UAA2080HB-T [NXP]

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit;
UAA2080HB-T
型号: UAA2080HB-T
厂家: NXP    NXP
描述:

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit

电信 寻呼;传讯 电信集成电路
文件: 总46页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA2080  
Advanced pager receiver  
1996 Jan 15  
Product specification  
Supersedes data of 1995 Nov 27  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
FEATURES  
GENERAL DESCRIPTION  
Wide frequency range: VHF, UHF and 900 MHz bands  
High sensitivity  
The UAA2080 is a high-performance low-power radio  
receiver circuit primarily intended for VHF, UHF and  
900 MHz pager receivers for wide area digital paging  
systems, employing direct FM non-return-to-zero (NRZ)  
frequency shift keying (FSK).  
High dynamic range  
Electronically adjustable filters on chip  
Suitable for data rates up to 2400 bits/s  
Wide frequency offset and deviation range  
Fully POCSAG compatible FSK receiver  
Power on/off mode selectable by the chip enable input  
Low supply voltage; low power consumption  
High integration level  
The receiver design is based on the direct conversion  
principle where the input signal is mixed directly down to  
the baseband by a local oscillator on the signal frequency.  
Two complete signal paths with signals of 90° phase  
difference are required to demodulate the signal.  
All channel selectivity is provided by the built-in IF filters.  
The circuit makes extensive use of on-chip capacitors to  
minimize the number of external components.  
Interfaces directly to the PCA5000A, PCF5001 and  
PCD5003 POCSAG decoders.  
The UAA2080 was designed to operate together with the  
PCA5000A, PCF5001 or PCD5003 POCSAG decoders,  
which contain a digital input filter for optimum call success  
rate.  
APPLICATIONS  
Wide area paging  
On-site paging  
Telemetry  
RF security systems  
Low bit-rate wireless data links.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA2080H  
UAA2080T  
UAA2080U  
LQFP32  
SO28  
plastic low profile quad flat package; 32 leads; body 7 × 7 × 1.4 mm  
plastic small outline package; 28 leads; body width 7.5 mm  
naked die; see Fig.9  
SOT358-1  
SOT136-1  
28 pads  
1996 Jan 15  
2
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
1.9  
TYP.  
MAX. UNIT  
VP  
2.05  
2.7  
3.5  
3.2  
3
V
IP  
supply current  
2.3  
mA  
µA  
IP(off)  
Pi(ref)  
stand-by current  
RF input sensitivity  
BER 3100; ±4 kHz deviation;  
data rate 1200 bits/s; Tamb = 25 °C  
fi(RF) = 173 MHz  
126.5 123.5 dBm  
124.5 121.5 dBm  
120.0 114.0 dBm  
115.0 110.0 dBm  
fi(RF) = 470 MHz  
fi(RF) = 930 MHz  
Pi(mix)  
mixer input sensitivity  
BER 3100; fi(RF) = 470 MHz;  
±4 kHz deviation;  
data rate 1200 bits/s; Tamb = 25 °C  
Vth  
detection threshold for battery  
LOW indicator  
1.95  
2.05  
2.15  
+70  
V
Tamb  
operating ambient temperature  
10  
°C  
1996 Jan 15  
3
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
BLOCK AND TEST DIAGRAMS (173 MHz)  
LM7C0  
n d b o o a g e w i d t h  
1996 Jan 15  
4
V
C18  
1 nF  
R5  
1.8 k  
P
C15  
27  
pF  
L8  
27  
nH  
C13  
10 µF  
R3  
1.5 kΩ  
L6  
R7  
C14  
1 nF  
C 19  
1 nF  
C16  
13 to  
50 pF  
100 Ω  
L9  
560 nH  
L7  
XTAL  
C17  
BLI  
DO  
RE  
33 nH 33 nH  
R2  
decoder  
R 4  
2.2 kΩ  
TDC  
20  
C12  
5 to 20 pF  
47 kΩ  
16  
15 pF  
TS  
25  
GND3  
22  
28  
27  
26  
24  
23  
21  
19  
18  
17  
15  
BAND GAP  
REFERENCE  
CRYSTAL  
OSCILLATOR  
FREQUENCY  
MULTIPLIER  
BATTERY  
LOW  
INDICATOR  
V
V
UAA2080T  
UAA2080U  
ref  
V
P
low noise  
amplifier  
Q
P
GYRATOR  
ACTIVE  
LIMITER  
DEMODULATOR  
Q
FILTER  
FILTER  
GYRATOR  
FILTER  
ACTIVE  
FILTER  
LIMITER  
I
low noise  
amplifier  
I
RF pre-amplifier  
MIXER I  
10 11  
MIXER Q  
1
2
3
4
5
6
7
8
9
12  
L4  
13  
14  
TPI  
TPQ  
GND2  
C3  
10 pF  
8.2 pF  
10 pF  
C10 C11  
330  
L3  
22 nH  
L2  
22 nH  
150  
nH  
R1  
C5 1 nF  
GND1  
L5  
150  
nH  
IF testpoints  
5 to 20 pF  
C7  
C8  
C9  
8.2 pF  
C6  
5 to 20 pF  
L1  
43 nH  
C1  
8.2 pF  
C2  
8.2 pF  
C4 1 nF  
MLC701  
V
V
8.2 pF  
i(RF)  
P
ahdnbok,uflapegwidt  
Fig.2 Block, test and application diagram drawn for SO28 and naked die; fi(RF) = 172.941 MHz.  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Table 1 Tolerances of components shown in Figs 1 and 2 (notes 1 and 2)  
TOLERANCE  
COMPONENT  
(%)  
REMARK  
Inductances  
L1  
±5  
Qmin = 100 at 173 MHz  
L2, L3, L6, L7  
±20  
±10  
±20  
±10  
Qmin = 50 at 173 MHz; TC = (+25 to +125) × 106/K  
L4, L5  
L8  
Q
Q
min = 30 at 173 MHz; TC = (+25 to +125) × 106/K  
min = 30 at 173 MHz; TC = (+25 to +125) × 106/K  
L9  
Qmin = 30 at 57 MHz; TC = (+25 to +125) × 106/K  
Resistors  
R1 to R7  
±2  
TC = +50 × 106/K  
Capacitors  
C1, C2, C7, C8, C9, C15  
±5  
TC = (0 ±30) × 106/K; tan δ ≤ 30 × 104 at 1 MHz  
TC = (−750 ±300) × 106/K; tan δ ≤ 50 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 10 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 21 × 104 at 1 MHz  
C3, C6, C12  
C4, C5, C14, C18, C19  
±10  
±5  
±20  
C10, C11  
C13  
C16  
TC = (−1700 ±500) × 106/K; tan δ ≤ 50 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 26 × 104 at 1 MHz  
C17  
±5  
Notes  
1. Recommended crystal: fXTAL = 57.647 MHz (crystal with 8 pF load), 3rd overtone, pullability >2.75 × 106/pF  
(change in frequency between series resonance and resonance with 8 pF series capacitor at 25 °C), dynamic  
resistance R1 < 40 , f = ±5 × 106 for Tamb = 10 to +55 °C with 25 °C reference, calibration plus aging tolerance:  
