UJA1069TW [NXP]

LIN fail-safe system basis chip; LIN故障安全系统基础芯片
UJA1069TW
型号: UJA1069TW
厂家: NXP    NXP
描述:

LIN fail-safe system basis chip
LIN故障安全系统基础芯片

文件: 总64页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UJA1069  
LIN fail-safe system basis chip  
Rev. 02 — 5 March 2007  
Preliminary data sheet  
1. General description  
The UJA1069 fail-safe System Basis Chip (SBC) replaces basic discrete components  
which are common in every Electronic Control Unit (ECU) with a Local Interconnect  
Network (LIN) interface. The fail-safe SBC supports all networking applications which  
control various power and sensor peripherals by using LIN as a local sub-bus. The  
fail-safe SBC contains the following integrated devices:  
LIN transceiver compliant with LIN 2.0 and SAE J2602, and compatible with LIN 1.3  
Advanced independant watchdog  
Dedicated voltage regulator for microcontroller  
Serial peripheral interface (full duplex)  
Local wake-up input port  
Inhibit/limp-home output port  
In addition to the advantages of integrating these common ECU functions in a single  
package, the fail-safe SBC offers an intelligent combination of system-specific functions  
such as:  
Advanced low-power concept  
Safe and controlled system start-up behavior  
Advanced fail-safe system behavior that prevents any conceivable deadlock  
Detailed status reporting on system and sub-system levels  
The UJA1069 is designed to be used in combination with a microcontroller and a LIN  
controller. The fail-safe SBC ensures that the microcontroller is always started up in a  
defined manner. In failure situations the fail-safe SBC will maintain the microcontroller  
function for as long as possible, to provide full monitoring and software driven fall-back  
operation.  
The UJA1069 is designed for 14 V single power supply architectures and for 14 V and  
42 V dual power supply architectures.  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
2. Features  
2.1 General  
I Contains a full set of LIN ECU functions:  
N LIN transceiver  
N Voltage regulator for the microcontroller (3.0 V, 3.3 V or 5.0 V)  
N Enhanced window watchdog with on-chip oscillator  
N Serial Peripheral Interface (SPI) for the microcontroller  
N ECU power management system  
N Fully integrated autonomous fail-safe system  
I Designed for automotive applications:  
N Supports 14 V and 42 V architectures  
N Excellent ElectroMagnetic Compatibility (EMC) performance  
N ±8 kV ElectroStatic Discharge (ESD) protection Human Body Model (HBM) for  
off-board pins  
N ±4 kV ElectroStatic Discharge (ESD) protection IEC 61000-4-2 for off-board pins  
N ±60 V short-circuit proof LIN-bus pin  
N Battery and LIN-bus pins are protected against transients in accordance with  
ISO 7637-3  
N Very low sleep current  
I Supports remote flash programming via the LIN-bus  
I Available in:  
N Small 6.4 mm × 7.8 mm HTSSOP24 package with low thermal resistance  
N Small 8 mm × 11 mm HTSSOP32 package with low thermal resistance  
2.2 LIN transceiver  
I LIN 2.0 and SAE J2602 compliant LIN transceiver  
I Enhanced error signalling and reporting  
I Downward compatible with LIN 1.3 and the TJA1020  
2.3 Power management  
I Smart operating modes and power management modes  
I Cyclic wake-up capability in Standby and Sleep mode  
I Local wake-up input with cyclic supply feature  
I Remote wake-up capability via the LIN-bus  
I External voltage regulators can easily be incorporated in the power supply system  
(flexible and fail-safe)  
I 42 V battery related high-side switch for driving external loads such as relays and  
wake-up switches  
I Intelligent maskable interrupt output  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
2 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
2.4 Fail-safe features  
I Safe and predictable behavior under all conditions  
I Programmable fail-safe coded window and time-out watchdog with on-chip oscillator,  
guaranteeing autonomous fail-safe system supervision  
I Fail-safe coded 16-bit SPI interface for the microcontroller  
I Global enable pin for the control of safety-critical hardware  
I Detection and detailed reporting of failures:  
N On-chip oscillator failure and watchdog alerts  
N Battery and voltage regulator undervoltages  
N LIN-bus failures (short-circuits)  
N TXD and RXD clamping situations and short-circuits  
N Clamped or open reset line  
N SPI message errors  
N Overtemperature warning  
I Rigorous error handling based on diagnostics  
I Supply failure early warning allows critical data to be stored  
I 23 bits of access-protected RAM is available e.g. for logging of cyclic problems  
I Reporting in a single SPI message; no assembly of multiple SPI frames needed  
I Limp-home output signal for activating application hardware in case system enters  
Fail-safe mode (e.g. for switching on warning lights)  
I Fail-safe coded activation of Software development mode and Flash mode  
I Unique SPI readable device type identification  
I Software-initiated system reset  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
UJA1069TW[1]  
HTSSOP32  
plastic thermal enhanced thin shrink small outline package; 32 leads; SOT549-1  
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad  
UJA1069TW24[2] HTSSOP24  
plastic thermal enhanced thin shrink small outline package; 24 leads; SOT864-1  
body width 4.4 mm; lead pitch 0.65 mm; exposed die pad  
[1] UJA1069TW/5V0 is for the 5 V version; UJA1069TW/3V3 is for the 3.3 V version; UJA1069TW/3V0 is for the 3 V version.  
[2] UJA1069TW24/5V0 is for the 5 V version; UJA1069TW24/3V3 is for the 3.3 V version; UJA1069TW/3V0 is for the 3 V version.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
3 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
4. Block diagram  
31 (23)  
SENSE  
BAT  
MONITOR  
32 (24)  
BAT42  
27 (19)  
BAT14  
(3) 4  
V1  
V1  
UJA1069  
29 (21)  
SYSINH  
30 (22)  
V3  
17 (13)  
INH/LIMP  
INH  
V1 MONITOR  
7 (6)  
INTN  
18 (14)  
WAKE  
TEST  
(5) 6  
(7) 8  
WAKE  
RESET/EN  
WATCHDOG  
OSCILLATOR  
RSTN  
EN  
16 (12)  
SBC  
FAIL-SAFE  
SYSTEM  
CHIP  
TEMPERATURE  
11 (10)  
9 (8)  
SCK  
SDI  
SPI  
10 (9)  
12 (11)  
SDO  
SCS  
26 (18)  
25 (17)  
3 (2)  
RTLIN  
LIN  
LIN  
TXDL  
RXDL  
5 (4)  
23 (15)  
GND  
BAT42  
001aad669  
The pin numbers in parenthesis are for the UJA1069TW24 version.  
Fig 1. Block diagram  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
4 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
5. Pinning information  
5.1 Pinning  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
n.c.  
n.c.  
BAT42  
SENSE  
V3  
3
TXDL  
V1  
4
SYSINH  
n.c.  
5
RXDL  
RSTN  
INTN  
EN  
6
BAT14  
RTLIN  
LIN  
7
8
UJA1069TW  
9
SDI  
n.c.  
10  
11  
12  
13  
14  
15  
16  
SDO  
SCK  
SCS  
n.c.  
GND  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
WAKE  
INH/LIMP  
TEST  
001aad676  
Fig 2. Pin configuration (HTSSOP32)  
1
2
24  
23  
22  
21  
20  
19  
n.c.  
TXDL  
V1  
BAT42  
SENSE  
V3  
3
4
RXDL  
RSTN  
INTN  
EN  
SYSINH  
n.c.  
5
6
BAT14  
RTLIN  
LIN  
UJA1069TW24  
7
18  
17  
16  
15  
14  
13  
8
SDI  
9
SDO  
SCK  
SCS  
TEST  
n.c.  
10  
11  
12  
GND  
WAKE  
INH/LIMP  
001aad677  
Fig 3. Pin configuration (HTSSOP24)  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
5 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
5.2 Pin description  
Table 2.  
Symbol  
Pin description  
Pin  
Description  
HTSSOP32 HTSSOP24  
n.c.  
1
2
3
1
-
not connected  
not connected  
n.c.  
TXDL  
2
LIN transmit data input (LOW for dominant, HIGH for  
recessive)  
V1  
4
5
6
7
3
4
5
6
voltage regulator output for the microcontroller (3 V, 3.3 V  
or 5 V depending on the SBC version)  
RXDL  
RSTN  
INTN  
LIN receive data output (LOW when dominant, HIGH  
when recessive)  
reset output to microcontroller (active LOW; will detect  
clamping situations)  
interrupt output to microcontroller (active LOW;  
open-drain, wire-AND this pin to other ECU interrupt  
outputs)  
EN  
8
7
enable output (active HIGH; push-pull, LOW with every  
reset / watchdog overflow)  
SDI  
9
8
SPI data input  
SDO  
SCK  
SCS  
n.c.  
10  
11  
12  
13  
14  
15  
16  
17  
9
SPI data output (floating when pin SCS is HIGH)  
SPI clock input  
10  
11  
-
SPI chip select input (active LOW)  
not connected  
n.c.  
-
not connected  
n.c.  
-
not connected  
TEST  
INH/LIMP  
12  
13  
test pin (should be connected to ground in application)  
inhibit / limp home output (BAT14 related, push-pull,  
default floating)  
WAKE  
18  
14  
local wake-up input (BAT42 related, continuous or cyclic  
sampling)  
n.c.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
-
not connected  
n.c.  
-
not connected  
n.c.  
-
not connected  
n.c.  
-
not connected  
GND  
n.c.  
15  
16  
17  
18  
19  
20  
21  
ground  
not connected  
LIN  
LIN bus line (LOW in dominant state)  
LIN-bus termination resistor connection  
14 V battery supply input  
not connected  
RTLIN  
BAT14  
n.c.  
SYSINH  
system inhibit output (BAT42 related; e.g. for controlling  
external DC-to-DC converter)  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
6 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 2.  
Pin description …continued  
Pin  
Symbol  
Description  
HTSSOP32 HTSSOP24  
V3  
30  
22  
unregulated 42 V output (BAT42 related; continuous  
output, or cyclic mode synchronized with local wake-up  
input)  
SENSE  
BAT42  
31  
32  
23  
24  
fast battery interrupt / chatter detector input  
42 V battery supply input (connect this pin to BAT14 in  
14 V applications)  
The exposed die pad at the bottom of the package allows better dissipation of heat from  
the SBC via the printed-circuit board. The exposed die pad is not connected to any active  
part of the IC and can be left floating, or can be connected to GND for the best EMC  
performance.  
6. Functional description  
6.1 Introduction  
The UJA1069 combines all peripheral functions around a microcontroller within typical  
automotive networking applications into one dedicated chip. The functions are as follows:  
Power supply for the microcontroller  
Switched BAT42 output  
System reset  
Watchdog with Window mode and Time-out mode  
On-chip oscillator  
LIN transceiver for serial communication  
SPI control interface  
Local wake-up input  
Inhibit or limp-home output  
System inhibit output port  
Compatibility with 42 V power supply systems  
Fail-safe behavior  
6.2 Fail-safe system controller  
The fail-safe system controller is the core of the UJA1069 and is supervised by a  
watchdog timer which is clocked directly by the dedicated on-chip oscillator. The system  
controller manages the register configuration and controls all internal functions of the  
SBC. Detailed device status information is collected and presented to the microcontroller.  
The system controller also provides the reset and interrupt signals.  
The fail-safe system controller is a state machine. The different operating modes and the  
transitions between these modes are illustrated in Figure 4. The following sections give  
further details about the SBC operating modes.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
7 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
mode change via SPI  
watchdog  
trigger  
Standby mode  
V1: ON  
SYSINH: HIGH  
LIN: off-line  
watchdog: time-out/OFF  
INH/LIMP: HIGH/LOW/float  
EN: HIGH/LOW  
mode change via SPI  
mode change via SPI  
watchdog  
trigger  
wake-up detected with its wake-up interrupt disabled  
OR mode change to Sleep with pending wake-up  
mode change via SPI  
OR watchdog time-out with watchdog timeout interrupt disabled  
Sleep mode  
Normal mode  
OR watchdog OFF and I > I  
V1  
with reset option  
thH(V1)  
OR interrupt ignored > t  
RSTN(INT)  
V1: OFF  
SYSINH: HIGH/float  
LIN: off-line  
V1: ON  
OR RSTN falling edge detected  
OR V1 undervoltage detected  
OR illegal Mode register code  
SYSINH: HIGH  
flash entry enabled (111/001/111 mode sequence)  
OR mode change to Sleep with pending wake-up  
OR watchdog not properly served  
LIN: all modes available  
watchdog: window  
INH/LIMP: HIGH/LOW/float  
EN: HIGH/LOW  
watchdog: time-out/OFF  
INH/LIMP: LOW/float  
RSTN: LOW  
OR interrupt ignored > t  
RSTN(INT)  
OR RSTN falling edge detected  
OR V1 undervoltage detected  
OR illegal Mode register code  
EN: LOW  
wake-up detected  
OR watchdog time-out  
OR V3 overload detected  
init Normal mode  
via SPI successful  
Start-up mode  
V1: ON  
SYSINH: HIGH  
init Normal mode  
via SPI successful  
supply connected  
for the first time  
LIN: off-line  
watchdog: start-up  
INH/LIMP: HIGH/LOW/float  
EN: LOW  
init Flash mode via SPI  
AND flash entry enabled  
t > t  
WD(init)  
OR SPI clock count <> 16  
OR RSTN falling edge detected  
OR RSTN released and V1 undervoltage detected  
OR illegal Mode register code  
watchdog  
trigger  
leave Flash mode code  
OR watchdog time-out  
OR interrupt ignored > t  
RSTN(INT)  
OR RSTN falling edge detected  
OR V1 undervoltage detected  
OR illegal Mode register code  
Restart mode  
Flash mode  
V1: ON  
SYSINH: HIGH  
LIN: off-line  
V1: ON  
wake-up detected  
AND oscillator ok  
SYSINH: HIGH  
LIN: all modes available  
watchdog: time-out  
INH/LIMP: HIGH/LOW/float  
EN: HIGH/LOW  
AND t > t  
ret  
watchdog: start-up  
INH/LIMP: LOW/float  
EN: LOW  
t > t  
WD(init)  
OR SPI clock count <> 16  
OR RSTN falling edge detected  
OR RSTN released and V1 undervoltage detected  
OR illegal Mode register code  
Fail-safe mode  
V1: OFF  
SYSINH: HIGH/float  
LIN: off-line  
oscillator fail  
OR RSTN externally clamped HIGH detected > t  
OR RSTN externally clamped LOW detected > t  
OR V1 undervoltage detected > t  
V1(CLT)  
RSTN(CHT)  
RSTN(CLT)  
from any  
mode  
watchdog: OFF  
INH/LIMP: LOW  
RSTN: LOW  
EN: LOW  
001aad670  
Fig 4. Main state diagram  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
8 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.2.1 Start-up mode  
Start-up mode is the ‘home page’ of the SBC. This mode is entered when battery and  
ground are connected for the first time. Start-up mode is also entered after any event that  
results in a system reset. The reset source information is provided by the SBC to support  
different software initialization cycles that depend on the reset event.  
It is also possible to enter Start-up mode via a wake-up from Standby mode, Sleep mode  
