WCT100XADS [NXP]

Automotive Wireless Transmitter Controller;
WCT100XADS
型号: WCT100XADS
厂家: NXP    NXP
描述:

Automotive Wireless Transmitter Controller

无线
文件: 总40页 (文件大小:1407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet  
Document Number: WCT100XADS  
Rev. 1.2, 01/2021  
Automotive Wireless Transmitter  
Overview Description  
Controller  
Features  
The WCT100xA is a wireless power transmitter controller  
that integrates all required functions for WPC Qi”  
compliant wireless power transmitter design. The  
WCT100xA transmitter IC manages the power transfer by  
receiving commands from the receiver. Receivers are  
detected by using either standard protocol methods or  
Freescale touch sensor technology. Once the mobile device  
is detected, the WCT100xA controls the power transfer by  
adjusting rail voltage or phase shift of power stage according  
to message packets sent by mobile device.  
Conforms to the latest version WPC “Qi” specification  
Supports wide DC input voltage range of 6 V (limited  
duration at Start/Stop operation) to 16 V for automotive  
battery input  
Supports Foreign Object Detection (FOD)  
Low-power system standby available using Freescale  
Touch technology  
Provides free positioning solutions by using WPC A or  
B type multi-coil technology  
To maximize the design freedom and product differentiation,  
the WCT100xA supports any 5W coil topology capable of  
supporting WPC Qi-based implementation. In addition, the  
system supports both WPC and PMA protocols.  
Uses rail voltage control or phase shift control with  
fixed operating frequency to control power transfer to  
help alleviate automotive system interference  
Supports the key FOB avoidance function  
Supports the operation frequency dithering technology  
to eliminate the AM band interference  
Improved EMC performance for automotive  
certification  
Supports CAN/LIN/IIC/SCI/SPI interfaces  
LED for system status indication  
Over-voltage/current/temperature protection  
Software based solution to provide maximum design  
freedom and product differentiation  
The WCT100xA also includes CAN/LIN/IIC/SCI/SPI  
interfaces, over-voltage/current/temperature protection and  
FOD method to protect from overheating by misplaced  
metallic foreign objects. It also handles any system fault and  
operation status, and provides comprehensive indicator  
outputs for robust system design.  
Qualified to AEC100 Test Group A&B  
Dual-mode capable  
Applications  
Automotive Wireless Power Transmitter  
WPC compliant  
o
Wireless Charging System Functional Diagram  
© 2021 NXP B.V.  
_______________________________________________________________________  
Contents  
1
Absolute Maximum Ratings ....................................................................................................................4  
Electrical Operating Ratings ....................................................................................................................................4  
Thermal Handling Ratings .......................................................................................................................................5  
ESD Handling Ratings ..............................................................................................................................................5  
Moisture Handling Ratings......................................................................................................................................5  
1.1  
1.2  
1.3  
1.4  
2
Electrical Characteristics .........................................................................................................................5  
General Characteristics ...........................................................................................................................................5  
Device Characteristics .............................................................................................................................................8  
Thermal Operating Characteristics ........................................................................................................................21  
2.1  
2.2  
2.3  
3
Typical Performance Characteristics ............................................................................................... 21  
System Efficiency ..................................................................................................................................................21  
Standby Power......................................................................................................................................................22  
Digital Demodulation ............................................................................................................................................23  
Foreign Object Detection ......................................................................................................................................23  
3.1  
3.2  
3.3  
3.4  
4
Device Information ................................................................................................................................. 23  
Functional Block Diagram......................................................................................................................................23  
Product Features Overview...................................................................................................................................24  
Pinout Diagram .....................................................................................................................................................25  
Pin Function Description .......................................................................................................................................25  
Ordering Information............................................................................................................................................35  
4.1  
4.2  
4.3  
4.4  
4.5  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
2
NXP Semiconductors  
4.6  
Package Outline Drawing ......................................................................................................................................36  
5
Software Library ...................................................................................................................................... 36  
Memory Map........................................................................................................................................................36  
Software Library and API Description....................................................................................................................36  
5.1  
5.2  
6
Design Considerations ........................................................................................................................... 36  
Electrical Design Considerations............................................................................................................................36  
PCB Layout Considerations....................................................................................................................................38  
Thermal Design Considerations.............................................................................................................................38  
6.1  
6.2  
6.3  
7
References and Links ............................................................................................................................. 38  
References ............................................................................................................................................................38  
Useful Links...........................................................................................................................................................39  
7.1  
7.2  
8
Revision history ....................................................................................................................................... 39  
9
Addendum for MWCT1001A3VLH ..................................................................................................... 39  
Ordering information............................................................................................................................................39  
Package outline drawing .......................................................................................................................................39  
9.1  
9.2  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
3
1 Absolute Maximum Ratings  
1.1 Electrical Operating Ratings  
Table 1. Absolute Maximum Electrical Ratings (VSS = 0 V, VSSA = 0 V)  
Characteristic  
Supply Voltage Range  
Symbol  
VDD  
Notes1  
Min.  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.3  
Max.  
4.0  
Unit  
V
Analog Supply Voltage Range  
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
VDDA  
VREFHx  
ΔVDD  
ΔVss  
4.0  
V
V
4.0  
V
V
V
V
V
V
0.3  
0.3  
VIN  
Pin Group 1  
Pin Group 2  
Pin Group 4  
Pin Group 3  
5.5  
RESET Input Voltage Range  
VIN_RESET  
VOSC  
VINA  
4.0  
Oscillator Input Voltage Range  
Analog Input Voltage Range  
4.0  
4.0  
Input clamp current, per pin (VIN < VSS 0.3 V)2, 3  
Output clamp current, per pin4  
VIC  
5.0  
±20.0  
mA  
mA  
VOC  
Contiguous pin DC injection currentregional limit  
IIcont  
25  
25  
mA  
sum of 16 contiguous pins  
0.3  
0.3  
0.3  
0.3  
4.0  
5.5  
4.0  
4.0  
Output Voltage Range (normal push-pull mode)  
Output Voltage Range (open drain mode)  
RESET Output Voltage Range  
VOUT  
VOUTOD  
VOUTOD_RESET  
VOUT_DAC  
TA  
Pin Group 1,2  
Pin Group 1  
Pin Group 2  
Pin Group 5  
V
V
V
DAC Output Voltage Range  
V
Ambient Temperature  
40  
55  
105  
150  
°C  
°C  
Storage Temperature Range  
TSTG  
1. Default Mode:  
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
Pin Group 2: RESET  
Pin Group 3: ADC and Comparator Analog Inputs  
Pin Group 4: XTAL, EXTAL  
Pin Group 5: DAC analog output  
2. Continuous clamp current.  
3. All 5 volt tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD  
If VIN greater than VDIO_MIN (=VSS 0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this  
limit cannot be observed, then a current limiting resistor is required.  
.
4. I/O is configured as push-pull mode.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
4
NXP Semiconductors  
1.2 Thermal Handling Ratings  
Table 2. Thermal Handling Ratings  
Symbol  
TSTG  
Description  
Storage temperature  
Solder temperature, lead-free  
Min.  
55  
Max.  
150  
Unit  
°C  
Notes  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State  
Surface Mount Devices.  
1.3 ESD Handling Ratings  
Table 3. ESD Handling Ratings  
Characteristic1  
Min.  
-2000  
-200  
-500  
-100  
Max.  
+2000  
+200  
+500  
+100  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
ESD for Charge Device Model (CDM)  
V
V
Latch-up current at TA= 85°C (ILAT  
)
mA  
1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless  
otherwise noted.  
1.4 Moisture Handling Ratings  
Table 4. Moisture Handling Ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State  
Surface Mount Devices.  
2 Electrical Characteristics  
2.1 General Characteristics  
Table 5. General Electrical Characteristics  
Recommended Operating Conditions (VREFLx = 0 V, VSSA = 0 V, VSS = 0 V)  
Test  
Characteristic  
Supply Voltage2  
Symbol  
Notes  
Min.  
Typ.  
Max.  
Unit  
Conditions  
-
VDD ,VDDA  
2.7  
3.3  
3.6  
V
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
5
VREFHA  
VREFHB  
ADC (Cyclic) Reference  
Voltage High  
-
3.0  
2.0  
VDDA  
V
V
ADC (SAR) Reference  
