100 µA  
1.7  
-
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
56 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Normalizer fixed parameters  
fLPF1  
fLPF2  
3 dB frequency of  
LPF1 in RAD  
CCMPP = 100 nF  
-
1.0  
-
kHz  
3 dB frequency of  
LPF2 in CANORM  
BWRS = 0  
BWRS = 1  
48  
96  
-
60  
72  
144  
-
kHz  
kHz  
µA  
120  
10  
Iref(CAN)  
Iref1  
CAN reference  
current  
MIRN and CAN  
reference current  
-
-
200  
-
-
µA  
µA  
Iref(PR)  
read power reference  
current  
3.50  
Iclamp  
TLN clamp current  
9
-
10  
-
11  
2
µA  
µs  
trel(clamp)  
TLN clamp release  
time  
after clamping  
I/(I1 + I2) normalization error  
I1 = I2; Qn > 1 µA  
for FEN and REN  
for TLN  
-
-
-
-
-
3
%
-
15  
4
%
τd  
RS switch delay  
-
ns  
kΩ  
Ri(LASP)  
LASP input  
impedance  
2
-
Vo(S),Vo(D)  
servo output voltage  
S1 and S2, D1 to D4; operating  
operating  
1.2  
40  
-
-
0.5VDD  
800  
V
ALFA signal range  
Ii(RF)(ALFA) RF input signal for  
ALFA  
ALFA fixed parameters  
Iref(ALFA) reference current for  
normalization  
µA  
-
10  
-
-
µA  
%
α/α  
variation of ALFA with T = 40 °C  
-
4
die temperature  
Io(ALFA)  
ALFA output current  
Vo(ALFA) = 0 V  
0
-
100  
µA  
ALFA programmable parameters  
IAN  
ALFA normalization  
current  
IAN[1:0] = 00  
IAN[1:0] = 01  
IAN[1:0] = 10  
IAN[1:0] = 11  
-
-
-
-
10  
20  
30  
40  
-
-
-
-
µA  
µA  
µA  
µA  
BETA signal range  
Ii(RF)(BETA) RF input signal for  
BETA  
BETA fixed parameters  
Vo(BETA) A1, A2 and CALF  
operating  
VDD = 5 V  
0
-
200  
µA  
0
-
-
-
3.3  
V
output voltage  
Zo(BETA)  
A1, A2 and CALF  
output impedance  
300  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
57 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[4]  
[4]  
VA1/VA2  
matching of A1 and  
A2  
input conditions set for A1 = A2:  
0.85  
1.0  
1.15  
Ip1 = Ip2 = 8 µA 40 µA;  
I0 = (100 Ip1) µA  
VA1/VCALF  
matching of A1 and  
CALF  
input conditions set for A1 = CALF:  
0.8  
1.0  
1.2  
5
Ip1 = Ip2 = 8 µA 40 µA;  
I0 = Ip1 µA  
Vo(BETA)  
Vo(BETA)  
/
variation of A1, A2  
and CALF with  
temperature  
Tdie = 20 °C to 120 °C; T = 10 °C;  
VDD = 5 %  
-
-
-
-
-
-
%
%
%
(VA1)0/  
VCALF  
A1/CALF for DC input  
VRFP VRFN = 0.5 V; DC;  
2
GRFR[3:0] = 5h (0 dB);  
ORF[4:0] = 32h (I0 = 100 µA)  
(VA2)0/  
VCALF  
A2/CALF for DC input  
VRFP VRFN = 0.5 V; DC;  
2
GRFR[3:0] = 5h (0 dB),  
ORF[4:0] = 32h (I0 = 100 µA)  
BETA programmable parameters  
fLPF  
3 dB frequency of  
fLPF = (0.5 × 2BCTL) kHz;  
CALF low-pass filter  
C
CCALF = 27 nF to ground  
BCTL[2:0] = 000  
BCTL[2:0] = 001  
BCTL[2:0] = 010  
BCTL[2:0] = 011  
BCTL[2:0] = 100  
BCTL[2:0] = 101  
BCTL[2:0] = 110  
BCTL[2:0] = 111  
-
-
-
-
-
-
-
-
0.5  
1
-
-
-
-
-
-
-
-
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
2
4
8
16  
32  
-
[5]  
τpeak  
time constant of A1  
and A2 peak  
detectors  
τpeak = (500 × 2BCTL) µs;  
C
CA1 = CCA2 = 10 nF to ground  
BCTL[2:0] = 000  
BCTL[2:0] = 001  
BCTL[2:0] = 010  
BCTL[2:0] = 011  
BCTL[2:0] = 100  
BCTL[2:0] = 101  
BCTL[2:0] = 110  
BCTL[2:0] = 111  
-
-
-
-
-
-
-
-
-
-
-
500  
250  
125  
62.5  
31.3  
15.6  
7.81  
-
-
-
-
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
µs  
µs  
[5]  
IBS  
A1, A2 and CALF  
output scaling current  
IBS[4:0] = 00000  
IBS[4:0] = 11111  
IBS = 1  
5
µA  
µA  
µA  
160  
5
IBS  
A1, A2 and CALF  
output scaling current  
step size  
GBETA  
gain from RFP and  
RFN to CALF, A1 and  
A2  
GBETA = 100/(1 + IBS)  
IBS[4:0] = 00h  
-
-
100  
-
-
IBS[4:0] = 1Fh  
3.125  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
58 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Monitor fixed parameters  
Vo(MON)  
monitor output voltage RL = 10 k; CL = 10 pF  
0.7  
-
V
DD 0.7  
V
Vref(MON)  
monitor voltage  
reference level  
Ii = 0 A  
0.5VDD 0.1 0.5VDD 0.5VDD + 0.1 V  
Ro(MON)  
monitor output  
conversion resistance  
-
-
85  
-
-
kΩ  
Ro(MON)  
/
variation of  
20 °C < Tdie < 120 °C  
10  
%
Ro(MON)  
conversion resistance  
with temperature  
B(MON)  
monitor circuit 3 dB  
bandwidth  
100  
-
-
-
-
kHz  
RO(MON)  
output resistance on  
pins MON1 and  
MON2  
120  
I2C-bus interface signal range  
VIL  
VIH  
VOL  
IOL  
Ii(n)  
LOW-level input  