or Fail-safe mode. Such a wake-up can originate either from the LIN-bus or from the local  
WAKE pin.  
On entering Start-up mode a lengthened reset time tRSTNL is observed. This reset time is  
either user-defined (via the RLC bit in the System Configuration register) or defaults to the  
value as given in Section 6.12.12. During the reset lengthening time pin RSTN is held  
LOW by the SBC.  
When the reset time is completed (pin RSTN is released and goes HIGH) the watchdog  
timer will wait for initialization. If the watchdog initialization is successful, the selected  
operating mode (Normal mode or Flash mode) will be entered. Otherwise the Restart  
mode will be entered.  
6.2.2 Restart mode  
The purpose of the Restart mode is to give the application a second chance to start up,  
should the first attempt from Start-up mode fail. Entering Restart mode will always set the  
reset lengthening time tRSTNL to the higher value to guarantee the maximum reset length,  
regardless of previous events.  
If start-up from Restart mode is successful (the previous problems do not reoccur and  
watchdog initialization is successful), then the selected operating mode will be entered.  
From Restart mode this must be Normal mode. If problems persist or if V1 fails to start up,  
then Fail-safe mode will be entered.  
6.2.3 Fail-safe mode  
Severe fault situations will cause the SBC to enter Fail-safe mode. Fail-safe mode is also  
entered if start-up from Restart mode fails. Fail-safe mode offers the lowest possible  
system power consumption from the SBC and from the external components controlled by  
the SBC.  
A wake-up (via the LIN-bus or the WAKE pin) is needed to leave Fail-safe mode. This is  
only possible if the on-chip oscillator is running correctly. The SBC restarts from Fail-safe  
mode with a defined delay tret, to guarantee a discharged V1 before entering Start-up  
mode. Regulator V1 will restart and the reset lengthening time tRSTNL is set to the higher  
value; see Section 6.5.1.  
6.2.4 Normal mode  
Normal mode gives access to all SBC system resources, including LIN, INH/LIMP and  
EN. Therefore in Normal mode the SBC watchdog runs in (programmable) Window mode,  
for strictest software supervision. Whenever the watchdog is not properly served a system  
reset is performed.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
9 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Interrupts from SBC to the host microcontroller are also monitored. A system reset is  
performed if the host microcontroller does not respond within tRSTN(INT). Entering Normal  
mode does not activate the LIN transceiver automatically. The LIN Mode Control (LMC) bit  
must be used to activate the LIN medium if required, allowing local cyclic wake-up  
scenarios to be implemented without affecting the LIN-bus.  
6.2.5 Standby mode  
In Standby mode the system is set into a state with reduced current consumption. The  
watchdog will, however, continue to monitor the microcontroller (Time-out mode) since it is  
powered via pin V1.  
In the event that the host microcontroller can provide a low-power mode with reduced  
current consumption in its Standby mode or Stop mode, the watchdog can be switched off  
entirely in Standby mode of the SBC. The SBC monitors the microcontroller supply current  
to ensure that there is no unobserved phase with disabled watchdog and running  
microcontroller. The watchdog will remain active until the supply current drops below  
IthL(V1). Below this current limit the watchdog is disabled.  
Should the current increase to IthH(V1), e.g. as result of a microcontroller wake-up from  
application specific hardware, the watchdog will start operating again with the previously  
used time-out period. If needed, an interrupt can be issued when the watchdog restarts. If  
the watchdog is not triggered correctly, a system reset will occur and the SBC will enter  
Start-up mode.  
If Standby mode is entered from Normal mode with the selected watchdog OFF option,  
the watchdog will use the maximum time-out as defined for Standby mode until the supply  
current drops below the current detection threshold; the watchdog is now OFF. If the  
current increases again, the watchdog is immediately activated, again using the maximum  
watchdog time-out period. If the watchdog OFF option is selected during Standby mode,  
the last used watchdog period will define the time for the supply current to fall below the  
current detection threshold. This allows the user to align the current supervisor function to  
the application needs.  
Generally, the microcontroller can be activated from Standby mode via a system reset or  
via an interrupt without reset. This allows implementation of differentiated start-up  
behavior from Standby mode, depending on the application needs:  
If the watchdog is still running during Standby mode, the watchdog can be used for  
cyclic wake-up behavior of the system. A dedicated Watchdog Time-out Interrupt  
Enable (WTIE) bit enables the microcontroller to decide whether to receive an  
interrupt or a hardware reset upon overflow. The interrupt option will be cleared in  
hardware automatically with each watchdog overflow to ensure that a failing main  
routine is detected while the interrupt service still operates. So the application  
software must set the interrupt behavior each time before a standby cycle is entered.  
Any wake-up via the LIN-bus together with a local wake-up event will force a system  
reset event or an interrupt to the microcontroller. So it is possible to exit Standby mode  
without any system reset if required.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
10 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
When an interrupt event occurs the application software has to read the Interrupt register  
within tRSTN(INT). Otherwise a fail-safe system reset is forced and Start-up mode will be  
entered. If the application has read out the Interrupt register within the specified time, it  
can decide whether to switch into Normal mode via an SPI access or to stay in Standby  
mode.  
The following operations are possible from Standby mode:  
Cyclic wake-up by the watchdog via an interrupt signal to the microcontroller (the  
microcontroller is triggered periodically and checked for the correct response)  
Cyclic wake-up by the watchdog via a reset signal (a reset is performed periodically;  
the SBC provides information about the reset source to allow different start  
sequences after reset)  
Wake-up by activity on the LIN-bus via an interrupt signal to the microcontroller  
Wake-up by bus activity on the LIN-bus via a reset signal  
Wake-up by increasing the microcontroller supply current without a reset signal  
(where a stable supply is needed for the microcontroller RAM contents to remain valid  
and wake-up from an external application not connected to the SBC)  
Wake-up by increasing the microcontroller supply current with a reset signal  
Wake-up due to a falling edge at pin WAKE forcing an interrupt to the microcontroller  
Wake-up due to a falling edge at pin WAKE forcing a reset signal  
6.2.6 Sleep mode  
In Sleep mode the microcontroller power supply (V1) and the INH/LIMP controlled  
external supplies are switched off entirely, resulting in minimum system power  
consumption. In this mode, the watchdog runs in Time-out mode or is completely off.  
Entering Sleep mode results in an immediate LOW level on pin RSTN, thus stopping any  
operation of the microcontroller. The INH/LIMP output is floating in parallel and pin V1 is  
disabled. It is also possible for V3 to be ON, OFF or in Cyclic mode to supply external  
wake-up switches.  
If the watchdog is not disabled in software, it will continue to run and force a system reset  
upon overflow of the programmed period time. The SBC enters Start-up mode and pin V1  
becomes active again. This behavior can be used for a cyclic wake-up from Sleep mode.  
Depending on the application, the following operations can be selected from Sleep mode:  
Cyclic wake-up by the watchdog (only in Time-out mode); a reset is performed  
periodically, the SBC provides information about the reset source to allow different  
start sequences after reset  
Wake-up by activity on the LIN-bus or falling edge at pin WAKE  
An overload on V3, only if V3 is in a cyclic or in continuously ON mode  
6.2.7 Flash mode  
Flash mode can only be entered from Normal mode by entering a specific Flash mode  
entry sequence. This fail-safe control sequence comprises three consecutive write  
accesses to the Mode register, within the legal windows of the watchdog, using the  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
11 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
operating mode codes 111, 001 and 111 respectively. As a result of this sequence, the  
SBC will enter Start-up mode and perform a system reset with the related reset source  
information (bits RSS[3:0] = 0110).  
From Start-up mode the application software now has to enter Flash mode within tWD(init)  
by writing Operating Mode code 011 to the Mode register. This feeds back a successfully  
received hardware reset (handshake between the SBC and the microcontroller). The  
transition from Start-up mode to Flash mode is possible only once after completing the  
Flash entry sequence.  
The application can also decide not to enter Flash mode but to return to Normal mode by  
using the Operating Mode code 101 for handshaking. This erases the Flash mode entry  
sequence.  
The watchdog behavior in Flash mode is similar to its time-out behavior in Standby mode,  
but Operating Mode code 111 must be used for serving the watchdog. If this code is not  
used or if the watchdog overflows, the SBC immediately forces a reset and enters Start-up  
mode. Flash mode is properly exited using the Operating Mode code 110 (leave Flash  
mode), which results in a system reset with the corresponding reset source information.  
Other Mode register codes will cause a forced reset with reset source code ‘illegal Mode  
register code’.  
6.3 On-chip oscillator  
The on-chip oscillator provides the clock signal for all digital functions and is the timing  
reference for the on-chip watchdog and the internal timers.  
If the on-chip oscillator frequency is too low or the oscillator is not running at all, there is  
an immediate transition to Fail-safe mode. The SBC will stay in Fail-safe mode until the  
oscillator has recovered to its normal frequency and the system receives a wake-up event.  
6.4 Watchdog  
The watchdog provides the following timing functions:  
Start-up mode; needed to give the software the opportunity to initialize the system  
Window mode; detects too early and too late accesses in Normal mode  
Time-out mode; detects a too late access, can also be used to restart or interrupt the  
microcontroller from time to time (cyclic wake-up function)  
OFF mode; fail-safe shut-down during operation thus preventing any blind spots in the  
system supervision  
The watchdog is clocked directly by the on-chip oscillator.  
To guarantee fail-safe control of the watchdog via the SPI, all watchdog accesses are  
coded with redundant bits. Therefore, only certain codes are allowed for a proper  
watchdog service.  
The following corrupted watchdog accesses result in an immediate system reset:  
Illegal watchdog period coding; only ten different codes are valid  
Illegal operating mode coding; only six different codes are valid  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
12 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Any microcontroller driven mode change is synchronized with a watchdog access by  
reading the mode information and the watchdog period information from the same  
register. This enables an easy software flow control with defined watchdog behavior when  
switching between different software modules.  
6.4.1 Watchdog start-up behavior  
Following any reset event the watchdog is used to monitor the ECU start-up procedure. It  
observes the behavior of the RSTN pin for any clamping condition or interrupted reset  
wire. In case the watchdog is not properly served within tWD(init), another reset is forced  
and the monitoring procedure is restarted. In case the watchdog is again not properly  
served, the system enters Fail-safe mode (see also Figure 4, Start-up mode and Restart  
mode).  
6.4.2 Watchdog window behavior  
Whenever the SBC enters Normal mode, the Window mode of the watchdog is activated.  
This ensures that the microcontroller operates within the required speed; a too fast as well  
as a too slow operation will be detected. Watchdog triggering using the Window mode is  
illustrated in Figure 5.  
period  
too early  
trigger window  
50 %  
100 %  
trigger  
restarts  
period  
trigger  
via SPI  
last  
trigger point  
earliest possible  
trigger point  
latest possible  
trigger point  
trigger restarts period  
(with different duration if  
desired)  
50 %  
100 %  
trigger  
window  
too early  
new period  
trigger  
via SPI  
earliest  
possible  
trigger  
point  
latest  
possible  
trigger  
point  
mce626  
Fig 5. Watchdog triggering using Window mode  
The SBC provides 10 different period timings, scalable with a 4-factor watchdog prescaler.  
The period can be changed within any valid trigger window. Whenever the watchdog is  
triggered within the window time, the timer will be reset to start a new period.  
The watchdog window is defined to be between 50 % and 100 % of the nominal  
programmed watchdog period. Any too early or too late watchdog access or wrong Mode  
register code access will result in an immediate system reset, entering Start-up mode.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
13 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.4.3 Watchdog time-out behavior  
Whenever the SBC operates in Standby mode, in Sleep mode or in Flash mode, the active  
watchdog operates in Time-out mode. The watchdog has to be triggered within the actual  
programmed period time; see Figure 6. The Time-out mode can be used to provide cyclic  
wake-up events to the host microcontroller from Standby mode and Sleep mode.  
period  
trigger range  
time-out  
trigger  
via SPI  
earliest  
possible  
trigger  
point  
latest  
possible  
trigger  
point  
trigger restarts period  
(with different duration if  
