UDA1324TS [NXP]

Ultra low-voltage stereo filter DAC; 超低电压的立体声DAC,滤波器
UDA1324TS
型号: UDA1324TS
厂家: NXP    NXP
描述:

Ultra low-voltage stereo filter DAC
超低电压的立体声DAC,滤波器

转换器 数模转换器 光电二极管
文件: 总20页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UDA1324TS  
Ultra low-voltage stereo filter DAC  
Preliminary specification  
2000 Jan 20  
Supersedes data of 1999 Oct 12  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
FEATURES  
General  
Low power consumption  
Ultra low power supply voltage from 1.9 to 2.7 V  
Selectable control via L3 microcontroller interface or via  
static pin control  
System clock frequencies of 256fs, 384fs and 512fs  
selectable via L3 interface or 256fs and 384fs via static  
pin control  
APPLICATIONS  
Supports sampling frequencies (fs) from 16 to 48 kHz  
Portable digital audio equipment.  
Integrated digital filter plus non inverting  
Digital-to-Analog Converter (DAC)  
GENERAL DESCRIPTION  
No analog post filtering required for DAC  
Slave mode only applications  
Easy application  
The UDA1324TS is a single-chip stereo DAC employing  
bitstream conversion techniques. The ultra low-voltage  
requirements make the device eminently suitable for use  
in portable digital audio equipment which incorporates  
playback functions.  
Small package size (SSOP16).  
Multiple format input interface  
The UDA1324TS supports the I2S-bus data format with  
word lengths of up to 20 bits, the MSB-justified data format  
with word lengths of up to 20 bits and the LSB-justified  
serial data format with word lengths of 16, 18 and 20 bits.  
L3 mode: I2S-bus, MSB-justified or LSB-justified  
16, 18 and 20 bits format compatible  
Static pin mode: I2S-bus or LSB-justified  
16, 18 and 20 bits format compatible  
The UDA1324TS can be used in two modes: L3 mode or  
static pin mode.  
1fs input format data rate.  
DAC digital sound processing  
In the L3 mode, all digital sound processing features must  
be controlled via the L3 interface, including the selection of  
the system clock setting.  
Digital logarithmic volume control in L3 mode  
Digital de-emphasis selection for 32, 44.1 and 48 kHz  
sampling frequencies in L3 mode or 44.1 kHz sampling  
frequency in static pin mode  
In the two static modes, the UDA1324TS can be operated  
in the 256fs and 384fs system clock mode. Muting,  
de-emphasis for 44.1 kHz and four digital input formats  
(I2S-bus or LSB-justified 16, 18 and 20 bits) can be  
selected via static pins. The L3 interface cannot be used in  
this application mode, so volume control is not available in  
this mode.  
Soft mute control in static pin mode or in L3 mode.  
Advanced audio configuration  
Stereo line output (volume control in L3 mode)  
High linearity, wide dynamic range and low distortion.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
plastic shrink small outline package; 16 leads; body width 4.4 mm  
VERSION  
UDA1324TS  
SSOP16  
SOT369-1  
2000 Jan 20  
2
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
QUICK REFERENCE DATA  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VDDA  
VDDD  
IDDA  
analog supply voltage  
1.9  
2.0  
2.0  
3.0  
1.5  
2.7  
2.7  
V
digital supply voltage  
analog supply current  
digital supply current  
1.9  
V
VDDA = 2.0 V  
mA  
mA  
IDDD  
VDDD = 2.0 V  
DAC; note 1  
Vo(rms)  
output voltage (RMS value)  
note 2  
500  
83  
36  
97  
mV  
dB  
dB  
dB  
dB  
°C  
(THD + N)/S  
total harmonic distortion-plus-noise to at 0 dB  
signal ratio  
78  
at 60 dB; A-weighted  
S/N  
αcs  
signal-to-noise ratio  
channel separation  
ambient temperature  
code = 0; A-weighted  
100  
Tamb  
40  
+70  
Notes  
1. The analog performance figures are measured at 2.0 V supply voltage.  
2. The DAC output voltage scales linearly with the power supply voltage.  
