TZA3001BHL/C4 [NXP]

IC SPECIALTY INTERFACE CIRCUIT, PQFP32, PLASTIC, SOT-401, LQFP-32, Interface IC:Other;
TZA3001BHL/C4
型号: TZA3001BHL/C4
厂家: NXP    NXP
描述:

IC SPECIALTY INTERFACE CIRCUIT, PQFP32, PLASTIC, SOT-401, LQFP-32, Interface IC:Other

文件: 总35页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser  
drivers  
Product specification  
2000 Feb 22  
Supersedes data of 2000 Jan 31  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
FEATURES  
APPLICATIONS  
622 Mbits/s data input, both Current Mode Logic (CML)  
and Positive Emitter Coupled Logic (PECL) compatible;  
maximum 800 mV (p-p)  
SDH/SONET STM4/OC12 optical transmission systems  
SDH/SONET STM4/OC12 optical laser modules.  
Adaptive laser output control with dual loop, stabilizing  
optical 1 and 0 levels  
GENERAL DESCRIPTION  
The TZA3001AHL, TZA3001BHL and TZA3001U are fully  
integrated laser drivers for STM4/OC12 (622 Mbits/s)  
systems, incorporating the RF path between the data  
multiplexer and the laser diode. Since the dual loop bias  
and modulation control circuits are integrated on the IC,  
the external component count is low. Only decoupling  
capacitors and adjustment resistors are required.  
Optional external control of laser modulation and biasing  
currents (non-adaptive)  
Automatic laser shutdown  
Few external components required  
Rise and fall times of 120 ps (typical value)  
Jitter <50 mUI (p-p)  
The TZA3001AHL features an alarm function for signalling  
extreme bias current conditions. The alarm low and high  
threshold levels can be adjusted to suit the application  
using only a resistor or a current Digital-to-Analog  
Converter (DAC).  
RF output current sinking capability of 60 mA  
Bias current sinking capability of 90 mA  
Power dissipation of 430 mW (typical value)  
Low cost LQFP32 5 × 5 plastic package  
Single 5 V power supply.  
The TZA3001BHL is provided with an additional RF data  
input to allow remote system testing (loop mode).  
TZA3001AHL  
The TZA3001U is a bare die version for use in compact  
laser module designs. The die contains 40 pads and  
features the combined functionality of the TZA3001AHL  
and the TZA3001BHL.  
Laser alarm output for signalling extremely low and high  
bias current conditions.  
TZA3001BHL  
Extra STM4 622 Mbits/s loop mode input; both CML and  
PECL compatible.  
TZA3001U  
Bare die version with combined bias alarm and loop  
mode functionality.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3001AHL  
TZA3001BHL  
TZA3001U  
LQFP32  
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm  
SOT401-1  
bare die; 2000 × 2000 × 380 µm  
2000 Feb 22  
2
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
BLOCK DIAGRAM  
ALARM TONE TZERO ALARMLO ALARMHI  
26  
4
5
21  
18  
2
MONIN  
LASER  
CONTROL  
BLOCK  
22  
23  
ONE  
ZERO  
13  
12  
15  
data input  
(differential)  
LA  
28  
29  
CURRENT  
SWITCH  
DIN  
LAQ  
BIAS  
DINQ  
6
BAND GAP  
REFERENCE  
BGAP  
TZA3001AHL  
1, 3, 8, 9,  
19, 20  
27, 30  
11, 14, 16, 17  
24, 25, 32  
7
10  
31  
MGK271  
4
11  
GND  
V
V
V
ALS  
CC(R) CC(G) CC(B)  
Fig.1 Block diagram of TZA3001AHL.  
ENL TONE TZERO  
26  
4
5
2
22  
23  
MONIN  
ONE  
LASER  
CONTROL  
BLOCK  
ZERO  
28  
29  
DIN  
13  
12  
15  
LA  
DINQ  
CURRENT  
SWITCH  
MUX  
LAQ  
BIAS  
19  
20  
DLOOP  
DLOOPQ  
6
BAND GAP  
REFERENCE  
BGAP  
TZA3001BHL  
1, 3, 8, 9,  
18, 21  
27, 30  
11, 14, 16, 17  
24, 25, 32  
7
10  
31  
MGK270  
4
11  
GND  
V
V
V
ALS  
CC(R) CC(G) CC(B)  
Fig.2 Block diagram of TZA3001BHL.  
3
2000 Feb 22  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PINNING  
PIN  
PAD  
SYMBOL  
DESCRIPTION  
TZA3001AHL TZA3001BHL TZA3001U  
GND  
1
2
3
4
1
2
3
4
1
2
3
4
5
ground  
MONIN  
GND  
monitor photodiode current input  
ground  
IGM  
not connected  
TONE  
connection for external capacitor used for setting  
optical 1 control loop time constant (optional)  
TZERO  
5
5
6
connection for external capacitor used for setting  
optical 0 control loop time constant (optional)  
BGAP  
VCC(G)  
VCC(G)  
GND  
6
7
6
7
7
connection for external band gap decoupling capacitor  
supply voltage (green domain); note 1  
supply voltage (green domain); note 1  
ground  
8
9
8
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
9
9
ground  
VCC(B)  
VCC(B)  
GND  
10  
10  
supply voltage (blue domain); note 2  
supply voltage (blue domain); note 2  
ground  
11  
12  
13  
14  
15  
16  
17  
11  
12  
13  
14  
15  
16  
17  
LAQ  
laser modulation output inverted  
laser modulation output  
LA  
GND  
ground  
BIAS  
laser bias current output  
ground  
GND  
GND  
ground  
GND  
ground  
ALARMHI  
VCC(R)  
VCC(R)  
DLOOP  
VCC(R)  
DLOOPQ  
VCC(R)  
ALARMLO  
VCC(R)  
ONE  
18  
maximum bias current alarm reference level input  
supply voltage (red domain); note 3  
supply voltage (red domain); note 3  
loop mode data input  
18  
19  
19  
24  
20  
supply voltage (red domain); note 3  
loop mode data input inverted  
supply voltage (red domain); note 3  
minimum bias current alarm reference level input  
supply voltage (red domain); note 3  
optical 1 reference level input  
optical 0 reference level input  
ground  
20  
25  
26  
27  
21  
21  
22  
23  
24  
25  
22  
23  
24  
25  
26  
28  
29  
30  
31  
32  
33  
34  
ZERO  
GND  
GND  
ground  
ALARM  
ENL  
alarm output  
26  
27  
loop mode enable input  
VCC(R)  
27  
supply voltage (red domain); note 3  
2000 Feb 22  
4
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PIN  
PAD  
SYMBOL  
DIN  
DESCRIPTION  
TZA3001AHL TZA3001BHL TZA3001U  
28  
29  
30  
31  
32  
28  
29  
30  
31  
32  
35  
36  
37  
38  
39  
40  
data input  
DINQ  
VCC(R)  
ALS  
data input inverted  
supply voltage (red domain); note 3  
automatic laser shutdown input  
ground  
GND  
GND  
ground  
Notes  
1. Supply voltage for the Monitor PhotoDiode (MPD) input current.  
2. Supply voltage for the laser modulation outputs (LA, LAQ).  
3. Supply voltage for the data inputs (DIN, DINQ), optical 1 and 0 reference level inputs (ONE, ZERO), and the bias  