voltage  
pins SCL and SDA  
pins SCL and SDA  
pin SDA; IOL = 3 mA  
pin SDA  
0.5  
2.1  
0
-
-
-
-
-
1.0  
V
HIGH-level input  
voltage  
VDD + 0.5  
0.4  
V
LOW-level output  
voltage  
V
LOW-level output  
current  
-
6
mA  
nA  
input current on pins  
SDA and SCL  
100  
+100  
Fast serial bus signal range  
Vi(logic)  
logic input voltage  
compatibility  
2.7  
2.1  
-
3.3  
5.5  
-
V
V
V
VIH  
HIGH-level input  
voltage  
-
-
VIL  
LOW-level input  
voltage  
1.0  
Fast serial bus fixed parameters  
VOH(SROUT) HIGH-level output  
voltage on pin SROUT  
SERTST = 1; I < 1 mA  
0.8VDD  
-
-
-
-
VDD  
V
VOL(SROUT) LOW-level output  
voltage on pin SROUT  
SERTST = 1; I < 1 mA  
0
-
0.2VDD  
150  
V
IIH(SERTST)  
HIGH-level input  
internal pull-down resistor of 50 kΩ  
µA  
nA  
current pin SERTST  
Ii(n)  
input current on pins  
SIDA, SICL and SILD  
-
100  
tSU;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
start set-up time  
data set-up time  
data hold time  
0
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
clock HIGH time  
clock LOW time  
tLOW  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
59 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Table 27: Characteristics …continued  
Symbol  
TCLK  
Parameter  
Conditions  
Min  
60  
Typ  
Max  
Unit  
ns  
clock period  
-
-
-
-
-
-
tSU;LD  
set-up time load pulse  
load pulse HIGH time  
45  
ns  
tHIGH;LD  
20  
ns  
[1] With the M1A, M1B and M2 versions negative segment input offset voltages, on pins VIA to VIH, are clipped to zero current internally  
and hence cannot be compensated with IOA to IOH. With the M3 version negative input offset voltages are not clipped and can,  
therefore, be compensated.  
[2] To allow the maximum differential input voltage range requires a VREF value greater than 2 V.  
[3] Invalid bit combination; do not use.  
[4] The input for the BETA circuit will be described in terms of a test signal, which is similar, but not identical, to the actual EFM signal used  
in the application. The AC part of the test signal is a clipped sinusoidal signal with period (10T) 2-N and flat top/bottom of (T/2) 2-N, with  
N = 0 to 5 and T = 231 ns. It has a positive peak level Ip1 = {rf LPF(rf)}peak and a negative peak level Ip2 = {LPF(rf) rf}peak, which are  
equal for the test version. The AC part is superimposed on a DC-level I0. Furthermore IBS[4:0] =19h, r/w = 1.  
[5] To save power, the BETA block and its DAC can be switched off completely by setting parameter BCTL[2:0] to 111. If the BETA block and  
its DAC are switched off, the 3 dB frequency and time constant will not be defined.  
10. Application information  
10.1 Application circuit  
Figure 28 shows an application diagram and the essential external components and basic  
connections for use with PNX7850 (Centaurus1) and PNX7860 (Centaurus2) decoder  
ICs. Changes may be made to the circuit to suit the system architecture.  
When using TZA1047 versions M1A, M1B and M2 in applications using the Philips  
PAEDIC based OPU (with current outputs), the input channels must have 15 kpull-up  
resistors connected to the 3.3 V supply line. These resistors are added so that negative  
offsets do not appear on the TZA1047 inputs; see Table 27.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
60 of 69  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
from laser driver IC  
to  
servo/codec IC  
3.3 V  
D4/FEN  
49  
S1/MIRN  
48  
3202 100 Ω  
S2/XDN  
MON1  
MON2  
VIH  
GND1  
VIC  
47  
45  
46  
44  
1
2
1202  
3203A  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
VIC  
VIB  
VIH  
VIF  
VIG  
VIE  
VID  
VIA  
15 kΩ  
V
3
4
DD1  
+
5 V  
3203B  
100 nF  
2212  
0.1 µF  
VIB  
CMPP  
GND1  
RREF  
43  
42  
41  
15 kΩ  
GND1  
RFNIN  
RFPIN  
5
47 kΩ  
3203C  
6
15 kΩ  
TZA1047  
7
CCALF  
CA2  
27 nF  
3203D  
V
40  
39  
38  
37  
29  
DD1  
+
+
5 V  
5 V  
8
10 nF  
15 kΩ  
VID  
VIA  
CA1  
10 nF  
9
3204A  
GND1  
10  
11  
12  
15 kΩ  
V
V
DD1  
DD2  
+
5 V  
3204B  
SERTST  
VIE  
VIG  
28  
15 kΩ  
13  
14  
3204C  
PPNO  
RWOUT  
34  
33  
RFREF  
15 kΩ  
REF/ECN  
3204D  
24  
15 kΩ  
to  
servo/codec IC  
47  
nF  
+
5 V  
(1)  
to/from  
controller  
001aab180  