desired)  
trigger range  
new period  
time-out  
mce627  
Fig 6. Watchdog triggering using Time-out mode  
In Standby and in Flash mode the nominal periods can be changed with any SPI access  
to the Mode register.  
Any illegal watchdog trigger code results in an immediate system reset, entering Start-up  
mode.  
6.4.4 Watchdog OFF behavior  
In Standby mode and Sleep mode it is possible to switch off the watchdog entirely. For  
fail-safe reasons this is only possible if the microcontroller has stopped program  
execution. To ensure that there is no program execution, the V1 supply current is  
monitored by the SBC while the watchdog is switched off.  
When selecting the watchdog OFF code, the watchdog remains active until the  
microcontroller supply current has dropped below the current monitoring threshold IthL(V1)  
.
After the supply current has dropped below the threshold, the watchdog stops at the end  
of the watchdog period. In case the supply current does not drop below the monitoring  
threshold, the watchdog stays active.  
If the microcontroller supply current increases above IthH(V1) while the watchdog is OFF,  
the watchdog is restarted with the last used watchdog period time and a watchdog restart  
interrupt is forced, if enabled.  
In case of a direct mode change towards Standby mode with watchdog OFF selected, the  
longest possible watchdog period is used. It should be noted that in Sleep mode V1  
current monitoring is not active.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
14 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.5 System reset  
The reset function of the UJA1069 offers two signals to deal with reset events:  
RSTN; the global ECU system reset  
EN; a fail-safe global enable signal  
6.5.1 RSTN pin  
The system reset pin (RSTN) is a bidirectional input / output. Pin RSTN is active LOW with  
selectable pulse length upon the following events; see Figure 4:  
Power-on (first battery connection) or VBAT42 below power-on reset threshold voltage  
Low V1 supply  
V1 current above threshold during Standby mode while watchdog OFF behavior is  
selected  
V3 is down due to short-circuit condition during Sleep mode  
RSTN externally forced LOW, falling edge event  
Successful preparation for Flash mode completed  
Successful exit from Flash mode  
Wake-up from Standby mode via pins LIN or WAKE if programmed accordingly, or any  
wake-up event from Sleep mode  
Wake-up event from Fail-safe mode  
Watchdog trigger failures (too early, overflow, wrong code)  
Illegal mode code via SPI applied  
Interrupt not served within tRSTN(INT)  
All of these reset events have a dedicated reset source in the System Status register to  
allow distinction between the different events.  
The SBC will lengthen any reset event to 1 ms or 20 ms to ensure that external hardware  
is properly reset. After the first battery connection, a short power-on reset of 1 ms is  
provided after voltage V1 is present. Once started, the microcontroller can set the Reset  
Length Control (RLC) bit within the System Configuration Register; this allows the reset  
pulse to be adjusted for future reset events. With this bit set, all reset events are  
lengthened to 20 ms. Due to fail-safe behavior, this bit will be set automatically (to 20 ms)  
in Restart mode or Fail-safe mode. With this mechanism it is guaranteed that an  
erroneously shortened reset pulse will restart any microcontroller, at least within the  
second trial by using the long reset pulse.  
The behavior of pin RSTN is illustrated in Figure 7. The duration of tRSTNL depends on the  
setting of the RLC bit (defines the reset length). Once an external reset event is detected  
the system controller enters the Start-up mode. The watchdog now starts to monitor pin  
RSTN as illustrated in Figure 8. If the RSTN pin is not released in time then Fail-safe  
mode is entered as shown in Figure 4.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
15 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
V1  
V
V
rel(UV)(V1)  
det(UV)(V1)  
time  
power-up  
under-  
voltage  
missing  
watchdog voltage  
access spike  
under-  
power-  
down  
V
RSTN  
time  
t
t
t
RSTNL  
RSTNL  
RSTNL  
coa054  
Fig 7. Reset pin behavior  
V
RSTN  
time  
t
RSTNL  
t
WD(init)  
RSTN  
externally  
forced LOW  
V
RSTN  
time  
t
RSTNL  
t
RSTN externally forced LOW  
WD(init)  
001aad181  
Fig 8. Reset timing diagram  
Pin RSTN is monitored for a continuously clamped LOW situation. Once the SBC pulls pin  
RSTN HIGH but pin RSTN level remains LOW for longer than tRSTN(CLT), the SBC  
immediately enters Fail-safe mode since this indicates an application failure.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
16 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
The SBC also detects if pin RSTN is clamped HIGH. If the HIGH-level remains on the pin  
for longer than tRSTN(CHT) while pin RSTN is driven internally to a LOW-level by the SBC,  
the SBC falls back immediately to Fail-safe mode since the microcontroller cannot be  
reset any more. By entering Fail-safe mode, the V1 voltage regulator shuts down and the  
microcontroller stops.  
Additionally, chattering reset signals are handled by the SBC in such a way that the  
system safely falls back to Fail-safe mode with the lowest possible power consumption.  
6.5.2 EN output  
Pin EN can be used to control external hardware such as power components or as a  
general purpose output if the system is running properly. During all reset events, when pin  
RSTN is pulled LOW, the EN control bit will be cleared, pin EN will be pulled LOW and will  
stay LOW after pin RSTN is released. In Normal mode and Flash mode of the SBC, the  
microcontroller can set the EN control bit via the SPI. This results in releasing pin EN  
which then returns to a HIGH-level.  
6.6 Power supplies  
6.6.1 BAT14, BAT42 and SYSINH  
The SBC has two supply pins, pin BAT42 and pin BAT14. Pin BAT42 supplies most of the  
SBC where pin BAT14 only supplies the linear voltage regulators and the INH/LIMP output  
pin. This supply architecture allows different supply strategies including the use of  
external DC-to-DC converters controlled by the pin SYSINH.  
6.6.1.1 SYSINH output  
The SYSINH output is a high-side switch from BAT42. It is activated whenever the SBC  
requires supply voltage to pin BAT14, e.g. when V1 is on (see Figure 4 and Figure 8).  
Otherwise pin SYSINH is floating. Pin SYSINH can be used to control e.g. an external  
step-down voltage regulator to BAT14, to reduce power consumption in low-power modes.  
6.6.2 SENSE input  
The SBC has a dedicated SENSE pin for dynamic monitoring of the battery contact of an  
electronic control unit. Connecting this pin in front of the polarity protection diode of the  
ECU provides an early warning if the battery becomes disconnected.  
6.6.3 Voltage regulator V1  
The UJA1069 has an independent voltage regulator supplied out of the BAT14 pin.  
Regulator V1 is intended to supply the microcontroller.  
The V1 voltage is continuously monitored to provide the system reset signal when  
undervoltage situations occur. Whenever the V1 voltage falls below one of the three  
programmable thresholds, a hardware reset is forced.  
A dedicated V1 supply comparator (V1 Monitor) observes V1 for undervoltage events  
lower than VUV(VFI). This allows the application to receive a supply warning interrupt in  
case one of the lower V1 undervoltage reset thresholds is selected.  
The V1 regulator is overload protected. The maximum output current available from pin V1  
depends on the voltage applied to pin BAT14 according to the characteristics section. For  
thermal reasons, the total power dissipation should be taken into account.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
17 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.6.4 Switched battery output V3  
V3 is a high-side switched BAT42-related output which is used to drive external loads  
such as wake-up switches or relays. The features of V3 are as follows:  
Three application controlled modes of operation; ON, OFF or Cyclic mode.  
Two different cyclic modes allow the supply of external wake-up switches; these  
switches are powered intermittently, thus reducing the system’s power consumption in  
case a switch is continuously active; the wake-up input of the SBC is synchronized  
with the V3 cycle time.  
The switch is protected against current overloads. If V3 is overloaded, pin V3 is  
automatically disabled. The corresponding Diagnosis register bit is reset and an  
interrupt is forced (if enabled). During Sleep mode, a wake-up is forced and the  
corresponding reset source code becomes available in the RSS bits of the System  
Status register. This signals that the wake-up source via V3 supplied wake-up  
switches has been lost.  
6.7 LIN transceiver  
The integrated LIN transceiver of the UJA1069 is a LIN 2.0 compliant transceiver. The  
transceiver has the following features:  
SAE J2602 compliant and compatible with LIN revision 1.3  
Fail-safe LIN termination to BAT42 via dedicated RTLIN pin  
Enhanced error handling and reporting of bus and TXD failures; these failures are  
separately identified in the System Diagnosis register  
6.7.1 Mode control  
The controller of the LIN transceiver provides two modes of operation: Active mode and  
Off-line mode; see Figure 9. In Off-line mode the transmitter and receiver do not consume  
current, but wake-up events will be recognized by the separate wake-up receiver.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
18 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Active mode  
transmitter: ON/OFF (LTC)  
receiver: ON  
RXDL: bitstream  
RTLIN: ON/75 µA  
SBC enters  
SBC enters  
Normal or Flash mode  
AND LMC = 1  
Stand-by, Start-up,  
Restart or Fail-safe mode  
OR LMC = 0  
Off-line mode  
transmitter: OFF  
receiver: wake-up  
RXDL: wake-up status  
RTLIN: 75 µA/OFF  
SBC enters  
Fail-safe mode  
power-on  
001aad184  
Fig 9. States LIN transceiver  
6.7.1.1 Active mode  
In Active mode the LIN transceiver can transmit data to and receive data from the LIN bus.  
To enter Active mode the LMC bit must be set in the Physical Layer register and the SBC  
must be in Normal mode or Flash mode.  
The LTC bit can be used to set the LIN transceiver to a Listen-only mode. The transmitter  
output stage is disabled in this mode.  
When leaving Active mode the LIN transmitter is disabled and the LIN receiver is  
monitoring the LIN-bus for a valid wake-up.  
6.7.1.2 Off-line mode  
Off-line mode is the low-power mode of the LIN transceiver. The LIN transceiver is  
disabled to save supply current. Pin RXDL reflects any wake-up event at the LIN-bus.  
6.7.2 LIN wake-up  
For a remote wake-up via LIN a LIN-bus signal is required as shown in Figure 10.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
19 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
LIN  
wake-up  
t
BUS(LIN)  
001aad447  
Fig 10. LIN wake-up timing diagram  
6.7.3 Termination control  
The RTLIN pin is in one of 3 different states: RTLIN = on, RTLIN = off or RTLIN = 75 µA;  
see Figure 11.  
Active mode and receiver dominant > t  
LIN(dom)(det)  
OR Off-line mode  
RTLIN = 75 µA  
RTLIN = ON  
supplied directly  
out of BAT42  
supplied directly  
out of BAT42  
Active mode and receiver recessive > t  
LIN(dom)(rec)  
OR mode change to Active mode  
Off-line mode  
AND receiver recessive > t  
LIN(dom)(rec)  
Off-line mode  
AND receiver dominant > t  
mode change to Active mode  
LIN(dom)(det)  
power-on  
RTLIN = OFF  
001aad183  
Fig 11. States of the RTLIN pin  
During Active mode, with no short-circuit between the LIN-bus and GND, pin RTLIN  
provides an internal switch to BAT42. For master and slave operation an external resistor,  
1 kor 30 krespectively, can be applied between pins RTLIN and LIN. An external  
diode in series with the termination resistor is not required due to the incorporated internal  
diode.  
6.7.4 LIN slope control  
The LSC bit in the Physical Layer Control register offers a choice between two LIN slope  
times, allowing communication up to 20 kbit/s (normal) or up to 10.4 kbit/s (low slope).  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
20 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.7.5 LIN driver capability  
Setting the LDC bit in the Physical Layer Control register will increase the driver capability  
of the LIN output stage. This feature is used in auto-addressing systems, where the  
standard LIN 2.0 drive capability is insufficient.  
6.7.6 Bus and TXDL failure detection  
The SBC handles and reports the following LIN-bus related failures:  
LIN-bus shorted to ground  
LIN-bus shorted to VBAT14 or VBAT42; the transmitter is disabled  
TXDL clamped dominant; the transmitter is disabled  
These failure events force an interrupt to the microcontroller whenever the status changes  
and the corresponding interrupt is enabled.  
6.7.6.1 TXDL dominant clamping  
If the TXDL pin is clamped dominant for longer than tTXDL(dom)(dis) the LIN transmitter is  
disabled. After the TXDL pin becomes recessive the transmitter is reactivated  
automatically when detecting bus activity or manually by setting and clearing the LTC bit.  
6.7.6.2 LIN dominant clamping  
When the LIN-bus is clamped dominant for longer than tLIN(dom)(det) (which is longer than  
tTXDL(dom)(dis)), the state of the LIN termination is changed according to Figure 11.  
6.7.6.3 LIN recessive clamping  
If the LIN bus pin is clamped recessive while TXDL is driven dominant the LIN transmitter  
is disabled. The transmitter is reactivated automatically when the LIN bus becomes  
dominant or manually by setting and clearing the LTC bit.  
6.8 Inhibit and limp-home output  
The INH/LIMP output pin is a 3-state output pin which can be used either as an inhibit for  
an extra (external) voltage regulator, or as a ‘limp-home’ output. The pin is controlled via  
the ILEN bit and ILC bit in the System Configuration register; see Figure 12.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
21 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
state change via SPI  
OR enter Fail-safe mode  
INH/LIMP:  
HIGH  
INH/LIMP:  
LOW  
ILEN = 1  
ILC = 1  
ILEN = 1  
ILC = 0  
state change via SPI  
state change via SPI  
OR (enter Start-up mode after  
wake-up reset, external reset  