Voltage High  
VREFHC  
3
VDDA  
V
V
-
-
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
ΔVDD  
ΔVss  
-0.1  
-0.1  
0
0
0.1  
0.1  
Input Voltage High (digital  
inputs)  
V
V
V
-
-
-
VIH  
VIH_RESET  
VIL  
1 (Pin Group 1)  
1 (Pin Group 2)  
1 (Pin Group 1,2)  
0.7×VDD  
0.7×VDD  
5.5  
VDD  
RESET Voltage High  
-
Input Voltage Low (digital  
inputs)  
0.35×VDD  
Oscillator Input Voltage High  
V
V
-
-
VIHOSC  
1 (Pin Group 4)  
1 (Pin Group 4)  
2.0  
VDD + 0.3  
0.8  
XTAL driven by an external  
clock source  
Oscillator Input Voltage Low  
VILOSC  
-0.3  
Output Source Current High  
(at VOH min.) 4,5  
• Programmed for low  
-
IOH  
1 (Pin Group 1)  
1 (Pin Group 1)  
-
-
-2  
-9  
drive strength  
mA  
• Programmed for high  
drive strength  
Output Source Current Low  
(at VOL max.) 4,5  
• Programmed for low  
-
IOL  
1 (Pin Group 1,2)  
1 (Pin Group 1,2)  
-
-
2
9
drive strength  
mA  
• Programmed for high  
drive strength  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
1 (Pin Group 1)  
VDD - 0.5  
-
-
-
-
V
V
IOH = IOHmax  
IOL = IOLmax  
1 (Pin Group 1,2)  
0.5  
VIN = 2.4 V  
to 5.5 V  
1 (Pin Group 1)  
1 (Pin Group 2)  
Digital Input Current High  
pull-up enabled or disabled  
IIH  
-
0
+/-2.5  
µA  
VIN = 2.4 V  
to VDD  
Comparator Input Current  
High  
VIN = VDDA  
VIN = VDDA  
IIHC  
1 (Pin Group 3)  
1 (Pin Group 4)  
0
0
+/-2  
+/-2  
µA  
µA  
Oscillator Input Current High  
IIHOSC  
-
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
6
NXP Semiconductors  
-
-
Internal Pull-Up Resistance  
Internal Pull-Down Resistance  
RPull-Up  
20  
20  
-
-
50  
50  
kΩ  
kΩ  
RPull-Down  
Comparator Input Current  
Low  
VIN = 0V  
IILC  
1 (Pin Group 3)  
1 (Pin Group 4)  
-
0
0
+/-2  
µA  
µA  
Oscillator Input Current Low  
VIN = 0V  
IILOSC  
-
+/-2  
RLD = 3 kΩ,  
CLD = 400  
pF  
VSSA  
+
VDDA -  
DAC Output Voltage Range  
V
VDAC  
1 (Pin Group 5)  
-
0.04  
0.04  
Output Current1 High  
Impedance State  
IOZ  
1 (Pin Group 1,2)  
1 (Pin Group 1,2)  
-
0
-
+/-1  
µA  
V
-
-
Schmitt Trigger Input  
Hysteresis  
VHYS  
0.06×VDD  
-
Input capacitance  
Output capacitance  
CIN  
-
-
10  
10  
-
-
pF  
pF  
-
-
COUT  
GPIO pin interrupt pulse  
width6  
Bus  
TINT_Pulse  
7
8
1.5  
5.5  
-
-
-
-
clock  
Port rise and fall time (high  
drive strength). Slew  
disabled.  
2.7 ≤ VDD ≤  
TPort_H_DIS  
15.1  
ns  
3.6 V  
Port rise and fall time (high  
drive strength). Slew enabled.  
2.7 ≤ VDD ≤  
TPort_H_EN  
TPort_L_DIS  
TPort_L_EN  
8
9
9
1.5  
8.2  
3.2  
-
-
-
6.8  
17.8  
9.2  
ns  
ns  
ns  
3.6 V  
Port rise and fall time (low  
drive strength). Slew  
disabled.  
2.7 ≤ VDD ≤  
3.6 V  
Port rise and fall time (low  
drive strength). Slew enabled.  
2.7 ≤ VDD ≤  
3.6 V  
Device (system and core)  
clock frequency  
fSYSCLK  
fBUS  
0
-
-
-
100  
MHz  
MHz  
-
-
Bus clock  
10  
50/100  
1. Default Mode  
o
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
o
o
o
o
Pin Group 2: RESET  
Pin Group 3: ADC and Comparator Analog Inputs  
Pin Group 4: XTAL, EXTAL  
Pin Group 5: DAC analog output  
2. ADC (Cyclic) specifications are not guaranteed when VDDA is below 3.0 V.  
3. ADC (SAR) is only on WCT1003A device.  
4. Total chip source or sink current cannot exceed 75 mA.  
5. Contiguous pin DC injection current of regional limitincluding sum of negative injection currents or sum of positive injection  
currents of 16 contiguous pinsis 25 mA.  
6. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming GPIOn_IPOLR  
and GPIOn_IENR.  
7. The greater synchronous and asynchronous timing must be met.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
7
8. 75 pF load  
9. 15 pF load  
10. WCT1001A only supports the maximum bus clock of 50 MHz, and WCT1003A supports 100 MHz maximum bus clock.  
2.2 Device Characteristics  
Table 6. General Device Characteristics  
Power Mode Transition Behavior  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
After a POR event, the amount of delay  
from when VDD reaches 2.7 V to when the  
first instruction executes (over the  
operating temperature range).  
TPOR  
199  
225  
µs  
TS2R  
STOP mode to RUN mode  
6.79  
240  
7.29  
551  
µs  
µs  
µs  
µs  
µs  
µs  
1
2
4
3
2
4
TLPS2LPR  
TVLPS2VLPR  
TW2R  
LPS mode to LPRUN mode  
VLPS mode to VLPRUN mode  
WAIT mode to RUN mode  
1424  
0.57  
237.2  
1413  
1500  
0.62  
554  
TLPW2LPR  
TVLPW2VLPR  
LPWAIT mode to LPRUN mode  
VLPWAIT mode to VLPRUN mode  
1500  
Power Consumption Operating Behaviors  
Typical at 3.3 V, 25 °C  
Mode  
Conditions  
Max. Frequency  
Notes  
IDD  
IDDA  
100 MHz core clock, 50 MHz peripheral  
clock, regulators are in full regulation,  
relaxation oscillator on, PLL powered on,  
continuous MAC instructions with fetches  
from program Flash, all peripheral modules  
enabled, TMRs and SCIs using 1×  
peripheral clock, NanoEdge within  
eFlexPWM using 2× peripheral clock,  
ADC/DAC (only one 12-bit DAC and all  
6-bit DACs) powered on and clocked,  
comparator powered on, all ports  
configured as inputs with input low and no  
DC loads  
RUN1  
100 MHz  
35.58 mA/-  
9.08 mA/-  
5
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
8
NXP Semiconductors  
50 MHz/100 MHz5 core and peripheral  
clock, regulators are in full regulation,  
relaxation oscillator on, PLL powered on,  
continuous MAC instructions with fetches  
from program Flash, all peripheral modules  
enabled, TMRs and SCIs using 1×  
peripheral clock, NanoEdge within  
eFlexPWM using 2× peripheral clock,  
ADC/DAC (only one 12-bit DAC and all  
6-bit DACs) powered on and clocked,  
comparator powered on, all ports  
configured as inputs with input low and no  
DC loads  
9.07  
mA/16.7  
mA  
50 MHz/100  
MHz5  
25.62 mA/63.7  
mA  
RUN2  
5
50 MHz/100 MHz5 core and peripheral  
clock, regulators are in full regulation,  
relaxation oscillator on, PLL powered on,  
core in WAIT state, all peripheral modules  
enabled, TMRs and SCIs using 1× clock,  
NanoEdge within eFlexPWM using 2×  
clock, ADC/DAC (one 12-bit DAC, all 6-bit  
DACs)/comparator powered off, all ports  
configured as inputs with input low and no  
DC loads  
7.93  
mA/13.58  
µA  
50 MHz/100  
MHz5  
22.0 mA/43.5  
mA  
WAIT  
5
4 MHz core and peripheral clock,  
regulators are in full regulation, relaxation  
oscillator on, PLL powered off, core in  
STOP state, all peripheral module and  
core clocks are off, ADC/DAC/Comparator  
powered off, all ports configured as inputs  
with input low and no DC loads  
1.77  
uA/13.20  
uA  
5.58 mA/9.19  
mA  
STOP  
4 MHz  
5
200 kHz core and peripheral clock from  
relaxation oscillator's low speed clock,  
relaxation oscillator in standby mode,  
regulators are in standby, PLL disabled,  
repeat NOP instructions, all peripheral  
modules enabled, except NanoEdge within  
eFlexPWM and cyclic ADCs, one 12-bit  
DAC and all 6-bit DACs enabled, simple  
loop with running from platform instruction  
buffer, all ports configured as inputs with  
input low and no DC loads  
0.82  
mA/3.33  
mA  
2.39 mA/1.86  
mA  
LPRUN  
2 MHz  
5
200 kHz core and peripheral clock from  
relaxation oscillator's low speed clock,  
relaxation oscillator in standby mode,  
regulators are in standby, PLL disabled, all  
peripheral modules enabled, except  
NanoEdge within eFlexPWM and cyclic  
ADCs, one 12-bit DAC and all 6-bit DACs  
enabled, core in WAIT mode, all ports  
configured as inputs with input low and no  
DC loads  
0.81  
mA/2.67  
mA  
2.37 mA/1.83  
mA  
LPWAIT  
2 MHz  
5
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
9
200 kHz core and peripheral clock from  
relaxation oscillator's low speed clock,  
relaxation oscillator in standby mode,  
regulators are in standby, PLL disabled,  
only PITs and COP enabled, other  
peripheral modules disabled and clocks  
gated off, core in STOP mode, all ports  
configured as inputs with input low and no  
DC loads  
0.97  
uA/13.13  
uA  
0.99 mA/1.07  
mA  
LPSTOP  
2 MHz  
5
32 kHz core and peripheral clock from a 64  
kHz external clock source, oscillator in  
power down, all relaxation oscillators  
disabled, large regulator is in standby,  
small regulator is disabled, PLL disabled,  
repeat NOP instructions, all peripheral  
modules, except COP and EWM, disabled  
and clocks gated off, simple loop running  
from platform instruction buffer, all ports  
configured as inputs with input low and no  
DC loads  
0.96  
uA/13.04  
uA  
0.48 mA/0.57  
mA  
VLPRUN  
200 kHz  
5
32 kHz core and peripheral clock from a 64  
kHz external clock source, oscillator in  
power down, all relaxation oscillators  
disabled, large regulator is in standby,  
small regulator is disabled, PLL disabled,  
all peripheral modules, except COP,  
disabled and clocks gated off, core in  
WAIT mode, all ports configured as inputs  
with input low and no DC loads  
0.95  
uA/12.02  
uA  
0.46 mA/0.56  
mA  
VLPWAIT  
200 kHz  
5
32 kHz core and peripheral clock from a 64  
kHz external clock source, oscillator in  
power down, all relaxation oscillators  
disabled, large regulator is in standby,  
small regulator is disabled, PLL disabled,  
all peripheral modules, except COP,  
disabled and clocks gated off, core in  
STOP mode, all ports configured as inputs  
with input low and no DC loads  
0.93  
uA/10.58  
uA  
0.43 mA/0.56  
mA  
VLPSTOP  
200 kHz  
5
Reset and Interrupt Timing  
Symbol  
Characteristic  
Min.  
Max.  
Unit  
Notes  
tRA  
Minimum RESET Assertion Duration  
16  
-
ns  
6
865 × TOSC + 8 ×  
TSYSCLK  
tRDA  
RESET deassertion to First Address Fetch  
-
ns  
ns  
7
Delay from Interrupt Assertion to Fetch of  
first instruction (exiting STOP mode)  
tIF  
361.3  
570.9  
PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters  
Symbol  
Characteristic  
POR Assert Voltage8  
Min.  
Typ.  
Max.  
Unit  
VPOR_A  
-
2.0  
-
V
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
10  
NXP Semiconductors  
VPOR_R  
VLVI_2p7  
POR Release Voltage9  
-
-
-
2.7  
-
-
-
V
V
V
LVI_2p7 Threshold Voltage  
LVI_2p2 Threshold Voltage  
2.73  
2.23  
VLVI_2p2  
JTAG Timing  
Symbol  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Notes  
fOP  
TCK frequency of operation  
DC  
fSYSCLK/8 (16)  
10  
tPW  
tDS  
tDH  
tDV  
tTS  
TCK clock pulse width  
50  
5
5
-
-
-
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
-
ns  
30  
30  
ns  
-
ns  
Regulator 1.2 V Parameters  
Symbol  
Characteristic  
Min.  
Typ.  
1.22  
600  
Max.  
Unit  
V
VCAP  
ISS  
Output Voltage11  
Short Circuit Current12  
-
-
-
-
mA  
Short Circuit Tolerance (VCAP shorted to  
ground)  
TRSC  
VREF  
-
-
-
30  
-
Mins  
V
Reference Voltage (after trim)  
1.21  
External Clock Timing  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Frequency of operation (external clock  
driver)  
fOSC  
-
-
50  
MHz  
tPW  
trise  
tfall  
Clock pulse width13  
8
-
ns  
ns  
ns  
External clock input rise time14  
External clock input fall time15  
-
-
1
1
-
Input high voltage overdrive by an external  
clock  
Vih  
Vil  
0.85×VDD  
-
-
-
-
V
V
Input low voltage overdrive by an external  
clock  
0.3×VDD  
Phase-Locked Loop (PLL) Timing  
Symbol  
fRef_PLL  
fOP_PLL  
tLock_PLL  
tDC_PLL  
Characteristic  
Min.  
8
Typ.  
Max.  
16  
Unit  
MHz  
MHz  
µs  
PLL input reference frequency16  
PLL output frequency17  
8
-
200/240  
35.5  
40  
400  
73.2  
60  
PLL lock time18  
-
Allowed Duty Cycle of input reference  
50  
%
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
11  
External Crystal or Resonator Specifications  
Symbol  
Characteristic  
Frequency of operation  
Min.  
Typ.  
Max.  
Unit  
fXOSC  
4
8
16  
MHz  
