UAA2077TS/D [NXP]

2 GHz image rejecting front-end; 2 GHz的图像拒绝前端
UAA2077TS/D
型号: UAA2077TS/D
厂家: NXP    NXP
描述:

2 GHz image rejecting front-end
2 GHz的图像拒绝前端

电信集成电路 蜂窝电话电路 电信电路 光电二极管 信息通信管理
文件: 总16页 (文件大小:73K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA2077TS  
2 GHz image rejecting front-end  
Preliminary specification  
2000 Apr 17  
Supersedes data of 2000 Mar 09  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
FEATURES  
The main advantage of the UAA2077TS is its ability to  
provide an image rejection over 30 dB. Therefore, an  
additional image filter between the Low Noise Amplifier  
(LNA) and the mixer is not required.  
Low noise, wide dynamic range amplifier  
Very low noise figure  
Dual balanced mixers for over 30 dB on-chip image  
rejection  
Image rejection is achieved internally by two RF mixers in  
quadrature operation and two all-pass filters in the I and Q  
IF channels that shift the phase of signals by 45° and 135°  
respectively. These two phase shifted IF signals are  
combined and buffered to the front-end IF output signal.  
Quadrature 200 MHz IF recombiner  
On-chip quadrature network  
Independent SX, RX, power-down control modes and  
fast power-up switching  
An input signal with a frequency above the Local Oscillator  
(LO) frequency results in an IF signal, while an input signal  
with a frequency below the LO frequency is rejected.  
Very small outline packaging  
No image filter required, resulting in a very small  
The receive section consists of an LNA that drives a  
quadrature mixer pair. The IF amplifier consists of an  
on-chip 45° and 135° phase shifting network and an image  
reject IF recombiner. The IF driver has differential  
open-collector outputs.  
application.  
APPLICATIONS  
GSM dual band solution with UAA3522HL  
High frequency front-end for DCS1800/PCS1900  
portable hand-held equipment  
The LO part consists of an internal all-pass phase shifting  
filter to provide the quadrature LO signals for the mixers of  
the receive section. The all-pass filter output signals are  
buffered before being fed to the mixers. All RF inputs and  
IF outputs are balanced.  
Compact mobile digital communication equipment  
Time Division Multiple Access (TDMA) receivers e.g.  
RF Local Area Networks (RF LANs).  
Pins RXON and SXON allow control of the different active  
modes and power-down. The SX mode and the RX mode  
are independent active states of the LO section and the  
receive section respectively. When the logic level on  
pin SXON is HIGH, all internal buffers in the LO path of the  
circuit are turned on, thus minimizing LO pulling during the  
independent powering up of the receive section. Special  
care has been taken by design for fast switching from  
power-down to any of the different active modes.  
GENERAL DESCRIPTION  
The UAA2077TS contains a 2 GHz front-end receiver  
intended to be used in mobile telephones. Designed in an  
advanced BiCMOS process it combines high performance  
with a low power consumption and high integration, thus  
reducing external component costs and overall front-end  
size.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.7  
TYP. MAX. UNIT  
2.8  
3.3  
50  
V
ICC(pd)  
ICC(SRX)  
Tamb  
power-down supply current  
supply current in SRX mode  
ambient temperature  
µA  
mA  
°C  
25  
+25  
28  
30  
+70  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA2077TS/D  
SSOP16  
plastic shrink small outline package; 16 leads; body width 4.4 mm  
SOT369-1  
2000 Apr 17  
2
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
BLOCK DIAGRAM  
V
CCLNA  
1
LNAGND  
6
GND  
9
n.c.  
2, 5, 8  
RXON  
10  
45°  
15  
×
×
IFA  
IFB  
3
4
RFINA  
RFINB  
IF  
LNA  
COMBINER  
135  
°
16  
RECEIVE SECTION  
LOCAL OSCILLATOR SECTION  
13  
14  
V
CCLO  
135  
°
45°  
LOGND  
QUADRATURE  
PHASE  
UAA2077TS  
SHIFTER  
7
11  
LOINB LOINA  
12  
FCA012  
SXON  
Fig.1 Block diagram.  
PINNING  
SYMBOL PIN  
DESCRIPTION  
VCCLNA  
1
supply voltage for receive section  
(LNA and IF parts)  
n.c.  
2
3
4
5
6
not connected  
handbook, halfpage  
V
1
2
3
4
5
6
7
8
16  
IFB  
CCLNA  
RFINA  
RFINB  
n.c.  
RF input A (balanced)  
RF input B (balanced)  
not connected  
n.c.  
RFINA  
RFINB  
n.c.  
15  
14  
13  
12  
11  
10  
9
IFA  
LOGND  
LNAGND  
ground for receive section (LNA and  
IF parts)  
V
CCLO  
UAA2077TS  
LOINA  
LOINB  
RXON  
GND  
SXON  
n.c.  
7
8
9
SX mode enable input (see Table 1)  
not connected  
LNAGND  
SXON  
n.c.  
GND  
ground  
RXON  
LOINB  
LOINA  
VCCLO  
LOGND  
IFA  
10 RX mode enable input (see Table 1)  