or V1 undervoltage)  
state change via SPI  
OR enter Fail-safe mode  
OR enter Restart mode  
OR enter Sleep mode  
state change via SPI  
state change via SPI  
INH/LIMP:  
floating  
ILEN = 0  
ILC = 1/0  
power-on  
001aad178  
Fig 12. States of the INH/LIMP pin  
When pin INH/LIMP is used as inhibit output, a pull-down resistor to GND ensures a  
default LOW level. The pin can be set to HIGH according to the state diagram.  
When pin INH/LIMP is used as limp-home output, a pull-up resistor to VBAT42 ensures a  
default HIGH level. The pin is automatically set to LOW when the SBC enters Fail-safe  
mode.  
6.9 Wake-up input  
The WAKE input comparator is triggered by negative edges on pin WAKE. Pin WAKE has  
an internal pull-up resistor to BAT42. It can be operated in two sampling modes which are  
selected via the WAKE Sample Control bit (WSC):  
Continuous sampling (with an internal clock) if the bit is set  
Sampling synchronized to the cyclic behavior of V3 if the bit is cleared; see Figure 13.  
This is to save bias current within the external switches in low-power operation. Two  
repetition times are possible, 16 ms and 32 ms.  
If V3 is continuously ON, the WAKE input will be sampled continuously, regardless of the  
level of bit WSC.  
The dedicated bits Edge Wake-up Status (EWS) and WAKE Level Status (WLS) in the  
System Status register reflect the actual status of pin WAKE. The WAKE port can be  
disabled by clearing the WEN bit in the System Configuration register.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
22 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
t
w(CS)  
t
on(CS)  
V
3
approximately 70 %  
t
su(CS)  
sample  
active  
button pushed  
button released  
signal already HIGH  
V
WAKE  
due to biasing (history)  
signal remains LOW  
due to biasing (history)  
flip flop  
V
INTN  
001aac307  
Fig 13. Pin WAKE, cyclic sampling via V3  
6.10 Interrupt output  
Pin INTN is an open-drain interrupt output. It is forced LOW whenever at least one bit in  
the Interrupt register is set. By reading the Interrupt register all bits are cleared. The  
Interrupt register will also be cleared during a system reset (RSTN LOW).  
As the microcontroller operates typically with an edge-sensitive interrupt port, pin INTN  
will be HIGH for at least tINTN after each read-out of the Interrupt register. Without further  
interrupts within tINTN pin INTN stays HIGH, otherwise it will revert to LOW again.  
To prevent the microcontroller from being slowed down by repetitive interrupts, in Normal  
mode some interrupts are only allowed to occur once per watchdog period; see  
Section 6.12.7.  
If an interrupt is not read out within tRSTN(INT) a system reset is performed.  
6.11 Temperature protection  
The temperature of the SBC chip is monitored as long as the microcontroller voltage  
regulator V1 is active. To avoid an unexpected shutdown of the application by the SBC,  
the temperature protection will not switch off any part of the SBC or activate a defined  
system stop of its own accord. If the temperature is too high it generates an interrupt to  
the microcontroller, if enabled, and the corresponding status bit will be set. The  
microcontroller can then decide whether to switch off parts of the SBC to decrease the  
chip temperature.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
23 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.12 SPI interface  
The Serial Peripheral Interface (SPI) provides the communication link with the  
microcontroller, supporting multi-slave and multi-master operation. The SPI is configured  
for full duplex data transfer, so status information is returned when new control data is  
shifted in. The interface also offers a read-only access option, allowing registers to be  
read back by the application without changing the register content.  
The SPI uses four interface signals for synchronization and data transfer:  
SCS - SPI chip select; active LOW  
SCK - SPI clock; default level is LOW due to low-power concept  
SDI - SPI data input  
SDO - SPI data output; floating when pin SCS is HIGH  
Bit sampling is performed on the falling clock edge and data is shifted on the rising clock  
edge; see Figure 14.  
SCS  
SCK  
SDI  
01  
02  
03  
04  
15  
16  
sampled  
X
MSB  
14  
14  
13  
13  
12  
12  
01  
01  
LSB  
LSB  
X
MSB  
SDO  
X
floating  
floating  
mce634  
Fig 14. SPI timing protocol  
To protect against wrong or illegal SPI instructions, the SBC detects the following SPI  
failures:  
SPI clock count failure (wrong number of clock cycles during one SPI access): only  
16 clock periods are allowed within one SCS cycle. Any deviation from the 16 clock  
cycles results in an SPI failure interrupt, if enabled. The access is ignored by the SBC.  
In Start-up and Restart mode a reset is forced instead of an interrupt  
Forbidden mode changes according to Figure 4 result in an immediate system reset  
Illegal Mode register code. Undefined operating mode or watchdog period coding  
results in an immediate system reset; see Section 6.12.3  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
24 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.12.1 SPI register mapping  
Any control bit which can be set by software is readable by the application. This allows  
software debugging as well as control algorithms to be implemented.  
Watchdog serving and mode setting is performed within the same access cycle; this only  
allows an SBC mode change whilst serving the watchdog.  
Each register carries 12 data bits; the other 4 bits are used for register selection and  
read/write definition.  
6.12.2 Register overview  
The SPI interface gives access to all SBC registers; see Table 3. The first two bits (A1 and  
A0) of the message header define the register address, the third bit is the read register  
select bit (RRS) to select one out of two possible feedback registers; the fourth bit (RO)  
allows ‘read only’ access to one of the feedback registers. Which of the SBC registers can  
be accessed also depends on the SBC operating mode.  
Table 3.  
Register overview  
Operating  
Register  
Write access (RO = 0)  
Read access (RO = 0 or RO = 1)  
address bits mode  
(A1, A0)  
Read Register Select  
(RRS) bit = 0  
Read Register Select  
(RRS) bit = 1  
00  
01  
all modes  
Mode register  
System Status register  
System Diagnosis register  
Interrupt register  
Normal mode;  
Standby mode;  
Flash mode  
Interrupt Enable register  
Interrupt Enable Feedback  
register  
Start-up mode; Special Mode register  
Restart mode  
Interrupt Enable Feedback  
register  
Special Mode Feedback  
register  
10  
11  
Normal mode;  
Standby mode register  
System Configuration  
System Configuration  
Feedback register  
General Purpose Feedback  
register 0  
Start-up mode; General Purpose register 0 System Configuration  
Restart mode;  
Flash mode  
General Purpose Feedback  
register 0  
Feedback register  
Normal mode;  
Standby mode register  
Physical Layer Control  
Physical Layer Control  
Feedback register  
General Purpose Feedback  
register 1  
Start-up mode; General Purpose register 1 Physical Layer Control  
General Purpose Feedback  
register 1  
Restart mode;  
Flash mode  
Feedback register  
6.12.3 Mode register  
In the Mode register the watchdog is defined and re-triggered, and the SBC operating  
mode is selected. The Mode register also contains the global enable output bit (EN) and  
the Software Development Mode (SDM) control bit. During system operation cyclic access  
to the Mode register is required to serve the watchdog. This register can be written to in all  
modes.  
At system start-up the Mode register must be written to within tWD(init) from releasing  
RSTN (HIGH-level on pin RSTN). Any write access is checked for proper watchdog and  
system mode coding. If an illegal code is detected, access is ignored by the SBC and a  
system reset is forced in accordance with the state diagram of the system controller; see  
Figure 4.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
25 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 4.  
Bit  
Mode register bit description (bits 15 to 12 and 5 to 0)  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address 00  
select Mode register  
13  
12  
RRS  
RO  
Read Register  
Select  
1
0
1
0
read System Diagnosis register  
read System Status register  
Read Only  
read selected register without writing to Mode register  
read selected register and write to Mode register  
11 to 6  
5 to 3  
NWP[5:0]  
OM[2:0]  
see Table 5  
Operating Mode 001  
Normal mode  
010  
011  
100  
101  
110  
111  
Standby mode  
initialize Flash mode[1]  
Sleep mode  
initialize Normal mode  
leave Flash mode  
Flash mode [1]  
2
SDM  
Software  
Development  
Mode  
1
0
Software development mode enabled[2]  
normal watchdog, interrupt, reset monitoring and fail-safe  
behavior  
1
0
EN  
-
Enable  
1
0
0
EN output pin HIGH  
EN output pin LOW  
reserved  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
[1] Flash mode can be entered only with the watchdog service sequence ‘Normal mode to Flash mode to Normal mode to Flash mode’,  
while observing the watchdog trigger rules. With the last command of this sequence the SBC forces a system reset, and enters Start-up  
mode to prepare the microcontroller for flash memory download. The four RSS bits in the System Status register reflect the reset source  
information, confirming the Flash entry sequence. By using the Initializing Flash mode (within tWD(init) after system reset) the SBC will  
now successfully enter Flash mode.  
[2] See Section 6.13.1.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
26 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 5.  
Bit  
Mode register bit description (bits 11 to 6)[1]  
Symbol  
Description  
Value  
Time  
Normal  
Standby  
Flash mode Sleep mode  
mode (ms)  
mode (ms)  
(ms)  
(ms)  
11 to 6  
NWP[5:0]  
Nominal  
Watchdog Period  
00 1001  
00 1100  
01 0010  
01 0100  
01 1011  
10 0100  
10 1101  
11 0011  
11 0101  
11 0110  
00 1001  
00 1100  
01 0010  
01 0100  
01 1011  
10 0100  
10 1101  
11 0011  
11 0101  
11 0110  
00 1001  
00 1100  
01 0010  
01 0100  
01 1011  
10 0100  
10 1101  
11 0011  
11 0101  
11 0110  
4
20  
20  
160  
8
40  
40  
320  
WDPRE = 00(as  
set in the Special  
Mode register)  
16  
32  
40  
48  
56  
64  
72  
80  
6
80  
80  
640  
160  
160  
1024  
2048  
3072  
4096  
6144  
8192  
OFF[3]  
240  
320  
320  
640  
640  
1024  
2048  
4096  
OFF[2]  
30  
1024  
2048  
4096  
8192  
30  
Nominal  
Watchdog Period  
12  
24  
48  
60  
72  
84  
96  
108  
120  
10  
20  
40  
80  
100  
120  
140  
160  
180  
200  
60  
60  
480  
WDPRE = 01(as  
set in the Special  
Mode register)  
120  
120  
960  
240  
240  
1536  
3072  
4608  
6144  
9216  
12288  
OFF[3]  
400  
480  
480  
960  
960  
1536  
3072  
6144  
OFF[2]  
50  
1536  
3072  
6144  
12288  
50  
Nominal  
Watchdog Period  
100  
100  
800  
WDPRE = 10(as  
set in the Special  
Mode register)  
200  
200  
1600  
2560  
5120  
7680  
10240  
15360  
20480  
OFF[3]  
400  
400  
800  
800  
1600  
1560  
5120  
10240  
OFF[2]  
1600  
1560  
5120  
10240  
20480  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
27 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 5.  
Bit  
Mode register bit description (bits 11 to 6)[1] …continued  
Symbol  
Description  
Value  
Time  
Normal  
Standby  
Flash mode Sleep mode  
mode (ms)  
mode (ms)  
(ms)  
(ms)  
11 to 6  
NWP[5:0]  
Nominal  
Watchdog Period  
00 1001  
00 1100  
01 0010  
01 0100  
01 1011  
10 0100  
10 1101  
11 0011  
11 0101  
11 0110  
14  
70  
70  
560  
28  
140  
140  
1120  
2240  
3584  
7168  
10752  
14336  
21504  
28672  
OFF[3]  
WDPRE = 11(as  
set in the Special  
Mode register)  
56  
280  
280  
112  
140  
168  
196  
244  
252  
280  
560  
560  
1120  
2240  
3584  
7168  
14336  
OFF[2]  
1120  
2240  
3584  
7168  
14336  
28672  
[1] The nominal watchdog periods are directly related to the SBC internal oscillator. The given values are valid for fosc = 512 kHz.  
[2] See Section 6.4.4.  
[3] The watchdog is immediately disabled on entering Sleep mode, with watchdog OFF behavior selected, because pin RSTN is  
immediately pulled LOW by the mode change. V1 is switched off after pulling pin RSTN LOW to guarantee a safe Sleep mode entry  
without dips on V1. See Section 6.4.4.  
6.12.4 System Status register  
This register allows status information to be read back from the SBC. This register can be  
read in all modes.  
Table 6.  
Bit  
System Status register bit description  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
Read Only  
00  
0
read System Status register  
13  
12  
RRS  
RO  
1
read System Status register without writing to Mode  
register  
0
read System Status register and write to Mode register  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
28 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 6.  
Bit  
System Status register bit description …continued  
Symbol  
Description  
Value  
Function  
11 to 8  
RSS[3:0]  
Reset Source[1]  
0000  
power-on reset; first connection of BAT42 or BAT42 below  
power-on voltage threshold or RSTN was forced LOW  
externally  
0001  
0010  
cyclic wake-up out of Sleep mode  
low V1 supply; V1 has dropped below the selected reset  
threshold  
0011  
0100  
V1 current above threshold within Standby mode while  
watchdog OFF behavior and reset option (V1CMC bit) are  
selected  
V3 voltage is down due to overload occurring during Sleep  
mode  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
SBC successfully left Flash mode  
SBC ready to enter Flash mode  
reserved for SBCs with CAN transceiver  
LIN wake-up event  
local wake-up event (via pin WAKE)  
wake-up out of Fail-safe mode  
watchdog overflow  
watchdog not initialized in time; tWD(init) exceeded  
watchdog triggered too early; window missed  
illegal SPI access  
interrupt not served within tRSTN(INT)  
reserved for SBCs with CAN transceiver  
LIN wake-up detected; cleared upon read  
no LIN wake-up  
7
6
-
reserved  
LWS  
LIN Wake-up Status  
1
0
5
4
3
2
1
0
EWS  
Edge Wake-up Status  
WAKE Level Status  
1
pin WAKE negative edge detected; cleared upon read  
pin WAKE no edge detected  
0
WLS  
1
pin WAKE above threshold  
0
pin WAKE below threshold  
TWS  