Relaxation Oscillator Electrical Specifications  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
8 MHz Output Frequency20  
RUN Mode  
7.84  
7.76  
8
8
8.16  
8.24  
MHz  
MHz  
• 0 °C to 105 °C  
fROSC_8M  
-40 °C to 105 °C  
Standby Mode (IRC trimmed @ 8 MHz)  
-40 °C to 105 °C  
266.8  
402  
554.3  
kHz  
8 MHz Frequency Variation  
RUN Mode  
fROSC_8M_Delta  
Due to temperature  
• 0 °C to 105 °C  
-
-
+/-1.5  
+/-1.5  
+/-2  
+/-3  
%
%
-40 °C to 105 °C  
200 kHz/32 kHz Output Frequency19,21  
RUN Mode  
19,  
fROSC_200k/32k  
20  
194/30.1  
200/32  
206/33.9  
kHz  
-40 °C to 105 °C  
200 kHz/32 kHz Output Frequency  
Variation19,21  
RUN Mode  
fROSC_200k/32k_D  
19,20  
elta  
Due to temperature  
• 0 °C to 85 °C  
-40 °C to 105 °C 22  
-
-
+/-1.5  
+/-2  
%
%
+/-1.5 (2.5)  
+/-3 (4)  
Stabilization Time  
tStab  
• 8 MHz output23  
• 200 kHz/32 kHz output19,24  
0.12  
µs  
µs  
-
-
0.4  
10/14.4  
-/16.2  
tDC_ROSC  
Output Duty Cycle  
48  
50  
52  
%
Flash Specifications  
Symbol  
Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
µs  
thvpgm4  
thversscr  
thversall  
Longword Program high-voltage time  
Sector Erase high-voltage time25  
Erase All high-voltage time25,26  
-
-
-
113  
452  
ms  
ms  
52  
Erase Block high-voltage time for 32  
KB25,27  
thversblk32k  
thversblk256k  
trd1sec1k/2k  
-
-
-
52  
104  
-
452  
904  
60  
ms  
ms  
µs  
Erase Block high-voltage time for 256  
KB25,27  
Read 1s Section execution time (flash  
sector)28  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
12  
NXP Semiconductors  
Read 1s Block execution time27  
32 KB FlexNVM  
trd1blk32k  
-
-
-
-
0.5  
1.7  
ms  
ms  
trd1blk256k  
256 KB program Flash  
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time28  
Read Resource execution time28  
Program Longword execution time  
Erase Flash Sector execution time29  
-
-
-
-
-
45  
30  
µs  
µs  
µs  
ms  
-
65  
14  
145  
114  
tersscr  
Erase Flash Block execution time27,29  
32 KB FlexNVM  
tersblk32k  
-
-
55  
465  
985  
ms  
ms  
tersblk256k  
256 KB program Flash  
122  
Program Section execution time27  
512 B program Flash  
512 B FlexNVM  
tpgmsec512p  
tpgmsec512n  
tpgmsec1kp  
tpgmsec1kn  
-
-
-
-
2.4  
4.7  
4.7  
9.3  
-
-
-
-
ms  
ms  
ms  
ms  
1 KB program Flash  
1 KB FlexNVM  
trd1all  
trdonce  
tpgmonce  
tersall  
Read 1s All Blocks execution time  
Read Once execution time28  
-
-
-
-
-
0.9/1.830  
ms  
µs  
-
25  
Program Once execution time  
Erase All Blocks execution time29  
65  
-
µs  
70/17530  
575/150030  
ms  
Verify Backdoor Access Key execution  
time28  
tvfykey  
-
-
-
30  
-
µs  
Program Partition for EEPROM execution  
time for 32 KB FlexNVM27  
tpgmpart32k  
70  
ms  
Set FlexRAM Function execution time27  
Control Code 0xFF  
tsetramff  
tsetram8k  
tsetram32k  
-
-
-
50  
0.3  
0.7  
-
µs  
ms  
ms  
8 KB EEPROM backup  
0.5  
1.0  
32 KB EEPROM backup  
Byte-write to erased FlexRAM location  
execution time27,31  
teewr8bers  
-
175  
260  
µs  
Byte-write to FlexRAM execution time27  
8 KB EEPROM backup  
teewr8b8k  
teewr8b16k  
teewr8b32k  
-
-
-
340  
385  
475  
1700  
1800  
2000  
µs  
µs  
µs  
16 KB EEPROM backup  
32 KB EEPROM backup  
Word-write to erased FlexRAM location  
execution time27  
teewr16bers  
-
175  
260  
µs  
Word-write to FlexRAM execution time27  
8 KB EEPROM backup  
teewr16b8k  
teewr16b16k  
teewr16b32k  
-
-
-
340  
385  
475  
1700  
1800  
2000  
µs  
µs  
µs  
16 KB EEPROM backup  
32 KB EEPROM backup  
Longword-write to erased FlexRAM  
location execution time27  
teewr32bers  
-
360  
540  
µs  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
13  
Longword-write to FlexRAM execution  
time27  
teewr32b8k  
teewr32b16k  
teewr32b32k  
-
-
-
545  
630  
810  
1950  
2050  
2250  
µs  
µs  
µs  
8 KB EEPROM backup  
16 KB EEPROM backup  
32 KB EEPROM backup  
tflashret10k  
tflashret1k  
nflashcyc  
Data retention after up to 10 K cycles  
Data retention after up to 1 K cycles  
Cycling endurance33  
5
5032  
10032  
50 K32  
-
-
-
years  
years  
cycles  
20  
10 K  
Data retention up to 100% of write  
endurance27  
teeret100  
teeret10  
5
5032  
-
-
years  
years  
Data retention up to 10% of write  
endurance27  
20  
10032  
Write endurance27,34  
neewr16  
neewr128  
neewr512  
neewr4k  
neewr8k  
EEPROM backup to FlexRAM ratio =  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
-
-
-
-
-
writes  
writes  
writes  
writes  
writes  
16  
EEPROM backup to FlexRAM ratio =  
128  
EEPROM backup to FlexRAM ratio =  
512  
EEPROM backup to FlexRAM ratio =  
4096  
EEPROM backup to FlexRAM ratio =  
8192  
20 M  
100 M  
12-bit Cyclic ADC Electrical Specifications  
Symbol  
VDDA  
Characteristic  
Supply voltage35  
Min.  
3.0  
Typ.  
Max.  
3.6  
Unit  
V
3.3  
VREFHX  
fADCCLK  
VREFH supply voltage36  
ADC conversion clock37  
VDDA - 0.6  
0.1/0.6  
VDDA  
10/20  
V
-
MHz  
Conversion range38  
Fully differential26  
Single-ended/unipolar  
VREFH  
VREFL  
-
RADC  
-( VREFH - VREFL  
VREFL  
)
-
-
V
V
VREFH  
Input voltage range (per input)39  
External Reference  
VADCIN  
VREFL  
VSSA  
-
-
VREFH  
VDDA  
V
V
Internal Reference  
tADC  
Conversion time40  
-
-
8/6  
13  
-
-
tADCCLK  
tADCCLK  
tADCPU  
ADC power-up time (from adc_pdn)  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
14  
NXP Semiconductors  
ADC RUN current (per ADC block)26  
ADC RUN current (per ADC block)27  
at 600 kHz ADC clock, LP mode  
8.33 MHz ADC clock, 00 mode  
12.5 MHz ADC clock, 01 mode  
16.67 MHz ADC clock, 10 mode  
-
1.8  
-
mA  
-
-
-
-
-
1
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
IADCRUN  
5.7  
10.5  
17.7  
22.6  
20 MHz ADC clock, 11 mode  
ADC power down current (adc_pdn  
enabled)41  
IADPWRDWN  
-
0.1/0.02  
-
µA  
IVREFH  
INLADC  
DNLADC  
VREFH current (in external mode)42  
Integral non-linearity43  
-
-
-
190/0.001  
+/- 1.5 (3)  
+/- 0.5 (0.6)  
-
µA  
+/- 2.2 (5)  
+/- 0.8 (0.9)  
LSB44  
LSB44  
Differential non-linearity43  
Offset45  
VOFFSET  
Fully differential26  
Single ended/Unipolar46  
-
-
+/- 8  
-
-
mV  
mV  
+/- 12 (13.7)  
-
-
-
-
0.996 to 1.00426  
0.994 to 1.00427  
EGAIN  
Gain Error  
0.99 to 1.01  
ENOB  
IINJ  
Effective number of bits47  
Input injection current48  
-
-
10.6/9.5  
-
-
bits  
mA  
+/-3  
Input sampling capacitance49  
CADCI  
-
4.8/1.4  
-
pF  
16-bit SAR ADC Electrical Specifications27  
Symbol  
VDDA  
Characteristic  
Supply voltage  
Min.  
2.7  
Typ.50  
Max.  
3.6  
Unit  
V
-
0
VDDA  
VSSA  
VREFH  
VREFL  
Supply voltage delta to VDD  
Supply voltage delta to VSS  
ADC reference voltage high  
ADC reference voltage low  
Input voltage range  
- 0.1  
- 0.1  
VDDA  
VSSA  
VSSA  
+ 0.1  
+ 0.1  
VDDA  
VSSA  
VDDA  
V
0
V
VDDA  
VSSA  
-
V
V
VADIN  
V
Input capacitance  
16-bit mode  
CADIN  
RADIN  
fADCK  
-
-
8
4
10  
5
pF  
pF  
8/10/12-bit mode  
-
2
5
kΩ  
Input resistance  
ADC conversion clock frequency51  
16-bit mode  
2
1
-
-
12  
18  
MHz  
MHz  
8/10/12-bit mode  
ADC conversion rate without ADC  
hardware averaging  
16-bit mode  
Crate  
37.037  
20.000  
-
-
461.467  
818.330  
ksps  
ksps  
8/10/12-bit mode  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
15  
Supply current52  
IDDA_ADC  
-
-
1.7  
mA  
ADC asynchronous clock source  
ADLPC = 1, ADHSC = 0  
ADLPC = 1, ADHSC = 1  
ADLPC = 0, ADHSC = 0  
ADLPC = 0, ADHSC = 1  
1.2  
3.0  
2.4  
4.4  
2.4  
4.0  
5.2  
6.2  
3.9  
7.3  
6.1  
9.5  
MHz  
MHz  
MHz  
MHz  
fADACK  
Integral non-linearity54  
16-bit mode  
-
-
-
-
+/- 7.0  
+/- 1.0  
+/- 0.5  
LSB53  
LSB53  
LSB53  
- 2.7 to +  
1.9  
INLAD  
12-bit mode  
- 0.7 to +  
0.5  
< 12-bit modes  
Differential non-linearity54  
16-bit mode  
-
-
-
-
-
- 1.0 to + 4.0  
+/- 0.7  
LSB53  
LSB53  
LSB53  
DNLAD  
12-bit mode  
- 0.3 to +  
0.5  
+/- 0.2  
< 12-bit modes  
54  
Full-scale error (VADIN = VDDA  
)
EFS  
-
-
- 4  
- 5.4  
- 1.8  
LSB53  
LSB53  
12-bit mode  
- 1.4  
< 12-bit modes  
Quantization error  
16-bit mode  
12-bit mode  
EQ  
-
-
- 1 to 0  
-
-
LSB53  
LSB53  
+/- 0.5  
Effective number of bits55  
16-bit single-ended mode  
Avg = 32  
12.2  
11.4  
13.9  
13.1  
-
-
bits  
bits  
ENOB  
Avg = 4  
12-bit single-ended mode  
Avg = 32  
-
-
10.8  
10.2  
-
-
bits  
bits  
Avg = 4  
STEMP  
-
-
1.715  
722  
-
-
mV/°C  
mV  
Temp sensor slope under -40 °C to 105 °C  
Temp sensor voltage56 at 25 °C  
VTEMP25  
12-bit DAC Electrical Specifications  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Settling time57 under RLD = 3 , CLD = 400  
tSETTLE  
-
1
-
µs  
pF  
DAC power-up time (from PWRDWN  
release to valid DACOUT)  
tDACPU  
-
-
11  
µs  
INLDAC  
Integral non-linearity59  
-
-
+/- 3  
+/- 4  
LSB58  
LSB58  
DNLDAC  
Differential non-linearity59  
+/- 0.8  
+/- 0.9  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
16  
NXP Semiconductors  
Monotonicity (> 6 sigma monotonicity, <  
3.4 ppm non-monotonicity)  
MONDAC  
Guaranteed  
-
VOFFSET  
EGAIN  
VOUT  
Offset error59 (5% to 95% of full range)  
Gain error59 (5% to 95% of full range)  
Output voltage range  
-
+/- 25  
+/- 0.5  
-
+/- 43  
mV  
%
-
+/- 1.5  
VSSA + 0.04  
VDDA - 0.04  
V
SNR  
Signal-to-noise ratio  
-
-
85  
-
-
dB  
bits  
ENOB  
Effective number of bits  
11  
Comparator and 6-bit DAC Electrical Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
2.7  
-
3.6  
V
Supply current, High-speed mode(EN=1,  
PMODE=1)60  
IDDHS  
-
-
300/-  
36/-  
-/200  
-/20  
µA  
µA  
Supply current, Low-speed mode(EN=1,  
PMODE=0)60  
IDDLS  
VAIN  
VAIO  
Analog input voltage  
Vss - 0.3  
-
-
-
VDD  
20  
V
Analog input offset voltage  
mV  
Analog comparator hysteresis61  
• CR0[HYSTCTR]=00  
• CR0[HYSTCTR]=01  
• CR0[HYSTCTR]=10  
• CR0[HYSTCTR]=11  
-
-
-
-
5
13  
48  
mV  
mV  
mV  
mV  
25/10  
55/20  
80/30  
VH  
105  
148  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD - 0.5  
-
-
-
-
V
V
0.5  
Propagation delay, high-speed  
mode(EN=1, PMODE=1)62  
-
-
-
-
50  
ns  
ns  
Propagation delay, low-speed  
mode(EN=1, PMODE=0) 62  
tDLS  
200  
tDInit  
Analog comparator initialization delay63  
6-bit DAC current adder (enabled)  
6-bit DAC reference inputs  
-
40  
7
-
-
µs  
µA  
IDAC6b  
-
-
RDAC6b  
VDDA  
-0.5  
-0.3  
VDD  
0.5  
0.3  
V
INLDAC6b  
DNLDAC6b  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
-
LSB64  
LSB64  
-
PWM Timing Parameters  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
fPWM  
PWM clock frequency  
-
100  
-
MHz  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
17  
SPWMNEP  
tDFLT  
NanoEdge Placement (NEP) step size65,66  
-
1
-
312  
-
-
-
-
ps  
ns  
µs  
Delay for fault input activating to PWM  
output deactivated  
tPWMPU  
Power-up time67  
25  
Quad Timer Timing  
Symbol  
Characteristic  
Min.  
Max.  
Unit  
ns  
Notes  
68  
PIN  
PINHL  
Timer input period  
2Ttimer + 6  
1Ttimer + 3  
2Ttimer - 2  
1Ttimer - 2  
-
-
-
-
Timer input high/low period  
Timer output period  
ns  
68  
POUT  
ns  
68  
POUTHL  
Timer output high/low period  
ns  
68  
QSPI Timing69  
Min.  
Max.  
Master Slave  
Symbol  
Characteristic  
Unit  
Master  
60/35  
-
Slave  
60/35  
20/17.5  
20/17.5  
28/16.6  
28/16.6  
1
tC  
Cycle time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELD  
tELG  
tCH  
tCL  
Enable lead time  
Enable lag time  
-
Clock (SCLK) high time  
Clock (SCLK) low time  
Data set-up time required for inputs  
Data hold time required for inputs  
28/16.6  
28/16.6  
20/16.5  
1
tDS  
tDH  
3
Access time (time to data active from  
high-impedance state)  
tA  
tD  
-
-
5
5
-
-
-
-
ns  
ns  
Disable time (hold time to high-impedance  
state)  
tDV  
tDI  
tR  
Data valid for outputs  
Data invalid  
Rise time  
-
0
-
-
0
-
-/5  
-
-/15  
ns  