11 LO input B (balanced)  
FCA011  
12 LO input A (balanced)  
13 supply voltage for LO section  
14 ground for LO section  
15 IF output A (balanced)  
16 IF output B (balanced)  
Fig.2 Pin configuration.  
IFB  
2000 Apr 17  
3
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
FUNCTIONAL DESCRIPTION  
Receive section  
The IF output is of a differential open collector type.  
A typical application consists of pull-up resistors of 680 Ω  
at each IF output and a differential load resistance of 1 kΩ  
for the IF filter, due to its impedance or its matching  
network.  
The circuit contains a low-noise amplifier followed by two  
high dynamic range mixers (see Fig.3). The mixers are of  
the Gilbert cell type, the architecture of which is fully  
differential.  
The power gain refers to the resulting power into the 1 kΩ  
load. The path for the DC current from VCC into the open  
collector outputs should be realized by the inductors.  
The LO signal is phase shifted into 45° and 135° signals,  
mixed with the RF input signal to provide the  
I and Q channel signals. The I and Q channel signals are  
buffered, phase shifted by 45° and 135° respectively,  
amplified and internally combined, thus obtaining image  
rejection.  
The output signal is limited to VCC + 3VBE  
.
Fast switching between power-down and the RX mode is  
controlled by the mode control pin RXON.  
Balanced signal interfaces are used for minimizing  
crosstalk from package parasitics.  
V
CCLNA  
1
LNAGND  
6
n.c.  
2, 5, 8  
RXON  
GND  
9
10  
UAA2077TS  
45°  
15  
16  
×
×
IFA  
IFB  
3
4
RFINA  
RFINB  
IF  
LNA  
COMBINER  
135°  
FCA013  
to LO section  
Fig.3 Receive section.  
2000 Apr 17  
4
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
Local oscillator section  
The LO input directly drives the two internal all-pass  
networks to provide the quadrature signals for the mixers  
(see Fig.4).  
The SX mode (see Table 1) is used to activate the  
LO section, thus minimizing pulling of the external Voltage  
Controlled Oscillator (VCO) when enabling the receive  
section. The SX mode is active when the logic level on pin  
SXON is HIGH.  
to receive section  
handbook, halfpage  
13  
14  
V
CCLO  
135°  
45°  
LOGND  
QUADRATURE  
Table 1 Operating modes  
PHASE  
SHIFTER  
UAA2077TS  
9
LOGIC LEVEL  
MODE  
PIN RXON PIN SXON  
GND  
7
11  
12  
FCA014  
LOINB LOINA  
SXON  
LOW  
LOW  
LOW  
Power-down mode  
HIGH  
RX mode; receive section  
active  
LOW  
HIGH  
HIGH  
SX mode; LO section active  
Fig.4 LO section.  
HIGH  
SRX mode; both sections  
active  
2000 Apr 17  
5
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VCC  
supply voltage  
6
V
V
VSS  
Pi(max)  
Tj(max)  
Ptot  
difference in voltage between ground pins  
maximum input power  
0.6  
20  
dBm  
°C  
maximum junction temperature  
total power dissipation  
+150  
250  
+150  
in free air  
mW  
°C  
Tstg  
storage temperature  
65  
HANDLING  
All pins withstand 1500 V ESD test in accordance with “MIL-STD-883C class 1 (method 3015.5)”.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
120  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
K/W  
DC CHARACTERISTICS  
VCC = 2.8 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCC  
supply voltage  
full temperature range  
2.7  
2.8  
3.3  
V
ICC(pd)  
ICC(RX)  
ICC(SX)  
ICC(SRX)  
power-down supply current  
supply current in RX mode  
supply current in SX mode  
supply current in SRX mode  
50  
24  
4
µA  
mA  
mA  
mA  
22  
3
25  
28  
Mode control: pins RXON and SXON  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
1.9  
0.3  
1  
VCC  
+0.6  
+1  
V
V
µA  
µA  
IIL  
1  
+1  
2000 Apr 17  
6
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
AC CHARACTERISTICS  
VCC = 2.8 V; Tamb = 25 °C; fo(RX) = 200 MHz; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX.  
UNIT  
Receive section (receive section enabled): DCS mode  
Ri(RX)  
Ci(RX)  
RF input resistance (real part of balanced; at 1845 MHz  
the parallel input impedance)  
50  
RF input capacitance (imaginary balanced; at 1845 MHz  
part of the parallel input  
0.5  
pF  
impedance)  
fi(RX)  
RF input frequency  
1805  
10  
1880 MHz  
RLi(RX)  
GCP(RX)  
Grip  
return loss on matched RF input balanced; note 1  
15  
23  
1  
dB  
dB  
conversion power gain  
RF inputs to IF outputs; note 1  
20  
26  
gain ripple as a function of RF  
frequency  
over DCS frequency range;  
note 1  
1.5 dB/100 MHz  
G/T  
gain variation with temperature  
1 dB compression point  
60  
30  
mdB/K  
dBm  
CP1RX  
DES3  