Temperature Warning  
Status  
1
chip temperature exceeds the warning limit  
chip temperature is below the warning limit  
Software Development mode on  
Software Development mode off  
pin EN output activated (V1-related HIGH level)  
pin EN output released (LOW level)  
0
SDMS  
ENS  
Software Development  
Mode Status  
1
0
Enable Status  
1
0
PWONS  
Power-on reset Status  
1
power-on reset; cleared after a successfully entered  
Normal mode  
0
no power-on reset  
[1] The RSS bits are updated with each reset event and not cleared. The last reset event is captured.  
6.12.5 System Diagnosis register  
This register allows diagnosis information to be read back from the SBC. This register can  
be read in all modes.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
29 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 7.  
Bit  
System Diagnosis register bit description  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
Read Only  
00  
1
read System Diagnosis register  
13  
12  
RRS  
RO  
1
read System Diagnosis register without writing to Mode  
register  
0
read System Diagnosis register and write to Mode register  
reserved for SBCs with CAN transceiver  
TXDL is clamped dominant  
11 to 7  
6 and 5  
-
reserved  
0 0000  
LINFD[1:0] LIN failure diagnosis  
11  
10  
01  
00  
1
LIN is shorted to GND (dominant clamped)  
LIN is shorted to VBAT (recessive clamped)  
no failure  
4
V3D  
V3 diagnosis  
OK  
0
fail; V3 is disabled due to an overload situation  
reserved for SBCs with another voltage regulator  
OK; V1 always above VUV(VFI) since last read access  
3
2
-
reserved  
1
V1D  
V1 diagnosis  
1
0
fail; V1 was below VUV(VFI) since last read access; bit is set  
again with read access  
1 and 0  
-
reserved  
00  
reserved for SBCs with CAN transceiver  
6.12.6 Interrupt Enable register and Interrupt Enable Feedback register  
These registers allow setting, clearing and reading back the interrupt enable bits of the  
SBC.  
Table 8.  
Bit  
Interrupt Enable and Interrupt Enable Feedback register bit description  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
01  
1
select the Interrupt Enable register  
read the Interrupt register  
13  
12  
RRS  
RO  
0
read the Interrupt Enable Feedback register  
Read Only  
1
read the register selected by RRS without writing to  
Interrupt Enable register  
0
1
read the register selected by RRS and write to Interrupt  
Enable register  
11  
10  
WTIE  
OTIE  
Watchdog Time-out  
Interrupt Enable[1]  
a watchdog overflow during Standby causes an interrupt  
instead of a reset event (interrupt based cyclic wake-up  
feature)  
0
1
no interrupt forced on watchdog overflow; a reset is forced  
instead  
Over-Temperature  
Interrupt Enable  
exceeding or dropping below the temperature warning limit  
causes an interrupt  
0
0
1
no interrupt forced  
9
8
-
reserved  
reserved for SBCs with CAN transceiver  
SPIFIE  
SPI clock count Failure  
Interrupt Enable  
wrong number of CLK cycles (more than, or less than 16)  
forces an interrupt; from Start-up mode and Restart mode a  
reset is performed instead of an interrupt  
0
no interrupt forced; SPI access is ignored if the number of  
cycles does not equal 16  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
30 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 8.  
Interrupt Enable and Interrupt Enable Feedback register bit description …continued  
Bit  
Symbol  
Description  
Value  
Function  
7
BATFIE  
BAT Failure Interrupt  
Enable  
1
0
1
0
0
1
0
1
falling edge at SENSE forces an interrupt  
no interrupt forced  
6
VFIE  
Voltage Failure Interrupt  
Enable  
clearing of V1D or V3D forces an interrupt  
no interrupt forced  
5
4
-
reserved  
reserved for SBCs with CAN transceiver  
any change of the LIN Failure status bits forces an interrupt  
no interrupt forced  
LINFIE  
LIN Failure Interrupt  
Enable  
3
WIE  
WAKE Interrupt  
Enable[2]  
a negative edge at pin WAKE generates an interrupt in  
Normal mode, Flash mode or Standby mode  
0
1
a negative edge at pin WAKE generates a reset in Standby  
mode; no interrupt in any other mode  
2
WDRIE  
Watchdog Restart  
Interrupt Enable  
a watchdog restart during watchdog OFF generates an  
interrupt  
0
0
1
no interrupt forced  
1
0
-
reserved  
reserved for SBCs with CAN transceiver  
LINIE  
LIN Interrupt Enable  
LIN-bus event results in a wake-up interrupt in Standby  
mode and in Normal or Flash mode (unless LIN is in Active  
mode already)  
0
LIN-bus event results in a reset in Standby mode; no  
interrupt in any other mode  
[1] This bit is cleared automatically upon each overflow event. It has to be set in software each time the interrupt behavior is required  
(fail-safe behavior).  
[2] WEN (in the System Configuration register) has to be set to activate the WAKE port function globally.  
6.12.7 Interrupt register  
The Interrupt register allows the cause of an interrupt event to be read. The register is  
cleared upon a read access and upon any reset event. Hardware ensures that no interrupt  
event is lost in case there is a new interrupt forced while reading the register. After reading  
the Interrupt register pin INTN is released for tINTN to guarantee an edge event at pin  
INTN.  
The interrupts can be classified into two groups:  
Timing critical interrupts which require immediate reaction (SPI clock count failure  
which needs a new SPI command to be resent immediately, and a BAT failure which  
needs critical data to be saved immediately into the nonvolatile memory)  
Interrupts which do not require an immediate reaction (overtemperature and LIN  
failures, V1 and V3 failures and the wake-ups via LIN and WAKE. These interrupts will  
be signalled in Normal mode to the microcontroller once per watchdog period  
(maximum); this prevents overloading the microcontroller with unexpected interrupt  
events (e.g. a chattering LIN failure). However, these interrupts are reflected in the  
interrupt register  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
31 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 9.  
Bit  
Interrupt register bit description  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
Read Only  
01  
1
read Interrupt register  
13  
12  
RRS  
RO  
1
read the Interrupt register without writing to the Interrupt  
Enable register  
0
1
read the Interrupt register and write to the Interrupt Enable  
register  
11  
10  
WTI  
OTI  
Watchdog Time-out  
Interrupt  
a watchdog overflow during Standby mode has caused an  
interrupt (interrupt-based cyclic wake-up feature)  
0
1
0
0
1
no interrupt  
OverTemperature  
Interrupt  
the temperature warning status (TWS) has changed  
no interrupt  
9
8
-
reserved  
reserved for SBCs with CAN transceiver  
SPIFI  
SPI clock count Failure  
Interrupt  
wrong number of CLK cycles (more than, or less than 16)  
during SPI access  
0
no interrupt; SPI access is ignored if the number of CLK  
cycles does not equal 16  
7
6
BATFI  
VFI  
BAT Failure Interrupt  
1
0
1
0
0
1
0
1
0
1
falling edge at pin SENSE has forced an interrupt  
no interrupt  
Voltage Failure Interrupt  
V1D or V3D has been cleared  
no interrupt  
5
4
-
reserved  
reserved for SBCs with CAN transceiver  
LIN failure status has changed  
no interrupt  
LINFI  
LIN Failure Interrupt  
3
2
WI  
Wake-up Interrupt  
a negative edge at pin WAKE has been detected  
no interrupt  
WDRI  
Watchdog Restart  
Interrupt  
A watchdog restart during watchdog OFF has caused an  
interrupt  
0
0
1
0
no interrupt  
1
0
-
reserved  
reserved for SBCs with CAN transceiver  
LIN wake-up event has caused an interrupt  
no interrupt  
LINI  
LIN Wake-up Interrupt  
6.12.8 System Configuration register and System Configuration Feedback register  
These registers allow configuration of the behavior of the SBC, and allow the settings to  
be read back.  
Table 10. System Configuration and System Configuration Feedback register bit description  
Bit  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
10  
1
select System Configuration register  
read the General Purpose Feedback register 0  
read the System Configuration Feedback register  
13  
RRS  
0
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
32 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 10. System Configuration and System Configuration Feedback register bit description …continued  
Bit  
Symbol  
Description  
Value  
Function  
12  
RO  
Read Only  
1
read register selected by RRS without writing to System  
Configuration register  
0
read register selected by RRS and write to System  
Configuration register  
11 and 10  
-
reserved  
00  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
9
8
-
reserved  
0
1[1]  
reserved for SBCs with CAN transceiver  
tRSTNL long reset lengthening time selected  
tRSTNL short reset lengthening time selected  
Cyclic mode 2; tw(CS) long period; see Figure 13  
Cyclic mode 1; tw(CS) short period; see Figure 13  
continuously ON  
RLC  
Reset Length Control  
0
7 and 6  
V3C[1:0]  
V3 Control  
11  
10  
01  
00  
0
OFF  
5
4
-
reserved  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
V1CMC  
V1 Current Monitor  
Control  
1
0
an increasing V1 current causes a reset if the watchdog  
was disabled during Standby mode  
an increasing V1 current just reactivates the watchdog  
during Standby mode, and an interrupt is forced (if enabled)  
3
2
1
0
WEN  
WSC  
ILEN  
ILC  
Wake Enable[2]  
1
0
1
0
1
0
1
0
WAKE pin enabled  
WAKE pin disabled  
Wake Sample Control  
INH/LIMP Enable  
INH/LIMP Control  
Wake mode cyclic sample  
Wake mode continuous sample  
INH/LIMP pin active (See ILC bit)  
INH/LIMP pin floating  
INH/LIMP pin HIGH if ILEN bit is set  
INH/LIMP pin LOW if ILEN bit is set  
[1] RLC is set automatically with entering Restart mode or Fail-safe mode. This guarantees a safe reset period in case of serious failure  
situations. External reset spikes are lengthened by the SBC until the programmed reset length is reached.  
[2] If WEN is not set, the WAKE port is completely disabled. There is no change of the bits EWS and WLS within the System Status  
register.  
6.12.9 Physical Layer Control register and Physical Layer Control Feedback  
register  
These registers allow configuration of the LIN transceiver of the SBC and allow the  
settings to be read back.  
Table 11. Physical Layer Control and Physical Layer Control Feedback register bit description  
Bit  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
11  
1
select Physical Layer Control register  
read the General Purpose Feedback register 1  
read the Physical Layer Control Feedback register  
13  
RRS  
0
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
33 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 11. Physical Layer Control and Physical Layer Control Feedback register bit description …continued  
Bit  
Symbol  
Description  
Value  
Function  
12  
RO  
Read Only  
1
read the register selected by RRS without writing to the  
Physical Layer Control register  
0
read the register selected by RRS and write to Physical  
Layer Control register  
11 to 5  
4
-
reserved  
000 0000 reserved for SBCs with CAN transceiver  
LMC  
LIN Mode Control  
1
0
1
0
1
0
1
0
1
0
LIN Active mode (in Normal mode and Flash mode only)  
LIN Active mode disabled  
3
2
1
0
LSC  
LDC  
LWEN  
LTC  
LIN Slope Control  
LIN Driver Control  
LIN Wake-up Enable  
up to 10.4 kbit/s (low slope)  
up to 20 kbit/s (normal)  
increased LIN driver current capability  
LIN driver in conformance with the LIN 2.0 standard  
wake-up via the LIN-bus enabled  
wake-up via the LIN-bus disabled  
LIN transmitter is disabled  
LIN Transmitter  
Control[1]  
LIN transmitter is enabled  
[1] In case of an RXDL / TXDL interfacing failure the LIN transmitter is disabled without setting LTC. Recovery from such a failure is  
automatic when LIN communication (with correct interfacing levels) is received. Manual recovery is also possible by setting and clearing  
the LTC bit under software control.  
6.12.10 Special Mode register and Special Mode Feedback register  
These registers allow configuration of global SBC parameters during start-up of a system  
and allow the settings to be read back.  
Table 12. Special Mode register and Special Mode Feedback register bit description  
Bit  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
01  
0
select Special Mode register  
read the Interrupt Enable Feedback register  
read the Special Mode Feedback register  
13  
12  
RRS  
RO  
1
Read Only  
1
read the register selected by RRS without writing to the  
Special Mode register  
0
0
read the register selected by RRS and write to the  
Special Mode register  
11 and 10  
9
-
reserved  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
ISDM  
Initialize Software  
Development Mode[1]  
1
0
initialization of software development mode  
normal watchdog interrupt, reset monitoring and fail-safe  
behavior  
8
7
-
-
reserved  
reserved  
0
0
reserved for SBCs with CAN transceiver  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
6 and 5  
WDPRE [1:0] Watchdog Prescaler  
00  
01  
10  
11  
watchdog prescale factor 1  
watchdog prescale factor 1.5  
watchdog prescale factor 2.5  
watchdog prescale factor 3.5  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
34 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 12. Special Mode register and Special Mode Feedback register bit description …continued  
Bit  
Symbol  
Description  
Value  
11  
Function  
4 and 3  
V1RTHC [1:0] V1 Reset Threshold  
Control  
V1 reset threshold = 0.9 × VV1(nom)  
V1 reset threshold = 0.7 × VV1(nom)  
V1 reset threshold = 0.8 × VV1(nom)  
V1 reset threshold = 0.9 × VV1(nom)  
[2]  
[3]  
10  
01  
00  
2 to 0  
-
reserved  
000  
reserved for future use; should remain cleared to ensure  
compatibility with future functions which might use this bit  
[1] See Section 6.13.1.  
[2] Not supported for the UJA1069TW/3V0 and UJA1069TW/3V3 version.  
[3] Not supported for the UJA1069TW/3V0 version.  
6.12.11 General Purpose registers and General Purpose Feedback registers  
The UJA1069 offers two 12-bit General Purpose registers (and accompanying General  
Purpose Feedback registers) with no predefined bit definition. These registers can be  
used by the microcontroller for advanced system diagnosis or for storing critical system  
