TZA3011A [ETC]

30 Mbits/s up to 3.2 Gbits/s A-rate(TM) laser drivers ; 30兆位/秒高达3.2 Gb / s的A-率( TM )的激光驱动器\n
TZA3011A
型号: TZA3011A
厂家: ETC    ETC
描述:

30 Mbits/s up to 3.2 Gbits/s A-rate(TM) laser drivers
30兆位/秒高达3.2 Gb / s的A-率( TM )的激光驱动器\n

驱动器
文件: 总28页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TZA3011A; TZA3011B  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
Product specification  
2003 Apr 02  
Supersedes data of 2002 Nov 06  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
CONTENTS  
11  
12  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
FEATURES  
12.1  
Design equations  
1.1  
1.2  
1.3  
General  
Control features  
Protection features  
12.1.1  
12.1.2  
12.1.3  
12.1.4  
12.1.5  
12.1.6  
12.2  
Bias and modulation currents  
Average monitor current and extinction ratio  
Dual-loop control  
Alarm operating current  
Alarm monitor current  
2
3
4
5
6
7
APPLICATIONS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
Pulse width adjustment  
TZA3011A with dual-loop control  
TZA3011B with dual-loop control  
TZA3011B with average loop control  
12.3  
12.4  
PINNING  
FUNCTIONAL DESCRIPTION  
13  
BONDING PAD LOCATIONS  
PACKAGE OUTLINE  
SOLDERING  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
Data and clock input  
Retiming  
14  
15  
Pulse width adjustment  
Modulator output stage  
Dual-loop control  
Average loop control  
Direct current setting  
Soft start  
Alarm functions  
Enable  
Reference block  
15.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
15.2  
15.3  
15.4  
15.5  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
16  
17  
18  
DATA SHEET STATUS  
DEFINITIONS  
8
LIMITING VALUES  
DISCLAIMERS  
9
THERMAL CHARACTERISTICS  
DC CHARACTERISTICS  
10  
2003 Apr 02  
2
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
1
FEATURES  
General  
1.3  
Protection features  
1.1  
Alarm function on operating current  
A-rate (1) from 30 Mbits/s to 3.2 Gbits/s  
Bias current up to 100 mA  
Alarm function on monitor current  
Enable function on bias and modulation currents  
Soft start on bias and modulation currents.  
Modulation current up to 100 mA  
Rise and fall times typical 80 ps  
2
APPLICATIONS  
Jitter below 20 ps (peak-to-peak value)  
Modulation output voltage up to 2 V dynamic range  
SDH/SONET optical transmission systems  
High current drivers for converters  
1.2 V minimum voltage on the modulation output pin and  
0.4 V minimum voltage on pin BIAS  
High current drivers for high frequencies.  
Retiming function via external clock with disable option  
Pulse width adjustment function with disable option  
3
GENERAL DESCRIPTION  
Positive Emitter Coupled Logic (PECL), Low Voltage  
Positive Emitter Coupled Logic (LVPECL) and  
Current-Mode Logic (CML) compatible data and clock  
inputs  
The TZA3011 is a fully integrated laser driver for optical  
transmission systems with data rates up to 3.2 Gbits/s.  
The TZA3011 incorporates all the necessary control and  
protection functions for a laser driver application with very  
few external components required and low power  
dissipation. The dual-loop controls the average monitor  
current in a programmable range from 150 µA to 1300 µA  
and the extinction ratio in a programmable range from  
5 to 15 (linear scale).  
Internal common mode voltage available for AC-coupled  
data and clock inputs and for single-ended applications  
3.3 V supply voltage  
TZA3011A: AC-coupled laser for 3.3 V laser supply  
TZA3011B: DC-coupled laser for 3.3 V and 5 V laser  
supply.  
The design is made in the Philips BiCMOS RF process  
and is available in a HBCC32 package or as bare die. The  
TZA3011A is intended for use in an application with an  
AC-coupled laser diode with a 3.3 V laser supply voltage.  
The TZA3011B is intended for use in an application with a  
DC-coupled laser diode for both 3.3 and 5 V laser supply  
voltages.  
1.2  
Control features  
Dual-loop control for constant and accurate optical  
average power level and extinction ratio (up to  
2.7 Gbits/s)  
Optional average power loop control (up to 3.2 Gbits/s)  
Optional direct setting of modulation and bias currents.  
(1) A-rate - is a trademark of Koninklijke Philips Electronics N.V.  
4
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3011AVH  
TZA3011BVH  
TZA3011UH  
HBCC32 plastic heatsink bottom chip carrier; 32 terminals;  
SOT560-1  
body 5 × 5 × 0.65 mm  
bare die; 2 560 × 2510 × 380 µm  
2003 Apr 02  
3
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
5
BLOCK DIAGRAM  
ACDC  
MODOUT MODIN BIASOUT BIASIN  
MON  
AVR  
ER  
GNDCCB  
32 (57) 31 (56)  
(51, 53)  
30 (55)  
29 (52)  
28 (50)  
27 (49)  
26 (48)  
(46)  
(44, 45) 25  
V
CCO  
I
BIAS  
100 µA  
100 µA  
1 (1, 2)  
(43) 24  
V
V
CCA  
BIAS  
dual loop: I  
= 1.2 V/R  
ER  
V/I  
ER  
average loop: ER = GND  
2 (3, 4)  
CURRENT  
CONVERSION  
100  
mA/V  
CCD  
23  
I
I
one  
zero  
GND  
V/I  
100  
mA/V  
CONTROL BLOCK  
I
100  
100  
MON  
(40, 41) 22  
(37, 39) 21  
(31, 32) 20  
(29, 30) 19  
LA  
LA  
3 (5)  
LAQ  
LAQ  
DIN  
20  
kΩ  
100  
PRE  
AMP  
POST  
AMP  
PULSE  
WIDTH  
ADJUST  
18  
4 (6)  
GND  
DINQ  
TEST  
CIN  
(28, 33,  
35, 36, 42)  
MUX  
20  
kΩ  
5 (11)  
6 (12)  
I
GNDO  
mod  
D
C
FF  
(7, 8, 9,  
10, 26)  
(27) 17  
20  
kΩ  
100  
PWA  
GNDRF  
CINQ  
7 (13)  
disable retiming:  
V
V
< 0.3 V  
CIN, CINQ  
20  
kΩ  
8
GND  
TZA3011A  
TZA3011B  
(14, 47)  
9 (15)  
GNDESD  
ALRESET  