(1) To EFMCN, EFMCP, EFMDN, EFMDP of PNX7850 or EFMREF, TIMRS, TIMTH1, TIMTH2 of PNX7860.  
Fig 28. Application diagram.  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Several external components and connections are required for the proper operation of  
TZA1047, regardless of the application. These components are listed in Table 28.  
Table 28: TZA1047 external components  
Pin name Pin number Connect to  
Comments  
SERTST  
CFTC  
CA1  
28  
35  
38  
39  
40  
41  
43  
leave open  
for test purposes only  
47 nF to GND  
10 nF to GND  
10 nF to GND  
27 nF to GND  
47 kto GND  
100 nF to GND  
short to GND  
leave open  
can be left unconnected if BETA function not used  
can be left unconnected if BETA function not used  
can be left unconnected if BETA function not used  
CA2  
CCALF  
RREF  
CMPP  
IDDQTST 53  
SROUT 57  
for test purposes only  
for test purposes only  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
62 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
11. Package outline  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 29. Package outline SOT314-2 (LQFP64)  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
63 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
12. Packing information  
When using reflow soldering it is recommended that the Dry Packing instructions in the  
Quality Reference Pocketbook are followed. The pocketbook can be ordered using the  
code 9398 510 34011.  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
64 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 29: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
65 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
66 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
14. Revision history  
Table 30: Revision history  
Document ID  
TZA1047_2  
Modifications:  
TZA1047_1  
Release date Data sheet status  
20050601 Product data sheet  
TZA1047HL/M3 added to data sheet  
20040816 Product data sheet  
Change notice Doc. number  
Supersedes  
-
9397 750 14664 TZA1047_1  
-
9397 750 13329  
-
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
67 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
16. Definitions  
17. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14664  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 1 June 2005  
68 of 69  
TZA1047  
Philips Semiconductors  
Preprocessor IC for CD and DVD rewritable  
19. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7.11.4  
7.11.5  
Radial servo signal block (normalizer  
sub-block). . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Track loss servo signal block (normalizer  
sub-block). . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
CA signal block (normalizer sub-block) . . . . . 35  
Output current polarities. . . . . . . . . . . . . . . . . 36  
Normalizer block I2C-bus control signal  
overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
ALFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
ALFA measurement circuit for running OPC . 38  
7.11.6  
7.11.7  
7.11.8  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7.12  
7.12.1  
7
7.1  
7.2  
7.3  
7.4  
7.5  
Functional description . . . . . . . . . . . . . . . . . . . 8  
Detector layout . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supported servo modes . . . . . . . . . . . . . . . . . . 9  
Diagram conventions . . . . . . . . . . . . . . . . . . . . 9  
Input circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Distributor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signals Q1 to Q6 . . . . . . . . . . . . . . . . . . . . . . 12  
Signal Qs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
FTC circuit signals . . . . . . . . . . . . . . . . . . . . . 13  
Signals L and R . . . . . . . . . . . . . . . . . . . . . . . 13  
RF amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input section . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Differential data path. . . . . . . . . . . . . . . . . . . . 15  
Single-ended current path . . . . . . . . . . . . . . . 17  
DPD circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FTC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Push-pull processor . . . . . . . . . . . . . . . . . . . . 21  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