5 × 106 to +15 × 106.  
2. This crystal recommendation is based on economic aspects and practical experience. Normally the spreads for R1,  
pullability and calibration do not show their worst case limits simultaneously in one crystal. In such a rare event, the  
tuning range will be reduced to an insufficient level.  
1996 Jan 15  
6
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
BLOCK AND TEST DIAGRAMS (470 MHz)  
LM7C02  
a n d l l p a g e w i d t h  
1996 Jan 15  
7
V
C18  
1 nF  
R5  
1.8 kΩ  
P
L8  
100  
nH  
R3  
820 Ω  
L6  
C13  
10 µF  
C14  
1 nF  
C 19  
1 nF  
C15  
3 to  
10 pF  
C16  
13 to  
50 pF  
L9  
560 nH  
L7  
XTAL  
C17  
BLI  
DO  
RE  
8 nH  
8 nH  
R2  
decoder  
R 4  
1.2 kΩ  
TDC  
20  
C12  
2.5 to 6 pF  
47 kΩ  
16  
15 pF  
TS  
25  
GND3  
22  
28  
27  
26  
24  
23  
21  
19  
18  
17  
15  
BAND GAP  
REFERENCE  
CRYSTAL  
OSCILLATOR  
FREQUENCY  
MULTIPLIER  
BATTERY  
LOW  
INDICATOR  
V
V
ref  
UAA2080T  
UAA2080U  
V
low noise  
amplifier  
Q
P
P
GYRATOR  
FILTER  
ACTIVE  
FILTER  
LIMITER  
DEMODULATOR  
Q
GYRATOR  
FILTER  
ACTIVE  
FILTER  
LIMITER  
I
low noise  
amplifier  
I
RF pre-amplifier  
MIXER I  
MIXER Q  
1
2
3
4
5
6
7
8
9
10 11  
22 pF  
C10 C11  
12  
L4  
40  
nH  
13  
14  
TPI  
TPQ  
GND2  
C3  
22 pF  
2.7 pF  
330  
L3  
8 nH  
L2  
8 nH  
R1  
C5 1 nF  
GND1  
L5  
40  
nH  
IF testpoints  
2.5 to 6 pF  
C7  
C8  
C9  
2.7 pF  
C6  
2.5 to 6 pF  
L1  
12.5 nH  
C1  
2.7 pF  
C2  
2.7 pF  
C4 1 nF  
MLC703  
V
V
2.7 pF  
i(RF)  
P
ahdnbok,uflapegwidt  
Fig.4 Block, test and application diagram drawn for SO28 and naked die; fi(RF) = 469.95 MHz.  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
LM7C04  
a n f u l l p a g e w i d t h  
1996 Jan 15  
9
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Table 2 Tolerances of components shown in Figs 3, 4 and 5 (notes 1 and 2)  
TOLERANCE  
COMPONENT  
(%)  
REMARK  
Inductances  
L1, L10  
L2, L3, L6, L7  
L4, L5  
L8  
±5  
Q
min = 145 at 470 MHz  
±20  
±10  
±10  
±10  
Qmin = 50 at 470 MHz; TC = (+25 to +125) × 106/K  
Q
Q
min = 40 at 470 MHz; TC = (+25 to +125) × 106/K  
min = 30 at 156 MHz; TC = (+25 to +125) × 106/K  
L9  
Qmin = 40 at 78 MHz; TC = (+25 to +125) × 106/K  
Resistors  
R1 to R5  
±2  
TC = +50 × 106/K  
Capacitors  
C1, C2, C7, C8, C9  
±5  
TC = (0 ±30) × 106/K; tan δ ≤ 30 × 104 at 1 MHz  
TC = (−750 ±300) × 106/K; tan δ ≤ 50 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 10 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 21 × 104 at 1 MHz  
C3, C6, C12, C23  
C4, C5, C14, C18 to C22  
±10  
±5  
±20  
C10, C11  
C13  
C16  
TC = (1700 ±500) × 106/K; tan δ ≤ 50 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 26 × 104 at 1 MHz  
C17  
±5  
Notes  
1. Recommended crystal: fXTAL = 78.325 MHz (crystal with 8 pF load), 3rd overtone, pullability >2.75 × 106/pF  
(change in frequency between series resonance and resonance with 8 pF capacitor at 25 °C), dynamic resistance  
R1 < 30 , f = ±5 × 106 for Tamb = 10 to +55 °C with 25 °C reference, calibration plus aging tolerance:  
5 × 106 to +15 × 106.  
2. This crystal recommendation is based on economic aspects and practical experience. Normally the spreads for R1,  
pullability and calibration do not show their worst case limits simultaneously in one crystal. In such a rare event, the  
tuning range will be reduced to an insufficient level.  
1996 Jan 15  
10  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
BLOCK AND TEST DIAGRAM (930 MHz)  
LM7C05  
o k , f u l l p a g e w i d t h  
1996 Jan 15  
11  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Table 3 Tolerances of components shown in Fig.6 (note 1)  
TOLERANCE  
COMPONENT  
(%)  
REMARK  
Inductances  
L1  
±10  
Qtyp = 150 at 930 MHz  
microstrip inductor  
L2, L3, L6, L7  
L4, L5  
L8  
±5  
Qtyp = 100 at 930 MHz  
±10  
±10  
Qtyp = 65 at 310 MHz  
L10, L11  
Qtyp = 150 at 930 MHz  
Resistors  
R1 to R4  
±2  
TC = (0 ±200) × 106/K;  
Capacitors  
C1, C2, C7, C8, C9, C15  
C3, C6, C12  
±5  
TC = (0 ±30) × 106/K; tan δ ≤ 30 × 104 at 1 MHz  
TC = (0 ±200) × 106/K; tan δ ≤ 30 × 104 at 1 MHz  
TC = (0 ±30) × 106/K; tan δ ≤ 10 × 104 at 1 MHz  
C4, C5, C14, C19  
C13  
±10  
±20  
Note  
1. The external oscillator signal Vi(OSC) has a frequency of fOSC = 310.1667 MHz.  
1996 Jan 15  
12  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
PINNING (LQFP32)  
SYMBOL  
TS  
PIN  
DESCRIPTION  
1
test switch; connection to ground  
for normal operation  
BLI  
2
3
4
5
6
7
8
9
battery LOW indicator output  
data output  
handbook, halfpage  
DO  
RE  
receiver enable input  
IF test point; I channel  
IF test point; Q channel  
pre-amplifier RF input 1  
pre-amplifier RF input 2  
not connected  
TPI  
1
2
3
4
5
6
7
8
TS  
BLI  
24  
23  
22  
VO1MUL  
n.c.  
TPQ  
VI1RF  
VI2RF  
n.c.  
DO  
RGYR  
RE  
21 COM  
20 GND2  
19 VI2MQ  
UAA2080H  
TPI  
RRFA  
10 external emitter resistor for  
pre-amplifier  
TPQ  
VI1RF  
VI2RF  
VI1MQ  
n.c.  
18  
17  
GND1  
VO2RF  
VO1RF  
VP  
11 ground 1 (0 V)  
12 pre-amplifier RF output 2  
13 pre-amplifier RF output 1  
14 supply voltage  
MLC706  
VI2MI  
VI1MI  
n.c.  
15 I channel mixer input 2  
16 I channel mixer input 1  
17 not connected  
VI1MQ  
VI2MQ  
GND2  
COM  
18 Q channel mixer input 1  
19 Q channel mixer input 2  
20 ground 2 (0 V)  
Fig.7 Pin configuration; LQFP32.  
21 gyrator filter resistor; common line  