V
1.32 V  
CCD  
(20, 22,  
34, 38, 54)  
i.c.  
10  
kΩ  
1.4 V  
I
/12.5  
av(MON)  
I
/750  
BIAS  
R
Q
R
Q
ALARM  
OPERATING  
CURRENT  
ALARM  
MONITOR  
CURRENT  
3.3 V  
V AND I  
REFERENCE  
I
/1500  
mod  
+
20  
kΩ  
1.4 V  
(26)  
enable  
(17)  
GNDRF  
10 (16)  
ENABLE  
11 (18)  
12 (19)  
ALMON  
13 (21) 14 (23)  
15 (24) 16 (25)  
MGT888  
GNDDFT  
ALOP  
MAXOP VTEMP MAXMON RREF  
The numbers in parenthesis refer to the bare die version  
Fig.1 Block diagram.  
4
2003 Apr 02  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
6
PINNING  
SYMBOL  
PIN  
PAD(1)  
DESCRIPTION  
GND  
die pad substrate common ground plane for VCCA, VCCD, VCCO, RF and I/O; must be connected to  
ground  
VCCA  
1
1
2
analog supply voltage  
VCCA  
analog supply voltage  
VCCD  
2
3
digital supply voltage  
VCCD  
4
digital supply voltage  
DIN  
3
5
non-inverted data input (RF input)  
inverted data input (RF input)  
ground  
DINQ  
4
6
GNDRF  
GNDRF  
GNDRF  
GNDRF  
TEST  
7
8
ground  
9
ground  
10  
11  
12  
13  
ground  
5
test pin or test pad; must be connected to ground  
non-inverted clock input (RF input)  
inverted clock input (RF input)  
ground  
CIN  
6
CINQ  
7
GND  
8
GNDESD  
ALRESET  
ENABLE  
GNDDFT  
ALOP  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
ground  
9
alarm reset input; resets ALMON and ALOP alarms  
enable input for modulation and bias current  
ground  
10  
11  
12  
alarm output on operating current (open-drain)  
alarm output on monitor diode current (open-drain)  
internally connected  
ALMON  
i.c.  
MAXOP  
i.c.  
13  
threshold level input for alarm on operating current  
internally connected  
VTEMP  
MAXMON  
RREF  
14  
15  
16  
temperature dependent voltage output source  
threshold level input for alarm on monitor diode current  
reference current input; must be connected to ground with an accurate (1%)  
10 kresistor  
GNDRF  
PWA  
GND  
GNDO  
LAQ  
17  
18  
26  
27  
ground  
pulse width adjustment input  
ground  
28  
29  
30  
31  
32  
33  
34  
35  
ground  
19  
inverted laser modulation output (RF output); output for dummy load  
inverted laser modulation output (RF output); output for dummy load  
inverted laser modulation output (RF output); output for dummy load  
inverted laser modulation output (RF output); output for dummy load  
ground  
LAQ  
LAQ  
20  
LAQ  
GNDO  
i.c.  
internally connected  
GNDO  
ground  
2003 Apr 02  
5
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
SYMBOL  
GNDO  
PIN  
PAD(1)  
DESCRIPTION  
21  
36  
37  
38  
39  
40  
41  
ground  
LA  
non-inverted laser modulation output (RF output); output for laser  
internally connected  
i.c.  
LA  
non-inverted laser modulation output (RF output); output for laser  
non-inverted laser modulation output (RF output); output for laser  
non-inverted laser modulation output (RF output); output for laser  
ground  
LA  
22  
LA  
GND  
23  
GNDO  
BIAS  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
ground  
24  
25  
current source output for the laser bias current  
supply voltage for the output stage and the laser diode  
supply voltage for the output stage and the laser diode  
AC or DC coupled laser; note 2  
VCCO  
VCCO  
ACDC  
GNDESD  
MON  
ground  
26  
27  
28  
input for the monitor photo diode (RF input)  
input for the bias current setting  
BIASIN  
BIASOUT  
GNDCCB  
MODIN  
GNDCCB  
i.c.  
output of the control block for the bias current  
ground  
29  
input for the modulation current setting  
ground  
internally connected  
MODOUT  
ER  
30  
31  
32  
output of the control block for the modulation current  
input for the optical extinction ratio setting  
input for the optical average power level setting  
AVR  
Notes  
1. All ground pads must be connected to ground.  
2. ACDC pad must be left unconnected for AC-coupling applications. For DC-coupling applications, connect this pad to  
ground.  
2003 Apr 02  
6
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
V
V
1
32 31 30 29 28 27 26  
25  
CCA  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
BIAS  
CCD  
DIN  
GND  
LA  
DINQ  
TEST  
CIN  
TZA3011A  
TZA3011B  
LA  
LAQ  
LAQ  
GND  
CINQ  
GND  
9
10 11 12 13 14 15 16  
17  
PWA  
MGT889  
Fig.2 Pin configuration.  
7
FUNCTIONAL DESCRIPTION  
Data and clock input  
7.3  
Pulse width adjustment  
7.1  
The on-duration of the laser current can be adjusted from  
100 to +100 ps. The adjustment time is set by resistor  
RPWA. The maximum allowable capacitive load on pin  
PWA is 100 pF. Pulse width adjustment is disabled when  
pin PWA is short-circuited to ground.  
The TZA3011 operates with differential Positive Emitter  
Coupled Logic (PECL), Low Voltage Positive Emitter  
Coupled Logic (LVPECL) and Current-Mode Logic (CML)  
data and clock inputs with a voltage swing from 100 mV to  
1 V (p-p). It is assumed that both the data and clock inputs  
carry a complementary signal with the specified  
7.4  
Modulator output stage  
peak-to-peak value (true differential excitation).  
The output stage is a high-speed bipolar differential pair  
with typical rise and fall times of 80 ps and with a  
modulation current source of up to 100 mA when the LA  
The circuit generates an internal common mode voltage  
for AC-coupled data and clock inputs and for single-ended  
applications.  
pins are connected to VCCO  
.
The modulation current switches between the LA and LAQ  
outputs. For a good RF performance the inactive branch  