current alarm reference level inputs (ALARMHI, ALARMLO).  
GND  
GND  
MONIN  
GND  
1
2
3
4
5
6
7
8
24  
23  
ZERO  
22 ONE  
ALARMLO  
TONE  
TZERO  
BGAP  
21  
20  
19  
TZA3001AHL  
V
V
CC(R)  
CC(R)  
V
18 ALARMHI  
17 GND  
CC(G)  
GND  
MGK273  
Fig.3 Pin configuration of TZA3001AHL.  
2000 Feb 22  
5
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
GND  
GND  
MONIN  
GND  
1
2
3
4
5
6
7
8
24  
23  
ZERO  
22 ONE  
V
TONE  
TZERO  
BGAP  
21  
CC(R)  
TZA3001BHL  
20 DLOOPQ  
19  
18  
17  
DLOOP  
V
V
CC(G)  
CC(R)  
GND  
GND  
MGK272  
Fig.4 Pin configuration of TZA3001BHL.  
FUNCTIONAL DESCRIPTION  
The input buffers present a high impedance to the data  
stream on the differential inputs (pins DIN and DINQ);  
see Fig.5. The input signal can be at a CML level of  
approximately 200 mV (p-p) below the supply voltage, or  
at a PECL level up to 800 mV (p-p). The inputs can be  
configured to accept CML signals by connecting pins DIN  
and DINQ to VCC(R) via external 50 pull-up resistors.  
If PECL compatibility is required, the usual Thevenin  
termination can be applied.  
The TZA3001AHL, TZA3001BHL and TZA3001U laser  
drivers accept a 622 Mbits/s STM4 Non-Return to Zero  
(NRZ) input data stream, and generate an output signal  
with sufficient current to drive a solid state Fabry Perot  
(FP) or Distributed FeedBack (DFB) laser. They also  
contain dual loop control circuitry for stabilizing the true  
laser optical power levels representing logic 1 and logic 0.  
V
CC(R)  
10 k  
10 kΩ  
100 Ω  
100 Ω  
DIN, DLOOP  
DINQ, DLOOPQ  
MGS910  
GND  
Fig.5 DIN/DINQ and DLOOP/DLOOPQ inputs.  
6
2000 Feb 22  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
For ECL signals (negative and referenced to ground), the  
inputs should be AC-coupled to the signal source.  
If AC-coupling is applied, a constant input signal (either  
LOW or HIGH) will cause the device to be in an undefined  
state. To avoid this, it is recommended to apply a slight  
offset to the input stage. The applied offset must be higher  
than the specified value in Chapter “Characteristics”, but  
much lower than the applied input voltage swing.  
Automatic laser control  
A laser with a Monitor PhotoDiode (MPD) is required for  
the laser control circuit (see application diagrams  
Figs 18 and 19).  
The MPD current is proportional to the laser emission and  
is applied to pin MONIN. The MPD current range is  
100 to 1000 µA (p-p). The input buffer is optimized to cope  
with an MPD capacitance of up to 50 pF. To prevent the  
input buffer from oscillating if the MPD capacitance is low,  
the capacitance should be increased to the minimum value  
specified in Chapter “Characteristics”, by connecting a  
The RF path is fully differential and contains a differential  
preamplifier and a main amplifier. The main amplifier is  
able to operate at the large peak currents required at the  
output laser driver stage and is insensitive to supply  
voltage variations. The output signal from the main  
amplifier drives a current switch which supplies a  
guaranteed maximum modulation current of 60 mA to  
pins LA and LAQ (see Fig.6). The BIAS pin outputs a  
guaranteed maximum DC bias current of up to 90 mA for  
adjusting the optical laser output to a level above its light  
emitting threshold (see Fig.7).  
capacitor between pin MONIN and VCC(G)  
.
DC reference currents are applied to pins ONE and ZERO  
to set the MPD reference levels for laser HIGH and laser  
LOW respectively. This is adequately achieved by using  
resistors to connect VCC(R) to pins ONE and ZERO,  
(see Fig.8), however, current DACs can also be used.  
The voltages on pins ONE and ZERO are held at a  
constant level of 1.5 V below VCC(R). The reference current  
applied to pin ONE is internally multiplied by 16 and the  
reference current flowing into pin ZERO is internally  
multiplied by 4. The accuracy of the VCC(R) 1.5 V voltage  
at pins ONE and ZERO is described in Section “Accuracy  
of voltage on inputs: ONE, ZERO, ALARMLO, ALARMHI”.  
LA LAQ  
handbook, halfpage  
TR  
TR  
n
ALS  
MGS906  
V
handbook, halfpage  
CC(R)  
GND  
30 kΩ  
ONE, ZERO, ALARMLO, ALARMHI  
Fig.6 LA and LAQ outputs.  
BIAS  
handbook, halfpage  
50 µA  
TR  
TR  
n
GND  
MGS908  
ALS  
MGS907  
GND  
Fig.8 ONE, ZERO, ALARMLO and ALARMHI  
inputs.  
Fig.7 Laser driver bias current output circuit.  
2000 Feb 22  
7
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
The reference current and the resistor for the optical 1  
modulation current control loop is calculated using the  
following formulae:  
Designing the modulation and bias current control  
loop  
The optical 1 and 0 current control loop time constants are  
determined by on-chip capacitances. If the resulting time  
constants are found to be too small in a specific  
application, they can be increased by connecting a  
capacitor between pins TZERO and TONE.  
1
16  
Iref(ONE)  
=
× I  
[A]  
(1)  
(2)  
------  
MPD(ONE)  
1.5  
24  
IMPD(ONE)  
RONE  
=
=
[Ω]  
-----------  
IONE  
------------------------  
The optical 1 modulation current control loop time  
constant (τ) and bandwidth (B) can be estimated using the  
following formulae:  
The reference current and resistor for the optical 0 bias  
current control loop is calculated using the following  
formulae:  
80 × 103  
τONE = (40 × 1012 + CTONE) ×  
[s ]  
(5)  
(6)  
---------------------  
1
4
ηLASER  
Iref(ZERO)  
=
× I  
[A]  
(3)  
--  
MPD(ZERO)  
1
BONE  
=
[Hz]  
1.5  
6
-------------------------  
RZERO  
=
=
[Ω]  
(4)  
-------------  
IZERO  
--------------------------  
2π × τONE  
I MPD(ZERO)  
ηLASER  
In these formulae, IMPD(ONE) and IMPD(ZERO) represent the  
MPD current during an optical 1 and an optical 0 period,  
respectively.  
BONE  
=
[Hz]  
-------------------------------------------------------------------------------------------------  
2π × (40 × 1012 + CTONE) × 80 × 103  
The optical 0 bias current control loop time constant and  
bandwidth can be estimated using the following formulae:  