ns  
ns  
ns  
-
1
1
1
tF  
Fall time  
-
-
1
QSCI Timing  
Symbol  
BRSCI  
Characteristic  
Baud rate  
Min.  
-
Max.  
Unit  
Notes  
(fMAX_SCI /16)  
1.04/BRSCI  
1.04/BRSCI  
Mbit/s  
ns  
70  
-
PWRXD  
RXD pulse width  
TXD pulse width  
0.965/BRSCI  
0.965/BRSCI  
PWTXD  
ns  
-
LIN Slave Mode  
Deviation of slave node clock from nominal  
clock rate before synchronization  
FTOL_UNSYNCH  
- 14  
- 2  
14  
2
%
%
-
-
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
FTOL_SYNCH  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
18  
NXP Semiconductors  
Mater node  
bit periods  
13  
11  
-
-
-
-
TBREAK  
Minimum break character length  
Slave node  
bit periods  
CAN Timing  
Symbol  
BRCAN  
Characteristic  
Baud rate  
Min.  
Max.  
Unit  
Mbit/s  
µs  
Notes  
-
-
1
1.5/2  
-
-
71  
-
TWAKEUP  
TWAKEUP  
CAN Wakeup dominant pulse filtered  
CAN Wakeup dominant pulse pass  
5
µs  
IIC Timing  
Symbol  
fSCL  
Min.  
Max.  
Characteristic  
Unit  
Notes  
Min.  
Max.  
Min.  
Max.  
SCL clock frequency  
-
0
4
100  
0
400  
-
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD_STA  
-
0.6  
-
tSCL_LOW  
tSCL_HIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4
-
-
1.3  
0.6  
-
-
µs  
µs  
-
-
Set-up time for a repeated START  
condition  
tSU_STA  
4.7  
-
0.6  
-
µs  
-
tHD_DAT  
Data hold time for IIC bus devices  
Data set-up time  
072  
3.4573  
-
074  
0.972  
-
µs  
ns  
ns  
ns  
-
tSU_DAT  
25075  
10076  
73  
77  
76  
tr  
tf  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
-
-
1000  
300  
20 + 0.1Cb  
20 + 0.1Cb  
300  
300  
tSU_STOP  
tBUS_Free  
Set-up time for STOP condition  
-
4
-
-
0.6  
1.3  
-
-
µs  
µs  
Bus free time between STOP and START  
condition  
4.7  
-
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
-
N/A  
N/A  
0
50  
ns  
1. CPU clock = 4 MHz and System running from 8 MHz IRC Applicable to all wakeup times: Wakeup times (in 1,2,3,4) are measured  
from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from respective stop/wait mode.  
2. CPU clock = 200 kHz and 8 MHz IRC on standby. Exit via interrupt on Port C GPIO.  
3. Clock configuration: CPU and system clocks= 100 MHz; Bus Clock = 50 MHz. Exit via an interrupt on PortC GPIO.  
4. Using 64 KHz external clock; CPU Clock = 32 KHz. Exit via an interrupt on PortC GPIO.  
5. WCT1001A supports maximum 100 MHz CPU clock and 50 MHz peripheral bus clock, maximum 100 MHz CPU and peripheral bus  
clock for WCT1003A. In total, WCT1003A has higher power consumption than WCT1001A in the same operating mode. For the  
current consumption data, the former is for WCT1001A, and the latter for WCT1003A.  
6. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion must be  
greater than 21 ns.  
7. TOSC means oscillator clock cycle; TSYSCLK means system clock cycle.  
8. During 3.3 V VDD power supply ramp down.  
9. During 3.3 V VDD power supply ramp up (gated by LVI_2p7).  
10. The maximum TCK operation frequency is fSYSCLK/8 for WCT1001A, fSYSCLK/16 for WCT1003A.  
11. Value is after trim.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
19  
12. Guaranteed by design.  
13. The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
14. External clock input rise time is measured from 10% to 90%.  
15. External clock input fall time is measured from 90% to 10%.  
16. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is  
optimized for 8 MHz input.  
17. The frequency of the core system clock cannot exceed 100 MHz. If the NanoEdge PWM is available, the PLL output must be set to  
400 MHz. And the minimum PLL output frequency is 200 MHz for WCT1001A, 240 MHz for WCT1003A.  
18. This is the time required after the PLL is enabled to ensure reliable operation.  
19. 200 kHz internal RC oscillator is on WCT1001A, 32 kHz internal RC oscillator on WCT1003A.  
20. Frequency after application of 8 MHz trimmed.  
21. Frequency after application of 200 kHz/32 kHz trimmed.  
22. Typical +/-1.5%, maximum +/-3% frequency variation for 200 kHz internal RC oscillator, and typical +/-2.5%, maximum +/-4%  
frequency variation for 32 kHz internal RC oscillator.  
23. Standby to run mode transition.  
24. Power down to run mode transition. Typical 10 µs stabilization time for 200 kHz internal RC oscillator, and 14.4 µs stabilization time  
for 32 kHz internal RC oscillator.  
25. Maximum time based on expectations at cycling end-of-life.  
26. The specification is only for WCT1001A.  
27. The specification is only for WCT1003A.  
28. Assumes 25 MHz flash clock frequency.  
29. Maximum times for erase parameters based on expectations at cycling end-of-life.  
30. All blocks size is 64 KB on WCT1001A, 256 KB on WCT1003A. Longer all blocks command operation time for WCT1003A.  
31. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
32. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use  
profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.  
33. Cycling endurance represents number of program/erase cycles at -40°C Tj 125°C.  
34. Write endurance represents the number of writes to each FlexRAM location at -40°C Tj 125°C influenced by the cycling  
endurance of the FlexNVM and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.  
35. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed.  
36. When the input is at the VREFL level, the resulting output will be all zeros (hex 000), plus any error contribution due to offset and gain  
error. When the input is at the VREFH level the output will be all ones (hex FFF), minus any error contribution due to offset and gain  
error.  
37. ADC clock duty cycle is 45% ~ 55%. WCT1001A only supports the maximum ADC clock of 10 MHz and minimum ADC clock of 0.1 MHz,  
and WCT1003A supports 20 MHz maximum ADC clock and 0.6 MHz minimum ADC clock.  
38. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.  
39. In unipolar mode, positive input must be ensured to be always greater than negative input.  
40. For WCT1001A, the first conversion takes 10 clock cycles, 8 clock cycles for the subsequent conversion; On WCT1003A, 8.5 clock  
cycles for the first conversion, 6 clock cycles for the subsequent conversion.  
41. For WCT1001A, the power down current of ADC is 0.1 µA, and 0.02 µA for WCT1003A.  
42. For WCT1001A, the VREFH current of ADC is 190 µA, and 0.001 µA for WCT1003A.  
43. INLADC/DNLADC is measured from VADCIN = VREFL to VADCIN = VREFH using Histogram method at x1 gain setting. On WCT1001A,  
typical value is +/- 1.5 LSB, and maximum value +/- 2.2 LSB for INLADC; typical value is +/- 0.5 LSB, and maximum value +/- 0.8 LSB for  
DNLADC. On WCT1003A, typical value is +/- 3 LSB, and maximum value +/- 5 LSB for INLADC; typical value is +/- 0.6 LSB, and maximum  
value +/- 1 LSB for DNLADC  
.
44. Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 gain setting.  
45. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk).  
46. Typical +/- 12 mV offset for WCT1001A, +/- 13.7 mV offset for WCT1003A.  
47. Typical ENOB is 10.6 bits for WCT1001A, 9.5 bits for WCT1003A.  
48. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the ADC.  
49. Typical input capacitance is 4.8 pF for WCT1001A, 1.4 pF for WCT1003A.  
50. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and  
are not tested in production.  
51. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.  
52. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest  
power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
20  
NXP Semiconductors  
53. 1 LSB = (VREFH - VREFL)/2N.  
54. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11).  
55. Input data is 100 Hz sine wave; ADC conversion clock < 12 MHz.  
56. System clock = 4 MHz, ADC clock = 2 MHz, AVG = Max, Long Sampling = Max.  
57. Settling time is swing range from VSSA to VDDA.  
58. LSB = 0.806 mV.  
59. No guaranteed specification within 5% of VDDA or VSSA.  
60. Typical supply current with high-speed mode is 300 µA, typical supply current with low-speed mode is 36 µA on WCT1001A.  
Maximum supply current with high-speed mode is 200 µA, maximum supply current with low-speed mode is 20 µA on WCT1003A.  
61. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD-0.7 V. On WCT1001A, typical 25 mV for CR0[HYSTCTR]  
= 01, typical 55 mV for CR0[HYSTCTR] = 10, typical 80 mV for CR0[HYSTCTR] = 11. On WCT1003A, typical 10 mV for CR0[HYSTCTR] =  
01, typical 20 mV for CR0[HYSTCTR] = 10, typical 30 mV for CR0[HYSTCTR] = 11.  
62. Signal swing is 100 mV.  
63. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL,  
PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
64. 1 LSB = Vreference/64.  
65. Reference IPbus clock of 100 MHz in NanoEdge Placement mode.  
66. Temperature and voltage variations do not affect NanoEdge Placement step size.  
67. Powerdown to NanoEdge mode transition.  
68. Ttimer = Timer input clock cycle. For 100 MHz operation, Ttimer = 10 ns.  
69. For QSPI specifications, all data with xx/xx format, the former is for WCT1001A, the latter is for WCT1003A.  
70. fMAX_SCI is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock or 2x bus clock for the device.  
71. WCT1001A supports maximum 1.5 us pulse filtered, and WCT1003A supports maximum 2 us pulse filtered.  
72. The master mode IIC deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this  
address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.  
73. The maximum tHD_DAT must be met only if the device does not stretch the LOW period (tSCL_LOW) of the SCL signal.  
74. Input signal Slew = 10 ns and Output Load = 50 pF  
75. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
76. A Fast mode IIC bus device can be used in a Standard mode IIC bus system, but the requirement tSU_DAT 250 ns must then be  
met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU_DAT = 1000 + 250 = 1250 ns  
(according to the Standard mode IIC bus specification) before the SCL line is released.  
77. Cb = total capacitance of the one bus line in pF.  
2.3 Thermal Operating Characteristics  
Table 7. General Thermal Characteristics  
Symbol  
Description  
Die junction temperature  
Ambient temperature  
Min  
-40  
-40  
Max  
125  
105  
Unit  
°C  
TJ  
TA  
°C  
3 Typical Performance Characteristics  
3.1 System Efficiency  
The typical maximum system efficiency (receiver output power vs. transmitter input power) on Freescale  
WCT100xA A13 transmitter reference solution is shown in Figure 1, using a test receiver (aka Rx, low  
power receiver) under resistive load.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
21  
Figure 1. System Efficiency on Freescale A13 Reference Board  
Note: Power components are the main factor to determine the system efficiency, such as drivers and  
MOSFETs.  
Figure 2 shows the active charging area of the Freescale WCT100xA A13 transmitter reference solution  
transmitter well charges receiver load at different X/Y offsets. For this test, the low power receiver is  
used as the test receiver with constant 700 mA loading and 3 mm Z gap between transmitter surface and  
receiver surface.  
Figure 2. Active Charging Area on WCT100xA A13 Transmitter Reference Solution  
3.2 Standby Power  
The purpose of the standby mode of operation is to reduce the power consumption of a wireless power  
transfer system when power transfer is not required. There are two ways to enter standby mode. The first is  
when the transmitter does not detect the presence of a valid receiver. The second is when the receiver  
sends only an End Power Transfer Packet. In standby mode, the transmitter only monitors whether a  
receiver is placed on the active charging area of the transmitter or removed from there.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
22  
NXP Semiconductors  
 