carries a small amount of the modulation current.  
If VDIN > VDINQ, the modulation current is sunk by the LA  
pins and corresponds to an optical ‘one’ level of the laser.  
7.2  
Retiming  
The LA output is optimized for the laser allowing a 2 V  
dynamic range and a 1.2 V minimum voltage. The LAQ  
output is optimized for the dummy load.  
The retiming function synchronizes the data with the clock  
to improve the jitter performance. The data latch switches  
on the rising edge of the clock input. The retiming function  
is disabled when both clock inputs are below 0.3 V.  
The output stage of the TZA3011A is optimized for  
AC-coupled lasers and the output stage of the TZA3011B  
is optimized for DC-coupled lasers.  
At start-up the initial polarity of the laser is unknown before  
the first rising edge of the clock input.  
The BIAS output is optimized for low voltage requirements  
(0.4 V minimum for a 3.3 V laser supply; 0.8 V minimum  
for a 5 V laser supply).  
2003 Apr 02  
7
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
7.5  
Dual-loop control  
7.9  
Alarm functions  
The TZA3011 incorporates a dual-loop control for a  
constant, accurate and temperature-independent control  
of the optical average power level and the extinction ratio.  
The dual-loop guarantees constant optical ‘one’ and ‘zero’  
levels which are independent of the laser temperature and  
the laser age.  
The TZA3011 features two alarm functions for the  
detection of excessive laser operating current and monitor  
diode current due to laser ageing, laser malfunctioning or  
a too high laser temperature. The alarm threshold levels  
are programmed by a resistor or a current source. In the  
TZA3011A, for the AC-coupled application, the operating  
current is equal to the bias current. In the TZA3011B, for  
the DC-coupled application, the operating current equals  
the bias current plus half of the modulation current.  
The dual-loop operates by monitoring the current of the  
monitor photodiode which is directly proportional to the  
laser emission. The ‘one’ and ‘zero’ current levels of the  
monitor diode are captured by the detector of the dual-loop  
control. The pin MON for the monitor photodiode current is  
an RF input.  
7.10 Enable  
A LOW level on the enable input disables the bias and  
modulation current sources: the laser is off. A HIGH level  
on the enable input or an open enable input switches both  
current sources on: the laser is operational.  
The average monitor current is programmable over a wide  
current range from 150 to 1300 µA for both the dual-loop  
control and the average loop control. The extinction ratio is  
programmable from 5 to 15.  
7.11 Reference block  
The maximum allowable capacitive load on pins AVR, ER,  
BIASOUT and MODOUT is 100 pF.  
The reference voltage is derived from a band gap circuit  
and is available at pin RREF. An accurate (1%) 10 kΩ  
resistor has to be connected to pin RREF to provide the  
internal reference current. The maximum capacitive load  
on pin RREF is 100 pF.  
7.6  
Average loop control  
The average power control loop maintains a constant  
average power level of the monitor current over  
temperature and lifetime of the laser. The average loop  
control is activated by short-circuiting pin ER to ground.  
The reference voltage on the setting pins (MAXOP,  
MAXMON, PWA, ER and AVR) is buffered and derived  
from the band gap voltage.  
7.7  
Direct current setting  
The output voltage on pin VTEMP reflects the junction  
temperature of the TZA3011, the temperature coefficient  
of VVTEMP equals 2.2 mV/K.  
The TZA3011 can also operate in open-loop mode with  
direct setting of the bias and modulation currents. The bias  
and modulation current sources are transconductance  
amplifiers and the output currents are determined by the  
BIASIN and MODIN voltages respectively. The bias  
current source has a bipolar output stage with minimum  
output capacitance for optimum RF performance.  
7.8  
Soft start  
At power-up the bias and modulation current sources are  
released when VCCA > 2.7 V and the reference voltage has  
reached the correct value of 1.2 V.  
The control loop starts with minimum bias and modulation  
current at power-up and when the device is enabled. The  
current levels increase until the MON input current  
matches the programmed average level and, in the case  
of dual-loop control, the extinction ratio.  
2003 Apr 02  
8
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referenced to ground; positive  
currents flow into the IC.  
SYMBOL  
PARAMETER  
digital supply voltage  
CONDITION  
MIN.  
0.5  
MAX.  
UNIT  
VCCD  
VCCA  
VCCO  
+3.5  
+3.5  
+3.5  
+5.3  
4.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
analog supply voltage  
0.5  
0.5  
output stage supply voltage  
3.3 V laser supply  
5 V laser supply (TZA3011B only) 0.5  
Vo(LA)  
Vo(LAQ)  
VBIAS  
Vn  
output voltage at pin LA  
output voltage at pin LAQ  
bias voltage  
TZA3011A; VCCO = 3.3 V  
TZA3011B; VCCO = 3.3 V  
TZA3011B; VCCO = 5 V  
TZA3011A; VCCO = 3.3 V  
TZA3011B; VCCO = 3.3 V  
TZA3011B; VCCO = 5 V  
TZA3011A; VCCO = 3.3 V  
TZA3011B; VCCO = 3.3 V  
TZA3011B; VCCO = 5 V  
1.2  
0.8  
1.2  
1.8  
1.6  
2.0  
0.4  
0.4  
0.8  
4.1  
4.5  
4.5  
4.5  
5.2  
3.6  
3.6  
4.1  
voltage on other input and output  
pins  
analog inputs and outputs  
digital inputs and outputs  
input current on pins  