22 gyrator filter resistor  
23 not connected  
RGYR  
n.c.  
VO1MUL  
VO2MUL  
RMUL  
24 frequency multiplier output 1  
25 frequency multiplier output 2  
26 external emitter resistor for  
frequency multiplier  
TDC  
27 DC test point; no external  
connection for normal operation  
OSC  
n.c.  
28 oscillator collector  
29 not connected  
GND3  
OSB  
OSE  
30 ground 3 (0 V)  
31 oscillator base; crystal input  
32 oscillator emitter  
1996 Jan 15  
13  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
PINNING (SO28)  
SYMBOL PIN  
DESCRIPTION  
TPI  
1
2
3
4
5
IF test point; I channel  
IF test point; Q channel  
pre-amplifier RF input 1  
pre-amplifier RF input 2  
TPQ  
VI1RF  
VI2RF  
RRFA  
external emitter resistor for  
pre-amplifier  
TPI  
TPQ  
1
2
RE  
28  
GND1  
VO2RF  
VO1RF  
VP  
6
7
8
9
ground 1 (0 V)  
27 DO  
26 BLI  
25 TS  
24 OSE  
pre-amplifier RF output 2  
pre-amplifier RF output 1  
supply voltage  
3
VI1RF  
VI2RF  
RRFA  
GND1  
VO2RF  
VO1RF  
4
VI2MI  
VI1MI  
VI1MQ  
VI2MQ  
GND2  
COM  
10 I channel mixer input 2  
11 I channel mixer input 1  
12 Q channel mixer input 1  
13 Q channel mixer input 2  
14 ground 2 (0 V)  
5
6
23  
OSB  
7
22 GND3  
UAA2080T  
8
21  
20  
OSC  
TDC  
V
P
9
15 gyrator filter resistor; common line  
16 gyrator filter resistor  
VI2MI  
VI1MI  
10  
11  
19 RMUL  
RGYR  
VO1MUL 17 frequency multiplier output 1  
VO2MUL 18 frequency multiplier output 2  
18 VO2MUL  
VI1MQ 12  
VI2MQ 13  
17  
16 RGYR  
15  
VO1MUL  
RMUL  
19 external emitter resistor for frequency  
multiplier  
14  
GND2  
COM  
TDC  
20 DC test point; no external connection  
for normal operation  
MBB972  
OSC  
GND3  
OSB  
OSE  
TS  
21 oscillator collector  
22 ground 3 (0 V)  
23 oscillator base; crystal input  
24 oscillator emitter  
25 test switch; connection to ground for  
normal operation  
BLI  
DO  
RE  
26 battery LOW indicator output  
27 data output  
Fig.8 Pin configuration; SO28.  
28 receiver enable input  
1996 Jan 15  
14  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
CHIP DIMENSIONS AND BONDING PAD LOCATIONS  
See Table 4 for bonding pad description and locations for x/y co-ordinates.  
y
24  
23  
22  
21  
20  
19  
25  
26  
18  
17  
27  
28  
16  
15  
3.83  
mm  
UAA2080U  
14  
13  
1
2
3
4
12  
x
0
0
5
6
7
8
9
10  
11  
4.74 mm  
MLC707  
Where:  
Pad number 1 (diameter 124 µm)  
Pad 124 µm x 124 µm  
Pad not used  
Pad 100 µm x 100 µm  
Pad 100 µm x 100 µm with reference point  
Chip area: 18.15 mm2.  
Chip thickness: 380 ±20 µm.  
Drawing not to scale.  
Fig.9 Bonding pad locations.  
1996 Jan 15  
15  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Table 4 Bonding pad centre locations (dimensions in µm)  
SYMBOL  
PAD  
DESCRIPTION  
x
y
TPI  
1
IF test point; I channel  
32  
32  
32  
0
1296  
1000  
360  
0
TPQ  
2
IF test point; Q channel  
VI1RF  
VI2RF  
RRFA  
GND1  
VO2RF  
VO1RF  
VP  
3
pre-amplifier RF input 1  
4
pre-amplifier RF input 2; note 1  
external emitter resistor for pre-amplifier  
ground 1 (0 V)  
5
472  
0
6
1160  
1688  
2232  
2760  
3608  
4216  
4216  
4216  
4216  
4216  
4216  
4216  
4176  
3668  
2952  
2312  
1832  
1328  
432  
0
7
pre-amplifier RF output 2  
pre-amplifier RF output 1  
supply voltage  
0
8
0
9
0
VI2MI  
VI1MI  
VI1MQ  
VI2MQ  
GND2  
COM  
RGYR  
VO1MUL  
VO2MUL  
RMUL  
TDC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
I channel mixer input 2  
0
I channel mixer input 1  
0
Q channel mixer input 1  
360  
960  
1360  
2024  
2496  
3136  
3456  
3458  
3456  
3456  
3456  
3456  
3456  
3456  
3136  
2512  
2152  
186  
Q channel mixer input 2  
ground 2 (0 V)  
gyrator filter resistor; common line  
gyrator filter resistor  
frequency multiplier output 1  
frequency multiplier output 2  
external emitter resistor for frequency multiplier  
DC test point; no external connection for normal operation  
oscillator collector  
OSC  
GND3  
OSB  
ground 3 (0 V)  
oscillator base; crystal input  
oscillator emitter  
OSE  
TS  
test switch; connection to ground for normal operation  
battery LOW indicator output  
data output  
32  
BLI  
32  
DO  
32  
RE  
receiver enable input  
32  
lower left corner of chip (typical values)  
278  
Note  
1. All x/y co-ordinates are referenced to the centre of pad 4 (VI2RF); see Fig.9.  
1996 Jan 15  
16  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
INTERNAL CIRCUITS  
1
32  
31  
30  
29  
n.c.  
28  
27  
26  
25  
5 kΩ  
2
24  
23  
V
P
V
P
5 k Ω  
3
4
150 k Ω  
n.c.  
8.15 kΩ  
22  
21  
1 kΩ  
1 kΩ  
5
6
UAA2080H  
20  
19  
V
P
V
P
7
8
18  
17  
V
P
n.c.  
150 Ω  
n.c.  
13 14 15  
16  
9
10  
11  
12  
MGA788  
Fig.10 Internal circuits drawn for LQFP32.  
1996 Jan 15  
17  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
BM974-1  
a n d b o o k , f u l l p a g e w i d t h  
1996 Jan 15  
18  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
The resonant circuit at output pin OSC selects the second  
harmonic of the oscillator frequency. In other applications  
a different multiplication factor may be chosen.  
FUNCTIONAL DESCRIPTION  
The complete circuit consists of the following functional  
blocks as shown in Figs 1 to 6.  
At 930 MHz an external oscillator circuit is required to  
provide sufficient local oscillator signal for the frequency  
multiplier.  
Radio frequency amplifier  
The RF amplifier is an emitter-coupled pair driving a  
balanced cascode stage, which drives an external  