BLOCK DIAGRAM  
V
V
SSD  
5
DDD  
4
7
APPSEL  
APPL0  
APPL1  
APPL2  
APPL3  
1
2
3
11  
BCK  
WS  
CONTROL  
INTERFACE  
10  
9
DIGITAL INTERFACE  
DATAI  
8
VOLUME/MUTE/DE-EMPHASIS  
INTERPOLATION FILTER  
NOISE SHAPER  
UDA1324TS  
6
SYSCLK  
16  
DAC  
DAC  
14  
VOUTR  
VOUTL  
13  
15  
12  
MBK770  
V
V
V
ref(DAC)  
DDA  
SSA  
Fig.1 Block diagram.  
3
2000 Jan 20  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
PINNING  
FUNCTIONAL DESCRIPTION  
System clock  
SYMBOL  
BCK  
PIN  
DESCRIPTION  
bit clock input  
The UDA1324TS operates in the slave mode only.  
Therefore, in all applications the system devices must  
provide the system clock. The system frequency (fsys) is  
selectable and depends on the application mode.  
The options are: 256fs, 384fs and 512fs for the L3 mode  
and 256fs or 384fs for the static pin mode. The system  
clock must be locked in frequency to the digital interface  
input signals.  
1
2
3
4
5
6
WS  
word select input  
data input  
DATAI  
VDDD  
digital supply voltage  
digital ground  
VSSD  
SYSCLK  
system clock input: 256fs, 384fs  
and 512fs  
The UDA1324TS supports sampling frequencies (fs) from  
16 to 48 kHz.  
APPSEL  
APPL3  
APPL2  
APPL1  
APPL0  
Vref(DAC)  
VDDA  
7
8
9
application mode select input  
application input pin 3  
Application modes  
application input pin 2  
10 application input pin 1  
11 application input pin 0  
12 DAC reference voltage  
13 analog supply voltage for DAC  
14 left channel output  
The application mode can be set with the three-level  
pin APPSEL (see Table 1):  
L3 mode  
Static pin mode with fsys = 384fs  
Static pin mode with fsys = 256fs.  
VOUTL  
VSSA  
15 analog ground for DAC  
16 right channel output  
Table 1 Selecting application mode and system clock  
VOUTR  
frequency via pin APPSEL  
VOLTAGE ON  
PIN APPSEL  
MODE  
L3 mode  
fsys  
VSSD  
0.5VDDD  
VDDD  
256fs, 384fs or 512fs  
384fs  
256fs  
static pin mode  
handbook, halfpage  
BCK  
WS  
1
2
3
4
5
6
7
8
16  
15  
VOUTR  
V
SSA  
The function of an application input pin (active HIGH)  
depends on the application mode (see Table 2).  
DATAI  
14 VOUTL  
V
V
V
13  
12  
DDD  
DDA  
Table 2 Functions of application input pins  
UDA1324TS  
V
SSD  
ref(DAC)  
FUNCTION  
PIN  
SYSCLK  
APPSEL  
APPL3  
11 APPL0  
10 APPL1  
L3 MODE  
STATIC PIN MODE  
APPL0  
APPL1  
APPL2  
APPL3  
TEST  
MUTE  
DEEM  
SF0  
9
APPL2  
L3CLOCK  
L3MODE  
L3DATA  
MBK769  
SF1  
For example, in the static pin mode the output signal can  
be soft muted by setting pin APPL0 to HIGH.  
De-emphasis can be switched on for 44.1 kHz by setting  
pin APPL1 to HIGH; setting pin APPL1 to LOW will disable  
de-emphasis.  
Fig.2 Pin configuration.  
2000 Jan 20  
4
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
In the L3 mode, pin APPL0 must be set to LOW. It should  
be noted that when the L3 mode is used, an initialization  
must be performed when the IC is powered-up.  
Interpolation filter  
The digital filter interpolates from 1fs to 128fs by cascading  
a recursive filter and a FIR filter (see Table 4).  
Digital interface  
Table 4 Interpolation filter characteristics  
DATA FORMATS  
ITEM  
CONDITION  
VALUE (dB)  
The digital interface of the UDA1324TS supports multiple  
format inputs (see Fig.3).  
Pass-band ripple  
Stop band  
0 to 0.45fs  
>0.55fs  
±0.1  
50  
108  
Left and right data-channel words are time multiplexed.  
Dynamic range  
0 to 0.45fs  
The WS signal must have a 50% duty factor for all  
LSB-justified formats.  
Noise shaper  
The BCK clock can be up to 64fs, or in other words the  
BCK frequency is 64 times the Word Select (WS)  
The 3rd-order noise shaper operates at 128fs. It shifts  
in-band quantization noise to frequencies well above the  