0.5  
0.5  
V
CCA + 0.5  
CCD + 0.5  
V
V
V
In  
MAXOP, MAXMON, RREF, PWA,  
ER and AVR  
1.0  
0
mA  
VTEMP, BIASOUT and MODOUT  
ALOP, ALMON and MON  
ambient temperature  
1.0  
0
+1.0  
5.0  
mA  
mA  
°C  
Tamb  
Tj  
40  
40  
65  
+85  
junction temperature  
+125  
+150  
°C  
Tstg  
storage temperature  
°C  
9
THERMAL CHARACTERISTICS  
In compliance with JEDEC standards JESD51-5 and JESD51-7.  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to 4 layer printed circuit board in still  
35  
K/W  
ambient  
air with 9 plated vias connected  
with the heatsink and the first  
ground plane in the PCB  
HBCC32 die pad soldered to  
PCB  
60  
K/W  
2003 Apr 02  
9
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
10 DC CHARACTERISTICS  
Tamb = 40 to +85 °C; Rth(j-a) = 35 K/W; Ptot = 400 mW; VCCA = 3.14 to 3.47 V; VCCD = 3.14 to 3.47 V;  
CCO = 3.14 to 3.47 V; RAVR = 7.5 k; RER = 62 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k;  
MAXMON = 13 k; RMAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless  
V
R
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Supplies: pins VCCA, VCCD and VCCO  
VCCA  
VCCD  
VCCO  
analog supply voltage  
digital supply voltage  
3.14  
3.3  
3.3  
3.3  
5.0  
40  
3.47  
3.47  
3.47  
5.25  
50  
V
3.14  
3.14  
4.75  
30  
V
RF output supply voltage 3.3 V laser supply  
5 V laser supply  
V
V
ICCA  
ICCD  
ICCO  
analog supply current  
mA  
mA  
digital supply current  
35  
45  
55  
RF output supply current  
pins LA and LAQ open-circuit  
3.3 V laser supply  
5 V laser supply  
8
15  
25  
mA  
mA  
mW  
20  
Pcore  
core power dissipation  
total power dissipation  
core excluding output currents  
Io(LA), Io(LAQ) and IBIAS; PWA and  
retiming off  
264  
Ptot  
VBIAS = 3.3 V; IBIAS = 20 mA;  
Imod = 16 mA; note 1  
330  
400  
500  
mW  
Data and clock inputs: pins DIN and CIN  
Vi(p-p)  
input voltage swing  
(peak-to-peak value)  
Vi(DIN) = (VCCD 2 V) to VCCD;  
Vi(CIN) = (VCCD 2 V) to VCCD  
100  
1000 mV  
Vint(cm)  
internal common mode  
voltage  
AC-coupled inputs  
VCCD 1.32 −  
V
VIO  
input offset voltage  
note 2  
10  
0
+10  
125  
mV  
Zi(dif)  
differential input  
impedance  
80  
100  
10  
Zi(cm)  
common mode input  
impedance  
8
13  
kΩ  
Vi(CIN)(dis)  
input voltage for disabled VCIN = VCINQ  
retiming  
0.3  
V
Monitor photodiode input: pin MON  
Vi(MON)  
Zi(MON)  
input voltage  
IMON = 50 to 2500 µA  
IMON = 50 to 2500 µA  
0.9  
1.1  
27  
1.3  
V
input impedance  
Extinction ratio setting for dual-loop control: pins MON and ER  
ERmin  
low extinction ratio setting dual-loop set-up; IER > 30 µA;  
note 3  
linear scale  
dB scale  
5
7
7
8.5  
dB  
2003 Apr 02  
10  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
SYMBOL  
ERmax  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
high extinction ratio setting dual-loop set-up; IER < 10 µA;  
note 3  
linear scale  
dB scale  
13  
15  
11  
11.8  
dB  
%
ERacc  
relative accuracy of ER  
temperature and VCCA  
variations; ER = 10;  
AVR = 550 µA  
10  
+10  
Vref(ER)  
IER  
reference voltage on  
pin ER  
IER = 35 to 5 µA;  
CER < 100 pF  
1.15  
1.20  
1.25  
V
current sink on pin ER  
35  
5  
µA  
Average setting for dual-loop control and average loop control: pins MON and AVR  
Iav(MON)(low)  
Iav(MON)(max)  
Iav(MON)  
low average monitor  
current setting  
IAVR > 280 µA  
dual-loop (ER = 5)  
150  
150  
µA  
µA  
average loop (pin ER to GND)  
maximum average monitor IAVR = 15.0 µA  
current setting  
dual-loop (ER = 5)  
1200  
1300  
1300  
µA  
µA  
%
average loop (pin ER to GND) 1200  
relative accuracy of  
average current on  
pin MON  
temperature and VCCA  
variations; ER = 10;  
AVR = 550 µA  
10  
+10  
Vref(AVR)  
Isink(AVR)  
reference voltage on  
pin AVR  
IAVR = 250 to 15 µA;  
CAVR < 100 pF  
1.15  
1.20  
1.25  
V
current sink on pin AVR  
280  
15  
µA  
Control loop modulation output: pin MODOUT  
Isource(MODOUT) source current VMODOUT = 0.5 to 1.5 V;  
200  
µA  
µA  
CMODOUT < 100 pF  
Isink(MODOUT)  
sink current  
VMODOUT = 0.5 to 1.5 V;  
CMODOUT < 100 pF  
200  
Control loop bias output: pin BIASOUT  
Isource(BIASOUT) source current  
VBIASOUT = 0.5 to 1.5 V;  
CBIASOUT < 100 pF  
200  
µA  
µA  
Isink(BIASOUT)  
sink current  
VBIASOUT = 0.5 to 1.5 V;  
CBIASOUT < 100 pF  
200  
Bias current source: pins BIASIN and BIAS  
gm(bias)  
bias transconductance  
VBIASIN = 0.5 to 1.5 V  
V
BIAS = VCCO = 3.3 V  
90  
110  
125  
130  
95  
mA/V  
mA/V  
µA  
VBIAS = 4.1 V; VCCO = 5.0 V  
95  
110  
Isource(BIASIN)  
source current at  
pin BIASIN  
VBIASIN = 0.5 to 1.5 V  
110  
100  
IBIAS(max)  
IBIAS(min)  
IBIAS(dis)  
maximum bias current  
minimum bias current  
bias current at disable  
VBIASIN = 1.8 V  
100  
mA  
mA  
µA  
VBIASIN = 0 to 0.4 V  
VENABLE < 0.8 V  
0.2  
0.4  
30  
2003 Apr 02  
11  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
SYMBOL  
VBIAS  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
output voltage on pin BIAS normal operation  
V
CCO = 3.3 V  
CCO = 5 V  
0.4  
3.6  
4.1  
V
V
V
0.8  
Modulation current source: pin MODIN  
gm(mod)  
modulation  
VMODIN = 0.5 to 1.5 V  
transconductance  
V
LA = VLAQ = VCCO = 3.3 V  
LA = VLAQ = VCCO = 4.5 V  
78  
90  
95  
105  
110  
95  
mA/V  
mA/V  
µA  
V
80  
Isource(MODIN)  
source current at  
pin MODIN  
VMODIN = 0.5 to 1.5 V  
110  
100  
Modulation current outputs: pins LA  
Io(LA)(max)(on)  
maximum laser  