balanced tuned circuit. Its bias current is set by an external  
300 resistor R1 to typically 770 µA. With this bias  
current the optimum source resistance is 1.3 kat VHF  
and 1.0 kat UHF. At 930 MHz a higher bias current is  
required to achieve optimum gain. A value of 120 is  
used for R1, which corresponds with a bias current of  
approximately 1.3 mA and an optimum source resistance  
of approximately 600 .The capacitors C1 and C2  
transform a 50 source resistance to this optimum value.  
The output drives a tuned circuit with capacitive divider  
(C7, C8 and C9) to provide maximum power transfer to the  
phase-splitting network and the mixers.  
Frequency multiplier  
The frequency multiplier is an emitter-coupled pair driving  
an external balanced tuned circuit. Its bias current is set by  
external resistor R4 to typically 190 µA (173 MHz), 350 µA  
(470 MHz) and 1 mA (930 MHz). The oscillator signal is  
internally AC coupled to one input of the emitter-coupled  
pair while the other input is internally grounded via a  
capacitor. The frequency multiplier output signal between  
pins VO1MUL and VO2MUL drives the upper switching  
stages of the mixers. The bias voltage on pins VO1MUL  
and VO2MUL is set by external resistor R3 to allow  
sufficient voltage swing at the mixer outputs. The value of  
R3 depends on the operating frequency: 1.5 kΩ  
(173 MHz), 820 (470 MHz) and 330 (930 MHz).  
Mixers  
The double balanced mixers consist of common base  
input stages and upper switching stages driven from the  
frequency multiplier. The 300 input impedance of each  
mixer acts together with external components (C10, C11;  
L4, L5 respectively) as phase shifter/power splitter to  
provide a differential phase shift of 90 degrees between  
the I channel and the Q channel. At 930 MHz all external  
phase shifter components are inductive (L10, L11; L4, L5).  
Low noise amplifiers, active filters and gyrator filters  
The low noise amplifiers ensure that the noise of the  
following stages does not affect the overall noise figure.  
The following active filters before the gyrator filters reduce  
the levels of large signals from adjacent channels. Internal  
AC couplings block DC offsets from the gyrator filter  
inputs.  
The gyrator filters implement the transfer function of a 7th  
order elliptic filter. Their cut-off frequencies are determined  
by the 47 kexternal resistor R2 between pins RGYR and  
COM. The gyrator filter output signals are available on IF  
test pins TPI and TPQ.  
Oscillator  
The oscillator is based on a transistor in common collector  
configuration. It is followed by a cascode stage driving a  
tuned circuit which provides the signal for the frequency  
multiplier. The oscillator bias current (typically 250 µA) is  
determined by the 1.8 kexternal resistor R5.  
Limiters  
The oscillator frequency is controlled by an external 3rd  
overtone crystal in parallel resonance mode. External  
capacitors between base and emitter (C17) and from  
emitter to ground (C16) make the oscillator transistor  
appear as having a negative resistance for small signals;  
this causes the oscillator to start. Inductance L9 connected  
in parallel with capacitor C16 to the emitter of the oscillator  
transistor prevents oscillation at the fundamental  
frequency of the crystal.  
The gyrator filter output signals are amplified in the limiter  
amplifiers to obtain IF signals with removed amplitude  
information.  
Demodulator  
The limiter amplifier output signals are fed to the  
demodulator. The demodulator output DO is going LOW or  
HIGH depending upon which of the input signals has a  
phase lead.  
1996 Jan 15  
19  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Battery LOW indicator  
Band gap reference  
The battery LOW indicator senses the supply voltage and  
sets its output HIGH when the supply voltage is less than  
Vth (typically 2.05 V). Low battery warning is available at  
BLI.  
The whole chip can be powered-up and powered-down by  
enabling and disabling the band gap reference via the  
receiver enable pin RE.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
Ground pins GND1, GND2 and GND3 connected together.  
SYMBOL  
PARAMETER  
MIN.  
0.3  
MAX.  
+8.0  
UNIT  
VP  
supply voltage  
V
Ves  
electrostatic handling (note 1)  
pins VI1RF and VI2RF  
pin RRFA  
1500  
500  
2000  
500  
2000  
2000  
55  
+2000  
+2000  
+250  
+500  
+500  
+2000  
+125  
+70  
V
V
V
V
V
V
pins VO1RF and VO2RF  
pins VP and OSB  
pins OSC and OSE  
other pins  
Tstg  
storage temperature  
operating ambient temperature  
°C  
°C  
Tamb  
10  
Note  
1. Equivalent to discharging a 100 pF capacitor via a 1.5 kresistor.  
1996 Jan 15  
20  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
DC CHARACTERISTICS  
VP = 2.05 V; Tamb = 10 to +70 °C (typical values at Tamb = 25 °C); measurements taken in test circuit Figs 1, 2, 3 or 4  
with crystal at pin OSB disconnected; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VP  
IP  
supply voltage  
1.9  
2.05  
3.5  
V
supply current  
VRE = HIGH;  
2.3  
2.7  
3.2  
mA  
fi(RF) = 173 and 470 MHz  
VRE = HIGH; fi(RF) = 930 MHz  
VRE = LOW  
2.9  
3.4  
3.9  
3
mA  
IP(off)  
stand-by current  
µA  
Receiver enable input (pin RE)  
VIH  
VIL  
IIH  
HIGH level input voltage  
LOW level input voltage  
HIGH level input current  
LOW level input current  
1.4  
0
VP  
V
0.3  
20  
V
VIH = VP = 3.5 V  
VIL = 0 V  
µA  
µA  
VIL  
0
1.0  