audio band. This noise shaping technique enables high  
signal-to-noise ratios to be achieved. The noise shaper  
output is converted into an analog signal using a Filter  
Stream Digital-to-Analog Converter (FSDAC).  
frequency or less: fBCK 64 × fWS  
.
Important: the WS edge MUST fall on the negative edge  
of the BCK at all times for proper operation of the digital  
interface.  
Filter stream DAC  
The UDA1324TS also accepts double speed data for  
double speed data monitoring purposes.  
The FSDAC is a semi-digital reconstruction filter that  
converts the 1-bit data stream of the noise shaper to an  
analog output voltage. The filter coefficients are  
L3 MODE  
implemented as current sources and are summed at  
virtual ground of the output operational amplifier. In this  
way very high signal-to-noise performance and low clock  
jitter sensitivity is achieved. A post filter is not needed due  
to the inherent filter function of the DAC. On-board  
amplifiers convert the FSDAC output current to an output  
voltage capable of driving a line output.  
I2S-bus format with data word length of up to 20 bits  
MSB-justified format with data word length up to 20 bits  
LSB-justified format with data word length of  
16, 18 or 20 bits.  
STATIC PIN MODE  
I2S-bus format with data word length of up to 20 bits  
The output voltage of the FSDAC scales linearly with the  
power supply voltage.  
LSB-justified format with data word length of  
16, 18 or 20 bits.  
These four formats are selectable via the static pin codes  
SF0 and SF1 (see Table 3).  
Table 3 Input format selection using SF0 and SF1  
FORMAT  
SF0  
SF1  
I2S-bus  
0
0
1
1
0
1
0
1
LSB-justified 16 bits  
LSB-justified 18 bits  
LSB-justified 20 bits  
2000 Jan 20  
5
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  a
RIGHT  
LEFT  
WS  
1
2
3
> = 8  
1
2
3
> = 8  
BCK  
DATA  
MSB B2  
MSB B2  
MSB  
2
I S-BUS FORMAT  
WS  
LEFT  
RIGHT  
3
1
2
3
> = 8  
1
2
> = 8  
BCK  
DATA  
MSB  
B2  
LSB MSB  
B2  
LSB MSB  
B2  
MSB-JUSTIFIED FORMAT  
WS  
LEFT  
RIGHT  
16  
15  
2
1
16  
15  
2
1
BCK  
DATA  
MSB B2  
B15 LSB  
LSB-JUSTIFIED FORMAT 16 BITS  
MSB B2  
B15 LSB  
WS  
LEFT  
RIGHT  
18  
17  
16  
15  
2
1
18  
17  
16  
15  
2
1
BCK  
DATA  
B17 LSB  
B17 LSB  
MSB B2  
B3  
B4  
MSB B2  
B3  
B4  
LSB-JUSTIFIED FORMAT 18 BITS  
WS  
LEFT  
20  
RIGHT  
20  
19  
18  
17  
16  
15  
2
1
19  
18  
17  
16  
15  
2
1
BCK  
DATA  
B19 LSB  
B19 LSB  
MSB B2  
B3  
B4  
B5  
B6  
MSB B2  
B3  
B4  
B5  
B6  
LSB-JUSTIFIED FORMAT 20 BITS  
WS  
LEFT  
RIGHT  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
1
BCK  
DATA  
MSB B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9 B10  
B23 LSB  
MSB B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9 B10  
B23 LSB  
MBL121  
LSB-JUSTIFIED FORMAT 24 BITS  
Fig.3 Digital interface input data formats.  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
L3 INTERFACE  
The fundamental timing of data transfers (see Fig.5) is  
essentially the same as the address mode. The maximum  
input clock frequency and data rate is 64fs.  
The following system and digital sound processing  
features can be controlled in the L3 mode of the  
UDA1324TS:  
Data transfer can only be in one direction, consisting of  
input to the UDA1324TS to program sound processing and  
other functional features. All data transfers are by 8-bit  
bytes. Data will be stored in the UDA1324TS after  
reception of a complete byte.  
System clock frequency  
Data input format  
De-emphasis for 32, 44.1 and 48 kHz  
Volume  
A multi-byte transfer is illustrated in Fig.6.  
Soft mute.  
Registers  
The exchange of data and control information between the  
microcontroller and the UDA1324TS is accomplished  