modulation output current VLA = VCCO = 3.3 V; note 4  
at LA on  
VMODIN = 1.8 V;  
100  
mA  
mA  
Io(LA)(min)(on)  
Io(LA)(min)(off)  
minimum laser modulation VMODIN = 0 to 0.4 V;  
output current at LA on  
5
6
VLA = VCCO = 3.3 V; note 4  
minimum laser modulation VLA = VCCO = 3.3 V; note 4  
output current at LA off  
VMODIN = 0.5 V  
0.8  
2
mA  
mA  
VMODIN = 1.5 V  
Z
o(LA), Zo(LAQ) output impedance LA and  
80  
100  
125  
LAQ pins  
Io(LA)(dis)  
Io(LAQ)(dis)  
,
non-inverted and inverted VENABLE < 0.8 V  
laser modulation output  
200  
µA  
current at disable  
Vo(LA)min  
minimum output voltage at TZA3011A; VCCO = 3.3 V  
1.6  
1.2  
1.6  
V
V
V
pin LA  
TZA3011B; VCCO = 3.3 V  
TZA3011B; VCCO = 5 V  
Enable function: pin ENABLE  
VIL  
LOW-level input voltage  
bias and modulation currents  
disabled  
0.8  
V
VIH  
HIGH-level input voltage  
internal pull-up resistance  
bias and modulation currents  
enabled  
2.0  
16  
V
Rpu(int)  
20  
30  
kΩ  
Alarm reset: pin ALRESET  
VIL  
LOW-level input voltage  
no reset  
reset  
0.8  
V
VIH  
HIGH-level input voltage  
2.0  
7
V
Rpd(int)  
internal pull-down  
resistance  
10  
15  
kΩ  
2003 Apr 02  
12  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Alarm operating current: pins MAXOP and ALOP  
Vref(MAXOP)  
NMAXOP  
reference voltage on  
pin MAXOP  
IMAXOP = 10 to 200 µA  
1.15  
1.2  
1.25  
V
ratio of Ioper(alarm) and  
IMAXOP  
Ioper(alarm) = 7.5 to 150 mA  
V
CCO = 3.3 V  
CCO = 5.0 V  
700  
750  
0
800  
850  
900  
950  
0.4  
V
VD(ALOP)L  
drain voltage at active  
alarm  
IALOP = 500 µA  
V
V
Alarm monitor current: pins MAXMON and ALMON  
Vref(MAXMON)  
reference voltage on  
pin MAXMON  
IMAXMON = 10 to 200 µA  
IMON(alarm) = 150 to 3000 µA  
IALMON = 500 µA  
1.15  
10  
0
1.2  
15  
1.25  
20  
NMAXMON  
ratio of IMON(alarm) and  
IMAXMON  
VD(ALMON)L  
drain voltage at active  
alarm  
0.4  
V
Reference block: pins RREF and VTEMP  
VRREF  
reference voltage  
RRREF = 10 k(1%);  
CRREF < 100 pF  
1.15  
1.15  
1.20  
1.20  
2.2  
1.25  
1.25  
V
VVTEMP  
temperature dependent  
voltage  
Tj = 25 °C; CVTEMP < 2 nF;  
note 5  
V
TCVTEMP  
Isource(VTEMP)  
temperature coefficient of Tj = 25 to +125 °C; note 5  
VVTEMP  
mV/K  
mA  
mA  
source current of  
pin VTEMP  
1  
Isink(VTEMP)  
sink current of pin VTEMP  
1
Notes  
1. The total power dissipation Ptot is calculated with VBIAS = VCCO = 3.3 V and IBIAS = 20 mA. In the application VBIAS  
will be VCCO minus the laser diode voltage which results in a lower total power dissipation.  
2. The specification of the offset voltage is guaranteed by design.  
3. Any (AVR, ER) settings need to respect IMON > 50 µA and IMON < 2500 µA. Therefore, for large ER settings,  
minimum/maximum AVR cannot be reached.  
100  
100 + ZL(LA)  
4. The relation between the sink current Io(LA) and the modulation current Imod is: lo(LA) = Imod  
×
where  
--------------------------------  
ZL(LA) is the external load on pin LA. The voltage on pin MODIN programmes the modulation current Imod. This current  
is divided between ZL(LA) and the 100 internal resistor connected to pins LA. When the modulation current is  
programmed to 100 mA, a typical ZL(LA) of 25 will result in an Io(LA) current of 80 mA, while 20 mA flows via the  
internal resistor. This corresponds to a voltage swing of 2 V on the real application load.  
5. VVTEMP = 1.31 + TCVTEMP × Tj and Tj = Tamb + Ptot × Rth(j-a)  
.
2003 Apr 02  
13  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
11 AC CHARACTERISTICS  
Tamb = 40 to +85 °C; Rth(j-a) = 35 K/W; Ptot = 400 mW; VCCA = 3.14 to 3.47 V; VCCD = 3.14 to 3.47 V;  
CCO = 3.14 to 3.47 V; RAVR = 7.5 k; RER = 62 k; RMODIN = 6.2 k; RBIASIN = 6.8 k; RPWA = 10 k; RRREF = 10 k;  
MAXMON = 13 k; RMAXOP = 20 k; positive currents flow into the IC; all voltages are referenced to ground; unless  
V
R
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
RF path  
BR  
bit rate  
dual-loop control  
0.03  
2.7  
Gbits/s  
Gbits/s  
ps  
average loop control  
0.03  
3.2  
20  
JLA(p-p)  
tr  
jitter of pin LA output signal  
(peak-to-peak value)  
RL = 25 ; note 1  
rise time of voltage on pin LA  
20% to 80%; RL = 25 ;  
Imod = 17 mA;  
notes 2 and 3  
70  
50  
85  
70  
110  
100  
ps  
ps  
tf  
fall time of voltage on pin LA  
80% to 20%; RL = 25 ;  
Imod = 17 mA;  
notes 2 and 3  
tsu(D)  
th(D)  
data input set-up time  
data input hold time  
start-up time at enable  
60  
60  
1
ps  
ps  
µs  
ten(start)  
direct current setting  
Current control  
tcint  
internal time constant  
dual-loop control  
operating currents fully  
settled  
30  
ms  
Pulse width adjustment  
tPWA(min) minimum pulse width  
RPWA = 6.7 k;  
CPWA < 100 pF  
100  
ps  
ps  
ps  
adjustment on pins LA  
tPWA  
pulse width adjustment on  
pins LA  
RPWA = 10 k;  
CPWA < 100 pF  
0
tPWA(max)  
maximum pulse width  
adjustment on pins LA  
RPWA = 20 k;  
CPWA < 100 pF  
80  
100  
Notes  
1. The output jitter specification is guaranteed by design.  
2. With a 25 load on the LA pins: Io(LA) = 14 mA when Imod = 17 mA.  
3. For high modulation current, tr and tf are impacted by total inductance between the LA pins and the laser connection.  
2003 Apr 02  
14  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
12 APPLICATION INFORMATION  
12.1 Design equations  
handbook, halfpage  
105  
12.1.1 BIAS AND MODULATION CURRENTS  
I
= I  
The bias and modulation currents are determined by the  