Battery LOW indicator output (pin BLI)  
VOH  
VOL  
Vth  
HIGH level output voltage VP < Vth; IBLI = 10 µA  
VP 0.5  
V
V
V
LOW level output voltage VP > Vth; IBLI = +10 µA  
0.5  
2.15  
voltage threshold for  
battery LOW indicator  
1.95  
2.05  
Demodulator output (pin DO)  
VOH  
VOL  
HIGH level output voltage IDO = 10 µA  
LOW level output voltage IDO = +10 µA  
VP 0.5  
V
V
0.5  
1996 Jan 15  
21  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
AC CHARACTERISTICS (173 MHz)  
VP = 2.05 V; Tamb = 25 °C; test circuit Figs 1 or 2; fi(RF) = 172.941 MHz with ±4.0 kHz deviation; 1200 baud pseudo  
random bit sequence modulation (tr = 250 ±25 µs measured between 10% and 90% of voltage amplitude) and 20 kHz  
channel spacing; unless otherwise specified.  
SYMBOL  
Radio frequency input  
Pi(ref) input sensitivity (Pi(ref) is the  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
BER 3100; note 1  
amb = 10 to +70 °C; note 2  
126.5 123.5 dBm  
maximum available power at  
the RF input of the test board)  
T
120.5 dBm  
117.5 dBm  
VP = 1.9 V  
Mixers to demodulator  
αacs  
adjacent channel selectivity  
Tamb = 25 °C  
69  
67  
72  
dB  
Tamb = 10 to +70 °C  
dB  
αci  
IF filter channel imbalance  
co-channel rejection  
spurious immunity  
2
dB  
αc  
4
7
dB  
αsp  
αim  
αbl  
50  
55  
78  
±2.0  
±2.5  
2.5  
60  
60  
85  
dB  
intermodulation immunity  
blocking immunity  
dB  
f > ±1 MHz; note 3  
deviation f = ±4.0 kHz  
deviation f = ±4.5 kHz  
dB  
foffset  
frequency offset range  
(3 dB degradation in sensitivity)  
kHz  
kHz  
kHz  
fdev  
deviation range  
7.0  
(3 dB degradation in sensitivity)  
ton  
receiver turn-on time  
data valid after setting RE input  
HIGH; note 4  
5
ms  
Notes  
1. The bit error rate BER is measured using the test facility shown in Fig.13. Note that the BER test facility contains a  
digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.  
2. Capacitor C16 requires re-adjustment to compensate temperature drift.  
3. f is the frequency offset between the required signal and the interfering signal.  
4. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on  
time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the  
oscillator circuitry).  
1996 Jan 15  
22  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
AC CHARACTERISTICS (470 MHz)  
VP = 2.05 V; Tamb = 25 °C; test circuit Figs 3 or 4; fi(RF) = 469.950 MHz with ±4.0 kHz deviation; 1200 baud pseudo  
random bit sequence modulation (tr = 250 ± 25 µs measured between 10% and 90% of voltage amplitude) and 20 kHz  
channel spacing; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Radio frequency input  
Pi(ref)  
input sensitivity (Pi(ref) is the  
maximum available power at  
the RF input of the test board)  
BER 3100; note 1  
amb = 10 to +70 °C; note 2  
124.5 121.5 dBm  
T
118.5 dBm  
115.5 dBm  
VP = 1.9 V  
Mixer input  
Pi(mix)  
input sensitivity  
BER 3100; note 3  
115.0 110.0 dBm  
Mixers to demodulator  
αacs  
adjacent channel selectivity  
Tamb = 25 °C  
67  
65  
70  
dB  
Tamb = 10 to +70 °C  
dB  
αci  
IF filter channel imbalance  
co-channel rejection  
spurious immunity  
2
dB  
αc  
4
7
dB  
αsp  
αim  
αbl  
50  
55  
75  
±2.0  
±2.5  
2.5  
60  
60  
82  
dB  
intermodulation immunity  
blocking immunity  
dB  
f > ±1 MHz; note 4  
deviation f = ±4.0 kHz  
deviation f = ±4.5 kHz  
dB  
foffset  
frequency offset range  
(3 dB degradation in sensitivity)  
kHz  
kHz  
kHz  
fdev  
deviation range  
7.0  
(3 dB degradation in sensitivity)  
ton  
receiver turn-on time  
data valid after setting RE input  
HIGH; note 5  
5
ms  
Notes  
1. The bit error rate BER is measured using the test facility shown in Fig.13. Note that the BER test facility contains a  
digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.  
2. Capacitor C16 requires re-adjustment to compensate temperature drift.  
3. Test circuit Fig.5. Pi(mix) is the maximum available power at the input of the test board. The bit error rate BER is  
measured using the test facility shown in Fig.13.  
4. f is the frequency offset between the required signal and the interfering signal.  
5. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on  
time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the  
oscillator circuitry).  
1996 Jan 15  
23  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
AC CHARACTERISTICS (930 MHz)  
VP = 2.05 V; Tamb = 25 °C; test circuit Fig.6 (note 1); fi(RF) = 930.500 MHz with ±4.0 kHz deviation; 1200 baud pseudo  
random bit sequence modulation (tr = 250 ± 25 µs measured between 10% and 90% of voltage amplitude) and 20 kHz  
channel spacing; unless otherwise specified.  
SYMBOL  
Radio frequency input  
Pi(ref) input sensitivity (Pi(ref) is the  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
BER 3100; note 2  
120.0 114.0 dBm  
maximum available power at  
the RF input of the test board)  
VP = 1.9 V  
108.0 dBm  
Mixers to demodulator  
αacs  
αc  
adjacent channel selectivity  
Tamb = 25 °C  
60  
69  
5
dB  
co-channel rejection  
spurious immunity  
10  
dB  
αsp  
αim  
αbl  
40  
60  
60  
74  
dB  
intermodulation immunity  
blocking immunity  
53  
dB  
f > ±1 MHz; note 3  
deviation f = ±4.0 kHz  
deviation f = ±4.5 kHz  
65  
dB  
foffset  
frequency offset range  
(3 dB degradation in sensitivity)  
±2.0  
±2.5  
2.5  
kHz  
kHz  
kHz  
fdev  
deviation range  
7.0  
(3 dB degradation in sensitivity)  
ton  
receiver turn-on time  
data valid after setting RE input  