The sound processing and other feature values are stored  
through a serial interface comprising the following signals: in independent registers. The first selection of the registers  
is achieved by the choice of data type that is transferred.  
This is performed in the address mode using bit 1 and bit 0  
(see Table 5).  
L3DATA  
L3MODE  
L3CLOCK.  
Table 5 Selection of data transfer  
Information transfer through the microcontroller bus is  
organized in accordance with the L3 interface format, in  
which two different modes of operation can be  
distinguished: address mode and data transfer mode.  
BIT 1 BIT 0  
TRANSFER  
0
0
1
0
1
0
data (volume, de-emphasis, mute)  
not used  
Address mode  
status (system clock frequency,  
data input format)  
The address mode (see Fig.4) is required to select a  
device communicating via the L3 interface and to define  
the destination registers for the data transfer mode.  
1
1
not used  
The second selection is performed by the 2 MSBs of the  
data byte (bit 7 and bit 6). The other bits in the data byte  
(bit 5 to bit 0) represent the value that is placed in the  
selected registers.  
Data bits 7 to 2 represent a 6-bit device address where  
bit 7 is the MSB. The address of the UDA1324TS is  
000101 (bit 7 to bit 2). If the UDA1324TS receives a  
different address, it will deselect its microcontroller  
interface logic.  
The ‘status’ settings are given in Table 6 and the ‘data’  
settings are given in Table 7.  
Data transfer mode  
The selected address remains active during subsequent  
data transfers until the UDA1324TS receives a new  
address command.  
2000 Jan 20  
7
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
L3MODE  
t
t
su(L3)A  
h(L3)A  
t
CLK(L3)L  
t
t
t
CLK(L3)H  
su(L3)A  
h(L3)A  
L3CLOCK  
T
cy(CLK)(L3)  
t
t
h(L3)DA  
su(L3)DA  
BIT 0  
BIT 7  
L3DATA  
MGL723  
Fig.4 Timing address mode.  
t
t
stp(L3)  
stp(L3)  
L3MODE  
t
CLK(L3)L  
t
T
h(L3)D  
cy(CLK)L3  
t
t
CLK(L3)H  
su(L3)D  
L3CLOCK  
t
t
h(L3)DA  
su(L3)DA  
L3DATA  
WRITE  
BIT 0  
BIT 7  
MGL882  
Fig.5 Timing data transfer mode.  
2000 Jan 20  
8
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
t
stp(L3)  
L3MODE  
L3CLOCK  
L3DATA  
MGL725  
address  
data byte #1  
data byte #2  
address  
Fig.6 Multibyte data transfer.  
Programming the features  
When the data transfer of type ‘status’ is selected, the features for the system clock frequency and the data input format  
can be controlled.  
Table 6 Data transfer of type ‘status’  
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
REGISTER SELECTED  
0
0
SC1  
SC0  
IF2  
IF1  
IF0  
0
SC = system clock frequency (2 bits); see Table 8  
IF = data input format (3 bits); see Table 9  
not used  
1
0
0
0
0
0
0
0
When the data transfer of type ‘data’ is selected, the features for volume, de-emphasis and mute can be controlled.  
Table 7 Data transfer of type ‘data’  
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
REGISTER SELECTED  
0
0
1
0
1
0
VC5  
0
VC4  
0
VC3  
0
VC2  
0
VC1  
0
VC0 VC = volume control (6 bits); see Table 11  
0
0
not used  
0
DE1  
DE0  
MT  
0
DE = de-emphasis (2 bits); see Table 10  
MT = mute (1 bit); see Table 12  
default setting  
1
1
0
0
0
0
0
1
2000 Jan 20  
9
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
SYSTEM CLOCK FREQUENCY  
VOLUME CONTROL  
The system clock frequency is a 2-bit value to select the  
external clock frequency.  
The volume control is a 6-bit value to program the volume  
attenuation from 0 to 60 dB and −∞ dB in steps of 1 dB.  
Table 8 System clock settings  
Table 11 Volume settings  
SC1 SC0  
FUNCTION  
VC5 VC4 VC3 VC2 VC1 VC0 VOLUME (dB)  
0
0
1
1
0
1
0
1
512fs  
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
1
1
:
0
1
0
1
:
0
0
384fs  
256fs  
1  
2  
:
not used  