voltages on pins BIASIN and MODIN. These voltages are  
applied by the BIASOUT and MODOUT pins for dual-loop  
control. For average loop control the BIASIN voltage is  
applied by the BIASOUT pin and the MODIN voltage is  
applied by an external voltage source or an external  
mod o(LA)  
(mA)  
g
=
m(mod)  
100 mA/V  
resistor RMODIN  
.
For direct setting of bias and the modulation current, the  
BIASIN and MODIN voltages have to be applied by  
external voltage sources or by RBIASIN and RMODIN  
external resistors connected on BIASIN and MODIN pins:  
I
o(LA)(min)  
5
0
0.5  
1.5  
V
(V)  
MODIN  
MGT891  
IBIAS = (RBIASIN × 100 µA 0.5 V) × gm(bias) [mA]  
Imod = (RMODIN × 100 µA 0.5 V) × gm(mod) + 5 [mA]  
LA current when LA output is on.  
Vo(LA) = VCCO  
.
The bias and modulation current sources operate with an  
input voltage range from 0.5 to 1.5 V. The output current is  
at its minimum level for an input voltage below 0.4 V;  
see Figs 3 and 4.  
Fig.4 Modulation current as a function of MODIN  
voltage.  
The bias and modulation current sources are temperature  
compensated and the adjusted current level remains  
stable over the temperature range.  
12.1.2 AVERAGE MONITOR CURRENT AND EXTINCTION  
RATIO  
The average monitor current Iav(MON) in dual-loop or  
average loop operation is determined by the source  
current (IAVR) of the AVR pin. The current can be sunk by  
The bias and modulation currents increase with increasing  
resistor values for RBIASIN and RMODIN respectively, this  
allows resistor tuning to start at a minimum current level.  
an external current source or by an external resistor (RAVR  
connected to ground:  
)
VAVR  
Iav(MON) = 1580 5.26 × IAVR =1580 5.26 ×  
A]  
-------------  
handbook, halfpage  
RAVR  
110  
The extinction ratio in dual-loop operation is determined by  
the source current (IER) of the ER pin. The current can be  
sunk by an external current source or by an external  
resistor (RER) connected to ground:  
I
BIAS  
(mA)  
g
=
m(bias)  
110 mA/V  
V ER  
IER  
1
ER = 20 –  
= 20 –  
×
------------ ----------  
--------------  
2 µA RER  
2 µA  
The average monitor current and the extinction ratio as a  
function of the IAVR and IER current are illustrated in Fig.5.  
I
BIAS(min)  
0.2  
The average monitor current increases with a decreasing  
IAVR or increasing RAVR, this allows resistor tuning of RAVR  
to start at minimum IAVR current level.  
0
0.5  
1.5  
V
(V)  
BIASIN  
MGT890  
The formulas used to program AVR and ER are valid for  
typical conditions; tuning is necessary to achieve good  
absolute accuracy of AVR and ER values.  
Fig.3 Bias current as a function of BIASIN voltage.  
2003 Apr 02  
15  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
I
av(MON)  
(µA)  
ER  
15  
1500  
I
ER  
ER = 20 −  
I
= 1580 5.26 × I  
µA  
AVR  
av(MON)  
2 µA  
5
30  
0
1015 30  
295  
I
I
(µA)  
AVR  
(µA)  
MGT892  
ER  
Fig.5 Average monitor current and extinction ratio as a function of IAVR and IER  
.
12.1.3 DUAL-LOOP CONTROL  
Performance of the dual-loop for high data-rate is linked to  
the quality of the incoming IMON signal: a high  
performance interconnection between monitor photodiode  
and MON input is requested for maximum data rate  
applications (2.7 Gbits/s).  
The dual-loop control measures the monitor current (IMON  
corresponding with an optical ‘one’ level and the IMON  
corresponding with the optical ‘zero’ level. The measured  
IMON(one) and IMON(zero) are compared with the average  
monitor current setting and the extinction ratio setting  
according to:  
)
The operational area of the dual-loop and the control area  
of the monitor input current must respect the following  
equations:  
I
+ IMON(zero)  
--M----O----N---(-o---n--e---)-------------------------------  
2
Iav(MON)  
=
50 µA < IMON(zero) < 500 µA  
250 µA < IMON(one) < 2500 µA  
IMON(one)  
ER =  
-----------------------  
IMON(zero)  
Stability of ER and AVR settings are guaranteed over a  
range of temperature and supply voltage variations.  
The dual-loop controls the bias and the modulation current  
for obtaining the IMON(one) and IMON(zero) current levels  
which correspond with the programmed AVR and ER  
settings.  
2003 Apr 02  
16  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
12.1.4 ALARM OPERATING CURRENT  
12.1.5 ALARM MONITOR CURRENT  
The alarm threshold Ioper(alarm) on the operating current is  
determined by the source current IMAXOP of the MAXOP  
pin. The current range for IMAXOP is from 10 to 200 µA  
which corresponds with an Ioper(alarm) from 7.5 to 150 mA.  
The IMAXOP current can be sunk by an external current  
source or by connecting RMAXOP to ground:  
The alarm threshold IMON(alarm) on the monitor current is  
determined by the source current IMAXMON of the  
MAXMON pin. The current range for IMAXMON is from  
10 to 200 µA which corresponds with an IMON(alarm) from  
150 to 3000 µA. The IMAXMON current can be sunk by an  
external current source or by connecting RMAXMON to  
ground:  
VMAXOP  
Ioper(alarm) = NMAXOP  
×
--------------------  
VMAXMON  
RMAXOP  
I MON(alarm) = NMAXMON  
×
------------------------  
RMAXMON  
The operating current equals the bias current for an  
AC-coupled laser application and equals the bias current  
plus half of the modulation current for the DC-coupled  
laser application:  
12.1.6 PULSE WIDTH ADJUSTMENT  
The pulse width adjustment time is determined by the  