HIGH; note 4  
5
ms  
Notes  
1. The external oscillator signal Vi(OSC) has a frequency of fOSC = 310.1667 MHz and a level of 15 dBm.  
2. The bit error rate BER is measured using the test facility shown in Fig.13. Note that the BER test facility contains a  
digital input filter equivalent to the one used in the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.  
3. f is the frequency offset between the required signal and the interfering signal.  
4. Turn-on time is defined as the time from pin RE going HIGH to the reception of valid data on output pin DO. Turn-on  
time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the  
oscillator circuitry).  
1996 Jan 15  
24  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
TEST INFORMATION  
Tuning procedure for AC tests  
1. Turn on the signal generator: fgen = fi(RF) + 4 kHz, no modulation, Vi(RF) = 1 mV (RMS).  
2. Measure the IF with a counter connected to test pin TPI. Tune C16 to set the crystal oscillator to achieve fIF = 4 kHz  
Change the generator frequency to fgen = fi(RF) 4 kHz and check that fIF is also 4 kHz. For a received input  
frequency fi(RF) = 172.941 MHz the crystal frequency is fXTAL = 57.647 MHz, while for fi(RF) = 469.950 MHz the  
crystal frequency is fXTAL = 78.325 MHz. For a received input frequency fi(RF) = 930.500 MHz an external oscillator  
signal must be used with fi(OSC) = 310.1667 MHz and a level of 15 dBm (for definition of crystal frequency, see  
Table 1).  
3. Set the signal generator to nominal frequency (fi(RF)) and turn on the modulation deviation ±4.0 kHz, 600 Hz square  
wave modulation, Vi(RF) = 1 mV (RMS). Note that the RF signal should be reduced in the following tests, as the  
receiver is tuned, to ensure Vo(IF) = 10 to 50 mV (p-p) on test pins TPI or TPQ.  
4. Tune C15 (oscillator output circuit) and C12 (frequency multiplier output) to obtain a peak audio voltage on pin TPI.  
5. Tune C3 and C6 (RF input and mixer input) to obtain a peak audio voltage on pin TPI. When testing the mixer input  
sensitivity tune C23 instead of C3 and C6 (test circuit Fig.5).  
6. Check that the output signal on pin TPQ is within 3 dB in amplitude and at 90° (±20°) relative phase of the signal on  
pin TPI.  
7. Check that data signal appears on output pin DO and proceed with the AC test.  
AC test conditions  
Table 5 Definitions for AC test conditions (see Table 6)  
SIGNAL  
DESCRIPTION  
Modulated test signal 1  
Frequency 172.941, 469.950 or 930.500 MHz  
Deviation  
Modulation 1200 baud pseudo random bit sequence  
Rise time 250 ±25 µs (between 10% and 90% of final value)  
Modulated test signal 2  
Deviation ±2.4 kHz  
±4.0 kHz  
Modulation 400 Hz sinewave  
Other definitions  
f1  
frequency of signal generator 1  
f2  
frequency of signal generator 2  
frequency of signal generator 3  
channel spacing (20 kHz)  
f3  
fcs  
P1  
P2  
P3  
Pi(ref)  
maximum available power from signal generator 1 at the test board input  
maximum available power from signal generator 2 at the test board input  
maximum available power from signal generator 3 at the test board input  
maximum available power at the test board input to give a Bit Error Rate (BER) 3100 for the modulated  
test signal 1, in the absence of interfering signals and under the conditions as specified in Chapters  
“AC characteristics (173 MHz)”, “AC characteristics (470 MHz)” and “AC characteristics (930 MHz)”  
1996 Jan 15  
25  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
Table 6 AC test conditions (notes 1 and 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
TEST SIGNALS  
αa  
adjacent channel selectivity;  
Fig.12(b)  
f2 = f1 ± ∆fCS  
generator 1: modulated test signal 1  
generator 2: modulated test signal 2  
P1 = Pi(ref) + 3 dB  
P2 = P1 + αa(min)  
αc  
co-channel rejection; Fig.12(b) f2 = f1 ± up to 3 kHz  
generator 1: modulated test signal 1  
P1 = Pi(ref) + 3 dB  
generator 2: modulated test signal 2  
f2 = 100 kHz to 2 GHz  
P2 = P1 αc(max)  
αsp  
spurious immunity; Fig.12(b)  
generator 1: modulated test signal 1  
generator 2: modulated test signal 2  
f2 = f1 ± ∆fcs; f3 = f1 ± 2fcs  
P1 = Pi(ref) + 3 dB  
P2 = P1 + αsp( min)  
αim  
intermodulation immunity;  
Fig.12(c)  
generator 1: modulated test signal 1  
generator 2: unmodulated  
P1 = Pi(ref) + 3 dB  
P2 = P1 + αim(min)  
P3 = P2  
generator 3: modulated test signal 2  
f2 = f1 ± 1 MHz  
αbl  
blocking immunity; Fig.12(b)  
generator 1: modulated test signal 1  
generator 2: modulated test signal 2  
deviation = ±4.0 kHz, f1 = fi(RF) ± 2 kHz (foffset(min)  
generator 1: modulated test signal 1  
P1 = Pi(ref) + 3 dB  
P2 = P1 + αbl(min)  
foffset  
fdev  
ton  
frequency offset range;  
Fig.12(a)  
)
P1 = Pi(ref) + 3 dB  
P1 = Pi(ref) + 3 dB  
P1 = Pi(ref) + 10 dB  
deviation range; Fig.12(a)  
deviation = ±2.5 to ±7 kHz; (fdev(min) to fdev(max)  
generator 1: modulated test signal 1  
note 3  
)
receiver turn-on time;  
Fig.12(a)  
generator 1: modulated test signal 1  
Notes  
1. The tests are executed without load on pins TPI and TPQ.  
2. All minimum and maximum values correspond to a bit error rate (BER) 3100 in the wanted signal (P1).  
3. The BER measurement is started 5 ms (ton(max)) after VRE goes HIGH; BER is then measured for 100 bits  
(BER 3100).  
1996 Jan 15  
26  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
(1)  
GENERATOR 1  
= 50 Ω  
DEVICE  
UNDER TEST  
BER TEST  
FACILITY  
(a)  
(b)  
R
s
50 2-SIGNAL  
POWER  