status information outside the microcontroller. After Power-up General Purpose register 0  
will contain a ‘Device Identification Code’ consisting of the SBC type and SBC version.  
This code is available until it is overwritten by the microcontroller (as indicated by the DIC  
bit).  
Table 13. General Purpose register 0 and General Purpose Feedback register 0 bit description  
Bit  
Symbol  
A1, A0  
RRS  
Description  
Value  
Function  
15, 14  
13  
register address  
Read Register Select  
10  
1
read the General Purpose Feedback register 0  
read the General Purpose Feedback register 0  
read the System Configuration Feedback register  
0
12  
RO  
Read Only  
1
read the register selected by RRS without writing to the  
General Purpose register 0  
0
read the register selected by RRS and write to the General  
Purpose register 0  
11  
DIC  
Device Identification  
Control[1]  
1
0
General Purpose register 0 contains user-defined bits  
General Purpose register 0 contains the Device  
Identification Code  
10 to 0  
GP0[10:0]  
General Purpose bits[2]  
1
0
user-defined  
user-defined  
[1] The Device Identification Control bit is cleared during power-up of the SBC, indicating that General Purpose register 0 is loaded with the  
Device Identification Code. Any write access to General Purpose register 0 will set the DIC bit, regardless of the value written to DIC.  
[2] During power-up the General Purpose register 0 is loaded with a ‘Device Identification Code’ consisting of the SBC type and SBC  
version, and the DIC bit is cleared.  
Table 14. General Purpose register 1 and General Purpose Feedback register 1 bit description  
Bit  
Symbol  
Description  
Value  
Function  
15 and 14 A1, A0  
register address  
Read Register Select  
11  
1
select General Purpose register 1  
read the General Purpose Feedback register 1  
read the Physical Layer Control Feedback register  
13  
RRS  
0
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
35 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 14. General Purpose register 1 and General Purpose Feedback register 1 bit description …continued  
Bit  
Symbol  
Description  
Value  
Function  
12  
RO  
Read Only  
1
read the register selected by RRS without writing to the  
General Purpose register 1  
0
read the register selected by RRS and write to the General  
Purpose register  
11 to 0  
GP1[11:0]  
General Purpose bits  
1
0
user-defined  
user-defined  
6.12.12 Register configurations at reset  
At Power-on, Start-up and Restart mode the setting of the SBC registers is predefined.  
Table 15. System Status register: status at reset  
Symbol  
RSS  
Name  
Power-on  
Start-up[1]  
Restart[1]  
Reset Source Status  
LIN Wake-up Status  
0000 (power-on reset)  
0 (no LIN wake-up)  
any value except 1100  
0000 or 0010 or 1100 or 1110  
LWS  
1 if reset is caused by a no change  
LIN wake-up, otherwise  
no change  
EWS  
Edge Wake-up Status 0 (no edge detected)  
1 if reset is caused by a no change  
wake-up via pin WAKE,  
otherwise no change  
WLS  
TWS  
WAKE Level Status  
actual status  
actual status  
actual status  
actual status  
actual status  
Temperature Warning  
Status  
0 (no warning)  
SDMS  
Software Development actual status  
Mode Status  
actual status  
actual status  
ENS  
Enable Status  
0 (EN = LOW)  
0 (EN = LOW)  
no change  
0 (EN = LOW)  
no change  
PWONS  
Power-on Status  
1 (power-on reset)  
[1] Depends on history.  
Table 16. System Diagnosis register: status at reset  
Symbol  
LINFD  
V3D  
Name  
Power-on  
Start-up  
Restart  
LIN Failure Diagnosis 00 (no failure)  
actual status  
actual status  
actual status  
actual status  
actual status  
actual status  
V3 Diagnosis  
V1 Diagnosis  
1 (OK)  
0 (fail)  
V1D  
Table 17. Interrupt Enable register and Interrupt Enable Feedback register: status at reset  
Symbol  
Name  
Power-on  
Start-up  
Restart  
All  
all bits  
0 (interrupt disabled)  
no change  
no change  
Table 18. Interrupt register: status at reset  
Symbol  
Name  
Power-on  
Start-up  
Restart  
All  
all bits  
0 (no interrupt)  
0 (no interrupt)  
0 (no interrupt)  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
36 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 19. System Configuration register and System Configuration Feedback register: status at reset  
Symbol  
RLC  
Name  
Power-on  
0 (short)  
00 (off)  
Start-up  
Restart  
Fail-Safe  
1 (long)  
Reset Length Control  
V3 Control  
no change  
no change  
no change  
1 (long)  
V3C  
no change  
no change  
no change  
no change  
V1CMC  
V1 Current Monitor  
Control  
0 (watchdog  
restart)  
WEN  
WSC  
ILEN  
Wake Enable  
1 (enabled)  
no change  
no change  
no change  
no change  
no change  
no change  
Wake Sample Control 0 (control)  
INH/LIMP Enable  
0 (floating)  
see Figure 12  
if ILC = 1,  
0 (floating) if ILC = 1, 1 (active)  
otherwise no change  
otherwise no change  
ILC  
INH/LIMP Control  
0 (LOW)  
no change  
no change  
0 (LOW)  
Table 20. Physical Layer Control register and Physical Layer Control Feedback register: status at reset  
Symbol  
Name  
Power-on  
Start-up  
Restart  
Fail-Safe  
LMC  
LIN Mode Control  
0 (Active mode  
disabled)  
no change  
no change  
no change  
LSC  
LDC  
LWEN  
LTC  
LIN Slope Control  
LIN Driver Control  
LIN Wake-up Enable  
0 (normal)  
0 (LIN 2.0)  
1 (enabled)  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
LIN Transmitter Control 0 (on)  
Table 21. Special Mode register: status at reset  
Symbol  
ISDM  
Name  
Power-on  
Start-up  
Restart  
Initialize Software Development Mode  
Error pin emulation mode  
Watchdog Prescale Factor  
V1 Reset Threshold Control  
0 (no)  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
00 (90 %)  
ERREM  
WDPRE  
V1RTHC  
0 (EN function)  
00 (factor 1)  
00 (90 %)  
Table 22. General Purpose register 0 and General Purpose Feedback register 0: status at reset  
Symbol  
DIC  
Name  
Power-on  
Start-up  
Restart  
Device Identification Control  
general purpose bits 10 to 7 (version)  
0 (Device ID)  
Mask version  
no change  
no change  
no change  
no change  
no change  
GP0[10:7]  
GP0[6:0]  
general purpose bits 6 to 0 (SBC type) 000 0101 (UJA1069) no change  
Table 23. General Purpose register 1 and General Purpose Feedback register 1: status at reset  
Symbol  
Name  
Power-on  
Start-up  
Restart  
GP1[11:0]  
general purpose bits 11 to 0  
0000 0000 0000  
no change  
no change  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
37 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.13 Test modes  
6.13.1 Software development mode  
The Software development mode is intended to support software developers in writing  
and pretesting application software without having to work around watchdog triggering  
and without unwanted jumps to Fail-safe mode.  
In Software development mode the following events do not force a system reset:  
Watchdog overflow in Normal mode  
Watchdog window miss  
Interrupt time-out  
Elapsed start-up time  
However, in case of a watchdog trigger failure the reset source information is still provided  
in the System Status register as if there was a real reset event.  
The exclusion of watchdog related resets allows simplified software testing, because  
possible problems in the watchdog triggering can be indicated by interrupts instead of  
resets. The SDM bit does not affect the watchdog behavior in Standby and Sleep mode.  
This allows the cyclic wake-up behavior to be evaluated during Standby and Sleep mode  
of the SBC.  
All transitions to Fail-safe mode are disabled. This allows working with an external  
emulator that clamps the reset line LOW in debugging mode. A V1 undervoltage of more  
than tV1(CLT) is the only exception that results in entering Fail-safe mode (to protect the  
SBC). Transitions from Start-up mode to Restart mode are still possible.  
There are two possibilities to enter Software development mode. One is by setting the  
ISDM bit via the Special Mode register; possible only once after a first battery connection  
while the SBC is in Start-up mode. The second possibility to enter Software development  
mode is by applying the correct Vth(TEST) input voltage at pin TEST before the battery is  
applied to pin BAT42.  
To stay in Software development mode the SDM bit in the Mode register has to be set with  
each Mode register access (i.e. watchdog triggering) regardless of how Software  
development mode was entered.  
The Software development mode can be exited at any time by clearing the SDM bit in the  
Mode register. Reentering the Software development mode is only possible by  
reconnecting the battery supply (pin BAT42), thereby forcing a new power-on reset.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
38 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
6.13.2 Forced normal mode  
For system evaluation purposes the UJA1069 offers the Forced normal mode. This mode  
is strictly for evaluation purposes only. In this mode the characteristics as defined in  
Section 9 and Section 10 cannot be guaranteed.  
In Forced normal mode the SBC behaves as follows:  
SPI access (writing and reading) is blocked  
Watchdog disabled  
Interrupt monitoring disabled  
Reset monitoring disabled  
Reset lengthening disabled  
All transitions to Fail-safe mode are disabled, except a V1 undervoltage for more than  
tV1(CLT)  
V1 is started with the long reset time tRSTNL. In case of a V1 undervoltage, a reset is  
performed until V1 is restored (normal behavior), and the SBC stays in Forced normal  
mode; in case of an overload at V1 > tV1(CLT) Fail-safe mode is entered  
V3 is on; overload protection active  
LIN is in Active mode and cannot switch to Off-line mode  
INH/LIMP pin is HIGH  
SYSINH is HIGH  
EN pin at same level as RSTN pin  
Forced normal mode is activated by applying the correct Vth(TEST) input voltage at the  
TEST pin during first battery connection.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
39 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
7. Limiting values  
Table 24. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol  
Parameter  
Conditions  
Min  
0.3  
-
Max  
+60  
+60  
Unit  
V
VBAT42  
BAT42 supply voltage  
load dump; t 500 ms  
V
VBAT14  
BAT14 supply voltage  
VBAT42 VBAT14 1 V  
continuous  
0.3  
+33  
+45  
V
V
load dump; t 500 ms  
-
VDC(n)  
DC voltage on pins  
V1  
0.3  
1.5  
0.3  
0.3  
1.5  
60  
+5.5  
V
V
V
V
V
V
V
V3 and SYSINH  
INH/LIMP  
VBAT42 + 0.3  
VBAT42 + 0.3  
VBAT42 + 1.2  
+60  
SENSE  
WAKE  
LIN and RTLIN  
with respect to any other pin  
+60  
TXDL, RXDL, SDO, SDI, SCK, SCS,  
RSTN, INTN and EN  
0.3  
VV1 + 0.3  
TEST  
0.3  
+15  
V
V
Vtrt  
transient voltage at pin LIN  
in accordance with  
ISO 7637-3  
150  
+100  
[1]  
IWAKE  
Tstg  
DC current at pin WAKE  
storage temperature  
15  
55  
40  
40  
-
mA  
°C  
°C  
°C  
+150  
+125  
+150  
Tamb  
Tvj  
ambient temperature  
[2]  
[3]  
[4]  
virtual junction temperature  
electrostatic discharge voltage  
Vesd  
HBM  
at pins LIN, RTLIN,  
WAKE, BAT42, V3,  
SENSE; with respect to  
GND  
8.0  
+8.0  
kV  
at any other pin  
MM; at any pin  
2.0  
+2.0  
kV  
V
[5]  
200  
+200  
[1] Only relevant if VWAKE < VGND 0.3 V; current will flow into pin GND.  
[2] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature is: Tvj = Tamb + Pd × Rth(vj-amb), where Rth(vj-amb)  
is a fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (Pd) and  
ambient temperature (Tamb).  
[3] Human Body Model (HBM): C = 100 pF; R = 1.5 k.  
[4] ESD performance according to IEC 61000-4-2 (C = 150 pF, R = 330 ) of pins LIN, RTLIN, WAKE, BAT42 and V3 with respect to GND  
was verified by an external test house. Following results were obtained:  
a) Equal or better than ±4 kV (unaided)  
b) Equal or better than ±20 kV for pin LIN (using external ESD protection: NXP Semiconductors PESD1LIN diode)  
[5] Machine Model (MM): C = 200 pF; L = 0.75 µH; R = 10 .  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
40 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
8. Thermal characteristics  
V1 dissipation  
V3 dissipation  
other dissipation  
T
vj  
6 K/W  
23 K/W  
6 K/W  
6 K/W  
T
T
(heat sink)  
001aad671  
case  
R
th(c-a)  
amb  
Fig 15. Thermal model of the HTSSOP32 package  
V1 dissipation  
V3 dissipation  
other dissipation  
T
vj  
6 K/W  
17 K/W  
6 K/W  
6 K/W  
T
T
(heat sink)  
case  
R
th(c-a)  
amb  
001aae136  
Fig 16. Thermal model of the HTSSOP24 package  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
41 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
9. Static characteristics  
Table 25. Static characteristics  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply; pin BAT42  
IBAT42  
BAT42 supply  
current  
V1 and V3 off; LIN in Off-line  
mode; OTIE = BATFIE = 0;  
I
I
SYSINH = IWAKE = IRTLIN  
LIN = 0 mA  
=
VBAT42 = 8.1 V to 52 V  
VBAT42 = 5.5 V to 8.1 V  
-
-
-
-
-
50  
70  
53  
0
70  
93  
76  
1
µA  
µA  
µA  
µA  
µA  
IBAT42(add)  
additional BAT42  
supply current  
V1 on; ISYSINH = 0 mA  
V3 in Cyclic mode; IV3 = 0 mA  
V3 continuously on;  
IV3 = 0 mA  
30  
50  
Tvj warning enabled; OTIE = 1  
SENSE enabled; BATFIE = 1  
LIN in Active mode;  
-
-
-
20  
2
40  
µA  
µA  
µA  
7
650  
1300  
LMC = 1; VTXDL = VV1  
RTLIN = ILIN = 0 mA  
;
I
LIN in Active mode; LMC = 1;  
VTXDL = 0 V (t < tLIN(dom)(det));  
IRTLIN = ILIN = 0 mA  
VBAT42 = 12 V  
-
-
1.5  
3
5
mA  
mA  
VBAT42 = 27 V  
10  
VPOR(BAT42)  
BAT42 voltage level for setting PWONS  
for power-on reset  
PWONS = 0; VBAT42 falling  
4.45  
4.75  
-
-
5
V
status bit change  
for clearing PWONS  
PWONS = 1; VBAT42 rising  
-
5.5  
5
V
Supply; pin BAT14  
IBAT14  
BAT14 supply  
current  
V1 off; LIN in Off-line mode;  
ILEN = 0; IINH/LIMP = 0 mA  
2
µA  
IBAT14(add)additional BAT14 supply current V1 on; IV1 = 0 mA  
V1 on; IV1 = 0 mA;  
-
-
200  
150  
300  
200  
µA  
µA  
VBAT14 = 12 V  
INH/LIMP enabled; ILEN = 1;  
IINH/LIMP = 0 mA  
-
1
-
2
µA  
V
VBAT14  
BAT14 voltage level for normal output current  
capability at V1  
9
6
27  
8
for high output current  
capability at V1  
-
V
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
42 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 25. Static characteristics …continued  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Battery supply monitor input; pin SENSE  
Vth(SENSE)  
input threshold low  
battery voltage  