value of resistor RPWA, as shown below.  
I oper(TZA3011A) = IBIAS  
R
PWA 10 kΩ  
t PWA = 200 ×  
[ps]  
------------------------------------  
RPWA  
Imod  
Ioper(TZA3011B) = IBIAS  
+
----------  
2
The tPWA range is from 100 to +100 ps which  
corresponds with a RPWA range between a minimum  
resistance of 6.7 kand a maximum resistance of 20 k.  
The PWA function is disabled when the PWA input is  
short-circuited to ground; tPWA equals 0 ps for a disabled  
PWA function.  
handbook, halfpage  
100  
t
PWA  
(ps)  
6.7  
0
10  
20  
R
(k)  
PWA  
100  
MGT893  
Fig.6 Pulse width adjustment.  
17  
2003 Apr 02  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
12.2 TZA3011A with dual-loop control  
A simplified application using the TZA3011A with dual-loop control and with an AC-coupled laser at 3.3 V laser voltage  
is illustrated in Fig.7. The average power level and the extinction ratio are determined by the resistors RAVR and RER  
.
The MODOUT and BIASOUT outputs are connected to the MODIN and the BIASIN inputs respectively. The alarm  
threshold on the operating current is made temperature dependent with resistor RVTEMP connected between VTEMP and  
MAXOP. This alarm detects the end of life of the laser.  
VMAXOP TCVTEMP × (Tj 25 °C)  
Ioper(alarm) = NMAXOP  
×
-------------------- ---------------------------------------------------------------  
RMAXOP  
RVTEMP  
The resistor RPWA enables pulse width adjustment for optimizing the eye diagram.  
3.3 V  
laser with  
monitor diode  
V
V
CCA  
3.3 V  
3.3 V  
1
32 31 30 29 28 27 26  
25  
BIAS  
GND  
LA  
CCD  
DIN  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
DINQ  
TEST  
CIN  
LA  
TZA3011A  
LAQ  
LAQ  
GND  
CINQ  
GND  
ALRESET  
9
10 11 12 13 14 15 16  
17  
MGT895  
Fig.7 TZA3011A with AC-coupled laser and dual-loop control.  
2003 Apr 02  
18  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
12.3 TZA3011B with dual-loop control  
A simplified application using the TZA3011B with dual-loop control and with a DC-coupled laser at 3.3 V or 5 V laser  
voltage is illustrated in Fig.8. The average power level and the extinction ratio are determined by the resistors RAVR and  
RER. The MODOUT and BIASOUT outputs are connected to the MODIN and the BIASIN inputs respectively.  
The open-drain outputs ALOP and ALMON are short-circuited with pin ENABLE causing an active alarm to disable the  
bias and modulation current sources. The ALRESET input will reset the alarm latches and enable normal operation.  
handbook, full pagewidth  
3.3 V or 5 V  
laser with  
monitor diode  
V
CCA  
3.3 V  
3.3 V  
1
32 31 30 29 28 27 26  
25  
V
BIAS  
GND  
LA  
CCD  
DIN  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
DINQ  
TEST  
CIN  
LA  
TZA3011B  
LAQ  
LAQ  
GND  
CINQ  
GND  
ALRESET  
9
10 11 12 13 14 15 16  
17  
MGT894  
Fig.8 TZA3011B with DC-coupled laser and dual-loop control.  
2003 Apr 02  
19  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
12.4 TZA3011B with average loop control  
A simplified application using the TZA3011B with average loop control and a DC-coupled laser at 3.3 or 5 V laser voltage  
is illustrated in Fig.9. The ER pin is short-circuited to ground for the average loop control. The average power level is  
determined by the resistor RAVR. The average loop controls the bias current and the BIASOUT output is connected to  
the BIASIN input. The modulation current is determined by the MODIN input voltage which is generated by the resistor  
RMODIN and the 100 µA source current of the MODIN pin.  
3.3 V or 5 V  
laser with  
monitor diode  
V
V
CCA  
3.3 V  
3.3 V  
1
32 31 30 29 28 27 26  
25  
BIAS  
GND  
LA  
CCD  
DIN  
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
DINQ  
TEST  
CIN  
LA  
TZA3011B  
LAQ  
LAQ  
GND  
CINQ  
GND  
ALRESET  
9
10 11 12 13 14 15 16  
17  
MGT896  
Fig.9 TZA3011B with DC-coupled laser and average loop control.  
2003 Apr 02  
20  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
13 BONDING PAD LOCATIONS  
COORDINATES(1)  
SYMBOL  
LA  
PAD(2)(3)  
COORDINATES(1)  
x
y
SYMBOL  
VCCA  
PAD(2)(3)  
x
y
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54(4)  
55  
56  
57  
1099.1  
1099.1  
1099.1  
1099.1  
1099.0  
1099.0  
1099.0  
942.5  
185.4  
290.5  
1
2
1123.9  
1123.9  
1123.9  
1123.9  
1124.0  
1124.9  
1123.9  
1123.9  
1123.9  
1123.9  
1123.4  
1123.9  
1123.9  
1123.9  
1123.9  
829.8  
+1029.3  
+949.3  
+844.3  
+764.3  
+604.3  
+393.3  
+244.5  
+139.4  
+4.7  
LA  
VCCA  
LA  
370.5  
VCCD  
3
GNDO  
BIAS  
670.8  
VCCD  
4
804.8  
DIN  
5
VCCO  
944.4  
DINQ  
GNDRF  
GNDRF  
GNDRF  
GNDRF  
TEST  
CIN  
6
VCCO  
1024.4  
1124.3  
1123.8  
1123.7  
1123.8  
1123.8  
1123.8  
+1123.8  
+1123.8  
+954.4  
+1123.8  
+1123.8  
+1123.8  
7
ACDC  
GNDESD  
MON  
8
765.0  
9
602.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20(4)  
21  
22(4)  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34(4)  
35  
36  
37  
38(4)  
100.3  
253.4  
441.2  
697.1  
850.8  
991.4  
1123.7  
1124.0  
1124  
BIASIN  
BIASOUT  
GNDCCB  
MODIN  
GNDCCB  
i.c.  
431.7  
267.6  
100.8  
CINQ  
GNDESD  
ALRESET  
ENABLE  
GNDDFT  
ALOP  
ALMON  
i.c.  
82.7  
241.1  
274.4  
487.2  
645.6  
802.8  
MODOUT  
ER  
665.6  
504.9  
AVR  
267.6  
1124.3  
344.4  
1124.3  
368.4  
1124.2  
1124.2  
1124.0  
1124.0  
979.4  
829.7  
691.2  
611.2  
506.4  
426.4  
247.0  
194.4  
142.0  
36.8  
Notes  
221.5  