COMBINER  
(1)  
GENERATOR 1  
= 50 Ω  
DEVICE  
UNDER TEST  
BER TEST  
FACILITY  
R
s
GENERATOR 2  
= 50 Ω  
R
s
GENERATOR 1  
= 50 Ω  
R
s
50 3-SIGNAL  
POWER  
COMBINER  
(1)  
GENERATOR 2  
= 50 Ω  
DEVICE  
UNDER TEST  
BER TEST  
FACILITY  
(c)  
R
s
MLC708  
GENERATOR 3  
= 50 Ω  
R
s
(a) One generator.  
(b) Two generators.  
(c) Three generators.  
(1) See Fig.13.  
Fig.12 Test configurations.  
recovered clock  
GENERATOR  
= 50 Ω  
DEVICE  
UNDER TEST  
DIGITAL  
FILTER  
CLOCK  
RECOVERY  
retimed  
Rx data  
R
s
to error  
counter  
PRESET  
DELAY  
DATA  
COMPARATOR  
PSEUDO  
RANDOM  
SEQUENCE  
GENERATOR  
250 µs  
RISE TIME  
MASTER  
CLOCK  
MLC233  
Fig.13 BER test facility.  
27  
1996 Jan 15  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
PRINTED-CIRCUIT BOARDS  
MBD562  
Fig.14 PCB top view for LQFP32; test circuit Figs 1 and 3.  
1996 Jan 15  
28  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
MBD561  
Fig.15 PCB bottom view for LQFP32; test circuit Figs 1 and 3.  
1996 Jan 15  
29  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
C19  
R3  
L7  
L6  
L5  
L4  
R2  
C9  
C14  
C7  
C8  
C12  
L8  
C11  
C10  
C15  
V
P
UAA2080H  
L3  
C4  
C6  
C13  
C16  
C17  
L9  
L2  
XTAL  
GND  
R1  
R5  
C18  
TS  
BLI  
DO  
RE  
VIRF  
DO  
TPI  
TPQ  
MLC709  
VEE = GND; VC = VP.  
Fig.16 PCB top view with components for LQFP32; test circuit Fig.3.  
1996 Jan 15  
30  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
C5  
R4  
C3  
L1  
C1  
C2  
MLC235  
Fig.17 PCB bottom view with components for LQFP32; test circuit Fig.3.  
1996 Jan 15  
31  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
MBD565  
Fig.18 PCB top view for SO28; test circuit Figs 2 and 4.  
1996 Jan 15  
32  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
MBD567  
Fig.19 PCB bottom view for SO28; test circuit Figs 2 and 4.  
1996 Jan 15  
33  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
V
P
GND  
GND  
C13  
OPS  
BI  
DO  
RE  
V
P
C14  
DATA  
OUT  
XL1  
C19  
C17  
R3  
L6  
C18  
L7  
L8  
R5  
C16  
C15  
C12  
R2  
UAA2080T  
C11 L4  
L5  
C9  
C10  
C7  
RF IN  
L3  
C4  
L2  
C8  
TPQ  
TPI  
MBD566  
VEE = GND; VCC = VP; BI = BLI; OPS = TS.  
Fig.20 PCB top view with components for SO28; test circuit Fig.4.  
1996 Jan 15  
34  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
SHORT  
R4  
C5  
R1  
L1  
C3  
C2  
C1  
MBD568  
Fig.21 PCB bottom view with components for SO28; test circuit Fig.4.  
1996 Jan 15  
35  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
C19  
R3  
C23  
L7  
L6  
L5  
L4  
L10  
R2  
C14  
C10  
C12  
L8  
C21  
C15  
C11  
C22  
V
P
UAA2080H  
C13  
V
i(RF)  
C16  
C17  
GND  
XTAL  
L9  
R5  
C18  
TS  
BLI  
DO  
RE  
DO  
TPI  
TPQ  
MLC710  
Fig.22 PCB top view with components for LQFP32; test circuit Fig.5.  
1996 Jan 15  
36  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
C5  
R4  
MLC237  
Fig.23 PCB bottom view with components for LQFP32; test circuit Fig.5.  
1996 Jan 15  
37  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
o
GND  
C13  
V
P
L5  
L4 C9  
L11  
R2  
R3  
C12  
L10  
L6  
L7  
UAA2080H  
C7  
L3  
C19  
C14  
C4  
C8  
L8  
L2  
C6  
R1  
L1  
V
i(OSC)  
C15  
TS  
BLI  
DO  
C3  
RE  
C1  
C2  
TPI  
TPQ  
MLC711  
V
i(RF)  
Fig.24 PCB top view with components for LQFP32; test circuit Fig.6.  
1996 Jan 15  
38  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
C5  
R4  
MLC239  
Fig.25 PCB bottom view with components for LQFP32; test circuit Fig.6.  
1996 Jan 15  
39  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
PACKAGE OUTLINES  
LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm  
SOT358-1  
c
y
X
A
24  
17  
25  
16  
Z
E
e
Q
H
E
A
E
(A )  
3
2
A
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
32  
9
detail X  
1
8
e
Z
D
v M  
A
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
Q
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.4 0.18 7.1  
0.3 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75 0.69  
0.45 0.59  
0.9  
0.5  
0.9  
0.5  
mm  
1.60  
0.25  
0.8  
1.0  
0.2 0.25 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
93-06-29  
95-12-19  
SOT358 -1  
1996 Jan 15  
40  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT136-1  
075E06  
MS-013AE  
1996 Jan 15  
41  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
SOLDERING  
Introduction  
SO  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The package footprint must incorporate solder thieves at  
the downstream end.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
METHOD (LQFP AND SO)  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all LQFP and  
SO packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
LQFP  
Wave soldering is not recommended for LQFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Even with these conditions, do not consider wave  
soldering LQFP packages LQFP48 (SOT313-2),  
LQFP64 (SOT314-2) or LQFP80 (SOT315-1).  
1996 Jan 15  
42  
Philips Semiconductors  
Product specification  
Advanced pager receiver  
UAA2080  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Jan 15  
43  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (31)40-2783749, Fax. (31)40-2788399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430, Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494  
Tel. (011)821-2333, Fax. (011)829-1849  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (02)773 816, Fax. (02)777 6730  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852)2319 7888, Fax. (852)2319 7700  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212)279 27 70, Fax. (0212)282 67 07  