referenced to RF input; note 1  
23.5 20  
input referred  
3 dB desensitisation  
interferer frequency offset is  
3 MHz; useful signal is  
101 dBm; note 1  
25  
dBm  
IP3RX  
NFRX  
3rd order intercept point  
overall noise figure  
referenced to RF input; note 1  
RF inputs to IF outputs; note 1  
normal case  
15  
12  
dBm  
3.5  
4.2  
4.4  
dB  
dB  
worse case for LO input, power  
and VCC  
ZL(RX)  
typical application IF output load balanced; note 1  
impedance  
1000 −  
RLo(RX)  
fo(RX)  
IR  
return loss on matched IF output note 1  
10  
15  
dB  
IF frequency range  
fRF > fLO  
200  
38  
MHz  
dB  
rejection of image frequency  
fRF > fLO; fRF is the frequency of  
the wanted signal; note 1  
30  
Receive section (receive section enabled): PCS mode  
Ri(RX)  
RF input resistance (real part of balanced; at 1960 MHz  
the parallel input impedance)  
tbf  
tbf  
Ci(RX)  
RF input capacitance (imaginary balanced; at 1960 MHz  
part of the parallel input  
pF  
impedance)  
fi(RX)  
RF input frequency  
1930  
10  
1990 MHz  
RLi(RX)  
GCP(RX)  
Grip  
return loss on matched RF input balanced; note 1  
15  
22  
1  
dB  
conversion power gain  
RF inputs to IF outputs; note 1  
dB  
gain ripple as a function of  
RF frequency  
over PCS frequency range;  
note 1  
dB/100 MHz  
G/T  
gain variation with temperature  
1 dB compression point  
30  
20  
mdB/K  
dBm  
CP1RX  
referenced to RF input; note 1  
2000 Apr 17  
7
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
SYMBOL  
PARAMETER  
input referred  
CONDITIONS  
MIN. TYP. MAX.  
UNIT  
dBm  
DES3  
interferer frequency offset is  
3 MHz; useful signal is  
101 dBm; note 1  
tbf  
3 dB desensitisation  
IP3RX  
NFRX  
ZL(RX)  
3rd order intercept point  
overall noise figure  
referenced to RF input; note 1  
R inputs to IF outputs; note 1  
12  
dBm  
dB  
3.7  
typical application IF output load balanced; note 1  
impedance  
1000 −  
RLo(RX)  
fo(RX)  
IR  
return loss on matched IF output note 1  
10  
15  
dB  
IF frequency range  
fRF > fLO  
200  
38  
MHz  
dB  
rejection of image frequency  
fRF > fLO; fRF is the frequency of  
the wanted signal; note 1  
Local oscillator section (receive section enabled)  
fi(LO)  
LO input frequency  
1605  
1790 MHz  
Ri(LO)  
LO input resistance (real part of balanced; at 1645 MHz  
the parallel input impedance)  
50  
Ci(LO)  
LO input capacitance (imaginary balanced; at 1645 MHz  
part of the parallel input  
impedance)  
1.2  
15  
pF  
RLi(LO)  
return loss on matched input  
(including standby mode)  
note 1  
note 1  
10  
dB  
Pi(LO)  
RI(LO)  
LO power level  
reverse isolation  
10  
3  
0
dBm  
dB  
pins LOIN to RFIN at  
LO frequency; note 1  
40  
Timing  
tstu  
start-up time of each block  
1
5
20  
µs  
Notes  
1. Measured and guaranteed only on demonstration board including PCB and balun.  
2000 Apr 17  
8
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
PACKAGE OUTLINE  
SSOP16: plastic shrink small outline package; 16 leads; body width 4.4 mm  
SOT369-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
10o  
0o  
0.15  
0.00  
1.4  
1.2  
0.32  
0.20  
0.25  
0.13  
5.30  
5.10  
4.5  
4.3  
6.6  
6.2  
0.75  
0.45  
0.65  
0.45  
0.48  
0.18  
mm  
1.0  
1.5  
0.65  
0.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT369-1  
MO-152  
2000 Apr 17  
9
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Apr 17  
10  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Apr 17  
11  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2000 Apr 17  
12  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
NOTES  
2000 Apr 17  
13  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
NOTES  
2000 Apr 17  
14  
Philips Semiconductors  
Preliminary specification  
2 GHz image rejecting front-end  
UAA2077TS  
NOTES  
2000 Apr 17  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403506/02/pp16  
Date of release: 2000 Apr 17  
Document order number: 9397 750 07033  

相关型号:

UAA2078M

IC TELECOM, CORDLESS, SUPPORT CIRCUIT, PDSO16, Cordless Telephone IC
NXP

UAA2078M-T

IC TELECOM, CORDLESS, SUPPORT CIRCUIT, PDSO16, Cordless Telephone IC
NXP

UAA2080

Advanced pager receiver
NXP

UAA2080H

Advanced pager receiver
NXP

UAA2080H/V1

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2080HB-T

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2080T

Advanced pager receiver
NXP

UAA2080TD

ASK/FSK Demodulator
ETC

UAA2080TD-T

ASK/FSK Demodulator
ETC

UAA2080U

Advanced pager receiver
NXP

UAA2082

Advanced pager receiver
NXP

UAA2082H

Advanced pager receiver
NXP