It is recommended that the transmitter’s power consumption in standby mode meets the relative regional  
regulations especially for “No-load power consumption.  
3.3 Digital Demodulation  
In order to optimize system BOM cost, WCT100xA solution employs digital demodulation algorithm to  
communicate with receiver. This method can achieve high performance, low cost, and very simple coil  
signal sensing circuit with fewer external components.  
3.4 Foreign Object Detection  
WCT100xA solution employs flexible, intelligent, and easy-to-use FOD algorithm to ensure accurate  
foreign metal objects detection. With Freescale FreeMASTER GUI tool, FOD algorithm can be easily  
calibrated to get accurate power loss information especially for very sensitive foreign objects.  
4 Device Information  
4.1 Functional Block Diagram  
This functional block diagram just shows the common pin assignment information by all members of the  
family. For the detailed pin multiplexing information, refer to Section 4.4 Pin Function Description.  
Figure 3. WCT1001/3AVLH Function Block Diagram  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
23  
4.2 Product Features Overview  
The following table highlights features that differ among members of the family. Features not listed are  
shared in common by all members of the family.  
Table 8. Feature Comparison Between WCT1001A and WCT1003A  
Part  
WCT1001A  
WCT1003A  
Maximum Core/Bus Clock (MHz)  
Maximum Fully Run Current Consumption (mA)  
Program Flash Memory  
100/50  
100/100  
35.58 (VDD) + 9.08 (VDDA  
)
63.7 (VDD) + 16.7 (VDDA)  
64  
0/0  
64  
256  
32/2  
288  
32  
On-Chip Flash  
Memory Size (KB)  
FlexNVM/FlexRAM  
Total Flash Memory  
On-Chip SRAM Memory Size (KB)  
Memory Resource Protection  
Inter-Peripheral Crossbar Switches with AOI  
On-Chip Relaxation Oscillator  
Computer Operating Properly (Watchdog)  
External Watchdog Monitor  
8
Yes  
Yes  
Yes  
Yes  
1 (8 MHz) + 1 (200 kHz)  
1 (8 MHz) + 1 (32 kHz)  
1 (windowed)  
1
1
1
Cyclic Redundancy Check  
1
1
Periodic Interrupt Timer  
2
2
Quad Timer  
1 x 4  
2 x 4  
Programmable Delay Block  
0
2
12-bit Cyclic ADC Channels  
16-bit SAR ADC Channels  
2 x 8  
2 x 8  
0
1 x 8  
High-Resolution  
PWM Channels  
8
8
Standard  
4
1
12-bit DAC  
2
1
Analog Comparator /w 6-bit REF DAC  
DMA Channels  
4
4
4
4
Queued Serial Communications Interface  
Queued Serial Peripheral Interface  
Inter-Integrated Circuit  
Controller Area Network  
GPIO  
2
2
2
1
1
2
1 (MSCAN)  
54  
1 (FlexCAN)  
54  
Package  
64 LQFP  
64 LQFP  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
24  
NXP Semiconductors  
4.3 Pinout Diagram  
Figure 4. WCT1001/3AVLH Pinout Diagram  
4.4 Pin Function Description  
By default, each pin is configured for its primary function (listed first). Any alternative functionality,  
shown in parentheses, can be programmed through GPIO module peripheral enable registers and SIM  
module GPIO peripheral select registers.  
Table 9. Pin Signal Descriptions  
Multiplexing  
Signal Name  
Pin No.  
Function Description  
Signals  
Test Clock Input This input pin provides a gated clock to synchronize the  
test logic and shift serial data to the JTAG/EOnCE port. The pin is connected  
internally to a pull-up resistor. A Schmitt-trigger input is used for noise  
immunity.  
TCK  
1
GPIOD2  
Port D GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
After reset, the default state is TCK.  
RESET This input is a direct hardware reset on the processor. When  
RESET is asserted low, the device is initialized and placed in the reset state.  
A Schmitt-trigger input is used for noise immunity. The internal reset signal is  
de-asserted synchronous with the internal clocks after a fixed number of  
internal clocks.  
2
GPIOD4  
RESET  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
25  
Port D GPIO This GPIO pin can be individually programmed as an input  
or output pin. If RESET functionality is disabled in this mode and the chip can  
be reset only via POR, COP reset, or software reset.  
After reset, the default state is RESET.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
EXTAL External Crystal Oscillator Input. This input connects the internal  
GPIOC0  
GPIOC1  
3
4
EXTAL/CLKIN0 crystal oscillator input to an external crystal or ceramic resonator.  
CLKIN0 This pin serves as an external clock input 0.  
After reset, the default state is GPIOC0.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
XTAL  
XTAL External Crystal Oscillator Output. This output connects the internal  
crystal oscillator output to an external crystal or ceramic resonator.  
After reset, the default state is GPIOC1.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
TXD0 The SCI0 transmit data output or transmit/receive in single wire  
operation.  
XB_OUT11 Crossbar module output 11 only on WCT1001A.  
TB0 Quad timer module B channel 0 input/output only on WCT1003A.  
TXD0/XB_OUT  
11(TB0)/XB_IN  
2/CLKO0  
GPIOC2  
5
XB_IN2 Crossbar module input 2.  
CLKO0 This is a buffered clock output 0; the clock source is selected by  
clock out select (CLKOSEL) bits in the clock output select register  
(CLKOUT) of the SIM.  
After reset, the default state is GPIOC2.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
RXD0 The SCI0 receive data input.  
XB_OUT10 Crossbar module output 10 only on WCT1001A.  
TB1 Quad timer module B channel 1 input/output only on WCT1003A.  
RXD0/XB_OUT  
10(TB1)/CMPD  
_O/PWM_2X  
GPIOF8  
6
CMPD_O Analog comparator D output.  
PWM_2X NanoEdge eFlexPWM sub-module 2 output X or input capture  
X only on WCT1001A.  
After reset, the default state is GPIOF8.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
TA0 Quad timer module A channel 0 input/output.  
CMPA_O Analog comparator A output.  
RXD0 The SCI0 receive data input.  
TA0/CMPA_O/  
RXD0/CLKIN1  
GPIOC3  
7
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
26  
NXP Semiconductors  
CLKIN1 This pin serves as an external clock input 1.  
After reset, the default state is GPIOC3.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
TA1 Quad timer module A channel 1 input/output.  
TA1/CMPB_O/X CMPB_O Analog comparator B output.  
B_IN6(XB_IN8)/  
GPIOC4  
8
XB_IN6 Crossbar module input 6 only on WCT1001A.  
XB_IN8 Crossbar module input 8 only on WCT1003A.  
EWM_OUT  
EWM_OUT External watchdog monitor output.  
After reset, the default state is GPIOC4.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA7&CMPD_IN3 Analog input to channel 7 of ADCA and input 3 of  
analog comparator D only on WCT1001A. When used as an analog input,  
the signal goes to the ANA7 and CMPD_IN3.  
ANA7&ANC11 Analog input to channel 7 of ADCA and analog input 11 of  
ADCC only on WCT1003A. When used as an analog input, the signal goes  
to the ANA7 and ANC11.  
ANA7&CMPD_I  
N3(ANC11)  
GPIOA7  
GPIOA6  
GPIOA5  
9
After reset, the default state is GPIOA7.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA6&CMPD_IN2 Analog input to channel 6 of ADCA and input 2 of  
analog comparator D only on WCT1001A. When used as an analog input,  
the signal goes to the ANA6 and CMPD_IN2.  
ANA6&ANC10 Analog input to channel 6 of ADCA and analog input 10 of  
ADCC only on WCT1003A. When used as an analog input, the signal goes  
to the ANA6 and ANC10.  
ANA6&CMPD_I  
N2(ANC10)  
10  
11  
12  
After reset, the default state is GPIOA6.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA5&CMPD_IN1 Analog input to channel 5 of ADCA and input 1 of  
analog comparator D only on WCT1001A. When used as an analog input,  
the signal goes to the ANA5 and CMPD_IN1.  
ANA5&ANC9 Analog input to channel 5 of ADCA and analog input 9 of  
ADCC only on WCT1003A. When used as an analog input, the signal goes  
to the ANA5 and ANC9.  
ANA5&CMPD_I  
N1(ANC9)  
After reset, the default state is GPIOA5.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA4&CMPD_IN0 Analog input to channel 4 of ADCA and input 0 of  
analog comparator D only on WCT1001A. When used as an analog input,  
the signal goes to the ANA4 and CMPD_IN0.  
ANA4&CMPD_IN0&ANC8 Analog input to channel 4 of ADCA and input 0  
of analog comparator D and analog input to channel 8 of ADCC only on  
WCT1003A. When used as an analog input, the signal goes to the ANA4  
and CMPD_IN0 and ANC8.  
ANA4&CMPD_I  
N0&ANC8  
GPIOA4  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
27  
After reset, the default state is GPIOA4.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA0&CMPA_IN3 Analog input to channel 0 of ADCA and input 3 of  
ANA0&CMPA_I analog comparator A. When used as an analog input, the signal goes to the  
GPIOA0  
13  
N3/CMPC_O  
ANA0 and CMPA_IN3.  
CMPC_O Analog comparator C output.  
After reset, the default state is GPIOA0.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA1&CMPA_I ANA1 and CMPA_IN0 Analog input to channel 1 of ADCA and input 0 of  
GPIOA1  
GPIOA2  
14  
15  
N0  
analog comparator A. When used as an analog input, the signal goes to the  
ANA1 and CMPA_IN0.  
After reset, the default state is GPIOA1.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA2&VREFHA&CMPA_IN1 Analog input to channel 2 of ADCA and  
analog references high of ADCA and input 1 of analog comparator A. When  
used as an analog input, the signal goes to ANA2 and VREFHA and  
CMPA_IN1. ADC control register configures this input as ANA2 or VREFHA.  
ANA2&VREFH  
A&CMPA_IN1  
After reset, the default state is GPIOA2.  
Port A GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANA3&VREFLA&CMPA_IN2 Analog input to channel 3 of ADCA and  
analog references low of ADCA and input 2 of analog comparator A. When  
used as an analog input, the signal goes to ANA3 and VREFLA and  
CMPA_IN2. ADC control register configures this input as ANA3 or VREFLA.  
ANA3&VREFLA  
&CMPA_IN2  
GPIOA3  
16  
After reset, the default state is GPIOA3.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANB7&CMPB_IN2 Analog input to channel 7 of ADCB and input 2 of  
analog comparator B only on WCT1001A. When used as an analog input,  
ANB7&CMPB_I the signal goes to the ANB7 and CMPB_IN2.  
N2&ANC15 ANB7&CMPB_IN2&ANC15 Analog input to channel 7 of ADCB and input  
GPIOB7  
17  
2 of analog comparator B and analog input to channel 15 of ADCC only on  
WCT1003A. When used as an analog input, the signal goes to the ANB7  
and CMPB_IN2 and ANC15.  
After reset, the default state is GPIOB7.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
DAC_O 12-bit Digital-to-Analog Converter output. For WCT1001A, its  
GPIOC5  
GPIOB6  
18  
19  
DAC_O/XB_IN7 DACA output.  
XB_IN7 Crossbar module input 7.  
After reset, the default state is GPIOC5.  
ANB6&CMPB_I Port B GPIO This GPIO pin can be individually programmed as an input  
N1&ANC14  
or output pin.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
28  
NXP Semiconductors  
ANB6&CMPB_IN1 Analog input to channel 6 of ADCB and input 1 of  
analog comparator B only on WCT1001A. When used as an analog input,  
the signal goes to the ANB6 and CMPB_IN1.  
ANB6&CMPB_IN1&ANC14 Analog input to channel 6 of ADCB and input  
1 of analog comparator B and analog input to channel 14 of ADCC only on  
WCT1003A. When used as an analog input, the signal goes to the ANB6  
and CMPB_IN1 and ANC14.  
After reset, the default state is GPIOB6.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANB5&CMPC_IN2 Analog input to channel 5 of ADCB and input 2 of  
analog comparator C only on WCT1001A. When used as an analog input,  
ANB5&CMPC_I the signal goes to the ANB5 and CMPC_IN2.  
GPIOB5  
20  
N2&ANC13  
ANB5&CMPC_IN2&ANC13 Analog input to channel 5 of ADCB and input  
2 of analog comparator C and analog input to channel 13 of ADCC only on  
WCT1003A. When used as an analog input, the signal goes to the ANB5  
and CMPC_IN2 and ANC13.  
After reset, the default state is GPIOB5.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANB4&CMPC_IN1 Analog input to channel 4 of ADCB and input 1 of  
analog comparator C only on WCT1001A. When used as an analog input,  
ANB4&CMPC_I the signal goes to the ANB4 and CMPC_IN1.  
GPIOB4  
21  
N1&ANC12  
ANB4&CMPC_IN1&ANC12 Analog input to channel 4 of ADCB and input  
1 of analog comparator C and analog input to channel 12 of ADCC only on  
WCT1003A. When used as an analog input, the signal goes to the ANB4  
and CMPC_IN1 and ANC12.  
After reset, the default state is GPIOB4.  
Analog Power This pin supplies 3.3 V power to the analog modules. It  
must be connected to a clean analog power supply.  
Analog Ground This pin supplies an analog ground to the analog  
modules. It must be connected to a clean power supply.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
VDDA  
VSSA  
22  
23  
-
-
ANB0&CMPB_I ANB0&CMPB_IN3 Analog input to channel 0 of ADCB and input 3 of  