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358)0-615 800, Fax. (358)0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181)730-5000, Fax. (0181)754-8421  
United States:811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (040)23 53 60, Fax. (040)23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
Tel. (02)70-4044, Fax. (02)92 0601  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01)7640 000, Fax. (01)7640 200  
Italy: PHILIPS SEMICONDUCTORS S.r.l.,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
Tel. (03)3740 5130, Fax. (03)3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-2724825  
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415  
SCDS47  
© Philips Electronics N.V. 1996  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,  
Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040)2783749, Fax. (040)2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Tel. (09)849-4160, Fax. (09)849-7811  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022)74 8000, Fax. (022)74 8341  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546  
Printed in The Netherlands  
Go to Philips Semiconductors' home page  
Select & Go...  
Catalog  
& Datasheets  
Information as of 2000-08-17  
Catalog by Function  
Discrete semiconductors  
Audio  
UAA2080; Advanced pager receiver  
Clocks and Watches  
Data communications  
Microcontrollers  
Peripherals  
Standard analog  
Video  
Subscribe  
to eNews  
Description  
Features  
Applications  
Datasheet  
Products, packages, availability and ordering  
Find similar products  
To be kept informed on UAA2080,  
subscribe to eNews.  
Wired communications  
Wireless communications  
Catalog by System  
Automotive  
Description  
Consumer Multimedia  
Systems  
Communications  
The UAA2080 is a high-performance low-power radio receiver circuit primarily intended for VHF, UHF and 900 MHz pager receivers for  
wide area digital paging systems, employing direct FM non-return-to-zero (NRZ) frequency shift keying (FSK).  
PC/PC-peripherals  
Cross reference  
The receiver design is based on the direct conversion principle where the input signal is mixed directly down to the baseband by a local  
oscillator on the signal frequency. Two complete signal paths with signals of 90° phase difference are required to demodulate the signal. All  
channel selectivity is provided by the built-in IF filters. The circuit makes extensive use of on-chip capacitors to minimize the number of  
external components.  
Models  
Packages  
Application notes  
Selection guides  
Other technical documentation  
End of Life information  
Datahandbook system  
The UAA2080 was designed to operate together with the PCA5000A, PCF5001 or PCD5003 POCSAG decoders, which contain a digital  
input filter for optimum call success rate.  
Features  
Relevant Links  
l Wide frequency range: VHF, UHF and 900 MHz bands  
l High sensitivity  
l High dynamic range  
l Electronically adjustable filters on chip  
l Suitable for data rates up to 2400 bits/s  
l Wide frequency offset and deviation range  
l Fully POCSAG compatible FSK receiver  
l Power on/off mode selectable by the chip enable input  
l Low supply voltage; low power consumption  
l High integration level  
About catalog tree  
About search  
About this site  
Subscribe to eNews  
Catalog & Datasheets  
Search  
UAA2080  
UAA2080  
l Interfaces directly to the PCA5000A, PCF5001 and PCD5003 POCSAG decoders.  
Applications  
l Wide area paging  
l On-site paging  
l Telemetry  
l RF security systems  
l Low bit-rate wireless data links.  
Datasheet  
File  
size  
(kB)  
Publication  
release date Datasheet status  
Page  
count  
Type nr. Title  
Datasheet  
Download  
UAA2080 Advanced pager receiver  
15-Jan-96  
Product  
44  
509  
Specification  
Products, packages, availability and ordering  
North American  
Partnumber  
Order code  
(12nc)  
Partnumber  
marking/packing  
package device status buy online  
SOT358 Full production  
Standard Marking * Reel Dry Pack,  
SMD, 13"  
UAA2080H/V1 UAA2080HB-T  
UAA2080T/V1  
9350 769 10518  
9350 067 90112 Standard Marking * Tube  
SOT136 Full production  
SOT136 Full production  
-
-
Standard Marking * Reel Pack,  
9350 067 90118  
SMD, 13"  
Please read information about some discontinued variants of this product.  
Find similar products:  
UAA2080 links to the similar products page containing an overview of products that are similar in function or related to the part  
number(s) as listed on this page. The similar products page includes products from the same catalog tree(s) , relevant selection guides and  
products from the same functional category.  
Copyright © 2000  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  

相关型号:

UAA2080T

Advanced pager receiver
NXP

UAA2080TD

ASK/FSK Demodulator
ETC

UAA2080TD-T

ASK/FSK Demodulator
ETC

UAA2080U

Advanced pager receiver
NXP

UAA2082

Advanced pager receiver
NXP

UAA2082H

Advanced pager receiver
NXP

UAA2082H-T

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2082H/V1

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2082HB-T

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2082U

Advanced pager receiver
NXP

UAA2090T

900 MHz front end circuit for cordless communication
NXP

UAA2XX

AC-DC Offline Switching Controllers/Regulators
ONSEMI