detection  
1
2.5  
-
3
V
release  
1.7  
20  
5
4
V
IIH(SENSE)  
HIGH-level input  
current  
Normal mode; BATFIE = 1  
Standby mode; BATFIE = 1  
50  
10  
0.2  
100  
20  
2
µA  
µA  
µA  
Normal mode or Standby  
mode; BATFIE = 0  
-
Voltage source; pin V1[2]; see also Figure 17 to Figure 23  
Vo(V1)  
output voltage  
VBAT14 = 5.5 V to 18 V;  
V1 = 120 mA to 5 mA;  
Tj = 25 °C  
VV1(nom)  
0.1  
VV1(nom)  
VV1(nom)  
0.1  
+
+
V
I
VBAT14 = 14 V; IV1 = 5 mA;  
VV1(nom)  
0.025  
VV1(nom)  
VV1(nom)  
0.025  
V
Tj = 25 °C  
VV1  
supply voltage  
regulation  
VBAT14 = 9 V to 16 V;  
-
1
5
25  
mV  
mV  
I
V1 = 5 mA; Tj = 25 °C  
VBAT14 = 14 V;  
V1 = 50 mA to 5 mA;  
load regulation  
-
25  
I
Tj = 25 °C  
[3]  
voltage drift with  
temperature  
VBAT14 = 14 V; IV1 = 5 mA;  
Tj = 40 °C to +150 °C  
-
-
200  
ppm/K  
Vdet(UV)(V1)  
undervoltage  
detection and reset V1RTHC[1:0] = 00 or 11  
activation level  
V
BAT14 = 14 V;  
0.90 ×  
VV1(nom)  
0.92 ×  
VV1(nom)  
0.95 ×  
VV1(nom)  
V
V
V
V
V
V
V
VBAT14 = 14 V;  
V1RTHC[1:0] = 01  
0.80 ×  
VV1(nom)  
0.82 ×  
VV1(nom)  
0.85 ×  
VV1(nom)  
VBAT14 = 14 V;  
V1RTHC[1:0] = 10  
0.70 ×  
VV1(nom)  
0.72 ×  
VV1(nom)  
0.75 ×  
VV1(nom)  
Vrel(UV)(V1)  
undervoltage  
detection release  
level  
VBAT14 = 14 V;  
-
-
-
0.94 ×  
VV1(nom)  
-
-
-
V1RTHC[1:0] = 00 or 11  
VBAT14 = 14 V;  
V1RTHC[1:0] = 01  
0.84 ×  
VV1(nom)  
VBAT14 = 14 V;  
V1RTHC[1:0] = 10  
0.74 ×  
VV1(nom)  
VUV(VFI)  
IthH(V1)  
IthL(V1)  
undervoltage level  
for generating a VFI  
interrupt  
VBAT14 = 14 V; VFIE = 1  
0.90 ×  
VV1(nom)  
0.93 ×  
VV1(nom)  
0.97 ×  
VV1(nom)  
undercurrent  
threshold for  
watchdog enable  
10  
6  
5  
3  
2  
mA  
mA  
undercurrent  
1.5  
threshold for  
watchdog disable  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
43 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 25. Static characteristics …continued  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IV1  
output current  
capability  
VBAT14 = 9 V to 27 V;  
δVV1 = 0.05 × VV1(nom)  
200  
135  
120  
mA  
VBAT14 = 9 V to 27 V;  
V1 shorted to GND  
200  
110  
-
mA  
mA  
mA  
mA  
VBAT14 = 6 V to 8 V;  
δVV1 = 0.05 × VV1(nom)  
-
-
-
-
-
250  
150  
250  
5
VBAT14 = 5.5 V;  
δVV1 = 0.05 × VV1(nom)  
-
VBAT14 = 5.5 V;  
δVV1 = 0.25 × VV1(nom)  
-
Zds(on)  
regulator impedance VBAT14 = 4 V to 5 V  
between pins BAT14  
3
and V1  
Voltage source; pin V3  
VBAT42-V3(drop)  
Idet(OL)(V3)  
IL  
VBAT42 to VV3 voltage VBAT42 = 9 V to 52 V;  
-
-
1.0  
60  
5
V
drop  
IV3 = 20 mA  
overload current  
VBAT42 = 9 V to 52 V  
165  
-
mA  
µA  
detection threshold  
leakage current  
VV3 = 0 V; V3C[1:0] = 00  
-
0
System inhibit output; pin SYSINH  
VBAT42-SYSINH(drop) VBAT42 to VSYSINH  
voltage drop  
ISYSINH = 0.2 mA  
-
-
1.0  
-
2.0  
5
V
IL  
leakage current  
VSYSINH = 0 V  
µA  
Inhibit/limp-home output; pin INH/LIMP  
VBAT14-INH(drop)  
VBAT14 to VINH  
voltage drop  
IINH/LIMP = 10 µA;  
ILEN = ILC = 1  
-
0.7  
1.2  
-
1.0  
2.0  
4
V
IINH/LIMP = 200 µA;  
ILEN = ILC = 1  
-
V
Io(INH/LIMP)  
IL  
output current  
capability  
VINH/LIMP = 0.4 V;  
ILEN = 1; ILC = 0  
0.8  
-
mA  
µA  
leakage current  
VINH/LIMP = 0 V to VBAT14  
ILEN = 0  
;
-
5
Wake input; pin WAKE  
Vth(WAKE) wake-up voltage  
threshold  
pull-up input current VWAKE = 0 V  
Serial peripheral interface inputs; pins SDI, SCK and SCS  
2.0  
3.3  
-
5.2  
V
IWAKE(pu)  
25  
1.3  
µA  
VIH(th)  
HIGH-level input  
threshold voltage  
0.7 × VV1  
0.3  
-
VV1 + 0.3  
+0.3 × VV1  
400  
V
VIL(th)  
LOW-level input  
threshold voltage  
-
V
Rpd(SCK)  
pull-down resistor at VSCK = 2 V; VV1 2 V  
50  
130  
kΩ  
pin SCK  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
44 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 25. Static characteristics …continued  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rpu(SCS)  
pull-up resistor at  
pin SCS  
VSCS = 1 V; VV1 2 V  
50  
130  
400  
kΩ  
ISDI  
input leakage current VSDI = 0 V to VV1  
at pin SDI  
5  
-
+5  
µA  
Serial peripheral interface data output; pin SDO  
IOH  
HIGH-level output  
current  
VSCS = 0 V; VO = VV1 0.4 V  
50  
1.6  
5  
-
-
-
1.6  
20  
mA  
mA  
µA  
IOL  
LOW-level output  
current  
VSCS = 0 V; VO = 0.4 V  
IOL(off)  
OFF-state output  
leakage current  
VSCS = VV1; VO = 0 V to VV1  
+5  
Reset output with clamping detection; pin RSTN  
IOH  
HIGH-level output  
current  
VRSTN = 0.7 × VV1(nom)  
1000  
-
-
-
-
-
50  
µA  
mA  
V
IOL  
LOW-level output  
current  
VRSTN = 0.9 V  
1
5
VOL  
LOW-level output  
voltage  
VV1 = 1.5 V to 5.5 V;  
pull-up resistor to V1 4 kΩ  
0
0.2 × VV1  
VV1 + 0.3  
+0.3 × VV1  
VIH(th)  
VIL(th)  
HIGH-level input  
threshold voltage  
0.7 × VV1  
0.3  
V
LOW-level input  
threshold voltage  
V
Enable output; pin EN  
IOH HIGH-level output  
VOH = VV1 0.4 V  
VOL = 0.4 V  
20  
1.6  
0
-
-
-
1.6  
20  
mA  
mA  
V
current  
IOL  
LOW-level output  
current  
VOL  
LOW-level output  
voltage  
IOL = 20 µA; VV1 = 1.2 V  
0.4  
Interrupt output; pin INTN  
IOL LOW-level output  
current  
LIN transmit data input; pin TXDL  
VOL = 0.4 V  
1.6  
-
15  
mA  
VIL  
LOW level input  
voltage  
0.3  
-
+0.3 × VV1  
VV1 + 0.3  
25  
V
VIH  
HIGH-level input  
voltage  
0.7 × VV1  
-
V
RTXDL(pu)  
TXDL pull-up  
resistor  
VTXDL = 0 V  
5
12  
kΩ  
LIN receive data output; pin RXDL  
IOH  
HIGH-level output  
current  
VRXDL = VV1 0.4 V  
50  
-
-
1.6  
mA  
mA  
IOL  
LOW-level output  
current  
VRXDL = 0.4 V  
1.6  
20  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
45 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 25. Static characteristics …continued  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
LIN-bus line; pin LIN  
Vo(dom) LIN dominant output Active mode;  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0
-
0.20 ×  
V
voltage  
V
BAT42 = 7 V to 18 V;  
LDC = 0; t < tTXDL(dom)(dis)  
TXDL = 0 V;  
BAT42-LIN = 500 Ω  
VBAT42  
;
;
V
R
Active mode;  
BAT42 = 7.6 V to 18 V;  
LDC = 1; t < tTXDL(dom)(dis)  
TXDL = 0 V; ILIN = 40 mA  
0.7  
1.4  
2.1  
V
V
V
ILIH  
HIGH-level input  
leakage current  
VLIN = VBAT42; VTXDL = VV1  
10  
10  
0
0
+10  
+10  
µA  
µA  
VBAT42 = 8 V;  
V
V
LIN = 8 V to 18 V;  
TXDL = VV1  
ILIL  
LOW-level input  
leakage current  
VBAT42 = 12 V; VLIN = 0 V;  
TXDL = VV1  
100  
-
-
µA  
V
Io(sc)  
short-circuit output  
current  
Active mode;  
27  
40  
60  
mA  
VLIN = VBAT42 = 12 V;  
V
TXDL = 0 V; t < tTXDL(dom)(dis)  
;
;
LDC = 0  
Active mode;  
40  
-
60  
90  
mA  
VLIN = VBAT42 = 18 V;  
VTXDL = 0 V; t < tTXDL(dom)(dis)  
LDC = 0  
Vth(dom)  
Vth(reces)  
Vth(hyst)  
Vth(cen)  
receiver dominant  
state  
VBAT42 = 7 V to 27 V  
-
-
-
0.4 ×  
VBAT42  
V
receiver recessive  
state  
VBAT42 = 7 V to 27 V  
VBAT42 = 7 V to 27 V  
VBAT42 = 7 V to 27 V  
0.6 ×  
VBAT42  
-
V
receiver threshold  
voltage hysteresis  
0.05 ×  
VBAT42  
0.175 ×  
VBAT42  
V
receiver threshold  
voltage center  
0.475 ×  
VBAT42  
0.500 ×  
VBAT42  
0.525 ×  
VBAT42  
V
[3]  
Ci  
IL  
input capacitance  
leakage current  
-
-
10  
pF  
VLIN = 0 V to 18 V  
VBAT42 = 0 V  
5  
0
0
+5  
µA  
µA  
VGND = VBAT42 = 12 V  
10  
+10  
LIN-bus termination resistor connection; pin RTLIN  
VRTLIN  
RTLIN output  
voltage  
Active mode; IRTLIN = 10 µA;  
BAT42 = 7 V to 27 V  
VBAT42  
1.0  
VBAT42  
0.7  
VBAT42  
0.2  
V
V
V
Off-line mode;  
RTLIN = 10 µA;  
BAT42 = 7 V to 27 V  
VBAT42  
1.2  
VBAT42  
1.0  
-
I
V
VRTLIN  
RTLIN load  
regulation  
Active mode;  
RTLIN = 10 µA to 10 mA;  
BAT42 = 7 V to 27 V  
-
0.65  
2
V
I
V
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
46 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 25. Static characteristics …continued  
Tvj = 40 °C to +150 °C, VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IRTLIN(pu)  
RTLIN pull-up  
current  
Active mode;  
150  
60  
35  
µA  
VRTLIN = VLIN = 0 V;  
t > tLIN(dom)(det)  
Off-line mode;  
150  
10  
60  
35  
µA  
µA  
VRTLIN = VLIN = 0 V;  
t < tLIN(dom)(det)  
ILL  
LOW-level leakage  
current  
Off-line mode;  
0
+10  
VRTLIN = VLIN = 0 V;  
t > tLIN(dom)(det)  
TEST input; pin TEST  
Vth(TEST) input threshold  
for entering Software  
development mode;  
Tj = 25 °C  
1
5
8
V
voltage  
for entering Forced normal  
mode; Tj = 25 °C  
2
2
10  
4
13.5  
8
V
R(pd)TEST  
pull-down resistor  
between pin TEST and GND  
kΩ  
Temperature detection  
Tj(warn) high junction  
160  
175  
190  
°C  
temperature warning  
level  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Products are 100 % tested at 125 °C ambient  
temperature on wafer level (pretesting). Cased products are 100 % tested at 25 °C ambient temperature (final testing). Both pretesting  
and final testing use correlated test conditions to cover the specified temperature and power supply voltage range.  
[2] VV1(nom) is 3 V, 3.3 V or 5 V, depending on the SBC version.  
[3] Not tested in production.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
47 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
001aaf215  
6
5
4
3
2
V
V1  
(V)  
type 5V0  
I
=
V1  
100 µA  
50 mA  
120 mA  
250 mA  
type 3V3  
type 3V0  
2
3
4
5
6
7
V
(V)  
BAT14  
a. Tj = 25 °C.  
001aaf244  
6
V
V1  
(V)  
type 5V0  
5
4
3
2
I
=
V1  
100 µA  
50 mA  
120 mA  
250 mA  
type 3V3  
type 3V0  
2
3
4
5
6
7
V
(V)  
BAT14  
b. Tj = 150 °C.  
Fig 17. V1 output voltage (dropout) as a function of battery voltage  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
48 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
001aaf246  
10  
I  
T = +150 °C  
j
I
BAT14  
V1  
(mA)  
8
6
4
2
0
T = 40 °C  
j
+25 °C  
+150 °C  
+25 °C  
40 °C  
(1)  
(2)  
V
= 8 V  
BAT14  
5.5 V  
0
50  
100  
150  
200  
250  
I
(mA)  
V1  
(1) Types 5V0, 3V3 and 3V0.  
(2) Type 5V0 only.  
a. At Tj = 40 °C, +25 °C and +150 °C.  
001aaf247  
5
I
I  
V1  
BAT14  
(mA)  
4
3
2
1
0
(1)  
(2)  
V
= 9 V to 27 V  
BAT14  
5.5 V  
0
50  
100  
150  
200  
250  
I
(mA)  
V1  
(1) Types 5V0, 3V3 and 3V0.  
(2) Types 3V3 and 3V0.  
b. At Tj = 40 °C to +150 °C.  
Fig 18. V1 quiescent current as a function of output current  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
49 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
001aaf245  
6
4
2
0
type 5V0  
V
V1  
(V)  
type 3V3  
type 3V0  
0
40  
80  
120  
160  
I
(mA)  
V1  
VBAT14 = 9 V to 27 V.  
Tj = 25 °C to 125 °C.  
Fig 19. V1 output voltage as a function of output current  
001aaf248  
160  
PSRR  
(dB)  
V
= 14 V  
14 V  
BAT14  
120  
80  
40  
0
T = 25 °C  
j
150 °C  
5.5 V  
25 °C to 150 °C  
(1)  
5.5 V  
150 °C  
2
3
1
10  
10  
10  
f (Hz)  
IV1 = 120 mA.  
(1) Type 5V0 only.  
Fig 20. V1 power supply ripple rejection as a function of frequency  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
50 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
001aaf250  
200  
16  
V
V  
V1  
(mV)  
BAT14  
(V)  
V
BAT14  
12  
100  
V  
V1  
8
0
4
100  
500  
0
100  
200  
300  
400  
t (µs)  
IV1 = 5 mA; C = 1 µF; ESR = 0.01 ; Tj = 25 °C.  
a. Line transient response  
001aaf251  
75  
400  
I
V  
V1  
V1  
(mA)  
(mV)  
25  
200  
I
V1  
V  
V1  
25  
75  
0
200  
500  
0
100  
200  
300  
400  
t (µs)  
VBAT14 = 14 V; C = 1 µF; ESR = 0.01 ; Tj = 25 °C.  
b. Load transient response  
Fig 21. V1 transient response as a function of time  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
51 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
001aaf249  
1
ESR  
()  
1  
2  
3  
10  
10  
10  
stable operation area  
unstable operation area  
0
40  
80  
120  
I
(mA)  
V1  
Fig 22. V1 output stability related to ESR value of output capacitor  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
52 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
I
= 30 mA  
load  
BAT42  
BAT14  
V1  
SBC  
100 µF/  
0.1 Ω  
100  
nF  
47 µF/  
0.1 Ω  
V
R
load  
BAT  
100  
nF  
GND  
001aaf572  
a. Test circuit  
001aaf573  
6
4
2
0
type 5V0  
V
V1  
(V)  
V
= 8 V  
BAT  
type 3V3  
type 3V0  
V
= 5.5 V  
BAT  
V
= 12 V  
BAT  
0
0.4  
0.8  
1.2  
1.6  
2.0  
t (µs)  
b. Behavior at Tj = 25 °C  
001aaf574  
6
type 5V0  
V
V1  
(V)  
V
= 8 V  
BAT  
4
2
0
type 3V3  
type 3V0  
V
= 5.5 V  
BAT  
V
= 12 V  
BAT  
0
0.4  
0.8  
1.2  
1.6  
2.0  
t (µs)  
c. Behavior at Tj = 85 °C  
Fig 23. Switch-on behavior of VV1  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
53 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
10. Dynamic characteristics  
Table 26. Dynamic characteristics  
Tvj = 40 °C to +150 °C; VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Serial peripheral interface timing; pins SCS, SCK, SDI and SDO (see Figure 24)[2]  
Tcyc  
tlead  
clock cycle time  
enable lead time  
960  
240  
-
-
-
-
ns  
ns  
clock is low when SPI select  
falls  
tlag  
enable lag time  
clock is low when SPI select  
rises  
240  
-
-
ns  
tSCKH  
tSCKL  
tsu  
clock HIGH time  
480  
480  
80  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
clock LOW time  
-
input data setup time  
input data hold time  
output data valid time  
SPI select HIGH time  
-
th  
400  
-
-
tDOV  
pin SDO; CL = 10 pF  
400  
-
tSSH  
480  
LIN transceiver; pins LIN, TXDL and RXDL[3]  
[4]  
[5]  
[4]  
[5]  
δ1  
δ2  
δ3  
δ4  
duty cycle 1  
duty cycle 2  
duty cycle 3  
duty cycle 4  
Vth(reces)(max) = 0.744 × VBAT42  
th(dom)(max) = 0.581 × VBAT42  
LSC = 0; tbit = 50 µs;  
;
0.396  
-
-
-
-
-
V
;
V
BAT42 = 7 V to 18 V  
th(reces)(min) = 0.422 × VBAT42  
th(dom)(min) = 0.284 × VBAT42  
V
V
;
-
0.581  
;
LSC = 0; tbit = 50 µs;  
V
BAT42 = 7.6 V to 18 V  
th(reces)(max) = 0.778 × VBAT42  
th(dom)(max) = 0.616 × VBAT42  
V
V
;
0.417  
-
;
LSC = 1; tbit = 96 µs;  
V
BAT42 = 7 V to 18 V  
th(reces)(min) = 0.389 × VBAT42  
th(dom)(min) = 0.251 × VBAT42  
V
V
;
-
0.590  
;
LSC = 1; tbit = 96 µs;  
BAT42 = 7.6 V to 18 V  
V
tp(rx)  
propagation delay of  
receiver  
CRXDL = 20 pF  
-
-
-
-
6
µs  
µs  
µs  
tp(rx)(sym)  
tBUS(LIN)  
symmetry of receiver  
propagation delay  
rising edge with respect to  
falling edge; CRXDL = 20 pF  
2  
30  
+2  
150  
minimum dominant time for Off-line mode  
wake-up of the  
LIN-transceiver  
tLIN(dom)(det)  
continuously dominant  
clamped LIN-bus detection  
time  
Active mode; LIN = 0 V  
40  
-
-
160  
2.2  
ms  
ms  
tLIN(dom)(rec)  
continuously dominant  
clamped LIN-bus recovery  
time  
Active mode  
0.8  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