GPIOB0  
24  
N3  
analog comparator B. When used as an analog input, the signal goes to  
ANB0 and CMPB_IN3.  
After reset, the default state is GPIOB0.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANB1&CMPB_IN0 Analog input to channel 1 of ADCB and input 0 of  
ANB1&CMPB_I analog comparator B. When used as an analog input, the signal goes to  
GPIOB1  
25  
N0/DACB_O  
ANB1 and CMPB_IN0.  
DACB_O 12-bit Digital-to-Analog Converter B output only on WCT1001A.  
After reset, the default state is GPIOB1.  
Connect a 2.2 μF or greater bypass capacitor between this pin and VSS to  
stabilize the core voltage regulator output required for proper device  
operation.  
VCAP1  
26  
27  
-
GPIOB2  
ANB2&VREFH  
Port B GPIO This GPIO pin can be individually programmed as an input  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
29  
B&CMPC_IN3  
or output pin.  
ANB2&VREFHB&CMPC_IN3 Analog input to channel 2 of ADCB and  
analog references high of ADCB and input 3 of analog comparator C. When  
used as an analog input, the signal goes to ANB2 and VREFHB and  
CMPC_IN3. ADC control register configures this input as ANB2 or VREFHB.  
After reset, the default state is GPIOB2.  
Port B GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
ANB3&VREFLB&CMPC_IN0 Analog input to channel 3 of ADCB and  
analog references low of ADCB and input 0 of analog comparator C. When  
used as an analog input, the signal goes to ANB3 and VREFLB and  
CMPC_IN0. ADC control register configures this input as ANB3 or VREFLB.  
ANB3&VREFLB  
&CMPC_IN0  
GPIOB3  
28  
After reset, the default state is GPIOB3.  
VDD1  
VSS1  
29  
30  
-
-
I/O Power Supplies 3.3 V power to on-chip digital module.  
I/O Ground Provides ground on-chip digital module.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
TA2 Quad timer module A channel 2 input/output.  
XB_IN3 Crossbar module input 3.  
TA2/XB_IN3/C  
GPIOC6  
31  
MP_REF/SS0  
CMP_REF Input 5 of analog comparator A and B and C and D.  
SS0 SS0 is used in slave mode to indicate to the SPI0 module that the  
current transfer is to be received. This signal is only on WCT1001A.  
After reset, the default state is GPIOC6.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
SS0 SS0 is used in slave mode to indicate to the SPI0 module that the  
current transfer is to be received.  
SS0/TXD0/XB_I  
GPIOC7  
32  
N8  
TXD0 SCI0 transmit data output or transmit/receive in single wire  
operation.  
XB_IN8 Crossbar module input 8 only on WCT1001A.  
After reset, the default state is GPIOC7.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
MISO0 Master in/slave out. In master mode, this pin serves as the data  
input. In slave mode, this pin serves as the data output. The MISO0 line of a  
slave device is placed in the high-impedance state if the slave device is not  
selected.  
MISO0  
/RXD0/XB_IN9/  
XB_OUT6  
GPIOC8  
33  
RXD0 SCI0 receive data input.  
XB_IN9 Crossbar module input 9.  
XB_OUT6 Crossbar module output 6 only on WCT1001A.  
After reset, the default state is GPIOC8.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
30  
NXP Semiconductors  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
SCLK0 The SPI0 serial clock. In master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as the data  
clock input.  
SCLK0/XB_IN4/  
GPIOC9  
34  
TXD0/XB_OUT XB_IN4 Crossbar module input 4.  
8
TXD0 SCI0 transmit data output or transmit/receive in single wire  
operation. This signal is only on WCT1001A.  
XB_OUT8 Crossbar module output 8 only on WCT1001A.  
After reset, the default state is GPIOC9.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
MOSI0 Master out/slave in. In master mode, this pin serves as the data  
output. In slave mode, this pin serves as the data input.  
XB_IN5 Crossbar module input 5.  
MOSI0  
GPIOC10  
35  
/XB_IN5/MISO0  
/XB_OUT9  
MISO0 Master in/slave out. In master mode, this pin serves as the data  
input. In slave mode, this pin serves as the data output. The MISO0 line of a  
slave device is placed in the high-impedance state if the slave device is not  
selected.  
XB_OUT9 Crossbar module output 9 only on WCT1001A.  
After reset, the default state is GPIOC10.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
XB_IN6 Crossbar module input 6.  
XB_IN6/TB2/SC TB2 Quad timer module B channel 2 input/output only on WCT1003A.  
GPIOF0  
36  
LK1  
SCLK1 The SPI1 serial clock. In master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as the data  
clock input.  
After reset, the default state is GPIOF0.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
CANTX CAN transmit data output.  
CAN_TX/SCL0( SCL0 IIC0 serial clock only on WCT1001A.  
GPIOC11  
37  
SCL1)/TXD1  
SCL1 IIC1 serial clock only on WCT1003A.  
TXD1 SCI1 transmit data output or transmit/receive in single wire  
operation.  
After reset, the default state is GPIOC11.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
CAN_RX/SDA0(  
SDA1)/RXD1  
GPIOC12  
38  
CANRX CAN receive data input.  
SDA0 IIC0 serial data line only on WCT1001A.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
31  
SDA1 IIC1 serial data line only on WCT1003A.  
RXD1 SCI1 receive data input.  
After reset, the default state is GPIOC12.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
SCL0 IIC0 serial clock only on WCT1001A.  
SCL1 IIC1 serial clock only on WCT1003A.  
SCL0(SCL1)/XB XB_OUT6 Crossbar module output 6.  
_OUT6/MISO1  
GPIOF2  
GPIOF3  
GPIOF4  
39  
40  
41  
MISO1 Master in/slave out. In master mode, this pin serves as the data  
input. In slave mode, this pin serves as the data output. The MISO1 line of a  
slave device is placed in the high-impedance state if the slave device is not  
selected. This signal is only on WCT1001A.  
After reset, the default state is GPIOF2.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
SDA0 IIC0 serial data line only on WCT1001A.  
SDA1 IIC1 serial data line only on WCT1003A.  
SDA0(SDA1)/X  
B_OUT7/  
XB_OUT7 Crossbar module output 7.  
MOSI1  
MOSI1 Master out/slave in. In master mode, this pin serves as the data  
output. In slave mode, this pin serves as the data input. This signal is only on  
WCT1001A.  
After reset, the default state is GPIOF3.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
TXD1 The SCI1 transmit data output or transmit/receive in single wire  
operation.  
TXD1/XB_OUT  
8/PWM_0X/PW  
M_FAULT6  
XB_OUT8 Crossbar module output 8.  
PWM_0X NanoEdge eFlexPWM sub-module 0 output X or input capture  
X only on WCT1001A.  
PWM_FAULT6 NanoEdge eFlexPWM fault input 6 only on WCT1001A.  
After reset, the default state is GPIOF4.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
RXD1 The SCI1 receive data input.  
RXD1/XB_OUT XB_OUT9 Crossbar module output 9.  
GPIOF5  
VSS2  
42  
43  
9/PWM_1X/PW  
M_FAULT7  
PWM_1X NanoEdge eFlexPWM sub-module 1 output X or input capture  
X only on WCT1001A.  
PWM_FAULT7 NanoEdge eFlexPWM fault input 7 only on WCT1001A.  
After reset, the default state is GPIOF5.  
I/O Ground Provides ground to on-chip digital module.  
-
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
32  
NXP Semiconductors  
VDD2  
44  
45  
-
I/O Power Supplies 3.3 V power to on-chip digital module.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
GPIOE0  
PWM_0B  
PWM_0B NanoEdge eFlexPWM sub-module 0 output B or input capture  
B.  
After reset, the default state is GPIOE0.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
GPIOE1  
GPIOE2  
GPIOE3  
46  
47  
48  
PWM_0A  
PWM_1B  
PWM_1A  
PWM_0A NanoEdge eFlexPWM sub-module 0 output A or input capture  
A.  
After reset, the default state is GPIOE1.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_1B NanoEdge eFlexPWM sub-module 1 output B or input capture  
B.  
After reset, the default state is GPIOE2.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_1A NanoEdge eFlexPWM sub-module 1 output A or input capture  
A.  
After reset, the default state is GPIOE3.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
TA3 Quad timer module A channel 3 input/output.  
XB_IN6 Crossbar module input 6.  
TA3/XB_IN6/  
EWM_OUT  
GPIOC13  
49  
EWM_OUT External watchdog monitor output.  
After reset, the default state is GPIOC13.  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
CLKO1 This is a buffered clock output 1; the clock source is selected by  
clock out select (CLKOSEL) bits in the clock output select register  
CLKO1/XB_IN7/ (CLKOUT) of the SIM.  
CMPD_O  
GPIOF1  
50  
XB_IN7 Crossbar module input 7.  
CMPD_O Analog comparator D output.  
After reset, the default state is GPIOF1.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_2B NanoEdge eFlexPWM sub-module 2 output B or input capture  
B.  
PWM_2B/XB_I  
N2  
GPIOE4  
51  
XB_IN2 Crossbar module input 2.  
After reset, the default state is GPIOE4.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
33  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_2A NanoEdge eFlexPWM sub-module 2 output A or input capture  
A.  
PWM_2A/XB_I  
N3  
GPIOE5  
GPIOE6  
GPIOE7  
52  
53  
54  
XB_IN3 Crossbar module input 3.  
After reset, the default state is GPIOE5.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_3B NanoEdge eFlexPWM sub-module 3 output B or input capture  
B.  
PWM_3B/XB_I  
N4  
XB_IN4 Crossbar module input 4.  
After reset, the default state is GPIOE6.  
Port E GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
PWM_3A NanoEdge eFlexPWM sub-module 3 output A or input capture  
A.  
PWM_3A/XB_I  
N5  
XB_IN5 Crossbar module input 5.  
After reset, the default state is GPIOE7.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
SDA0 IIC0 serial data line.  
SDA0/XB_OUT  
4/PWM_FAULT  
4
GPIOC14  
55  
XB_OUT4 Crossbar module output 4.  
PWM_FAULT4 NanoEdge eFlexPWM fault input 4 only on WCT1001A.  
After reset, the default state is GPIOC14.  
Port C GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
SCL0 IIC0 serial clock.  
SCL0/XB_OUT  
5/PWM_FAULT  
5
GPIOC15  
VCAP2  
56  
57  
XB_OUT5 Crossbar module output 5.  
PWM_FAULT5 NanoEdge eFlexPWM fault input 5 only on WCT1001A.  
After reset, the default state is GPIOC15.  
Connect a 2.2 μF or greater bypass capacitor between this pin and VSS to  
stabilize the core voltage regulator output required for proper device  
operation.  
-
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
TB2 Quad timer module B channel 2 input/output only on WCT1003A.  
TB2/PWM_3X/X  
B_IN2  
GPIOF6  
58  
PWM_3X NanoEdge eFlexPWM sub-module 3 output X or input capture  
X.  
XB_IN2 Crossbar module input 2.  
After reset, the default state is GPIOF6.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
34  
NXP Semiconductors  
Port F GPIO This GPIO pin can be individually programmed as an input or  
output pin.  
TB3 Quad timer module B channel 3 input/output only on WCT1003A.  
CMPC_OAnalog comparator C output.  
TB3/CMPC_O/  
GPIOF7  
59  
SS1/XB_IN3  
SS1 SS1 is used in slave mode to indicate to the SPI1 module that the  
current transfer is to be received.  
XB_IN3 Crossbar module input 3.  
After reset, the default state is GPIOF7.  
VDD3  
VSS3  
60  
61  
-
-
I/O Power Supplies 3.3 V power to on-chip digital module.  
I/O Ground Provides ground to on-chip digital module.  
Test Data Output This tri-stateable output pin provides a serial output  
data stream from the JTAG/EOnCE port. It is driven in the shift-IR and  
shift-DR controller states and changes on the falling edge of TCK.  
TDO  
TMS  
TDI  
62  
63  
64  
GPIOD1  
GPIOD3  
GPIOD0  
Port D GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
After reset, the default state is TDO.  
Test Mode Select Input This input pin is used to sequence the JTAG TAP  
controller’s state machine. It is sampled on the rising edge of TCK and has  
an on-chip pull-up resistor.  
Port D GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
After reset, the default state is TMS.  
NOTE: Always tie the TMS pin to VDD through a 2.2 kΩ resistor if need to  
keep on-board debug capability. Otherwise, directly tie to VDD.  
Test Data Input This input pin provides a serial input data stream to the  
JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an  
on-chip pull-up resistor.  
Port D GPIO This GPIO pin can be individually programmed as an input  
or output pin.  
After reset, the default state is TDI.  
4.5 Ordering Information  
Table 1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales  
office to determine availability and to order this device.  
Table 10. MWCT100xAVLH Ordering Information  
Device  
Supply Voltage  
Package Type  
Pin Count  
Ambient Temp.  
-40 to +105  
-40 to +105℃  
Order Number  
MWCT1001AVLH  
3.0 to 3.6V  
LQFP  
64  
MWCT1001AVLH  
MWCT1003AVLH  
3.0 to 3.6V  
LQFP  
64  
MWCT1003AVLH  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
35  
 