EXAMPLE  
50 × 103  
ηLASER  
A laser operates at optical output power levels of 0.3 mW  
for laser HIGH and 0.03 mW for laser LOW (extinction ratio  
of 10 dB). Suppose the corresponding MPD currents for  
this particular laser are 260 and 30 µA, respectively.  
τZERO = (40 × 1012 + CTZERO) ×  
[s ]  
(7)  
(8)  
---------------------  
1
BZERO  
=
[Hz]  
----------------------------  
2π × τZERO  
In this example, the reference current flowing into  
pin ONE is:  
1
ηLASER  
× 260 × 106 = 16.25 µA  
BZERO  
=
[Hz]  
----------------------------------------------------------------------------------------------------  
Iref(ONE)  
=
------  
16  
2π × (40 × 1012 + CTZERO) × 50 × 103  
This current can be set using a current source or simply by  
a resistor of the appropriate value connected between  
The term ηLASER (dimensionless) in the above formulae is  
the product of the following two terms:  
pin ONE and VCC(R)  
.
• ηEO is the electro-optical efficiency which accounts for  
the steepness of the laser slope characteristic. It defines  
the rate at which the optical output power increases with  
modulation current, and is measured in W/A.  
In this example, the resistor is:  
1.5  
RONE  
=
= 92.3 kΩ  
--------------------------------  
16.25 × 106  
R is the MPD responsivity. It determines the amount of  
MPD current for a given value of optical output power,  
and is measured in A/W.  
In this example, the reference current at pin ZERO is:  
1
Iref(ZERO)  
=
× 30 × 106 = 7.5 µA  
--  
4
EXAMPLE  
and can be set using a resistor:  
1.5  
A laser with an MPD has the following specifications:  
PO = 1 mW, Ith = 25 mA, ηEO = 30 mW/A, R = 500 mA/W.  
The term Ith is the required threshold current to switch on  
the laser. If the laser operates just above the threshold  
level, it may be assumed that ηEO near the optical 0 level  
is 50% of ηEO near the optical 1 level, due to the slope  
decreasing near the threshold level.  
RZERO  
=
= 200 kΩ  
-------------------------  
7.5 × 106  
It should be noted that the MPD current is stabilized rather  
than the actual laser optical output power. Any deviations  
between optical output power and MPD current, known as  
‘tracking errors’, cannot be corrected.  
2000 Feb 22  
8
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
In this example, the resulting bandwidth for the optical 1  
modulation current control loop, without an external  
capacitor, is:  
MGS902  
3
30 × 103 × 500 × 103  
handbook, halfpage  
BONE  
=
750 Hz  
---------------------------------------------------------------------  
2π × 40 × 1012 × 80 × 103  
I
o(mod)(off)  
(mA)  
(1)  
The resulting bandwidth for the optical 0 bias current  
control loop, without an external capacitor, is:  
2
0.5 × 30 × 103 × 500 × 103  
BZERO  
=
600 Hz  
-------------------------------------------------------------------------  
2π × 40 × 1012 × 50 × 103  
It is not necessary to add additional capacitance with this  
type of laser.  
1
(2)  
Control loop data pattern and bit rate dependency  
The constants in equations (1) and (3) are valid when the  
data pattern frequently contains a sufficient number of  
‘constant zeroes’ and ‘constant ones’. A single control loop  
time period (τONE and τZERO) must contain ones and zeros  
for at least approximately 6 ns (as provided, for example,  
by the A1/A2 frame alignment bytes for STM4/OC12).  
In practice, the optical extinction ratio increases if the bit  
rate increases. Therefore, it is important to use the actual  
data patterns and bit rate of the final application circuit for  
adjusting the optical levels.  
0
0
20  
40  
60  
I
(mA)  
o(mod)(on)  
(1) Worst case operation (Tj = 125 °C, VCC = 5.5 V  
and worst case parameter processes).  
(2) Typical operation.  
Fig.9 Io(mod)(off) as a function of Io(mod)(on)  
.
The laser driver peak detectors are able to track MPD  
output current overshoot and undershoot conditions.  
Unfortunately, these conditions affect the ability of the IC  
to correctly interpret the high and low level MPD current.  
In particular, the occurrence of undershoot can have a  
markedly adverse effect on the interpretation of the low  
level MPD current.  
Monitoring the bias and modulation current  
Although not recommended, the bias and modulation  
currents generated by the laser driver can be monitored by  
measuring the voltages on pins TZERO and TONE,  
respectively (see Fig.10). The relationship between these  
voltages and the corresponding currents are given as  
transconductance values and are specified in  
Additional bias by modulation ‘off’ current  
Chapter “Characteristics”. The voltages on pins TZERO  
and TONE range from 1.4 to 3.4 V. Any connection to  
these pins should have a very high impedance value. It is  
mandatory to use a CMOS buffer or an amplifier with an  
input impedance higher than 100 Gand with an  
extremely low input leakage current (pA).  
Although during operation, the full modulation current  
switches between outputs LA and LAQ, a small amount of  
modulation current continues to flow through the inactive  
pin.  
For example, when the laser, whose cathode is connected  
to LA, is in the ‘dark’ part of its operating cycle (logic 0),  
some of the modulation ‘off’ current flows through LA while  
most of the current flows through LAQ. This value  
Io(mod)(off) is effectively added to the bias current and is  
subtracted from the modulation current. Fortunately, the  
value correlates closely with the magnitude of the  
modulation current. Therefore, applications requiring low  
bias and low modulation are less affected. Figure 9 shows  
the modulation ‘off’ current as a function of the modulation  
‘on’ current.  
2000 Feb 22  
9
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Manual laser override  
The automatic laser control function can be overridden by  
connecting voltage sources to pins TZERO and TONE to  
take direct control of the current sources for bias and  
modulation respectively. The control voltages should  