EFMTIM Timing . . . . . . . . . . . . . . . . . . . . . . . 23  
Input signals . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Signal generation in internal mode. . . . . . . . . 24  
7.12.1.1 Phase change media . . . . . . . . . . . . . . . . . . . 38  
7.12.1.2 ALFA circuit general . . . . . . . . . . . . . . . . . . . . 39  
7.13  
7.14  
7.15  
7.15.1  
7.15.2  
7.15.3  
7.16  
7.16.1  
7.16.2  
7.16.3  
7.16.4  
BETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Monitor block . . . . . . . . . . . . . . . . . . . . . . . . . 41  
I2C-bus interface and registers. . . . . . . . . . . . 42  
General description . . . . . . . . . . . . . . . . . . . . 42  
Power-on reset. . . . . . . . . . . . . . . . . . . . . . . . 43  
Register definition . . . . . . . . . . . . . . . . . . . . . 44  
Fast serial bus and registers . . . . . . . . . . . . . 46  
Fast serial bus description . . . . . . . . . . . . . . . 46  
Serial bus control timing. . . . . . . . . . . . . . . . . 46  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Fast serial bus control registers . . . . . . . . . . . 47  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.6  
7.6.1  
7.6.2  
7.6.3  
7.7  
7.7.1  
7.8  
7.9  
7.9.1  
7.10  
7.10.1  
7.10.2  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 47  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 48  
Application information . . . . . . . . . . . . . . . . . 60  
Application circuit . . . . . . . . . . . . . . . . . . . . . . 60  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 63  
Packing information . . . . . . . . . . . . . . . . . . . . 64  
9
10  
10.1  
11  
12  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 64  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 64  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 65  
Package related soldering information. . . . . . 65  
7.10.2.1 r/w signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.10.2.2 TH1 and TH2 . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.10.2.3 Signal RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.10.3  
7.10.4  
7.10.5  
7.10.6  
7.10.6.1 RWOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.10.6.2 TIMOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.10.6.3 Bit RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.10.6.4 Bit EFMTST . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
13.2  
13.3  
13.4  
13.5  
Enabling bits . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Signal generation in external mode . . . . . . . . 28  
Timing parameters . . . . . . . . . . . . . . . . . . . . . 28  
Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . 28  
14  
15  
16  
17  
18  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 67  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 68  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Contact information . . . . . . . . . . . . . . . . . . . . 68  
7.11  
7.11.1  
7.11.2  
Normalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Auxiliary block. . . . . . . . . . . . . . . . . . . . . . . . . 31  
Dropout concealment block (normalizer  
sub-block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Focus servo signal block (normalizer  
7.11.3  
sub-block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 1 June 2005  
Document number: 9397 750 14664  
Published in The Netherlands  

相关型号:

TZA1047HL/M3

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.4 MM HEIGHT, PLASTIC, MS-026, SOT314-2, LQFP-64, Consumer IC:Other
NXP

TZA1048

4-channel BTL driver for CD/DVD drives
NXP

TZA1048TH

4-channel BTL driver for CD/DVD drives
NXP

TZA1049TH

IC SPECIALTY CONSUMER CIRCUIT, PDSO28, PLASTIC, HEAT SINK, SOP-28, Consumer IC:Other
NXP

TZA11-10

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA11-5

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA11-7

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA12-10

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA12-5

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA12-7

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA13-10

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND

TZA13-5

TZA / TYA Series 5-Tap High Performance Passive Delay Modules
RHOMBUS-IND