1. All coordinates are referenced, in µm, to the centre of  
MAXOP  
i.c.  
98.5  
the die.  
48.6  
2. All GND connections should be used.  
VTEMP  
MAXMON  
RREF  
GNDRF  
PWA  
+294.0  
+466.9  
+694.9  
+860.3  
+1098.9  
+1099.0  
+1099.0  
+1099.0  
+1099.0  
+1099.0  
+1099.8  
+839.0  
+1099.8  
+1099.8  
1099.1  
3. Recommended order of bonding: all GND first, then  
V
CCA,VCCD and VCCO supplies and finally the input and  
output pins.  
4. Pad is internally connected, do not use.  
GNDO  
LAQ  
LAQ  
LAQ  
LAQ  
GNDO  
i.c.  
GNDO  
GNDO  
LA  
105.4  
i.c.  
839.0  
179.6  
2003 Apr 02  
21  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
2.56 mm  
57 56 55  
53 52 51 50 49 48 47 46  
V
V
45  
44  
V
V
1
2
CCO  
CCO  
CCA  
CCA  
i.c.  
54  
43  
42  
BIAS  
V
3
4
CCD  
CCD  
V
GNDO  
DIN  
5
6
41  
40  
39  
37  
LA  
LA  
LA  
LA  
DINQ  
i.c. 38  
GNDRF  
GNDRF  
GNDRF  
GNDRF  
7
8
x
2.51  
mm  
36  
35  
33  
GNDO  
GNDO  
GNDO  
0
0
9
10  
i.c. 34  
y
22  
TEST  
CIN  
11  
12  
13  
14  
15  
20  
i.c.  
i.c.  
32  
31  
30  
29  
LAQ  
LAQ  
LAQ  
LAQ  
CINQ  
TZA3011UH  
GNDESD  
ALRESET  
28  
27  
GNDO  
PWA  
16 17 18  
19  
21  
23  
24  
25  
26  
MGU553  
Fig.10 TZA3011UH die.  
Table 1 Physical characteristics of the bare die  
PARAMETER  
VALUE  
Glass passivation  
Bonding pad dimension  
Metallization  
Thickness  
0.3 µm PSG (PhosphoSilicate Glass) on top of 0.8 µm of silicon nitride  
minimum dimension of exposed metallization is 80 × 80 µm (pad size = 90 × 90 µm)  
2.8 µm AlCu  
380 µm nominal  
Size  
2.560 × 2.510 mm (6.43 mm2)  
Backing  
silicon; electrically connected to GND potential through substrate contacts  
<440 °C; recommended die attachment is by gluing  
<15 s  
Attach temperature  
Attach time  
2003 Apr 02  
22  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
14 PACKAGE OUTLINE  
HBCC32: plastic thermal enhanced bottom chip carrier; 32 terminals; body 5 x 5 x 0.65 mm  
SOT560-1  
D
x
B
b
v
M
M
C
C
A B  
1
w
v
M
M
C
A
B
w
C
ball A1  
index area  
b
b
3
E
v
M
C
C
A
B
w
M
b
v
M
M
C
C
A B  
2
w
detail X  
x
C
A
B
C
e
1
e
y
v
A
e
2
E
e
1 4  
1
32  
A
X
D
1
1
A
e
2
3
A
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
A
b
E
e
e
1
w
b
b
b
D
D
E
e
e
e
v
x
y
UNIT  
1
2
1
1
2
3
1
2
3
4
max.  
0.10 0.7  
0.05 0.6  
0.35 0.5  
0.20 0.3  
0.50 0.50 5.1  
0.35 0.35 4.9  
3.2  
3.0  
5.1  
4.9  
3.2  
3.0  
mm  
0.8  
0.15 0.15 0.05  
0.5  
4.2  
4.2 4.15 4.15  
0.2  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
MO-217  
JEITA  
00-02-01  
03-03-12  
SOT560-1  
2003 Apr 02  
23  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
15 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
15.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
15.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferably be kept:  
below 220 °C for all the BGA packages and packages  
with a thickness 2.5mm and packages with a  
thickness <2.5 mm and a volume 350 mm3 so called  
thick/large packages  
15.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
below 235 °C for packages with a thickness <2.5 mm  
and a volume <350 mm3 so called small/thin packages.  
15.3 Wave soldering  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2003 Apr 02  
24  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
15.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(3)  
suitable  
PLCC(4), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
SSOP, TSSOP, VSO, VSSOP  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 Apr 02  
25  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
16 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
17 DEFINITIONS  
18 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Apr 02  
26  
Philips Semiconductors  
Product specification  
30 Mbits/s up to 3.2 Gbits/s  
A-rateTM laser drivers  
TZA3011A; TZA3011B  
Bare die  
All die are tested and are guaranteed to  
comply with all data sheet limits up to the point of wafer  
sawing for a period of ninety (90) days from the date of  
Philips' delivery. If there are data sheet limits not  
guaranteed, these will be separately indicated in the data  
sheet. There are no post packing tests performed on  
individual die or wafer. Philips Semiconductors has no  
control of third party procedures in the sawing, handling,  
packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device  
functionality or performance of the die or systems after  
third party sawing, handling, packing or assembly of the  
die. It is the responsibility of the customer to test and  
qualify their application in which the die is used.  
2003 Apr 02  
27  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403510/05/pp28  
Date of release: 2003 Apr 02  
Document order number: 9397 750 11282  

相关型号:

TZA3011AVH

Display Driver, BICMOS, PQCC32
PHILIPS

TZA3012AHW

30 Mbits/s up to 3.2 Gbits/s A-rateTM Fibre Optic Receiver
NXP

TZA3012HW

30 Mbit/s up to 3.2 Gbit/s A-Rate fiber-optic receiver
NXP

TZA3013

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013A

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013AU

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013B

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013BU

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3014

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014HT

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014U

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014V

ATM/SONET/SDH IC, 1-Func, PQCC32,
PHILIPS