range from 1.4 to 3.4 V to swing the modulation current  
over the range 1 to 60 mA and the bias current over the  
range 1 to 90 mA. These current ranges are guaranteed.  
TZERO, TONE  
handbook, halfpage  
LINEAR VOLTAGE TO  
CURRENT CONVERTER  
<
1 nA  
1 nA  
2.4 V  
<
Due to the tolerance range in the manufacturing process,  
some devices may have higher current values than those  
specified, as shown in Figs 12 and 13. Both figures show  
that temperature changes cause a slight tilting of the linear  
characteristic around an input voltage of 2.4 V.  
40 pF  
MGS905  
GND  
Consequently, the manually controlled current level is  
most insensitive to temperature variations at around this  
value. Bias and modulation currents in excess of the  
specified range are not supported and should be avoided.  
Fig.10 TZERO and TONE internal configuration.  
Currents into or out of pins TZERO and TONE in excess of  
10 µA must be avoided to prevent damage to the circuit.  
Automatic laser shut-down and laser slow start  
The laser modulation and bias currents can be rapidly  
switched off when a HIGH level (CMOS) is applied to  
pin ALS. This function allows the circuit to be shut-down in  
the event of an optical system malfunction. A 25 kΩ  
pull-down resistor defaults pin ALS to the non active state  
(see Fig.11).  
When a LOW level is applied to pin ALS, the modulation  
and bias currents slowly increase to the desired values at  
the typical time constants of τONE and τZERO, respectively.  
This can be used to slow-start the laser.  
V
handbook, halfpage  
ALS  
CC(R)  
100 Ω  
100 Ω  
25 kΩ  
MGS911  
GND  
Fig.11 ALS input.  
2000 Feb 22  
10  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
MGS904  
160  
I
o(mod)  
(mA)  
120  
(1)  
(2)  
(3)  
(4)  
80  
(5)  
specified range  
40  
0
1.4  
1.9  
2.4  
2.9  
3.4  
3.9  
V
(V)  
TONE  
(1) Tj = 25 °C (device with characteristics at upper limit of manufacturing tolerance range).  
(2) Tj = 25 °C (typical device).  
(3) Tj = 40 °C (typical device).  
(4) Tj = 125 °C (typical device).  
(5) Tj = 25 °C (device with characteristics at lower limit of manufacturing tolerance range).  
Fig.12 Modulation current with variation in Tj and tolerance range in the manufacturing process.  
2000 Feb 22  
11  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
MGS903  
160  
(1)  
I
O(BIAS)  
(mA)  
(2)  
(3)  
(4)  
120  
(5)  
80  
specified range  
40  
0
1.4  
1.9  
2.4  
2.9  
3.4  
3.9  
V
(V)  
TZERO  
(1) Tj = 25 °C (device with characteristics at upper limit of manufacturing tolerance range).  
(2) Tj = 25 °C (typical device).  
(3) Tj = 40 °C (typical device).  
(4) Tj = 125 °C (typical device).  
(5) Tj = 25 °C (device with characteristics at lower limit of manufacturing tolerance range).  
Fig.13 Bias current with variation in Tj and tolerance range in the manufacturing process.  
2000 Feb 22  
12  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Bias alarm for TZA3001AHL  
The bias current alarm circuit detects whenever the bias  
current is outside a predefined range, and generates a  
flag. This feature can detect excessive bias current due to  
laser ageing or laser malfunctioning. The current applied  
to pin ALARMHI should be the maximum permitted bias  
current value attenuated by a ratio of 1:1500. The current  
applied to pin ALARMLO should be the minimum  
V
handbook, halfpage  
CC(R)  
20 Ω  
43 Ω  
permitted bias current value attenuated by a ratio of 1:300.  
ALARM  
Like the reference currents for the laser current control  
loop, the alarm reference currents can be set by  
connecting external resistors between VCC(R) and  
pins ALARMHI and ALARMLO (see Fig.8). The resistor  
values can be calculated using the following formulae:  
MGS909  
1.5 × 1500  
GND  
RALARMHI  
=
[Ω ]  
(9)  
---------------------------------  
IO(BIAS)(max)  
1.5 × 300  
RALARMLO  
=
[Ω ]  
(10)  
-------------------------------  
IO  
(BIAS)(min)  
Fig.14 ALARM output.  
Example: The following reference currents are required to  
limit the bias current range from 6 to 90 mA:  
6 × 103  
IALARMLO  
=
= 20 µA and  
= 60 µA  
--------------------  
300  
Accuracy of voltage on inputs: ONE, ZERO,  
ALARMLO, ALARMHI  
90 × 103  
------------------------  
1500  
IALARMHI  
=
It is important to consider the accuracy of the 1.5 V level  
with respect to VCC(R) on pins ONE and ZERO if resistors  
are used to set the reference currents. Although this value  
is independent of VCC(R), deviations from 1.5 V can be  
caused by:  
The corresponding resistor values are:  
1.5 × 1500  
RALARMHI  
=
= 25 kand  
---------------------------  
90 × 103  
Input current: At Tj = 25 °C, the voltage between pin and  
VCC varies from 1.58 V at an input current of 6 µA, down  
to 1.45 V at 65 µA and 1.41 V at 100 µA. The range  
between 65 µA and 100 µA is only specified for  
ALARMLO. In the application, the input current is  
virtually fixed, so this variation has little effect.  
1.5 × 300  
6 × 103  
RALARMLO  
=
------------------------  
= 75 kΩ  
If the alarm condition is true, the voltage on pin ALARM  
(see Fig.14) goes to a HIGH level (CMOS). This signal  
could be used, for example, to drive pin ALS to disable the  
laser driver; the signal to pin ALS has to be latched to  
prevent oscillation.  
Variation in batch and individual device characteristics,  
not exceeding ±2% from the nominal product: This  
variation can be compensated for where devices in the  
application are individually trimmed.  
A hysteresis of approximately 10% is applied to both alarm  
functions. The attenuation ratios of 1:300 and 1:1500 are  
valid if the bias current rises above the reference current  
levels. If the bias current decreases, the ratios are 10%  
lower.  
Temperature: The variation in Tj is shown in Fig.15.  
At 30 µA (middle of the specified range) the total  
variation in Tj is <1%, at 65 µA it is <2% and at 6 µA it is  
<3%.  
2000 Feb 22  
13  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
MGS901  
1.65  
(1)  