DATA FORMAT  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
51  
52  
54  
The data format is a 3-bit value to select the used data  
format.  
Table 9 Data input format settings  
IF2  
IF1  
IF0  
FORMAT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
I2S-bus  
LSB-justified 16 bits  
LSB-justified 18 bits  
LSB-justified 20 bits  
MSB-justified  
not used  
57  
60  
−∞  
not used  
not used  
MUTE  
DE-EMPHASIS  
Mute is a 1-bit value to enable the digital mute.  
De-emphasis is a 2-bit value to enable the digital  
de-emphasis filter.  
Table 12 Mute setting  
MT  
FUNCTION  
Table 10 De-emphasis settings  
0
1
no muting  
muting  
DE1  
DE0  
FUNCTION  
no de-emphasis  
0
0
1
1
0
1
0
1
de-emphasis, 32 kHz  
de-emphasis, 44.1 kHz  
de-emphasis, 48 kHz  
2000 Jan 20  
10  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
5.0  
UNIT  
VDDD  
VDDA  
Txtal(max)  
Tstg  
digital supply voltage  
note 1  
note 1  
V
analog supply voltage  
maximum crystal temperature  
storage temperature  
5.0  
V
150  
°C  
°C  
°C  
V
65  
+125  
+85  
Tamb  
Ves  
ambient temperature  
40  
electrostatic handling voltage  
note 2  
note 3  
note 4  
3000  
300  
+3000  
+300  
V
Isc(DAC)  
short-circuit current of DAC  
output short-circuited to VSSA(DAC)  
output short-circuited to VDDA(DAC)  
450  
300  
mA  
mA  
Notes  
1. All supply connections must be made to the same power supply.  
2. Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor, except pin 14 which can withstand ESD  
pulses of 2500 to +2500 V.  
3. Equivalent to discharging a 200 pF capacitor via a 2.5 µH series inductor.  
4. Short-circuit test at Tamb = 0 °C and VDDA = 3 V. DAC operation after short-circuiting cannot be warranted.  
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
thermal resistance from junction to ambient  
190  
K/W  
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611-E”.  
DC CHARACTERISTICS  
VDDD = VDDA = 2.0 V; Tamb = 25 °C; RL = 5 k; all voltages referenced to ground (pins VSSA and VSSD); unless  
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDDA  
VDDD  
IDDA  
analog supply voltage  
digital supply voltage  
analog supply current  
digital supply current  
note 1  
1.9  
1.9  
2.0  
2.0  
3.0  
1.5  
2.7  
V
note 1  
2.7  
V
operating  
operating  
mA  
mA  
IDDD  
2000 Jan 20  
11  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Digital inputs: pins BCK, WS, DATAI, SYSCLK, APPL0, APPL1, APPL2 and APPL3  
VIH  
VIL  
ILI  
HIGH-level input voltage  
LOW-level input voltage  
input leakage current  
input capacitance  
0.8VDDD  
V
0.2VDDD  
V
1
µA  
pF  
CI  
10  
Three-level input: pin APPSEL  
VIH  
VIM  
VIL  
HIGH-level input voltage  
0.8VDDD  
0.3VDDD  
0.5  
VDDD + 0.5 V  
MIDDLE-level input voltage  
LOW-level input voltage  
0.7VDDD  
0.2VDDD  
V
V
DAC  
Vref(DAC)  
Io(max)  
reference voltage  
referenced to VSSA  
0.45VDDA 0.5VDDA  
0.55VDDA  
V
maximum output current  
(THD + N)/S < 0.1%;  
0.16  
mA  
RL = 5 kΩ  
RO  
RL  
CL  
output resistance  
load resistance  
load capacitance  
3
0.15  
2.0  
kΩ  
pF  
note 2  
50  
Notes  
1. All supply connections must be made to the same external power supply unit.  
2. When the DAC drives a capacitive load above 50 pF, a series resistance of 100 must be used to prevent  
oscillations in the output operational amplifier.  
AC CHARACTERISTICS  
VDDD = VDDA = 2.0 V; fi = 1 kHz; Tamb = 25 °C; RL = 5 k; all voltages referenced to ground (pins VSSA and VSSD);  
unless otherwise specified.  
SYMBOL  
DAC  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Vo(rms)  
output voltage (RMS value)  
500  
mV  
Vo  
unbalance voltage between  
channels  
0.1  
dB  
(THD + N)/S total harmonic  
distortion-plus-noise to  
at 0 dB  
83  
36  
78  
dB  
dB  