54 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 26. Dynamic characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTXDL(dom)(dis) TXDL permanent dominant Active mode; TXDL = 0 V  
disable time  
20  
-
80  
ms  
Battery monitoring  
tBAT42(L)  
BAT42 LOW time for  
setting PWONS  
5
5
-
-
20  
20  
µs  
µs  
tSENSE(L)  
BAT42 LOW time for  
setting BATFI  
Power supply V1; pin V1  
tV1(CLT) V1 clamped LOW time  
during ramp-up of V1  
Power supply V3; pin V3  
Start-up mode; V1 active  
229  
-
283  
ms  
tw(CS)  
cyclic sense period  
V3C[1:0] = 10; see Figure 13  
V3C[1:0] = 11; see Figure 13  
V3C[1:0] = 10; see Figure 13  
V3C[1:0] = 11; see Figure 13  
14  
-
-
-
-
18  
ms  
ms  
µs  
28  
36  
ton(CS)  
cyclic sense on-time  
345  
345  
423  
423  
µs  
Wake-up input; pin WAKE  
tWU(ipf) input port filter time  
VBAT42 = 5 V to 27 V  
VBAT42 = 27 V to 52 V  
5
-
-
-
120  
250  
390  
µs  
µs  
µs  
30  
310  
tsu(CS)  
cyclic sense sample setup V3C[1:0] = 11 or 10;  
time  
see Figure 13  
Watchdog  
tWD(ETP)  
earliest watchdog trigger  
point  
programmed Nominal  
Watchdog Period (NWP);  
Normal mode  
0.45 × NWP -  
0.55 × NWP  
1.1 × NWP  
tWD(LTP)  
latest watchdog trigger  
point  
programmed nominal  
watchdog period; Normal  
mode, Standby mode and  
Sleep mode  
0.9 × NWP  
-
tWD(init)  
watchdog initializing period watchdog time-out in Start-up  
mode  
229  
1.3  
-
283  
1.7  
ms  
s
Fail-safe mode  
tret  
retention time  
Fail-safe mode; wake-up  
detected  
1.5  
Reset output; pin RSTN  
tRSTN(CHT)  
clamped HIGH time,  
pin RSTN  
RSTN driven LOW internally  
but RSTN pin remains HIGH  
115  
229  
-
-
141  
283  
ms  
ms  
tRSTN(CLT)  
clamped LOW time,  
pin RSTN  
RSTN driven HIGH internally  
but RSTN pin remains LOW  
tRSTN(INT)  
tRSTNL  
interrupt monitoring time  
reset lengthening time  
INTN = 0  
229  
0.9  
-
-
283  
1.1  
ms  
ms  
after internal or external reset  
has been released; RLC = 0  
after internal or external reset  
has been released; RLC =1  
18  
-
22  
ms  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
55 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
Table 26. Dynamic characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT42 = 5.5 V to 52 V; VBAT14 = 5.5 V to 27 V; VBAT42 VBAT14 1 V; unless otherwise specified. All  
voltages are defined with respect to ground. Positive currents flow into the IC.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Interrupt output; pin INTN  
tINTN  
interrupt release  
after SPI has read out the  
Interrupt register  
2
-
-
µs  
Oscillator  
fosc  
oscillator frequency  
460.8  
512  
563.2  
kHz  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Products are 100 % tested at 125 °C ambient  
temperature on wafer level (pretesting). Cased products are 100 % tested at 25 °C ambient temperature (final testing). Both pretesting  
and final testing use correlated test conditions to cover the specified temperature and power supply voltage range.  
[2] SPI timing is guaranteed for VBAT42 voltages down to 5 V. For VBAT42 voltages down to 4.5 V the guaranteed SPI timing values double, so  
at these lower voltages a lower maximum SPI communication speed must be observed.  
[3] tbit = selected bit time, depends on LSC bit; 50 µs or 96 µs (20 kbit/s or 10.4 kbit/s respectively); bus load conditions (R1/R2/C1):  
1 k/1 k/10 nF; 1 k/2 k/6.8 nF; 1 k/open/1 nF; see Figure 25 and Figure 26.  
tbus(rec)(min)  
[4] δ1, δ3 =  
[5] δ2, δ4 =  
-------------------------------  
2 × tbit  
tbus(rec)(max)  
--------------------------------  
2 × tbit  
SCS  
t
t
t
SSH  
T
lead  
lag  
cyc  
t
t
SCKL  
SCKH  
SCK  
SDI  
t
t
h
su  
MSB  
LSB  
X
X
t
DOV  
floating  
floating  
SDO  
X
MSB  
LSB  
001aaa405  
Fig 24. SPI timing  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
56 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
BAT42  
SBC  
GND  
RXDL  
TXDL  
RTLIN  
LIN  
R1  
R2  
C1  
20 pF  
001aad179  
Fig 25. Timing test circuit for LIN transceiver  
t
t
t
bit  
bit  
bit  
V
TXDL  
t
t
bus(rec)(min)  
bus(dom)(max)  
V
BAT42  
V
V
th(reces)(max)  
th(dom)(max)  
thresholds of  
receiving node 1  
LIN BUS  
signal  
V
V
th(reces)(min)  
th(dom)(min)  
thresholds of  
receiving node 2  
t
t
bus(rec)(max)  
bus(dom)(min)  
V
V
RXDL1  
RXDL2  
receiving  
node 1  
t
t
p(rx)r  
p(rx)f  
receiving  
node 2  
t
t
p(rx)f  
p(rx)r  
001aaa346  
Fig 26. Timing diagram LIN transceiver  
11. Test information  
Immunity against automotive transients (malfunction and damage) in accordance with LIN  
EMC Test Specification / Version 1.0; August 1, 2004.  
11.1 Quality information  
This product has been qualified to the appropriate Automotive Electronics Council (AEC)  
standard Q100 or Q101 and is suitable for use in automotive critical applications.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
57 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
12. Package outline  
HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads;  
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad  
SOT549-1  
E
A
D
X
c
H
v
M
A
y
exposed die pad side  
E
D
h
Z
32  
17  
A
(A )  
3
2
E
A
h
A
1
pin 1 index  
θ
L
p
L
detail X  
1
16  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.  
8o  
0o  
0.15 0.95  
0.05 0.85  
0.30 0.20 11.1  
0.19 0.09 10.9  
5.1  
4.9  
6.2  
6.0  
3.6  
3.4  
8.3  
7.9  
0.75  
0.50  
0.78  
0.48  
mm  
1.1  
0.65  
1
0.2  
0.25  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-04-07  
05-11-02  
SOT549-1  
MO-153  
Fig 27. Package outline SOT549-1 (HTSSOP32)  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
58 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
HTSSOP24: plastic thermal enhanced thin shrink small outline package; 24 leads;  
body width 4.4 mm; lead pitch 0.65 mm; exposed die pad  
SOT864-1  
D
E
A
c
y
X
exposed die pad  
M
H
E
v
A
D
H
Z
13  
24  
(A )  
3
A
2
A
E
h
A
1
pin 1 index  
θ
L
p
detail X  
L
1
12  
e
M
w
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
UNIT  
A
1
A
2
A
3
b
c
D
D
E
E
e
H
E
L
L
p
v
w
y
Z
θ
p
h
h
max  
°
°
0.15 0.95  
0.05 0.80  
0.30 0.2  
0.19 0.1  
7.9  
7.7  
4.3  
4.1  
4.5  
4.3  
3.3  
3.1  
6.6  
6.2  
0.75  
0.50  
0.5  
0.2  
8
0
mm  
1.1  
0.25  
0.65  
1
0.2 0.13 0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
04-09-23  
05-12-06  
SOT864-1  
MO-153  
Fig 28. Package outline SOT864-1 (HTSSOP24)  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
59 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
13. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
60 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 29) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 27 and 28  
Table 27. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 28. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 29.  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
61 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 29. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
14. Revision history  
Table 29. Revision history  
Document ID  
UJA1069_2  
Release date  
20070305  
Data sheet status  
Change notice  
Supersedes  
Preliminary data sheet  
-
UJA1069_1  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity guidelines of  
NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Section 6: symbols corrected; replaced symbol tRSTN(ext) with tRSTN(CLT) and with tRSTN(CHT)  
;
replaced tINTNH with tINTN  
Table 11: table note added  
Table 25: updated pin SDO conditions and pin LIN, parameter ILIL value  
Figure 24 and Figure 26 updated  
Soldering information updated  
Added Test information, see Section 11 “Test information”  
Added Figure 23  
Added a second condition row to ILIH in Table 25  
Changed in Table note [2] of Table 26 “VBAT14” to “VBAT42  
UJA1069_1  
20051222 Objective data sheet  
-
-
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
62 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
15.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
15.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
16. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
UJA1069_2  
© NXP B.V. 2007. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 5 March 2007  
63 of 64  
UJA1069  
NXP Semiconductors  
LIN fail-safe system basis chip  
17. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.7.6.3  
6.8  
6.9  
6.10  
6.11  
LIN recessive clamping . . . . . . . . . . . . . . . . . 21  
Inhibit and limp-home output . . . . . . . . . . . . . 21  
Wake-up input . . . . . . . . . . . . . . . . . . . . . . . . 22  
Interrupt output. . . . . . . . . . . . . . . . . . . . . . . . 23  
Temperature protection . . . . . . . . . . . . . . . . . 23  
SPI interface. . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SPI register mapping . . . . . . . . . . . . . . . . . . . 25  
Register overview. . . . . . . . . . . . . . . . . . . . . . 25  
Mode register . . . . . . . . . . . . . . . . . . . . . . . . . 25  
System Status register. . . . . . . . . . . . . . . . . . 28  
System Diagnosis register . . . . . . . . . . . . . . . 29  
Interrupt Enable register and Interrupt  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Power management . . . . . . . . . . . . . . . . . . . . . 2  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1  
2.2  
2.3  
2.4  
6.12  
6.12.1  
6.12.2  
6.12.3  
6.12.4  
6.12.5  
6.12.6  
3
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Enable Feedback register . . . . . . . . . . . . . . . 30  
Interrupt register. . . . . . . . . . . . . . . . . . . . . . . 31  
System Configuration register and System  
Configuration Feedback register . . . . . . . . . . 32  
Physical Layer Control register and Physical  
Layer Control Feedback register . . . . . . . . . . 33  
6
6.1  
6.2  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Fail-safe system controller . . . . . . . . . . . . . . . . 7  
Start-up mode. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Restart mode . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Fail-safe mode . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flash mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
On-chip oscillator . . . . . . . . . . . . . . . . . . . . . . 12  
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Watchdog start-up behavior . . . . . . . . . . . . . . 13  
Watchdog window behavior . . . . . . . . . . . . . . 13  
Watchdog time-out behavior. . . . . . . . . . . . . . 14  
Watchdog OFF behavior. . . . . . . . . . . . . . . . . 14  
System reset. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
RSTN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
EN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . 17  
BAT14, BAT42 and SYSINH . . . . . . . . . . . . . . 17  
SYSINH output . . . . . . . . . . . . . . . . . . . . . . . . 17  
SENSE input. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . 17  
Switched battery output V3. . . . . . . . . . . . . . . 18  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mode control. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Off-line mode . . . . . . . . . . . . . . . . . . . . . . . . . 19  
LIN wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Termination control . . . . . . . . . . . . . . . . . . . . . 20  
LIN slope control. . . . . . . . . . . . . . . . . . . . . . . 20  
LIN driver capability . . . . . . . . . . . . . . . . . . . . 21  
Bus and TXDL failure detection . . . . . . . . . . . 21  
TXDL dominant clamping . . . . . . . . . . . . . . . . 21  
LIN dominant clamping. . . . . . . . . . . . . . . . . . 21  
6.12.7  
6.12.8  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.3  
6.12.9  
6.12.10 Special Mode register and Special Mode  
Feedback register. . . . . . . . . . . . . . . . . . . . . . 34  
6.12.11 General Purpose registers and General  
Purpose Feedback registers . . . . . . . . . . . . . 35  
6.12.12 Register configurations at reset . . . . . . . . . . . 36  
6.13  
6.13.1  
6.13.2  
Test modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Software development mode . . . . . . . . . . . . . 38  
Forced normal mode . . . . . . . . . . . . . . . . . . . 39  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.6.1  
6.6.1.1  
6.6.2  
6.6.3  
6.6.4  
6.7  
6.7.1  
6.7.1.1  
6.7.1.2  
6.7.2  
6.7.3  
6.7.4  
6.7.5  
6.7.6  
6.7.6.1  
6.7.6.2  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 40  
Thermal characteristics . . . . . . . . . . . . . . . . . 41  
Static characteristics . . . . . . . . . . . . . . . . . . . 42  
Dynamic characteristics. . . . . . . . . . . . . . . . . 54  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 57  
Quality information . . . . . . . . . . . . . . . . . . . . . 57  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 58  
8
9
10  
11  
11.1  
12  
13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Introduction to soldering. . . . . . . . . . . . . . . . . 60  
Wave and reflow soldering . . . . . . . . . . . . . . . 60  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 60  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 61  
13.1  
13.2  
13.3  
13.4  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 62  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 63  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 63  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
15.1  
15.2  
15.3  
15.4  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 63  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 5 March 2007  
Document identifier: UJA1069_2  

相关型号:

UJA1069TW/3V0,512

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/3V3

IC DATACOM, ETHERNET TRANSCEIVER, PDSO32, 6.10 MM, 0.65 MM PITCH, PLASTIC, MO-153, SOT549-1, HTSSOP-32, Network Interface
NXP

UJA1069TW/3V3,512

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/3V3/C,51

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/3V3/CS

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/5V0

IC DATACOM, ETHERNET TRANSCEIVER, PDSO32, 6.10 MM, 0.65 MM PITCH, PLASTIC, MO-153, SOT549-1, HTSSOP-32, Network Interface
NXP

UJA1069TW/5V0,512

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/5V0,518

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/5V0/C,51

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/5V0/C/T

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW/5V0/C;51

UJA1069 - LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1069TW24

LIN fail-safe system basis chip
NXP