V
ref  
(V)  
(2)  
1.60  
I
ref =  
(3)  
6 µA  
(4)  
1.55  
1.50  
1.45  
1.40  
1.35  
(2)  
I
ref =  
(3)  
30 µA  
(4)  
(2)  
I
ref =  
(3)  
65 µA  
(4)  
50 40  
0
50  
100  
150  
125  
T (°C)  
j
(1) Referenced to VCC(R)  
.
(2) Upper limit of manufacturing tolerance range.  
(3) Nominal product.  
(4) Lower limit of manufacturing tolerance range.  
Fig.15 Vref on pins ONE, ZERO, ALARMLO and ALARMHI with variation in Tj and Iref.  
2000 Feb 22  
14  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Loop mode for TZA3001BHL  
To maximize power supply isolation, the cathode of the  
MPD should be connected to VCC(G) and the anode of the  
laser diode should be connected to VCC(B). It is  
recommended that the laser diode anode is also  
connected to a separate decoupling capacitor C9.  
The loop mode allows the total system application to be  
tested. It allows for uninhibited optical transmission  
through the fibre front-end (from the MPD through the  
transimpedance stage and the data and clock recovery  
unit, to the laser driver and via the laser back to the fibre).  
Note that the optical receiver used in conjunction with the  
TZA3001BHL must have a loop mode output in order to  
complete the test loop.  
Generally, the inverted laser modulation output (pin LAQ)  
is not used. To correctly balance the output stage, an  
equalization network (Z1) with an impedance comparable  
to the laser diode is connected between pin LAQ and  
VCC(B)  
.
The loop mode is selected by a HIGH level on pin ENL.  
By default, pin ENL is pulled to a LOW level by a 25 kΩ  
pull-down resistor (see Fig.16).  
All external components should be surface mounted  
devices, preferably of size 0603 or smaller.  
The components must be mounted as close to the IC as  
possible.  
It is especially recommended to mount the following  
components very close to the IC:  
Power supply decoupling capacitors C2, C3 and C4  
Input matching network on pins DIN, DINQ, DLOOP and  
DLOOPQ  
V
handbook, halfpage  
CC(R)  
Capacitor C5 on pin MONIN  
Output matching network Z1 at the unused output  
The laser.  
600 Ω  
ENL  
25 kΩ  
Bare die ground  
MGS912  
In addition to the separate VCC domains, the bare die  
contains three corresponding ground (GND) domains.  
Isolation between the GND domains is limited due to the  
finite substrate conductance.  
GND  
Mount the die preferably on a large and highly conductive  
grounded die pad. All GND pads must be bonded to the  
die pad. The external ground is thus ideally combined with  
the die ground to avoid ground bounce problems.  
Fig.16 ENL input.  
Layout recommendations  
Power supply connections  
Layout recommendations for the TZA3001AHL and  
TZA3001BHL can be found in application note “AN98090  
Fiber optic transceiverboard STM1/4/8, OC3,12,24,  
FC/GE”.  
Refer to application diagrams Figs 18 and 19. Three  
separate supply domains (labelled VCC(G), VCC(B), and  
VCC(R)) provide isolation between the MPD current input,  
the high-current outputs, and the PECL or CML inputs.  
Each supply domain should be connected to a central VCC  
via separate filters as shown in Figs 18 and 19. All supply  
pins must be connected. The voltage supply levels  
should be equal to, and in accordance with, the values  
specified in Chapter “Characteristics”.  
2000 Feb 22  
15  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VCC  
Vn  
PARAMETER  
MIN.  
0.5  
MAX.  
UNIT  
supply voltage  
DC voltage on  
pin MONIN  
+6  
V
1.3  
V
CC + 0.5  
CC + 0.5  
V
V
V
V
V
V
V
V
V
V
V
V
pins TONE and TZERO  
pin BGAP  
0.5  
0.5  
0.5  
1.3  
V
+3.2  
pin BIAS  
VCC + 0.5  
pins LA and LAQ  
V
CC + 0.5  
CC + 0.5  
pin ALS  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
V
pins ONE and ZERO  
pins DIN and DINQ  
VCC + 0.5  
V
V
V
V
V
CC + 0.5  
CC + 0.5  
CC + 0.5  
CC + 0.5  
CC + 0.5  
pin ALARM (TZA3001AHL)  
pins ALARMHI and ALARMLO (TZA3001AHL)  
pins DLOOP and DLOOPQ (TZA3001BHL)  
pin ENL (TZA3001BHL)  
DC current on  
In  
pin MONIN  
0.5  
0.5  
2.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
40  
+2.5  
+0.5  
+2.5  
+200  
+100  
+0.5  
+0.5  
+0.5  
+10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
pins TONE and TZERO  
pin BGAP  
pin BIAS  
pins LA and LAQ  
pin ALS  
pins ONE and ZERO  
pins DIN and DINQ  
pin ALARM (TZA3001AHL)  
pins ALARMHI and ALARMLO (TZA3001AHL)  
pins DLOOP and DLOOPQ (TZA3001BHL)  
pin ENL (TZA3001BHL)  
ambient temperature  
junction temperature  
storage temperature  
+0.5  
+0.5  
+0.5  
+85  
Tamb  
Tj  
40  
+125  
+150  
°C  
Tstg  
65  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
Rth(j-s)  
Rth(j-c)  
thermal resistance from junction to solder point  
thermal resistance from junction to case  
15  
23  
K/W  
K/W  
2000 Feb 22  
16  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
CHARACTERISTICS  
VCC = 4.5 to 5.5 V; Tamb = 40 to +85 °C; all voltages measured with respect to GND.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCC  
supply voltage  
4.5  
5.0  
4
5.5  
10  
V
ICC(R)  
ICC(G)  
ICC(B)  
supply current (R)  
supply current (G)  
supply current (B)  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
12  
20  
18  
41  
3
26  
ALS LOW; note 1  
ALS HIGH  
65  
5
ICC(tot)  
total supply current  
ALS LOW; note 1  
ALS HIGH  
32  
12  
145  
50  
63  
25  
430  
125  
101  
41  
Ptot  
total power dissipation  
ALS LOW; note 2  
ALS HIGH; note 2  
925  
225  
Data inputs: pins DIN and DINQ (and pins DLOOP and DLOOPQ on TZA3001BHL); (see Fig.17)  
Vi(p-p)  
input voltage  
single-ended  
100  
250  
800  
mV  
(peak-to-peak value)  
VIO  
input offset voltage  
minimum input voltage  
maximum input voltage  
input impedance  
25  
+25  
mV  
V
VI(min)  
VI(max)  
Zi  
V
7
CC(R) 2  
VCC(R) + 0.25 V  
for low frequencies;  
single-ended  
10  
13  
kΩ  
CMOS inputs: pin ALS (and pin ENL on TZA3001BHL)  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
2
V
VIH  
3
V
Rpd(ALS)  
internal pull-down  
21  
25.5 30  
kΩ  
resistance on pin ALS  
Rpd(ENL)  