at 60 dB; A-weighted  
signal ratio  
S/N  
signal-to-noise ratio  
channel separation  
code = 0; A-weighted  
97  
dB  
dB  
dB  
αcs  
100  
50  
PSRR  
power supply ripple rejection  
ratio  
fripple = 1 kHz;  
Vripple = 100 mV (p-p)  
2000 Jan 20  
12  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
TIMING  
VDDD = VDDA = 1.9 to 2.7 V; Tamb = 40 to +85 °C; RL = 5 k; all voltages referenced to ground (pins VSSA and VSSD);  
unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
System clock (see Fig.7)  
Tsys  
system clock cycle time  
fsys = 256fs  
78  
88  
244  
ns  
f
sys = 384fs  
sys = 512fs  
52  
59  
44  
162  
122  
ns  
ns  
f
39  
tCWL  
LOW-level system clock pulse width  
HIGH-level system clock pulse width  
fsys < 19.2 MHz  
sys 19.2 MHz  
fsys < 19.2 MHz  
sys 19.2 MHz  
0.3Tsys  
0.4Tsys  
0.3Tsys  
0.4Tsys  
0.7Tsys ns  
0.6Tsys ns  
0.7Tsys ns  
0.6Tsys ns  
f
tCWH  
f
Digital interface with I2S-bus (see Fig.8)  
Tcy(BCK)  
tBCKH  
tBCKL  
tr  
bit clock cycle time  
bit clock HIGH time  
bit clock LOW time  
rise time  
300  
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
tf  
fall time  
tsu(DATAI)  
th(DATAI)  
tsu(WS)  
th(WS)  
data input set-up time  
data input hold time  
word select set-up time  
word select hold time  
20  
0
20  
10  
Control L3 interface (see Figs 4 and 5)  
Tcy(CLK)L3  
tCLK(L3)H  
tCLK(L3)L  
tsu(L3)A  
L3CLOCK cycle time  
500  
250  
250  
190  
190  
190  
ns  
ns  
ns  
ns  
ns  
ns  
L3CLOCK HIGH time  
L3CLOCK LOW time  
L3MODE set-up time for address mode  
L3MODE hold time for address mode  
th(L3)A  
tsu(L3)D  
L3MODE set-up time for data transfer  
mode  
th(L3)D  
L3MODE hold time for data transfer  
mode  
190  
190  
30  
ns  
ns  
ns  
ns  
tsu(L3)DA  
th(L3)DA  
tstp(L3)  
L3DATA set-up time for data transfer and  
address mode  
L3DATA hold time for data transfer and  
address mode  
L3MODE stop time for data transfer  
mode  
190  
2000 Jan 20  
13  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
t
CWH  
MGR984  
t
CWL  
T
sys  
Fig.7 System clock timing.  
WS  
t
h(WS)  
t
BCKH  
t
su(WS)  
t
t
f
r
BCK  
t
su(DATAI)  
t
BCKL  
T
t
cy(BCK)  
h(DATAI)  
DATAI  
MGL880  
Fig.8 I2S-bus timing.  
2000 Jan 20  
14  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
APPLICATION INFORMATION  
analog  
digital  
supply voltage  
supply voltage  
R2  
1 Ω  
R3  
1 Ω  
C1  
100 µF  
(16 V)  
C5  
C6  
100 nF  
(63 V)  
100 nF  
(63 V)  
V
V
V
V
SSA  
DDA  
SSD  
DDD  
14  
15  
13  
5
4
R1  
SYSCLK  
system  
clock  
6
47 Ω  
C2  
R4  
VOUTL  
left  
output  
100 Ω  
BCK  
WS  
47 µF  
(16 V)  
1
2
3
7
R5  
10 kΩ  
DATAI  
APPSEL  
C3  
R6  
100 Ω  
R7  
10 kΩ  
VOUTR  
right  
output  
16  
12  
UDA1324TS  
47 µF  
(16 V)  
APPL0  
APPL1  
APPL2  
APPL3  
11  
10  
9
V
ref(DAC)  
8
C7  
C4  
100 nF  
(63 V)  
47 µF  
(16 V)  
MBK771  
Fig.9 Application diagram.  
2000 Jan 20  
15  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
PACKAGE OUTLINE  
SSOP16: plastic shrink small outline package; 16 leads; body width 4.4 mm  
SOT369-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
10o  
0o  
0.15  
0.00  
1.4  
1.2  
0.32  
0.20  
0.25  
0.13  
5.30  
5.10  
4.5  
4.3  
6.6  
6.2  
0.75  
0.45  
0.65  
0.45  
0.48  
0.18  
mm  
1.0  
1.5  
0.65  
0.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT369-1  
MO-152  
2000 Jan 20  
16  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Jan 20  
17  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Jan 20  
18  
Philips Semiconductors  
Preliminary specification  
Ultra low-voltage stereo filter DAC  
UDA1324TS  
NOTES  
2000 Jan 20  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545002/25/03/pp20  
Date of release: 2000 Jan 20  
Document order number: 9397 750 06676  