4.6 Package Outline Drawing  
To find a package drawing, go to freescale.com and perform a keyword search for the drawings document  
number of 98ASS23234W.  
5 Software Library  
The software for WCT100xA is matured and tested for production ready. Freescale provides a Wireless  
Charging Transmitter (WCT) software library for speeding user designs. In this library, low level drivers  
of HAL (Hardware Abstract Layer), callback functions for library access are open to user. About the  
software API and library details, see the WCT1001A/WCT1003A Transmitter Library User’s Guide  
(WCT100XALIBUG).  
5.1 Memory Map  
WCT100xA has large on-chip Flash memory and RAM for user design. Besides wireless charging  
transmitter library code, the user can develop private functions and link it to library through predefined  
APIs.  
Table 11. WCT100xA Memory Footprint (CodeWarrior V10.6, code size optimization level 4)  
Part  
Memory  
Flash  
RAM  
Total Size  
64 Kbytes  
8 Kbytes  
Library Size  
22.2 Kbytes  
2.5 Kbytes  
22.2 Kbytes  
1.2 Kbytes  
FreeMASTER Size EEPROM Size  
Free Size  
39.3 Kbytes  
5.4 Kbytes  
1.5 Kbytes  
0.1 Kbytes  
1.5 Kbytes  
0.1 Kbytes  
1 Kbytes  
0 Kbytes  
1 Kbytes  
0 Kbytes  
WCT1001A  
Flash  
RAM  
288 Kbytes  
32 Kbytes  
263.3 Kbytes  
30.7 Kbytes  
WCT1003A  
5.2 Software Library and API Description  
For more and detailed information about WCT software library and API definition, see the  
WCT1001A/WCT1003A Transmitter Library User’s Guide (WCT100XALIBUG).  
6 Design Considerations  
6.1 Electrical Design Considerations  
To ensure correct operations on the device and system, pay attention to the following points:  
The minimum bypass requirement is to place 0.01 - 0.1μF capacitors positioned as near as  
possible to the package supply pins. The recommended bypass configuration is to place one bypass  
capacitor on each of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum  
capacitors tend to provide better tolerances.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
36  
NXP Semiconductors  
Bypass the VDD and VSS with approximately 10μF, plus the number of 0.1μF ceramic  
capacitors.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating  
capacitance. This is especially critical in systems with higher capacitive loads that could create  
higher transient currents in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VDDA and VSSA pins.  
It is recommended to use separate power planes for VDD and VDDA and use separate ground  
planes for VSS and VSSA. Connect the separate analog and digital power and ground planes as  
near as possible to power supply outputs. If an analog circuit and digital circuit are powered by the  
same power supply, you should connect a small inductor or ferrite bead in serial with VDDA trace.  
If desired, connect an external RC circuit to the RESET pin. The resistor value should be in the  
range of 4.7 kΩ – 10 ; and the capacitor value should be in the range of 0.1μF 4.7μF.  
Add a 2.2 external pull-up on the TMS pin of the JTAG port to keep device in a restate during  
normal operation if JTAG converter is not present.  
During reset and after reset but before I/O initialization, all I/O pins are at input mode with internal  
weak pull-up.  
To eliminate PCB trace impedance effect, each ADC input should have a no less than 33 pF/10 Ω  
RC filter.  
To assure chip reliable operation, reserve enough margin for chip electrical design. Figure 5 shows  
the relationship between electrical ratings and electrical operating characteristics for correct chip  
operation.  
)
)
.
x
a
.
n
i
m
m
(
(
s
s
c
c
i
i
t
t
s
i
s
i
r
r
e
e
t
t
c
c
a
a
r
r
a
a
h
c
)
.
)
.
h
x
a
c
n
i
g
g
n
m
m
(
g
n
i
(
i
t
t
g
a
a
r
r
n
i
n
i
t
a
r
e
e
p
t
p
a
r
o
o
l
l
l
l
a
c
a
a
a
c
i
c
i
c
i
i
r
t
c
r
t
r
r
t
t
c
c
c
e
l
e
l
e
l
e
l
E
E
E
E
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible incorrect operation  
−   
+   
Operating (power on)  
)
.
)
.
x
a
n
i
m
m
(
(
g
g
n
n
i
i
t
t
a
a
r
r
g
g
n
n
i
i
l
l
d
d
n
n
a
a
H
H
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
Expected permanent failure  
No permanent failure  
−   
+   
Handling (power off)  
Figure 5. Relationship between Ratings and Operating Characteristics  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
37  
 