internal pull-down  
15  
25  
35  
kΩ  
resistance on pin ENL  
CMOS output: pin ALARM (on TZA3001AHL)  
VOL  
VOH  
LOW-level output voltage IOH = 200 µA  
HIGH-level output voltage IOH = 200 µA  
0
0.2  
V
V
V
CC 0.2  
VCC  
Monitor photodiode input: pin MONIN  
VI  
DC input voltage  
1.2  
24  
96  
30  
1.8  
2.4  
V
IMPD  
monitor photodiode  
current  
laser optical 0  
laser optical 1  
note 3  
260  
1040  
50  
µA  
µA  
pF  
CMPD  
monitor photodiode  
capacitance  
2000 Feb 22  
17  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Control loop reference current inputs: pins ONE and ZERO  
Iref(ONE)  
Vref(ONE)  
α(ONE)  
reference current on  
pin ONE  
note 4  
6
6
65  
µA  
V
reference voltage on  
pin ONE  
referenced to VCC(R)  
note 5  
;
1.5  
16  
attenuation ratio of Iref(ONE) note 6  
to IMPD(ONE)  
Iref(ZERO)  
Vref(ZERO)  
α(ZERO)  
reference current on  
pin ZERO  
note 4  
65  
µA  
V
reference voltage on  
pin ZERO  
referenced to VCC(R)  
note 5  
;
1.5  
4
attenuation ratio of  
note 6  
Iref(ZERO) to IMPD(ZERO)  
Control loop time constants: pins TONE and TZERO  
VTONE  
voltage on pin TONE  
floating output  
note 7  
1.4  
60  
3.4  
V
gm(TONE)  
transconductance of  
pin TONE  
95  
130  
mA/V  
VTZERO  
voltage on pin TZERO  
floating output  
note 8  
1.4  
3.4  
V
gm(TZERO)  
transconductance of  
pin TZERO  
100  
145  
190  
mA/V  
Laser modulation current outputs: pins LA and LAQ  
Io(mod)(on)  
modulation output current note 9  
(active pin)  
2.5  
60  
mA  
Io(mod)(off)  
modulation output current Io(mod)(on) = 30mA  
(inactive pin)  
0.5  
2.8  
10  
mA  
mA  
µA  
I
o(mod)(on) = 60mA  
Io(mod)(ALS)  
output current during laser  
shutdown  
VO  
output voltage  
current rise time  
current fall time  
2
5
V
tr  
note 10  
note 10  
note 11  
120  
120  
300  
300  
50  
ps  
ps  
mUI  
tf  
Jo(p-p)  
intrinsic electrical output  
jitter (peak-to-peak value)  
Laser bias current output: pin BIAS  
IO(BIAS)  
bias output current  
note 12  
2.8  
90  
10  
mA  
IO(BIAS)(ALS)  
output current during laser  
shutdown  
µA  
tres(off)  
response time after laser IO(BIAS) = 90 mA; note 13  
shutdown  
1
5
µs  
VO(BIAS)  
bias output voltage  
1
V
2000 Feb 22  
18  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Alarm reference current inputs: pins ALARMHI and ALARMLO (TZA3001AHL)  
Iref(ALARMLO)  
Vref(ALARMLO)  
α(ALARMLO)  
reference current on  
pin ALARMLO  
note 14  
6
100  
µA  
reference voltage on  
pin ALARMLO  
referenced to VCC(R)  
note 15  
1.5  
315  
10  
V
attenuation ratio of  
Iref(ALARMLO) to IO(BIAS)(min)  
200  
7.5  
6
400  
15  
65  
IO(BIAS)(min)(hys) minimum bias current  
detection hysteresis  
%
µA  
V
Iref(ALARMHI)  
Vref(ALARMHI)  
α(ALARMHI)  
reference current on  
pin ALARMHI  
note 14  
reference voltage on  
pin ALARMHI  
referenced to VCC(R)  
note 15  
1.5  
attenuation ratio of  
Iref(ALARMHI) to IO(BIAS)(max)  
1300  
7.5  
1500 1700  
10 15  
IO(BIAS)(max)(hys) maximum bias current  
detection hysteresis  
%
Reference voltage output: pin BGAP  
VO  
output voltage  
1.165  
1.20 1.235  
µA  
Notes  
1. Supply current:  
a) The values do not include the modulation and bias currents through pins LA, LAQ and BIAS.  
b) Minimum value refers to VTONE = 1.4 V at Io(mod)(min) and VTZERO = 1.4 V at IO(BIAS)(min)  
c) Maximum value refers to VTONE = 3.4 V at Io(mod)(max) and VTZERO = 3.4 V at IO(BIAS)(max)  
.
.
d) A first order estimate of the typical value of ICC(tot) as a function of Tj, Io(mod), and IO(BIAS) is:  
TjC]  
ICC(tot) = 55.6 mA + 0.0015 × IO(BIAS)[mA] × Io(mod)(on)[mA] × 1 0.026 ×  
.
----------------  
25  
2. Power dissipation:  
a) The value for Ptot includes the modulation and bias currents through pins LA, LAQ and BIAS.  
b) The minimum value for Ptot is the on-chip dissipation when VTONE = 1.4 V at Io(mod)(min), VLA = VLAQ = 2 V,  
VTZERO = 1.4 V at IO(BIAS)(min), VO(BIAS) = 1 V, and parameter processes are at a minimum.  
c) The maximum value for Ptot is the on-chip dissipation when VTONE = 3.4 V at Io(mod)(max), VLA = VLAQ = 2 V,  
VTZERO = 3.4 V at IO(BIAS)(max), VO(BIAS) = 1 V, and parameter processes are at a maximum.  
d) Ptot = ICC(tot) × VCC + IO(BIAS) × VO(BIAS) + ILA × VLA with Io(mod)(on) flowing through pin LA.  
3. The minimum value of the capacitance on pin MONIN is required to prevent instability.  
4. The reference currents can be set by connecting external resistors between VCC and pins ONE and ZERO  
(see Section “Automatic laser control”). The corresponding MPD current range for optical 1 is from 96 to 1040 µA.  
The MPD current range for optical 0 is from 24 to 260 µA.  
5. See Section “Accuracy of voltage on inputs: ONE, ZERO, ALARMLO, ALARMHI”.  
6. See Section “Automatic laser control”.  
7. The specified transconductance is the ratio between the modulation current on pins LA or LAQ and the voltage on  
pin TONE, under small signal conditions.  
2000 Feb 22  
19  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
8. The specified transconductance is the ratio between the bias current on pin BIAS and the voltage on pin TZERO,  
under small signal conditions.  
9. These are the guaranteed values; the lowest attainable output current will always be lower than 2.5 mA, and the  
highest output current will always be higher than 60 mA.  
10. The voltage rise and fall times (20% to 80%) can have larger values due to capacitive effects. Specifications are  
guaranteed by design and characterization. Each device is tested at full operating speed to guarantee RF  
functionality.  
11. Measured in a frequency band from 250 kHz to 5 MHz, according to “ITU-T Recommendation G.813”.  
The electrically generated (current) jitter is assumed to be less than 50% of the optical output jitter. The specification  
is guaranteed by design.  
12. These are the guaranteed values; the lowest output current will always be less than 2.8 mA and the highest output  
current will always be more than 90 mA.  
13. The response time is defined as the delay between the onset of the ramp on pin ALS (at 10% of the HIGH-level) and  
the extinction of the bias current (at 10% of the original value).  
14. The reference currents can be set by connecting a resistor between pin ALARMLO and VCC(R) and between  
pin ALARMHI and VCC(R); for detailed information, see Section “Bias alarm for TZA3001AHL”. The corresponding  
low-bias threshold range is 1.8 to 19.5 mA. The high-bias threshold range is 9 to 97.5 mA.  
15. See Section “Bias alarm for TZA3001AHL”.  
V
I(max)  
V
CC(R)  
V
i(p-p)  
V
IO  
V
I(min)  
MGK274  
Fig.17 Logic level symbol definitions for data inputs.  
2000 Feb 22  
20  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
APPLICATION INFORMATION  
(1)  
C2  
22 nF  
(1)  
V
CC  
C3  
22 nF  
C1  
1 µF  
(1)  
C4  
22 nF  
data inputs  
normal mode  
(CML/PECL compatible)  
4
V
V
V
ALS DINQ DIN  
ALARM  
26  
CC(G) CC(B) CC(R)  
(2)  
(5)  
(5)  
(6)  
(6)  
C5  
R1  
R2  
R3  
R4  
7
10  
19, 20,  
27, 30  
31  
29  
28  
MONIN  
ZERO  
2
23  
22  
ONE  
(3)  
(4)  
C6  
TONE  
4
5
6
TZA3001AHL  
C7  
TZERO  
ALARMLO  
ALARMHI  
21  
18  
1, 3, 8, 9, 11,  
14, 16, 17,  
24, 25, 32  
C8  
22 nF  
BGAP  
15  
BIAS  
13  
LA  
12  
GND  
11  
LAQ  
R5  
18 Ω  
(7)  
Z1  
L1  
C9  
MGK276  
MPD  
laser  
(1) Ferrite bead e.g. Murata BLM31A601S.  
(2) C5 is required to meet the minimum capacitance value on pin MONIN (optional, see Section “Automatic laser control”).  
(3) C6 enhances modulation control loop time constant (optional).  
(4) C7 enhances bias control loop time constant (optional).  
(5) R1 and R2 are used for setting optical 0 and optical 1 reference currents (see Section “Automatic laser control”).  
(6) R3 and R4 are used for setting minimum and maximum bias currents (see Section “Bias alarm for TZA3001AHL”).  
(7) Z1 is required for balancing the output stage (see Section “Power supply connections”).  
Fig.18 Application diagram showing the TZA3001AHL configured for 622 Mbits/s (STM4/OC12).  
2000 Feb 22  
21  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
(1)  
C2  
22 nF  
(1)  
V
CC  
C3  
22 nF  
C1  
1 µF  
(1)  
C4  
22 nF  
data inputs  
normal mode  
(CML/PECL compatible)  
4
V
V
V
ALS  
DINQ DIN  
ENL  
26  
CC(G) CC(B) CC(R)  
(2)  
(5)  
(5)  
C5  
R1  
R2  
7
10  
18, 21,  
27, 30  
31  
29  
28  
MONIN  
ZERO  
2
23  
22  
ONE  
(3)  
(4)  
C6  
TONE  
4
5
6
TZA3001BHL  
C7  
TZERO  
DLOOPQ  
DLOOP  
20  
19  
loop mode inputs  
(CML/PECL  
1, 3, 8, 9, 11,  
14, 16, 17,  
24, 25, 32  
C8  
22 nF  
BGAP  
compatible)  
15  
BIAS  
13  
LA  
12  
GND  
11  
LAQ  
R3  
18 Ω  
(6)  
Z1  
L1  
C9  
MGK275  
MPD  
laser  
(1) Ferrite bead e.g. Murata BLM31A601S.  
(2) C5 is required to meet the minimum capacitance value on pin MONIN (optional, see Section “Automatic laser control”).  
(3) C6 enhances modulation control loop time constant (optional).  
(4) C7 enhances bias control loop time constant (optional).  
(5) R1 and R2 are used for setting optical 0 and optical 1 reference currents (see Section “Automatic laser control”).  
(6) Z1 is required for balancing the output stage (see Section “Power supply connections”).  
Fig.19 Application diagram showing the TZA3001BHL configured for 622 Mbits/s (STM4/OC12).  
2000 Feb 22  
22  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
BONDING PAD LOCATIONS  
COORDINATES(1)  
COORDINATES(1)  
SYMBOL  
PAD  
x
y
SYMBOL  
PAD  
x
y
VCC(R)  
DLOOP  
DLOOPQ  
VCC(R)  
ALARMLO  
ONE  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
+384  
+227  
+87  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+681  
+541  
+384  
+227  
+70  
GND  
1
2
664  
524  
367  
227  
70  
910  
910  
910  
910  
910  
910  
910  
910  
910  
910  
630  
490  
350  
210  
70  
MONIN  
GND  
3
70  
IGM  
4
210  
367  
524  
681  
910  
910  
910  
910  
910  
910  
910  
910  
910  
910  
TONE  
TZERO  
BGAP  
VCC(G)  
VCC(G)  
GND  
5
6
+87  
ZERO  
GND  
7
+244  
+384  
+524  
+664  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+681  
+541  
8
GND  
9
ALARM  
ENL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
VCC(R)  
DIN  
VCC(B)  
VCC(B)  
GND  
DINQ  
VCC(R)  
ALS  
70  
227  
367  
551  
664  
LAQ  
LA  
+70  
GND  
GND  
+210  
+350  
+490  
+630  
+910  
+910  
GND  
BIAS  
Note  
GND  
1. All x and y coordinates represent the position of the  
centre of the pad in µm with respect to the centre of the  
die (see Fig.20).  
GND  
GND  
ALARMHI  
2000 Feb 22  
23  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
(1)  
2 mm  
30 29 28 27 26  
31  
25 24 23 22 21  
20  
GND  
ALARM  
ENL  
GND  
GND  
BIAS  
GND  
LA  
32  
33  
34  
35  
19  
18  
17  
16  
V
CC(R)  
DIN  
(1)  
x
0
2 mm  
0
y
DINQ  
LAQ  
36  
37  
38  
39  
40  
15  
14  
13  
12  
11  
V
GND  
V
CC(R)  
ALS  
GND  
GND  
CC(B)  
TZA3001U  
V
CC(B)  
GND  
1
2
3
4
5
6
7
8
9
10  
MGL192  
(1) Typical value.  
Fig.20 Bonding pad locations of TZA3001U.  
Table 1 Physical characteristics of bare die  
PARAMETER  
VALUE  
Glass passivation  
Bonding pad dimension  
Metallization  
Thickness  
2.1 µm PSG (PhosphoSilicate Glass) on top of 0.7 µm silicon nitride  
minimum dimension of exposed metallization is 90 × 90 µm (pad size = 100 × 100 µm)  
1.2 µm AlCu (1% Cu)  
380 µm nominal  
Size  
2.000 × 2.000 mm (4.000 mm2)  
Backing  
silicon; electrically connected to GND potential through substrate contacts  
<430 °C; glue is recommended for attaching die  
<15 s  
Attach temperature  
Attach time  
2000 Feb 22  
24  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PACKAGE OUTLINE  
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm  
SOT401-1  
c
y
X
A
E
17  
24  
Z
16  
25  
E
e
A
H
2
E
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
32  
9
L
1
8
detail X  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.5  
0.05 1.3  
0.27 0.18 5.1  
0.17 0.12 4.9  
5.1  
4.9  
7.15 7.15  
6.85 6.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
mm  
1.60  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-12-27  
00-01-19  
SOT401-1  
136E01  
MS-026  
2000 Feb 22  
25  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Feb 22  
26  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
REFLOW(1)  
PACKAGE  
WAVE  
BGA, LFBGA, SQFP, TFBGA  
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Feb 22  
27  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors  
has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing,  
handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in  
which the die is used.  
2000 Feb 22  
28  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
NOTES  
2000 Feb 22  
29  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
NOTES  
2000 Feb 22  
30  
Philips Semiconductors  
Product specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
NOTES  
2000 Feb 22  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403510/150/05/pp32  
Date of release: 2000 Feb 22  
Document order number: 9397 750 06893  
Go to Philips Semiconductors' home page  
Select & Go...  
Catalog  
& Datasheets  
Information as of 2000-08-20  
Catalog by Function  
Discrete semiconductors  
Audio  
TZA3001AHL; TZA3001BHL; TZA3001U; SDH/SONET STM4/OC12 laser drivers  
Clocks and Watches  
Data communications  
Microcontrollers  
Peripherals  
Standard analog  
Video  
Subscribe  
to eNews  
Description  
Features  
Applications  
Datasheet  
Products, packages, availability and ordering  
Find similar products  
To be kept informed on TZA3001AHL; TZA3001BHL; TZA3001U,  
subscribe to eNews.  
Wired communications  
Wireless communications  
Description  
Catalog by System  
Automotive  
Consumer Multimedia  
Systems  
Communications  
The TZA3001AHL, TZA3001BHL and TZA3001U are fully integrated laser drivers for STM4/OC12 (622 Mbits/s) systems, incorporating the  
RF path between the data multiplexer and the laser diode. Since the dual loop bias and modulation control circuits are integrated on the IC,  
the external component count is low. Only decoupling capacitors and adjustment resistors are required.  
PC/PC-peripherals  
Cross reference  
The TZA3001AHL features an alarm function for signalling extreme bias current conditions. The alarm low and high threshold levels can be  
adjusted to suit the application using only a resistor or a current Digital-to-Analog Converter (DAC).  
Models  
Packages  
The TZA3001BHL is provided with an additional RF data input to allow remote system testing (loop mode).  
Application notes  
Selection guides  
Other technical documentation  
End of Life information  
Datahandbook system  
The TZA3001U is a bare die version for use in compact laser module designs. The die contains 40 pads and features the combined  
functionality of the TZA3001AHL and the TZA3001BHL.  
Features  
Relevant Links  
About catalog tree  
About search  
About this site  
Subscribe to eNews  
Catalog & Datasheets  
Search  
l 622 Mbits/s data input, both Current Mode Logic (CML) and Positive Emitter Coupled Logic (PECL) compatible; maximum 800 mV (p-p)  
l Adaptive laser output control with dual loop, stabilizing optical 1 and 0 levels  
l Optional external control of laser modulation and biasing currents (non-adaptive)  
l Automatic laser shutdown  
l Few external components required  
TZA3001AHL;  
TZA3001BHL; TZA3001U  
TZA3001AHL;  
TZA3001BHL; TZA3001U  
l Rise and fall times of 120 ps (typical value)  
l Jitter P50 mUI (p-p)  
l RF output current sinking capability of 60 mA  
l Bias current sinking capability of 90 mA  
l Power dissipation of 430 mW (typical value)  
l Low cost LQFP32 5 X 5 plastic package  
l Single 5 V power supply.  
TZA3001AHL  
l Laser alarm output for signalling extremely low and high bias current conditions.  
TZA3001BHL  
¡ Extra STM4 622 Mbits/s loop mode input; both CML and PECL compatible.  
TZA3001U  
¡ Bare die version with combined bias alarm and loop mode functionality.  
Applications  
¡ SDH/SONET STM4/OC12 optical transmission systems  
¡ SDH/SONET STM4/OC12 optical laser modules.  
Datasheet  
File  
size  
(kB)  
Publication  
release date Datasheet status  
Page  
count  
Type nr.  
Title  
Datasheet  
Download  
TZA3001AHL;  
TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser  
drivers  
22-Feb-00  
Product  
Specification  
32  
137  
Products, packages, availability and ordering  
North American  
Partnumber  
Order code  
(12nc)  
buy  
online  
Partnumber  
marking/packing  
package device status  
SOT401 Full production  
SOT401 Development  
SOT401 Full production  
Standard Marking * Reel Pack,  
SMD, 13"  
TZA3001AHL/C4  
TZA3001BHL/C1  
9352 638 39118  
-
-
Standard Marking * Tray Dry Pack,  
Bakeable, Single  
9352 603 71551  
9352 638 34118  
Standard Marking * Reel Pack,  
SMD, 13"  
TZA3001BHL/C4  
TZA3001U/C4  
-
-
9352 638 40026 No Marking * Die In Waffle Carriers NONE  
Full production  
Please read information about some discontinued variants of this product.  
Find similar products:  
TZA3001AHL; TZA3001BHL; TZA3001U links to the similar products page containing an overview of products that are similar  
in function or related to the part number(s) as listed on this page. The similar products page includes products from the same  
catalog tree(s) , relevant selection guides and products from the same functional category.  
Copyright © 2000  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  

相关型号:

TZA3001U

SDH/SONET STM4/OC12 laser drivers
NXP

TZA3001U/C4

IC SPECIALTY INTERFACE CIRCUIT, UUC40, DIE-40, Interface IC:Other
NXP

TZA3004

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3004HL

SDH/SONET data and clock recovery unit STM1/4 OC3/12
NXP

TZA3004HL-T

IC CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3004HL/C3

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3004HLBE-S

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3005

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3005H

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3005H-T

IC TRANSCEIVER, PQFP64, ATM/SONET/SDH IC
NXP

TZA3011A

30 Mbits/s up to 3.2 Gbits/s A-rate(TM) laser drivers
ETC

TZA3011AVH

Display Driver, BICMOS, PQCC32
PHILIPS