相关型号:

UDA1325

Universal Serial Bus USB CODEC
NXP

UDA1325H

Universal Serial Bus USB CODEC
NXP

UDA1325H-T

暂无描述
NXP

UDA1325H/N108

IC SPECIALTY MICROPROCESSOR CIRCUIT, PQFP64, PLASTIC, QFP-64, Microprocessor IC:Other
NXP

UDA1325PS

Universal Serial Bus USB CODEC
NXP

UDA1325PS/N106

IC SPECIALTY MICROPROCESSOR CIRCUIT, PDIP42, 0.600 INCH, PLASTIC, SDIP-42, Microprocessor IC:Other
NXP

UDA1328

Multi-channel filter DAC
NXP

UDA1328T

Multi-channel filter DAC
NXP

UDA1328T/N1

IC SERIAL INPUT LOADING, 24-BIT DAC, PDSO32, 7.50 MM, PLASTIC, SO-32, Digital to Analog Converter
NXP

UDA1328TD

IC SERIAL INPUT LOADING, 24-BIT DAC, PDSO32, 7.50 MM, PLASTIC, SO-32, Digital to Analog Converter
NXP

UDA1328TD-T

IC SERIAL INPUT LOADING, 24-BIT DAC, PDSO32, 7.50 MM, PLASTIC, SO-32, Digital to Analog Converter
NXP

UDA1330A

Low-cost stereo filter DAC
NXP