6.2 PCB Layout Considerations  
Provide a low-impedance path from the board power supply to each VDD pin on the device and  
from the board ground to each VSS pin.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and  
VSS pins are as short as possible.  
PCB trace lengths should be minimal for high-frequency signals.  
Physically separate analog components from noisy digital components by ground planes. Do not  
place an analog trace in parallel with digital traces. Place an analog ground trace around an analog  
signal trace to isolate it from digital traces.  
The decoupling capacitors of 0.1μF must be placed on the VDD pins as close as possible, and  
place those ceramic capacitors on the same PCB layer with WCT100xA device. VIA is not  
recommend between the VDD pins and decoupling capacitors.  
The WCT100xA bottom EP pad should be soldered to the ground plane, which will make the  
system more stable, and VIA matrix method can be used to connect this pad to the ground plane.  
As the wireless charging system functions as a switching-mode power supply, the power  
components layout is very important for the whole system power transfer efficiency and EMI  
performance. The power routing loop should be as small and short as possible. Especially for the  
resonant network, the traces of this circuit should be short and wide, and the current loop should be  
optimized smaller for the MOSFETs, resonant capacitor and primary coil. Another important thing  
is that the control circuit and power circuit should be separated.  
6.3 Thermal Design Considerations  
WCT100xA power consumption is not so critical, so there is not additional part needed for power  
dissipation. However, the power inverter needs the additional PCB Cu copper to dissipate the heat, so  
good thermal package MOSFET is recommended, such as DFN package, and for the resonant capacitor,  
C0G material, and 1206 or 1210 package are recommended to meet the thermal requirement. The worst  
thermal case is on the inverter, so the user should make some special actions to dissipate the heat for good  
transmitter system thermal performance.  
7 References and Links  
7.1 References  
WCT1001A/WCT1003A Automotive A13 Wireless Charging Application User’s Guide  
(WCT100XAWCAUG)  
WCT1001A/WCT1003A Transmitter Library User’s Guide (WCT100XALIBUG)  
WCT1001A/WCT1003A Run-Time Debug User’s Guide (WCT100XARTDUG)  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
38  
NXP Semiconductors  
WPC Low Power Wireless Transfer System Description Part 1: Interface Definition Version 1.1  
7.2 Useful Links  
freescale.com  
freescale.com\wirelesscharging  
www.wirelesspowerconsortium.com  
8 Revision history  
This table summarizes revisions to this document.  
Table 12. Revision history  
Revision number  
Date  
Substantive changes  
Initial release.  
1.0  
1.1  
1.2  
08/2014  
05/2020  
01/2021  
Added MWCT1001A3VLH.  
Changed "AEC-Q100 grade 2 certification" to "Qualified to  
AEC100 Test Group A&B".  
9 Addendum for MWCT1001A3VLH  
This addendum provides update to all revisions of the MWCT1001AVLH Data Sheet (document  
MWCT100XADS).  
The purpose of the addendum is to outline the differences that need to be considered in designing the  
MWCT1001A3VLH and MWCT1001AVLH.  
MWCT1001A3VLH has exactly the same peripherals and electrical specifications and package as the  
MWCT1001AVLH.  
9.1 Ordering information  
The following table lists the pertinent information needed to place an order. Consult an NXP  
Semiconductors sales office to determine availability and order this device.  
Table 13. MWCT1001A3VLH ordering information  
Device  
Supply voltage  
Package type Pin count  
LQFP 64  
Ambient temp.  
Order number  
MWCT1001A3VLH  
3.0 to 3.6 V  
-40 to +105 ℃  
MWCT1001A3VLH  
9.2 Package outline drawing  
To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing’s  
document number of 98ASS23234W.  
Automotive Wireless Transmitter Controller, Rev. 1.2, 01/2021  
NXP Semiconductors  
39  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data  
sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer's technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
nxp.com/support  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE  
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX,  
STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5,  
CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo,  
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ  
Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa,  
Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other  
product or service names are the property of their respective owners. Arm, AMBA, Arm  
Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are  
registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7,  
Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP,  
Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in  
the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of  
Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power  
and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2021 NXP B.V.  
Document Number: WCT100XADS  
Rev. 1.2  
01/2021  

相关型号:

WCT1011A

Compliant with the latest version Wireless Power Consortium (WPC) power class 0 specification power transmitter design

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

WCT1013A

Compliant with the latest version Wireless Power Consortium (WPC) power class 0 specification power transmitter design

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

WCT101XADS

Compliant with the latest version Wireless Power Consortium (WPC) power class 0 specification power transmitter design

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

WCT38466-N0E0SST101

Tx线圈单元和模组

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

WCTA20011800B

RES NET,THIN FILM,1.18K OHMS,100WV,.1% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA20011800C

RES NET,THIN FILM,1.18K OHMS,100WV,.2% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA20011800D

RES NET,THIN FILM,1.18K OHMS,100WV,.5% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA20011801C

RES NET,THIN FILM,11.8K OHMS,100WV,.2% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA20011801D

RES NET,THIN FILM,11.8K OHMS,100WV,.5% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA20011801F

RES NET,THIN FILM,11.8K OHMS,100WV,1% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA2001180AB

RES NET,THIN FILM,118 OHMS,100WV,.1% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

WCTA2001180AC

RES NET,THIN FILM,118 OHMS,100WV,.2% +/-TOL,-50,50PPM TC,0303 CASE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY