XA-H3 [NXP]

CMOS 16-bit highly integrated microcontroller; CMOS 16位高度集成的微控制器
XA-H3
型号: XA-H3
厂家: NXP    NXP
描述:

CMOS 16-bit highly integrated microcontroller
CMOS 16位高度集成的微控制器

微控制器
文件: 总36页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
XA-H3  
CMOS 16-bit highly integrated  
microcontroller  
Preliminary specification  
IC28 Data Handbook  
1999 Sep 24  
Philips  
Semiconductors  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
DESCRIPTION  
The powerful 16-bit XA CPU core and rich feature set make the  
XA-H3 and XA-H4 devices ideal for high-performance real-time  
applications such as industrial control and networking. By supporting  
of up to 32 MB of external memory, these devices provide a low-cost  
solution to embedded applications of any complexity. Features like  
DMA, memory controller and four advanced UARTs help solve I/O  
intensive tasks with a minimum of CPU load.  
The XA-H3 feature set is a subset of the XA-H4 (see Table 1). The  
XA-H3/H4 devices are members of the Philips XA (eXtended  
Architecture) family of high performance 16-bit microcontrollers.  
The XA-H3 and XA-H4 are designed to significantly minimize the  
need for external components.  
FEATURES  
Large Memory Support (up to 6 MB external)  
Dynamic Bus Timing – each of 6 chip selects has individual  
programmable bus timing.  
De-multiplexed Address/Data Bus  
Six Programmable Chip Selects  
Support for Unified Memory – allows easy user modification of  
all code  
32 Programmable General Purpose I/O Pins  
Four UARTs with 230.4 kbps capability  
Eight DMA Channels  
External ISP Flash support for easy code download  
Dynamic Bus Sizing – each of 6 Chip Selects can be programmed  
for 8-bit or 16-bit bus.  
Table 1. XA-H3 and XA-H4 features comparison  
Feature  
XA-H3  
XA-H4  
Maximum External Memory  
(Harvard Memory Mode)  
6 MB  
32 MB  
(16 MB Code, 16 MB Data)  
Maximum External Memory (Unified Memory Mode)  
Memory Controller supports both Harvard and Unified architectures  
De-multiplexed Address/Data Bus  
DRAM Controller  
6 MB  
16 MB  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
DMA Channels  
8
8
Dynamic Bus Sizing  
Yes  
Yes  
Dynamic Bus Timing  
Yes  
Yes  
Programmable Chip Selects  
General Purpose IO Pins  
6
6
33  
33  
Potential Interrupt Pins  
16  
16  
Interrupts (programmable priority)  
7 Standard SW  
4 High Priority SW  
13 Hardware Event  
7 Standard SW  
4 High Priority SW  
13 Hardware Event  
Counter/Timers  
2 plus Watchdog  
2 plus Watchdog  
1
Baud Rate Generators  
4
4
Serial Ports  
4 UARTS  
4 USARTS  
Maximum Serial Data Rates  
asynch to 230.4 kbps (no sync)  
asynch to 230.4 kbps  
sync to 1 Mbps  
Match Characters  
Hardware Autobaud  
SCP/SPI Bus  
No  
No  
No  
4 async chars per USART  
up to 230.4 kbps  
NOTE:  
1. Can be used as additional counters if not needed as BRGs.  
2
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
ORDERING INFORMATION  
ROMless Only  
H3 = PXAH30KFBE  
NOTE  
Temperature range °C and Package  
Freq (MHz)  
Package Drawing Number  
30  
SOT407-1  
–40 to +85°C, 100-Pin Low Profile Quad Flat Package (LQFP)  
K=30 MHz, F = (–40 to +85), BE = LQFP  
PIN CONFIGURATION  
VSS  
VDD  
A0  
1
2
3
4
5
6
7
8
9
75 P1.7_BRG2  
74 P1.6_RTS2  
73 P1.5_CTS2  
72 P1.4_CD2  
71 P1.3_TRClk2  
70 P1.2_RTClk2  
69 P1.1_TxD2  
68 P1.0_RxD2  
67 P3.7_Int1_TRClk1  
66 P3.6_TxD1  
65 P3.5_RxD1  
64 P3.4_CTS1  
63 P3.3_Timer1_BRG1  
62 VDD  
A1  
MOLD MARK  
A2  
A3  
A4  
A5  
A6  
A7 10  
A8 11  
XA-H3  
A9 12  
Top View 100 Pin LQFP  
Part Number: PXAH30KFBE  
A10 13  
A11 14  
A12 15  
A13 16  
A14 17  
A15 18  
VSS 19  
VDD 20  
A16 21  
A17 22  
A18 23  
A19 24  
D0 25  
K = 30 MHz, F = –40 to +85°C, BE = LQFP pkg  
LQFP Package = SOT407-1  
61 XTALOUT  
60 XTALIN  
59 VSS  
58 P3.2_Timer0_ResetOut  
57 P3.1_CS5_RTS1  
56 P3.0_CS4_RTClk1  
55 Reset_In  
MOLD MARK  
54 BLE  
53 BHE  
52 WAIT_Size16  
51 OE  
SU01234  
3
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
LOGIC SYMBOL XA-H3  
V
DD  
V
SS  
Int0  
XTAL1  
XTAL2  
MISC.  
Int2  
UART1  
PORT3  
CD1  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
CS4  
CS5  
RTClk1  
RTS1  
ResetOut, Timer0  
Timer1  
BRG1  
CTS1  
RxD1  
TxD1  
TRClk1  
CS3  
CS2  
CS1  
CS0  
Int1  
UART3  
PORT2  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
RxD3  
TxD3  
RTClk3  
ComClk, TRClk3  
CD3  
A19 – A0  
D15 – D0  
CTS3  
RTS3  
BRG3  
UART2  
PORT1  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
RxD2  
TxD2  
RTClk2  
TRClk2  
CD2  
CTS2  
RTS2  
BRG2  
ClkOut  
BHE  
BLE  
OE  
WE  
UART0  
PORT0  
TxD0  
RxD0  
Wait, Size16  
ResetIn  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
BRG0  
RTS0  
CTS0  
CD0  
TRClk0  
RTClk0  
0.6  
0.7  
GPOut  
SU01235  
4
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
XA-H3 BLOCK DIAGRAM  
XA-H3 CPU Core  
Data  
256 Bytes Data  
SRAM  
MMR Bus  
SFR Bus  
DMA R0  
DMA T0  
UART 0  
UART 1  
UART 2  
UART 3  
Port 0  
Port 1  
Port 2  
DMA R1  
DMA T1  
DMA R2  
DMA T2  
Port 3  
Timer 0  
DMA R3  
DMA T3  
Timer 1  
Watchdog  
Timer  
Memory Bus Controller  
6 Chip Selects  
Dynamic Bus Sizing  
Dynamic Bus Timing  
External  
System Bus  
SU01247  
5
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
XA-H3 MEMORY MAPS  
FFFFFFh  
6 MB *  
Common Code  
and Data Space  
000000h  
Unified Memory  
(von Neuman architecture)  
*In either memory architecture, the XA-H3 can support a maximum of  
6 MB because each of six Chip Selects is capable of 1 MB each. In  
Unified architecture, Code and Data can share the same physical  
Memory Chip and address space.  
Code Space + Data Space = 6 MB Maximum Total with 1 MB per Chip Select. Each CS  
(and thus, 1 MB space) can support either Code or Data in Harvard architecture.  
FFFFFFh  
FFFFFFh  
Dedicated  
Code Space  
Dedicated  
Data Space  
000000h  
000000h  
Harvard Architecture  
SU01248  
6
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
PIN DESCRIPTIONS  
Lqfp  
Pin No.  
See  
Note  
Mnemonic  
Type  
Name and Function  
V
SS  
1, 19, 28,  
44, 59,  
76, 88  
Ground: 0 V reference.  
I
V
DD  
2, 20, 29,  
43, 62,  
77, 89  
Power Supply: This is the power supply voltage for normal, idle, and power down operation.  
I
Reset: A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on  
their default states, and the processor to begin execution at the address contained in the reset  
vector.  
ResetIn  
55  
52  
I
I
WAIT/  
Size16  
Wait/Size16: During Reset, this input determines bus size for boot device (“1” = 16-bit boot device;  
“0” = 8-bit.) During normal operation this is the Wait input (“1” = Wait; “0” = Proceed.)  
Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the internal clock  
generator circuits.  
XTALIn  
60  
61  
I
I
XTALOut  
Crystal 2: Output from the oscillator amplifier.  
Chip Select 0: This output provides the active low chip select to the boot device (usually ROM or  
Flash.) From reset, it is enabled and mapped to an address range based at 000000h. It can be  
remapped by software to a higher base in the address map (see the “Memory Interface” chapter in  
the XA-H3 User Manual.)  
CS0  
CS1  
49  
48  
O
O
Chip Select 1*: Chip Selects 1 through 5 come out of reset disabled. They function as normal chip  
selects on the H3. CS1 can be “swapped” with CS0 (see the SWAP operation in the “Memory  
Controller” chapter of the XA-H3 User Manual.) CS1 is usually mapped to be based at 000000h  
after the swap, but is capable of being based anywhere in the 16 MB address space.  
CS2  
CS3  
47  
46  
O
O
Chip Select 2 *: Active low Chip Selects CS1 through CS5 come out of reset disabled. They can  
be programmed to function as normal chip selects. CS2 through CS5 are not used with the  
“SWAP” operation (only /CS0 and CS1 can be swapped; see “Memory Controller” chapter in the  
XA-H3 User Manual.) They are mappable to any region of the 16 MB address space.  
Chip Select 3 *: See Chip Select 2 for description.  
See Pins 56, 57 for 2 additional Chip Selects  
WE  
OE  
50  
51  
54  
O
O
O
Write Enable: Goes active low during all bus write cycles only.  
Output Enable: Goes active low during all bus read cycles only.  
BLE  
Byte Low Enable: Goes active low during all bus cycles that access data bus lines D7 – D0, read  
or write.  
BHE  
53  
O
Byte High Enable: Goes active low during all bus cycles that access data bus lines D15 – D8,  
read or write. Never goes active on an 8-bit bus; always goes active on Reads or Fetches on a  
16-bit bus, even if the processor does not need these bits. In other words, all Reads (byte or word)  
on a 16-bit bus, assert BHE.  
ClkOut  
45  
O
Clock Output: This pin outputs a buffered version of the internal CPU clock. The clock output may  
be used in conjunction with the external bus to synchronize WAIT state generators, etc. The clock  
output may be disabled by software. WARNING: The capacitive loading on this output must not  
exceed 40 pf.  
A19 – A0  
D15 – D0  
24 – 21,  
18 – 3  
O
Address[19:0]: These address lines output A19 – A0 during all external bus cycles.  
42 – 30,  
27 – 25  
I/O  
Data[15:0]: Bi-directional data bus, D15 – D0; for those bus cycles that are programmed to occur  
on an “8-bit bus”, D15 – D8 are unused.  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
TxD0  
90  
91  
92  
93  
94  
95  
99  
100  
96  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
P0.0_BRG0*: Port 0 Bit 0, or UART0 BRG output, or UART0 TxClk output  
P0.1_RTS0: Port 0 Bit 1 , or UART0 RTS (Request To Send) output.  
P0.2_CTS0: Port 0 Bit 2, or UART0 CTS (Clear To Send) input.  
P0.3_CD0: Port 0 Bit 3, or UART0 Carrier Detect input.  
P0.4_TRClk0: Port 0 Bit 4, or UART0 TR clock input.  
P0.5_RTClk0: Port 0 Bit 5, or UART0 RT clock input.  
P0.6: Port 0 Bit 6  
1
1
1
1
1, 2  
1, 2  
1
P0.7: Port 0 Bit 7  
1
TxD0: Transmit data for UART0.  
7
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Lqfp  
Pin No.  
See  
Note  
Mnemonic  
Type  
Name and Function  
RxD0  
97  
I
RxD0: Receive data for UART0  
GPOut  
98  
O
GPOut – General Purpose Output Bar: Similar to GPIO, but Push/Pull and inverted output only.  
WARNING: This output is inverted. The polarity of the pin is the opposite of the bit that drives it  
(GPOut[7])  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
68  
69  
70  
71  
72  
73  
74  
75  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P1.0_RxD2: Port 1 Bit 0, or UART2 RxD input  
P1.1_TxD2: Port 1 Bit 1, or UART2 TxD output  
P1.2_RTClk2: Port 1 Bit 2, or UART2 RT Clock input  
P1.3_TRClk2: Port 1 Bit 3, or UART2 TR Clock input  
P1.4_CD2: Port 1 Bit 4, or UART2 Carrier Detect input  
P1.5_CTS2: Port 1 Bit 5, or UART2 Clear To Send input  
P1.6_RTS2: Port 1 Bit 6, or UART2 Request To Send output  
2
2
P1.7_BRG2: Port 1 Bit 7, or BRG output, or TxClk output (see UART clk diagrams in the XA-H3  
User Manual.)  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
80  
81  
82  
83  
84  
85  
86  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P2.0_RxD3: Port 2 Bit 0, or UART3 Rx Data input  
P2.1_TxD3: Port 2 Bit 1, or UART3 Tx Data output  
P2.2_RTClk3: Port 2 Bit 2, or UART3 RT Clock input  
P2.3_ComClk_TRClk3: Port 2 Bit 3, or UART3 TR Clock input  
P2.4_CD3: Port 2 Bit 4, or UART3 Carrier Detect input  
P2.5_CTS3: Port 2 Bit 5, or UART3 Clear To Send input  
P2.6_RTS3: Port 2 Bit 6, or UART3 Request To Send output  
2
2
P2.7_BRG3: Port 2 Bit 7, or BRG output, or TxClk output (see UART clock diagrams in the XA-H3  
User Manual.)  
P3.0  
56  
I/O  
P3.0_CS4_RTClk1: Port 3 Bit 0, or CS4 output, or UART1 RT Clock input  
2
Active low chip selects CS1 through CS5 come out of reset disabled. CS2 through CS5 are not  
used with the “SWAP” operation (see “Memory Controller” chapter in the XA-H3 User Manual.)  
They are mappable to any region of the 16 MB address space.  
P3.1_CS5_RTS1: Port 3 Bit 1, or CS5 output, or UART1 Request To Send output  
Active low chip selects CS1 through CS5 come out of reset disabled. CS2 through CS5 are not  
used with the “SWAP” operation (see “Memory Controller” chapter in the XA-H3 User Manual.)  
They are mappable to any region of the 16 MB address space.  
P3.1  
57  
I/O  
P3.2_Timer0_ResetOut: Port 3 Bit 2, or Timer0 input or output, or ResetOut output.  
ResetOut: If the ResetOut function is selected, this pin outputs a low whenever the XA-H3  
processor is reset by an internal source (Watchdog Reset or the RESET instruction.)  
WARNING: Unlike the other 31 GPIO pins, during power up reset, this pin can output a strongly  
driven low pulse. The duration of this low pulse ranges from 0 ns to 258 system clocks, starting at  
the time that VCC is valid. The state of the ResetIn pin does not affect this pulse; in other words  
ResetIn is not passed to ResetOut.  
P3.2  
58  
I/O  
When used as GPIO, this pin can also be driven low by software without resetting the XA-H3.  
P3.3_Timer1_BRG1: Port 3 Bit 3, or Timer1 input or output, or UART1 BRG output.  
P3.4_CTS1: Port 3 Bit 4, or UART1 Clear To Send input  
P3.3  
P3.4  
63  
64  
65  
66  
67  
78  
79  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P3.5  
P3.5_RxD1: Port 3 Bit 5, or UART1 Receive Data input  
P3.6  
P3.6_TxD1: Port 3 Bit 6, or UART1 Transmit Data output  
P3.7  
P3.7_Int1_TRClk1: Port 3 Bit 7, or External Interrupt 1 input, or UART1 TR Clock input  
CD1_Int2: UART1 Carrier Detect, or External Interrupt 2  
2
CD1_Int2  
Int0  
External Interrupt 0  
NOTES:  
1. See XA-H3 User Guide, “Pins Chapter,” for how to program selection of pin functions.  
2. RTClk input is usually used for Rx Clock if an external clock is needed, but can be used for either Rx or Tx or both. TRClk is usually used for  
Tx Clock, but can be used for Rx or Tx or both.  
8
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
CONTROL REGISTER OVERVIEW  
There are two types of control registers in the XA-H3, these are SFRs  
(Special Function Registers), and MMRs (Memory Mapped Registers.)  
The SFR registers, with the exception of MRBL, MRBH, MICFG, BCR,  
BRTH, BRTL, and RSTSRC are the standard XA core registers. See  
WARNINGs about BCR, BRTH, and BRTL in Table 2.  
on-chip peripherals, and can be accessed by any addressing mode  
that can be used for off-chip data accesses. The MMRs are  
implemented in a relocatable block. See the “Memory Controller”  
chapter in the XA-H3 User Manual for details on how to relocate the  
MMRs by writing a new base address into the MRBL and MRBH  
(MMR Base Low and High) registers.  
SFRs are accessed by “direct addressing” only (see IC25 XA User  
Manual for direct addressing.) The MMRs are specific to the XA-H3  
Table 2. Special Function Registers (SFR)  
Bit Functions and Addresses  
Reset  
SFR  
Address  
Name  
BCR  
Description  
Value  
MSB  
LSB  
Bus Configuration Reg  
46Ah  
WARNING – Never write to the BCR register in the XA-H3 – it is initialized to 07h,  
07h  
the only legal value. This is not the same as for some other XA derivatives.  
RESERVED – see  
Warning  
BTRH  
BTRL  
Bus Timing Reg High  
Bus Timing Reg Low  
469h  
468h  
FFh  
EFh  
WARNING – Immediately after reset, always write BTRH = 51h, followed by  
writing BTRL = 40h in that order. Follow these two writes with five NOPS. This is  
not the same as for some other XA derivatives.  
MRBL#  
MRBH#  
MMR Base Address Low  
496h  
MA15  
MA23  
MA14  
MA22  
MA13  
MA21  
MA12  
MA20  
MA19  
MA18  
MA17  
MRBE  
MA16  
x0h  
xx  
MMR Base Address High 497h  
MICFG# ClkOut Tri-St Enable  
1 = Enabled  
499h  
CLKOE  
01h  
CS  
DS  
ES  
Code Segment  
Data Segment  
Extra Segment  
443h  
441h  
442h  
00h  
00h  
00h  
33F  
33E  
33D  
33C  
33B  
33A  
339  
338  
EHSWR3 EHSWR2 EHSWR1 EHSWR0  
EAuto  
ESC23  
ESC01  
IEH*  
Interrupt Enable High  
427h  
00h  
337  
EA  
336  
335  
334  
333  
ET1  
332  
331  
ET0  
330  
IEL*  
IPA0  
IPA1  
IPA2  
IPA3  
IPA4  
IPA5  
IPA6  
IPA7  
Interrupt Enable Low  
Interrupt Priority A0  
Interrupt Priority A1  
Interrupt Priority A2  
Interrupt Priority A3  
Interrupt Priority A4  
Interrupt Priority A5  
Interrupt Priority A6  
Interrupt Priority A7  
426h  
4A0h  
4A1h  
4A2h  
4A3h  
4A4h  
4A5h  
4A6h  
4A7h  
EDMAH EDMAL  
PT0  
EX2  
EX1  
EX0  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
PX0  
PT1  
PX1  
PDMAL  
Reserved  
PSC23  
PX2  
PDMAH  
PSC01  
PAutoB  
PHSWR0  
PHSWR2  
PHSWR1  
PHSWR3  
387  
38F  
397  
39F  
386  
38E  
396  
39E  
385  
38D  
395  
39D  
384  
38C  
394  
39C  
383  
38B  
393  
39B  
382  
38A  
392  
39A  
381  
389  
391  
399  
380  
388  
390  
398  
P0*  
P1*  
P2*  
P3*  
Port 0  
Port 1  
Port 2  
Port 3  
430h  
431h  
432h  
433h  
FFh  
FFh  
FFh  
FFh  
9
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Bit Functions and Addresses  
SFR  
Address  
Reset  
Value  
Name  
Description  
MSB  
LSB  
P0CFGA Port 0 Configuration A  
P1CFGA Port 1 Configuration A  
P2CFGA Port 2 Configuration A  
P3CFGA Port 3 Configuration A  
P0CFGB Port 0 Configuration B  
P1CFGB Port 1 Configuration B  
P2CFGB Port 2 Configuration B  
P3CFGB Port 3 Configuration B  
470h  
471h  
472h  
473h  
4F0h  
4F1h  
4F2h  
4F3h  
5
5
5
5
5
5
5
5
227  
226  
225  
224  
223  
222  
221  
PD  
220  
IDL  
PCON*  
Power Control Reg  
404h  
00h  
20F  
SM  
207  
C
20E  
TM  
206  
AC  
20D  
RS1  
205  
20C  
RS0  
204  
20B  
IM3  
203  
20A  
IM2  
202  
V
209  
IM1  
201  
N
208  
IM0  
200  
Z
PSWH*  
PSWL*  
Program Status Word High 401h  
Program Status Word Low 400h  
2
2
3
7
217  
C
216  
AC  
215  
F0  
214  
RS1  
213  
RS0  
212  
V
211  
F1  
210  
P
PSW51* 80C51 Compatible PSW  
RSTSRC Reset Source Reg  
402h  
463h  
ROEN  
R_WD  
R_CMD R_EXT  
RTH0  
RTH1  
RTL0  
RTL1  
Timer 0 Reload High  
Timer 1 Reload High  
Timer 0 Reload Low  
Timer 1 Reload Low  
455h  
457h  
454h  
456h  
00h  
00h  
00h  
00h  
SCR  
System Configuration Reg  
Segment Selection Reg  
440h  
403h  
PT1  
21B  
PT0  
21A  
CM  
219  
PZ  
00h  
21F  
21E  
21D  
21C  
218  
SSEL*  
SWE  
ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG R0SEG  
00h  
00h  
Software Interrupt Enable 47Ah  
SWE7  
SWE6  
SWE5  
SWE4  
SWE3  
SWE2  
SWE1  
357  
356  
355  
354  
353  
352  
351  
350  
SWR*  
42Ah  
SWR7  
SWR6  
SWR5  
SWR4  
SWR3  
SWR2  
SWR1  
00h  
287  
TF1  
286  
285  
TF0  
284  
283  
IE1  
282  
IT1  
281  
IE0  
280  
IT0  
TCON*  
TH0  
Timer 0/1 Control  
Timer 0 High  
Timer 1 High  
Timer 0 Low  
410h  
451h  
453h  
450h  
452h  
45Ch  
TR1  
TR0  
00h  
00h  
00h  
00h  
00h  
00h  
TH1  
TL0  
TL1  
Timer 1 Low  
TMOD  
Timer 0/1 Mode  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
10  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Bit Functions and Addresses  
SFR  
Address  
Reset  
Value  
Name  
Description  
MSB  
LSB  
28F  
28E  
28D  
28C  
28B  
28A  
289  
288  
TSTAT*  
Timer 0/1 Extended Status 411h  
T1OE  
T0OE  
00h  
2FF  
2FE  
2FD  
2FC  
2FB  
2FA  
2F9  
2F8  
WDCON* Watchdog Control  
41Fh  
45Fh  
45Dh  
45Eh  
PRE2  
PRE1  
PRE0  
WDRUN WDTOF  
6
00h  
x
WDL  
Watchdog Timer Reload  
WFEED1 Watchdog Feed 1  
WFEED2 Watchdog Feed 2  
NOTES:  
x
*
#
SFRs marked with an asterisk (*) are bit addressable.  
SFRs marked with a pound sign (#) are additional SFR registers specific to the XA-H3 and XA-H4.  
1. The XA-H3 implements an 8-bit SFR bus, as stated in Chapter 8 of the IC25 Data Handbook XA User Guide. All SFR accesses must be  
8-bit operations. Attempts to write 16 bits to an SFR will actually write only the lower 8 bits. 16-bit SFR reads will return undefined data in the  
upper byte.  
2. SFR is loaded from the reset vector.  
3. F1, F0, and P reset to “0”. All other bits are loaded from the reset vector.  
4. Unimplemented bits in SFRs are “X” (unknown) at all times. “1”s should not be written to these bits since they may be used for other  
purposes in future XA derivatives. The reset value shown for these bits is “0”.  
5. Port configurations default to quasi-bidirectional when the XA begins execution after reset. Thus all PnCFGA registers will contain FFh and  
PnCFGB register will contain 00h. See warning in XA-H3 User Manual about P3.2_Timer0_ResetOut pin during first 258 clocks after power  
up. Basically, during this period, this pin may output a strongly-driven low pulse. If the pulse does occur, it will terminate in a transition to high  
at a time no later than the 259th system clock after valid V power up.  
CC  
6. The WDCON reset value is E6 for a Watchdog reset; E4 for all other reset causes.  
7. The RSTSRC register reflects the cause of the last XA reset. One bit will be set to “1”, the others will be “0”. RSTSRC[7] enables the ResetOut  
function; “1” = Enabled, “0” = Disabled. See XA-H3 User Manual for details; RSTSRC[7] differs in function from most other XA derivatives.  
8. The XA guards writes to certain bits (typically interrupt flags) that may be written by a peripheral function. This prevents loss of an interrupt or  
other status if a bit was written directly by a peripheral action between the read and write of an instruction that performs a read-modify-write  
operation. XA-H3 SFR bits that are guarded in this manner are: TF1, TF0, IE1, and IE0 (in TCON), and WDTOF (in WDCON).  
11  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Table 3. Memory Mapped Registers (MMR)  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
UART0 Registers  
UART0 Write Register 0  
UART0 Write Register 1  
UART0 Write Register 2  
UART0 Write Register 3  
UART0 Write Register 4  
UART0 Write Register 5  
Reserved – do not write  
Reserved – do not write  
UART0 Write Register 8  
UART0 Write Register 9  
UART0 Write Register 10  
UART0 Write Register 11  
UART0 Write Register 12  
UART0 Write Register 13  
UART0 Write Register 14  
UART0 Write Register 15  
Reserved – do not write  
Reserved – do not write  
UART0 Read Register 0  
UART0 Read Register 1  
Reserved – do not write  
UART0 Read Register 3  
Reserved – do not write  
Reserved – do not write  
UART0 Read Register 8  
Reserved – do not write  
UART0 Read Register 10  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
800h  
802h  
804h  
806h  
808h  
80Ah  
80Ch  
80Eh  
810h  
812h  
814h  
816h  
818h  
81Ah  
81Ch  
81Eh  
828h  
82Ah  
820h  
822h  
824h  
826h  
82Ch  
82Eh  
830h  
832h  
834h  
836-83Eh  
Command register  
00h  
xx  
Tx/Rx Interrupt & data transfer mode  
Extended Features Control  
xx  
Receive Parameter and Control  
00h  
Tx/Rx miscellaneous parameters & mode  
Tx parameter and control  
00h  
00h  
00h  
xx  
Reserved – do not write  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit Data Buffer  
xx  
Master Interrupt control  
xx  
Miscellaneous Tx/Rx control register  
Clock Mode Control  
00h  
xx  
Lower Byte of Baud rate time constant  
Upper Byte of Baud rate time constant  
Miscellaneous Control bits  
External / Status interrupt control  
Reserved – do not write  
00h  
00h  
xx  
f8h  
00h  
00h  
Reserved – do not write  
RO  
RO  
Tx/Rx buffer and external status  
Receive condition status  
RO  
8
8
8
8
Interrupt Pending Bits  
Reserved – do not write  
Reserved – do not write  
Receive Buffer  
RO  
RO  
8
Clock status  
UART1 Registers  
UART1 Write Register 0  
UART1 Write Register 1  
UART1 Write Register 2  
UART1 Write Register 3  
UART1 Write Register 4  
UART1 Write Register 5  
Reserved – do not write  
Reserved – do not write  
UART1 Write Register 8  
UART1 Write Register 9  
UART1 Write Register 10  
UART1 Write Register 11  
UART1 Write Register 12  
UART1 Write Register 13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
840h  
842h  
844h  
846h  
848h  
84Ah  
84Ch  
84Eh  
850h  
852h  
854h  
856h  
858h  
85Ah  
Command register  
00h  
xx  
Tx/Rx Interrupt & data transfer mode  
Extended Features Control  
Receive Parameter and Control  
Tx/Rx miscellaneous parameters & mode  
Tx. parameter and control  
xx  
00h  
00h  
00h  
00h  
xx  
Reserved – do not write  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit Data Buffer  
xx  
Master Interrupt control  
xx  
Miscellaneous Tx/Rx control register  
Clock Mode Control  
00h  
xx  
Lower Byte of Baud rate time constant  
Upper Byte of Baud rate time constant  
00h  
00h  
12  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
Miscellaneous Control bits  
UART1 Write Register 14  
UART1 Write Register 15  
Reserved – do not write  
Reserved – do not write  
UART1 Read Register 0  
UART1 Read Register 1  
Reserved – do not write  
UART1 Read Register 3  
Reserved – do not write  
Reserved – do not write  
UART1 Read Register 8  
Reserved – do not write  
UART1 Read Register 10  
Reserved – do not write  
R/W  
R/W  
8
8
8
8
8
8
85Ch  
85Eh  
868h  
xx  
External / Status interrupt control  
Reserved – do not write  
f8h  
00h  
00h  
86Ah  
860h  
Reserved – do not write  
RO  
RO  
Tx/Rx buffer and external status  
Receive condition status  
862h  
864h  
RO  
8
8
8
8
866  
Interrupt Pending Bits  
Reserved – do not write  
Reserved – do not write  
Receive Buffer  
86Ch  
86Eh  
870h  
RO  
RO  
872h  
8
874h  
Clock status  
876-87Eh  
UART2 Registers  
UART2 Write Register 0  
UART2 Write Register 1  
UART2 Write Register 2  
UART2 Write Register 3  
UART2 Write Register 4  
UART2 Write Register 5  
Reserved – do not write  
Reserved – do not write  
UART2 Write Register 8  
UART2 Write Register 9  
UART2 Write Register 10  
UART2 Write Register 11  
UART2 Write Register 12  
UART2 Write Register 13  
UART2 Write Register 14  
UART2 Write Register 15  
Reserved – do not write  
Reserved – do not write  
UART2 Read Register 0  
UART2 Read Register 1  
Reserved – do not write  
UART2 Read Register 3  
Reserved – do not write  
Reserved – do not write  
UART2 Read Register 8  
Reserved – do not write  
UART2 Read Register 10  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
880h  
882h  
884h  
886h  
888h  
88Ah  
88Ch  
88Eh  
890h  
892h  
894h  
896h  
898h  
89Ah  
89Ch  
89Eh  
8A8h  
8AAh  
8A0h  
8A2h  
8A4h  
8A6h  
8ACh  
8AEh  
8B0h  
8B2h  
8B4h  
8B6-8BEh  
Command register  
00h  
xx  
Tx/Rx Interrupt & data transfer mode  
Extended Features Control  
Receive Parameter and Control  
xx  
00h  
Tx/Rx miscellaneous parameters & mode  
Tx. parameter and control  
00h  
00h  
00h  
xx  
Reserved – do not write  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit Data Buffer  
xx  
Master Interrupt control  
xx  
Miscellaneous Tx/Rx control register  
Clock Mode Control  
00h  
xx  
Lower Byte of Baud rate time constant  
Upper Byte of Baud rate time constant  
Miscellaneous Control bits  
External / Status interrupt control  
Reserved – do not write  
00h  
00h  
xx  
f8h  
00h  
00h  
Reserved – do not write  
RO  
RO  
Tx/Rx buffer and external status  
Receive condition status  
RO  
8
8
8
8
Interrupt Pending Bits  
Reserved – do not write  
Reserved – do not write  
Receive Buffer  
RO  
RO  
8
Clock status  
13  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
UART3 Registers  
UART3 Write Register 0  
UART3 Write Register 1  
UART3 Write Register 2  
UART3 Write Register 3  
UART3 Write Register 4  
UART3 Write Register 5  
Reserved – do not write  
Reserved – do not write  
UART3 Write Register 8  
UART3 Write Register 9  
UART3 Write Register 10  
UART3 Write Register 11  
UART3 Write Register 12  
UART3 Write Register 13  
UART3 Write Register 14  
UART3 Write Register 15  
Reserved – do not write  
Reserved – do not write  
UART3 Read Register 0  
UART3 Read Register 1  
Reserved – do not write  
UART3 Read Register 3  
Reserved – do not write  
Reserved – do not write  
UART3 Read Register 8  
Reserved – do not write  
UART3 Read Register 10  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8C0h  
8C2h  
8C4h  
8C6h  
8C8h  
8CAh  
8CCh  
8CEh  
8D0h  
8D2h  
8D4h  
8D6h  
8D8h  
8DAh  
8DCh  
8DEh  
8E8h  
8EAh  
8E0h  
8E2h  
8E4h  
8E6h  
8ECh  
8EEh  
8F0h  
Command register  
00h  
xx  
Tx/Rx Interrupt & data transfer mode  
Extended Features Control  
xx  
Receive Parameter and Control  
00h  
Tx/Rx miscellaneous parameters & mode  
Tx. parameter and control  
00h  
00h  
00h  
xx  
Reserved – do not write  
Reserved – do not write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Transmit Data Buffer  
xx  
Master Interrupt control  
xx  
Miscellaneous Tx/Rx control register  
Clock Mode Control  
00h  
xx  
Lower Byte of Baud rate time constant  
Upper Byte of Baud rate time constant  
Miscellaneous Control bits  
External / Status interrupt control  
Reserved – do not write  
00h  
00h  
xx  
f8h  
00h  
00h  
Reserved – do not write  
RO  
RO  
Tx/Rx buffer and external status  
Receive condition status  
RO  
8
8
8
8
Interrupt Pending Bits  
Reserved – do not write  
Reserved – do not write  
Receive Buffer  
RO  
RO  
8F2h  
8
8F4h  
Clock status  
8F6-8FEh  
Rx DMA Registers  
DMA Control Register Ch.0 Rx  
FIFO Control & Status Reg Ch.0 Rx  
Segment Register Ch.0 Rx  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
100h  
101h  
102h  
104h  
Control Register  
00h  
00h  
00h  
00h  
Control & Status Register  
Points to 64 k data segment  
Buffer Base Register Ch.0 Rx  
Wrap Reload Value for A15 – A8, A7 – A0  
reloaded to zero by hardware  
Buffer Bound Register Ch.0 Rx  
Address Pointer Reg Ch.0 Rx  
Byte Count Register Ch.0 Rx  
R/W  
R/W  
R/W  
16  
16  
16  
106h  
108h  
10Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.0 Lo Rx  
Data FIFO Register Ch.0 Hi Rx  
R/W  
R/W  
16  
16  
10Ch  
10Eh  
10Ch = Byte 0 = older,  
10Dh = Byte 1 = younger  
10Eh = Byte 2 = older,  
10Fh = Byte 3 = younger  
Control Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
DMA Control Register Ch.1 Rx  
FIFO Control & Status Register Ch.1 Rx  
Segment Register Ch. 1 Rx  
R/W  
R/W  
R/W  
8
8
8
110h  
111h  
112h  
Control & Status Register  
Points to 64 k data segment  
14  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
Buffer Base Register Ch. 1 Rx  
R/W  
8
114h  
Wrap Reload Value for A15 – A8, A7 – A0  
reloaded to zero by hardware  
00h  
Buffer Bound Register Ch.1 Rx  
Address Pointer Reg Ch.1 Rx  
Byte Count Register Ch.1 Rx  
R/W  
R/W  
R/W  
16  
16  
16  
116h  
118h  
11Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.1 Lo Rx  
Data FIFO Register Ch.1 Hi Rx  
R/W  
R/W  
16  
16  
11Ch  
11Eh  
11Ch = Byte 0 = older,  
11Dh = Byte 1 = younger  
11Eh = Byte 2 = older,  
11Fh = Byte 3 = younger  
Control Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
DMA Control Register Ch.2 Rx  
FIFO Control & Status Register Ch.2 Rx  
Segment Register Ch. 2 Rx  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
120h  
121h  
122h  
124h  
Control & Status Register  
Points to 64 k data segment  
Buffer Base Register Ch. 2 Rx  
Wrap Reload Value for A15 – A8, A7 – A0 00h  
reloaded to zero by hardware  
Buffer Bound Register Ch.2 Rx  
Address Pointer Reg Ch.2 Rx  
Byte Count Register Ch.2 Rx  
R/W  
R/W  
R/W  
16  
16  
16  
126h  
128h  
12Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.2 Lo Rx  
Data FIFO Register Ch.2 Hi Rx  
R/W  
R/W  
16  
16  
12Ch  
12Eh  
12Ch = Byte 0 = older,  
12Dh = Byte 1 = younger  
12Eh = Byte 2 = older,  
12Fh = Byte 3 = younger  
Control Register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
DMA Control Register Ch.3 Rx  
FIFO Control & Status Register Ch.3 Rx  
Segment Register Ch. 3 Rx  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
130h  
131h  
132h  
134h  
Control & Status Register  
Points to 64 k data segment  
Buffer Base Register Ch. 3 Rx  
Wrap Reload Value for A15 – A8, A7 – A0 00h  
reloaded to zero by hardware  
Buffer Bound Register Ch.3 Rx  
Address Pointer Reg Ch.3 Rx  
Byte Count Register Ch.3 Rx  
R/W  
R/W  
R/W  
16  
16  
16  
136h  
138h  
13Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.3 Lo Rx  
Data FIFO Register Ch.3 Hi Rx  
R/W  
R/W  
16  
16  
13Ch  
13Eh  
13Ch = Byte 0 = older,  
13Dh = Byte 1 = younger  
13Eh = Byte 2 = older,  
13Fh = Byte 3 = younger  
00h  
00h  
00h  
00h  
Tx DMA Registers  
DMA Control Register Ch.0 Tx  
FIFO Control & Status Register Ch.0 Tx  
Segment Register Ch. 0 Tx  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
140h  
141h  
142h  
144h  
Control Register  
00h  
00h  
00h  
00h  
Control & Status Register  
Points to 64 k data segment  
Buffer Base Register Ch. 0 Tx  
Wrap Reload Value for A15 – A8, A7 – A0  
reloaded to zero by hardware  
Buffer Bound Register Ch.0 Tx  
Address Pointer Reg Ch.0 Tx  
Byte Count Register Ch.0 Tx  
R/W  
R/W  
R/W  
16  
16  
16  
146h  
148h  
14Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.0 Tx  
R/W  
16  
14Ch  
14C = Byte0 = older  
0000h  
14D = Byte 1 = younger  
15  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
14E = Byte2 = older  
Data FIFO Register Ch.0 Tx  
R/W  
16  
14Eh  
0000h  
14F = Byte3 = younger  
Control Register  
DMA Control Register Ch.1 Tx  
FIFO Control & Status Register Ch.1 Tx  
Segment Register Ch.1 Tx  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
150h  
151h  
152h  
154h  
00h  
00h  
00h  
Control & Status Register  
Points to 64 k data segment  
Buffer Base Register Ch.1 Tx  
Wrap Reload Value for A15 – A8, A7 – A0  
reloaded to zero by hardware  
00h  
Buffer Bound Register Ch.1 Tx  
Address Pointer Reg Ch.1 Tx  
Byte Count Register Ch.1 Tx  
R/W  
R/W  
R/W  
16  
16  
16  
156h  
158h  
15Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.1 Lo Tx  
Data FIFO Register Ch.1 Hi Tx  
DMA Control Register Ch.2 Tx  
FIFO Control & Status Register Ch.2 Tx  
Segment Register Ch.2 Tx  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
16  
16  
8
15Ch  
15Eh  
160h  
161h  
162h  
164h  
Byte0 & 1  
0000h  
0000h  
00h  
Byte2 & 3  
Control Register  
Control & Status Register  
Points to 64 k data segment  
8
00h  
8
00h  
Buffer Base Register Ch.2 Tx  
8
Wrap Reload Value for A15 – A8, A7 – A0  
reloaded to zero by hardware  
00h  
Buffer Bound Register Ch.2 Tx  
Address Pointer Reg Ch.2 Tx  
Byte Count Register Ch.2 Tx  
R/W  
R/W  
R/W  
16  
16  
16  
166h  
168h  
16Ah  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.2 Lo Tx  
Data FIFO Register Ch.2 Hi Tx  
DMA Control Register Ch.3 Tx  
FIFO Control & Status Register Ch.3 Tx  
Segment Register Ch. 3 Tx  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
16  
16  
8
16Ch  
16Eh  
170h  
171h  
172h  
174h  
Byte0 & 1  
0000h  
0000h  
00h  
Byte2 & 3  
Control Register  
8
Control & Status Register  
Points to 64 k data segment  
Wrap Reload Value for A15 – A8,  
A7 – A0 reloaded to zero by hardware  
Upper Bound (plus 1) on A15 – A0  
Current Address pointer A15 – A0  
00h  
8
00h  
Buffer Base Register Ch. 3 Tx  
8
00h  
Buffer Bound Register Ch.3 Tx  
Address Pointer Reg Ch.3 Tx  
Byte Count Register Ch.3 Tx  
R/W  
R/W  
R/W  
16  
16  
16  
176h  
178h  
17Ah  
0000h  
0000h  
Corresponds to A15 – A0 Byte Count, generates 0000h  
interrupt if enabled and byte count exceeded.  
Data FIFO Register Ch.3Lo Tx  
Data FIFO Register Ch.3 Hi Tx  
R/W  
R/W  
R/W  
16  
16  
17Ch  
17Eh  
Byte0 & 1  
Byte2 & 3  
0000h  
0000h  
180-1FEh RESERVED for future DMA  
Miscellaneous DMA Registers  
Rx Character Time Out Register Ch.0  
Rx Character Time Out Register Ch.1  
Rx Character Time Out Register Ch.2  
Rx Character Time Out Register Ch.3  
Global DMA Interrupt Register  
GPOut  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
200h  
202h  
204h  
206h  
210h  
260h  
0 value disables counter interrupt.  
Same as above, for Rx1  
Same as above, for Rx2  
Same as above, for Rx3  
DMA Interrupt Flags  
00h  
00h  
8
00h  
8
00h  
16  
8
0000h  
8xh  
GPOut[7] drives pin 98 (GPOut) through an  
inverter.  
GPOut[6-0] are unused, and must be written  
with zeroes.  
16  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Read/Write or  
Read Only  
Address  
Offset  
Reset  
Value  
MMR Name  
Size  
Description  
Memory Interface (MIF) Registers  
MIF Bank 0 Config  
B0CFG  
B0AM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
280h  
281h  
282h  
284h  
285h  
286h  
288h  
289h  
28Ah  
28Ch  
28Dh  
28Eh  
290h  
291h  
292h  
294h  
295h  
296h  
2BEh  
2BFh  
0Fh  
00h  
MIF Bank 0 Base Address  
MIF Bank 0 Timing Params  
MIF Bank 1 Config  
B0TMG  
B1CFG  
B1AM  
MIF Bank 1 Base Address  
MIF Bank 1 Timing Params  
MIF Bank 2 Config  
B1TMG  
B2CFG  
B2AM  
MIF Bank 2 Base Address  
MIF Bank 2 Timing Params  
MIF Bank 3 Config  
B2TMG  
B3CFG  
B3AM  
MIF Bank 3 Base Address  
MIF Bank 3 Timing Params  
MIF Bank 4 Config  
B3TMG  
B4CFG  
B4AM  
MIF Bank 4 Base Address  
MIF Bank 4 Timing Params  
MIF Bank 5 Config  
B4TMG  
B5CFG  
B5AM  
MIF Bank 5 Base Address  
MIF Bank 5 Timing Params  
B5TMG  
MBCL  
MIF Memory Bank Configuration Lock Register  
Reserved – do not write  
Reserved – do not write  
Miscellaneous Registers  
Hi-Pri Soft Ints & Pin Mux Control Reg.  
XInt2  
R/W  
R/W  
16  
8
2D0h  
2D2h  
Control bits for Hi-Priority Soft Ints, and Pin Mux 0000h  
External Interrupt 2 Control  
00h  
FUNCTIONAL DESCRIPTION  
The XA-H3 functions are described in the following sections.  
Because all blocks are thoroughly documented in either the IC25 XA  
Data Handbook, or the XA-H3 User Manual, only brief descriptions  
are given in this datasheet, in conjunction with references to the  
appropriate document.  
XA CPU  
BIU  
XA CPU  
The CPU is a 30 MHz implementation of the standard XA CPU core.  
See the XA Data Handbook (IC25) for details. The CPU core is  
identical to the G3 core. See caveat in next paragraph about the Bus  
Interface Unit.  
Internal Cpu Bus  
Bus Interface Unit (BIU)  
This is the internal Bus, not the bus at the pins. This internal bus  
connects the CPU to Memory Controller.  
External  
Memory  
and I/O Bus  
DMA  
Channels  
x8  
Memory  
Controller  
WARNING: Immediately after reset, always write BTRH = 51h,  
followed by BTRL = 40h, in that order. Once written, do not change  
the values in these registers. Follow these two writes with five  
NOPS. Never write to the BCR register, it comes out of reset  
initialized to 07h, which is the only value that will work.  
SU01236  
Figure 1. XA CPU Core BIU (Bus Interface Unit)  
17  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Timers 0 and 1  
ResetOut  
Timers 0 and 1 are the standard XA-G3 timer 0 and 1. Each has an  
associated I/O pin and interrupt. See the XA-G3 data sheet in the  
IC25 XA Data Handbook for details. Many XA derivatives include a  
standard XA Timer 2. The Timer 2 block has been removed in order  
to provide other functions on the XA-H3.  
The P3.2_Timer0_ResetOut pin provides an external indication (if the  
ResetOut function is enabled in the RSRSRC register) via an active  
low output when an internal reset occurs (internal reset is Reset  
instruction or Watchdog time out.) If the ResetOut function is enabled,  
the ResetOut pin will be driven low when a Watchdog reset occurs or  
the Reset instruction is executed. This signal may be used to inform  
other devices in the system that the XA-H3 has been internally reset.  
The ResetIn signal does NOT get passed on to ResetOut. When  
activated, the duration of the ResetOut pulse is 256 system clocks.  
Watchdog Timer  
This timer is a standard XA-G3 Watchdog Timer. See the G3  
datasheet in IC25. Also, if you intend to use the Watchdog Timer to  
assert the ResetOut pin, see “ResetOut” in the XA-H3 User Manual.  
The Watchdog Timer is enabled at reset, and must be periodically  
fed to prevent timeout. If the watchdog times out, it will generate an  
internal reset; and if ResetOut is enabled the internal reset will  
generate a ResetOut pulse (active low pulse on ResetOut pin.)  
WARNING: At power on time, from the time that power coming up is  
valid, the P3.2_Timer0_ResetOut pin may be driven low for any  
period from zero nanoseconds up to 258 system clocks. This is true  
independently of whether ResetIn is active or not.  
Reset Source Register  
Reset  
The reset source identification register (RSTSRC) indicates the cause  
of the most recent XA reset. The cause may have been an externally  
applied reset signal, execution of the RESET instruction, or a  
Watchdog reset. Figure 2 shows the fields in the RSTSRC register. If  
the ResetOut function is tied back into the ResetIn pin, then all resets  
will be external resets, and will thus appear as external resets in the  
reset source register. RSTSRC[7] enables the ResetOut function; 1 =  
Enabled, 0 = Disabled. See XA-H3 User Manual for details;  
RSTSRC[7] differs in function from most other XA derivatives.  
On the XA-H3 there are two pins associated with reset. The ResetIn  
pin provides an external reset into the XA-H3. The port pin  
P3.2_Timer0_ResetOut output can be configured as ResetOut.  
Because ResetOut does not reflect ResetIn, the ResetOut pin can  
be tied directly back into the ResetIn pin without other PC board  
logic. This configuration will make all resets (internal or external)  
appear to the XA as external resets. See the XA-H3 User Manual for  
a full discussion of the reset functions.  
ResetIn  
The ResetIn function is the standard XA-G3 ResetIn function. The  
ResetIn signal does NOT get passed on to ResetOut. See the  
XA-H3 User Manual for details on reset.  
RSTSRC  
Reg Type and Address = SFR 463h  
Not Bit Addressable  
Reset Value = see below  
MSB  
LSB  
ROEN  
R_WD  
R_CMD  
R_EXT  
BIT  
SYMBOL  
FUNCTION  
RSTSRC.7 ROEN  
ResetOut function enable bit – see XA-H3 User Manual for details  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
RSTSRC.6  
RSTSRC.5  
RSTSRC.4  
RSTSRC.3  
RSTSRC.2 R_WD  
Indicates that the last reset was caused by a watchdog timer overflow (see WARNING.)  
Indicates that the last reset was caused by execution of the RESET instruction (see WARNING.)  
Indicates that the last reset was caused by the external ResetIn input.  
RSTSRC.1 R_CMD  
RSTSRC.0 R_EXT  
WARNING:  
If ResetOut function is tied back into ResetIn pin, RSTSRC will always show external reset ONLY, because external reset always takes  
precedence over internal reset.  
SU01237  
Figure 2. RSTSRC Reset Source Register  
MEMORY CONTROLLER AND I/O BUS INTERFACE  
The Memory Controller and bus interface generate bus cycles that are  
designed to service SRAMs, Flash, EEPROM, peripheral chips, etc.  
interface with no external decode logic or interface chips. The bus  
interface provides 6 mappable chip select outputs. The bus timing for  
each individual memory bank or peripheral can be programmed to  
accommodate slow or fast devices, with various bus protocols.  
The XA-H3 has a highly programmable memory bus interface. Most  
SRAMs, Flash, ROMs, and peripheral chips can be connected to this  
18  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Each memory bank and associated chip select is capable of  
supporting a 1 MB address space (six chip selects can thus support  
6 MB of SRAM and other generic devices.)  
The Memory Interface can be programmed to support both Intel  
style and 68000 bus style SRAMs and peripherals.  
XA-H3  
CS5 (or P3.1, RTS1)  
Memory Controller  
CS4 (or P3.0, RTClk1)  
CS3  
CS2  
CS1  
CS0  
A19–A0  
D15–D0  
SRAM Controller  
Dynamic Bus Sizing  
Dynamic Bus Timing  
ClkOut  
BHE  
BLE  
OE  
WE  
WAIT, SIZE16  
SU01238  
Figure 3. Memory Bus Interface Signal Pins  
Bus Interface Pins  
For the following discussion, see Figure 3.  
Chip Select Pins  
There are six chip select pins (CS5 – CS0)mapped to six sets of  
bank control registers. The following attributes are individually  
programmable for each bank and associated chip select : bank  
on/off, address range, external device access time, detailed bus  
strobe sequence, and bus width.  
WARNING:Ontheexternalbus, ALLXA-H3readsare16-bitReads.IftheCPUinstructiononlyspecifies8-bits,thentheCPUusestheappropriate  
byte, and discards the extra byte. Thus “8-Bit Reads” and “16-Bit Reads” appear to be identical on the bus. On an 8-bit bus, this will appear  
as two consecutive 8-bit reads even though the CPU instruction specified a byte read.  
Some 8-bit I/O devices (especially FIFOs) cannot operate correctly with 2 bytes being Read for a 1 Byte Read. The most common (and least  
expensive) solution is to operate these 8-bit devices on a 16-bit bus, and access them in software on all odd byte (or all even byte) boundaries.  
An added benefit of this technique is that byte reads are faster than on an 8-bit bus, because only 1 word is fetched (a single read) instead of  
2 consecutive bytes.  
Clock Output  
The CLKOUT pin allows easier external bus interfacing in some  
situations. This output reflects the XTALIn clock input to the XA  
(referred to internally as CClk or System Clock), but is delayed to  
match the external bus outputs and strobes. The default is for  
CLKOUT to be output enabled at reset, but it may be turned off  
(tri-state disabled) by software via the MICFG MMR.  
WARNING: The capacitive loading on this output must not  
exceed 40 pf.  
19  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
CS5  
CS4  
I/O Chip or Memory  
I/O Chip or Memory  
I/O Chip or Memory  
I/O Chip or Memory  
CS3  
CS2  
XA-H3  
CS0  
CS  
WE  
ROM or Flash  
128 k x 8  
OE  
OE  
A16–A0  
D7–D0  
A16–A0  
D7–D0  
A19–A0  
D15–D0  
CS1  
CS  
BLE  
BLE  
BHE  
BHE  
A15–A1  
D15–D0  
A15–A1  
32 k x 16 SRAM  
D15–D0  
OE  
WE  
WE  
NOTE:  
The 16-bit wide RAM does not need the A0 pin from the processor. During byte writes to the RAM, the A0 value will cause  
either BLE or BHE pin to go active from the XA-H3, but not to both. For all Word Writes, Word Reads, Code Fetches, and  
Byte Reads, both BLE and BHE will go active.  
SU01239  
Figure 4. Typical System Bus Configuration  
20  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Table 4. Memory interface control registers  
Reg  
Register Name  
Description  
Type  
MRBH  
MRBL  
“MMR Base Address” High  
SFR  
This SFR is used to relocate the MMRs. It contains address bits a23 – a16 of the  
8 bits base address for the 4 kB Memory Mapped Register space. See the User Manual for  
using this SFR to relocate the MMRs.  
“MMR Base Address” Low  
SFR  
Contains address bits a15 – a12 of the base address for the 4 kB Memory Mapped  
8 bits Register space.  
MICFG MIF Configuration  
MMR Contains the CLKOUT Enable bit.  
8 bits  
MBCL  
Memory Bank Configuration Lock  
MMR  
8 bits  
Contains the bits for locking and unlocking the BiCFG Registers.  
BiCFG Bank i Configuration  
MMR Contains the size, type, bus width, and enable bits for Memory Bank i.  
8 bits  
BiAM  
Bank i Base Address  
MMR Contains the base address bits for Memory Bank i.  
8 bits  
BiTMG Bank i Timing  
MMR Contains the timing control bits for Memory Bank i.  
8 bits  
EIGHT CHANNEL DMA CONTROLLER  
The XA-H3/H4 has eight DMA channels; one Rx DMA channel  
dedicated to each UART Receive (Rx) channel, and one Tx DMA  
channel dedicated to each UART Transmit (Tx) channel. All DMA  
channels are optimized to support memory efficient circular data  
buffers in external memory. All DMA channels can also support  
traditional linear data buffers.  
Transmit DMA Channel Modes  
The four Tx channels have three DMA modes specifically designed  
for various applications of the attached UARTs. These modes are  
summarized in the following table. Full details for all DMA functions  
can be found in the DMA chapter of the XA-H3 User Manual.  
Table 5. Tx DMA modes summary  
Mode  
Byte Count Source  
Header in memory  
Maskable Interrupt  
Description  
Tx  
Chaining  
On stop  
DMA channel picks up header from memory at end of  
transmission. If byte count in header is greater than zero,  
then DMA transmits the number of bytes specified in the  
byte count. If byte count equals 0, then a maskable  
interrupt is generated. This process repeats until byte count  
in data header is zero. See XA-H3 User Manual for details.  
Stop on TC Processor loads Byte Count Register  
Byte count completed  
(Tx DMA stops)  
Processor loads byte count into DMA. DMA sends that  
number of bytes, generates maskable interrupt, and stops.  
Periodic  
Interrupt  
Loaded by processor into DMA, used by  
DMA only to determine the number of  
bytes between interrupts. Processor can  
calculate the byte count from the DMA  
address pointer.  
When Byte Counter  
reaches zero and is  
reloaded by DMA  
hardware from the byte rolls over, a new maskable interrupt is generated.  
count register.  
DMA runs until commanded to stop by processor. CPU  
loaded value in Byte Count Register is used to generate  
an interrupt for every n bytes. Every time byte counter  
Receive DMA Channel Modes  
The Rx DMA channels have two DMA modes specifically designed  
for various applications of the attached UARTs. These modes are  
summarized in the following table. For full details on implementation  
and use, see the XA-H3 User Manual.  
21  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Table 6. Rx DMA modes summary  
Mode  
Byte Count Source  
Maskable Interrupt  
Description  
The DMA channel runs until commanded to  
Periodic Interrupt Loaded by processor into DMA, used by  
DMA only to determine the number of  
bytes between interrupts. Processor can  
calculate the byte count from the DMA  
address pointer.  
When Byte Counter reaches  
zero and is reloaded by DMA stop by the processor. It generates a  
hardware from the byte count maskable interrupt once per n bytes, where n  
register.  
is the number written once into the byte count  
register by the processor, thus an interrupt is  
generated once every n received bytes.  
Asynchronous  
with Character  
Time Out  
Byte Count can be calculated by software If no character is received  
Processor specifies time out period between  
incoming characters. If no character is  
received within that time, a maskable  
interrupt is generated.  
from the DMA address pointer.  
within a specified time out  
period, then interrupt.  
Asynchronous  
without interrupt  
Byte Count can be calculated by software No interrupt generated  
from the DMA address pointer.  
Whenever a new character is received, it is  
moved into the memory buffer – no interrupt  
is generated.  
Data FIFO 3  
Data FIFO 1  
Data FIFO 2  
Data FIFO 0  
DMA Control  
Segment  
Buffer Base  
Rx Channel  
Buffer Bound  
Address Pointer  
Byte Count  
FIFO Control  
Rx Time Out  
Data FIFO 2  
Data FIFO 0  
Data FIFO 3  
Data FIFO 1  
DMA Control  
Segment  
Tx Channel  
Buffer Base  
Buffer Bound  
Address Pointer  
Byte Count  
FIFO Control  
SU01240  
Figure 5. Rx and Tx DMA Registers  
DMA Registers  
In addition to the 16-bit Global DMA Interrupt Register (which is shared  
by all eight DMA channels), each DMA channel has seven control  
registers and a four-byte Data FIFO. The four Rx DMA channels have  
one additional register, the Rx Character Time Out Register. All DMA  
registers can be read and written in Memory Mapped Register (MMR)  
space. These registers are summarized below.  
Global DMA Interrupt Register (not shown in figure): All DMA  
interrupt flags are in this register .  
DMA Control Register: Contains the master mode select and  
interrupt enable bits for the channel.  
22  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Hi-Z, and allows the pin to be used as an input. WARNING: At  
Segment Register: Holds A23–A16 (the current segment) of the  
power on time, from the time that power coming up is valid, the  
P3.2_Timer0_ResetOut pin may be driven low for any period from  
zero nanoseconds up to 258 system clocks. This is true  
independently of whether ResetIn is active or not.  
24-bit data buffer address.  
Buffer Base Register: Holds a pointer (A15–A8) to the lowest byte  
in the memory buffer.  
Buffer Bound Register: Points to the first out-of-bounds address  
Power Reduction Modes  
above a circular buffer.  
The XA-H3 supports Idle and Power Down modes of power  
reduction. The idle mode leaves most peripherals running in order to  
allow them to activate the processor when an interrupt is generated.  
The power down mode stops the oscillator in order to absolutely  
minimize power. The processor can be made to exit power down  
mode via a reset or one of the external interrupt inputs (INT0 or  
INT1). This will occur if the interrupt is enabled and its priority is  
higher than that defined by IM3 through IM0. In power down mode,  
the power supply voltage may be reduced to the RAM keep-alive  
voltage VRAM. This retains the RAM, register, and SFR contents at  
Address Pointer Register: Points to a single byte or word in the  
data buffer in memory. The 24-bit DMA address is formed by  
concatenating the contents of the Segment Register [A23–A16]  
with the contents of the Address Pointer Register [A15–A0].  
Byte Count Register: Holds the initial number of bytes to be  
transferred. In Tx Chaining mode, this register is not used  
because the byte count is brought into the byte counter from  
buffer headers in memory.  
the point where power down mode was entered. WARNING: V  
must be raised to within the operating range before power down  
mode is exited.  
DD  
FIFO Control & Status Register: Holds the queuing order and  
full/empty status for the Data FIFO Registers.  
Data FIFO Registers: A four-byte data FIFO buffer internal to the  
Interrupts  
DMA channel.  
In the XA architecture, all exceptions, including Reset, are handled in  
the same general exception structure. The highest priority exception is  
of course Reset, and it is non-maskable. All exceptions are vectored  
through the Exception Vector Table in low memory. Coming out of  
Reset, these vectors must be stored in non-volatile memory based at  
location 000000. Later in the boot sequence, SRAM or other memory  
can be mapped into this address space if desired. There is a feature  
in the XA-H3 Memory Controller called “Bank Swap” that supports  
replacing the ROM vector table and other low memory with RAM. See  
the XA-H3 User Manual for details.  
Rx Char Time Out Register (RxCTOR, Rx DMA channels only):  
Holds the initial value for an 8-bit character timeout countdown  
timer which can generate an interrupt.  
Four UARTS  
Asynchronous transfers up to 230.4 kbps  
5, 6, 7, or 8 data bits per character  
1, 1.5, or 2 Stop bits per character  
Even or Odd parity generate and check  
Parity, Rx Overrun, and Framing Error detection  
Break detection  
The XA-H3 has a standard XA CPU Interrupt Controller,  
implemented with 15 Maskable Event Interrupts. Event Interrupts  
are defined as maskable interrupts usually generated by hardware  
events. However, in the XA-H3, 4 of the 15 Event Interrupts are  
generated by software writing directly to the interrupt flag bit. These  
4 interrupts are referred to as High Priority Software Interrupts.  
Programmable Baud Rate Generator  
Auto Echo and Loopback Modes  
See the IC25 XA Data Handbook for a full explanation of the  
exception structure, including event interrupts, of the XA CPU.  
Because the High Priority Software Interrupts are specific to the  
XA-H3, they are explained in the XA-H3 User Manual.  
I/O Port Output Configuration  
Port input/output configurations are the same as standard XA ports:  
open drain, quasi-bidirectional, push-pull, and off (off means tri-state  
23  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
XA Core  
Interrupt Controller  
DMAH  
DMA  
Interrupts  
DMAL  
RxD0  
CTS0  
CD0  
UART0/  
RxD1  
CTS1  
UART1  
CD1_INT2  
INT2  
RxD2  
CTS2  
CD2  
Interrupt  
Enable/  
Disable Bits  
Master  
Enable  
“EA”  
Interrupt  
To XA CPU  
UART2/  
UART3  
RxD3  
CTS3  
CD3  
INT0  
INT1  
Timer 0  
Timer 1  
High Priority  
4
Software Ints  
HSWR 3–0  
SU01241  
Figure 6. XA-H3 Interrupt Structure Overview  
24  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Table 7. UART0 Interrupts (Interrupt structure is the same except for bit locations for all 4 UARTs)  
Potential  
UART0  
Interrupt  
Individual Enable Bit  
MMR Hex Offset  
Source Bit  
Group Enable Bit(S)  
MMR Hex Offset  
Group Flag Bit  
Master Enable Bit  
MMR Hex Offset  
MMR Hex Offset  
MMR Hex Offset  
Rx Character Available  
RR0[0]  
820[0]  
WR1[4:3]  
802[4:3]  
Even Channel Rx IP UART0/1 Master  
Interrupt Enable  
RR3[5]  
WR9[3]  
826[5]  
812[3]  
CRC/Framing Error  
Rx Overrun  
RR1[6]  
822[6]  
RR1[5]  
822[5]  
RR1[4]  
822[4]  
RR0[2]  
820[2]  
Parity Error  
WR1[2]  
802[2]  
Tx Buffer Empty  
See WR1[1]  
Tx Interrupt Enable  
WR1[1]  
Even Channel Tx IP  
RR3[4]  
802[1]  
826[4]  
Break/Abort  
Break/  
RR0[7]  
820[7]  
Master External/Status  
Interrupt Enable  
Even Channel  
External/Status IP  
Abort IE  
WR1[0]  
802[0]  
RR3[3]  
826[3]  
WR15[7]  
81E[7]  
Tx Underrun/EOM  
CTS  
Tx Underrun/EOM IE  
WR15[6]  
81E[6]  
RR0[6]  
820[6]  
CTS IE  
WR15[5]  
81E[5]  
RR0[5]  
820[5]  
DCD  
DCD IE  
RR0[3]  
820[3]  
WR15[3]  
81E[3]  
Zero Count  
Zero Count IE  
WR15[1]  
81E[1]  
RR0[1]  
820[1]  
EXCEPTION/TRAPS PRECEDENCE  
Description  
Reset (h/w, watchdog, s/w)  
Break Point  
Vector Address  
Arbitration Ranking  
0000–0003  
0004–0007  
0008–000B  
000C–000F  
0010–0013  
0014–0017  
0040–007F  
0 (High)  
1
1
1
1
1
1
Trace  
Stack Overflow  
Divide by 0  
User RETI  
TRAP 0–15 (software)  
25  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
EVENT INTERRUPTS  
Description Event  
Interrupt Source  
Interrupt Vector  
Address  
Priority Register Bit  
Field (SFR)  
Flag Bit  
Enable Bit (SFR)  
Arb. Rank  
High Priority  
Software Interrupt 3  
HSWR3  
MMR 2D0[15]  
00BF–00BC  
00BB–00B8  
00B7–00B4  
00B3–00B0  
00A7–00A4  
00A3–00A0  
009B–0098  
0097–0094  
0093–0090  
008F–008C  
008B–0088  
0087–0084  
0083–0080  
EHSWR3  
427[7]  
33F  
PHSWR3  
4A7[6:4]  
17  
High Priority  
Software Interrupt 2  
HSWR2  
MMR 2D0[14]  
EHSWR2  
427[6]  
33E  
PHSWR2  
4A7[2:0]  
16  
15  
14  
11  
10  
8
High Priority  
Software Interrupt 1  
HSWR1  
MMR 2D0[13]  
EHSWR1  
427[5]  
33D  
PHSWR1  
4A6[6:4]  
High Priority  
Software Interrupt 0  
HSWR0  
MMR 2D0[12]  
EHSWR0  
427[4]  
33C  
PHSWR0  
4A6[2:0]  
UART “UART2/3”  
Interrupt  
multiple OR from  
UART2 & UART3  
ESC23  
427[1]  
339  
PSC23  
4A4[6:4]  
UART “UART0/1”  
Interrupt  
multiple OR from  
UART0 & UART1  
ESC01  
427[0]  
338  
PSC01  
4A4[2:0]  
DMA “DMAH”  
Interrupt  
multiple OR from  
DMA  
EDMAH  
426[6]  
336  
PDMAH  
4A3[2:0]  
DMA “DMAL”  
Interrupt  
multiple OR from  
DMA  
EDMAL  
426[5]  
335  
PDMAL  
4A2[6:4]  
7
External Interrupt 2  
(INT2)  
IE2  
MMR 2D2[0]  
EX2  
426[4]  
334  
PX2  
4A2[2:0]  
6
Timer 1  
TF1  
SFR 410[7]  
287  
ET1  
426[3]  
333  
PT1  
4A1[6:4]  
5
External Interrupt 1  
(INT1)  
IE1  
SFR 410[3]  
283  
EX1  
426[2]  
332  
PX1  
4A1[2:0]  
4
Timer 0  
TF0  
SFR 410[5]  
285  
ET0  
426[1]  
331  
PT0  
4A0[6:4]  
3
External Interrupt 0  
(INT0)  
IE0 SFR 410[1]  
EX0 426[0] 330  
PX0 4A0[2:0]  
2
SOFTWARE INTERRUPTS  
Description  
Software Interrupt 1  
Software Interrupt 2  
Software Interrupt 3  
Software Interrupt 4  
Software Interrupt 5  
Software Interrupt 6  
Software Interrupt 7  
Flag Bit  
SWR1  
SWR2  
SWR3  
SWR4  
SWR5  
SWR6  
SWR7  
Vector Address  
Enable Bit  
SWE1  
SWE2  
SWE3  
SWE4  
SWE5  
SWE6  
SWE7  
Interrupt Priority  
(fixed at 1)  
(fixed at 2)  
(fixed at 3)  
(fixed at 4)  
(fixed at 5)  
(fixed at 6)  
(fixed at 7)  
0100–0103  
0104–0107  
0108–010B  
010C–010F  
0110–0113  
0114–0117  
0118–011B  
26  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Operating temperature under bias  
Rating  
Unit  
°C  
°C  
v
–55 to +125  
–65 to +150  
Storage temperature range  
Voltage on any other pin to V  
–0.5 to V +0.5 V  
SS  
DD  
Maximum I per I/O pin  
15  
mA  
W
OL  
Power dissipation (based on package heat transfer, not device power consumption)  
1.5  
PRELIMINARY DC ELECTRICAL CHARACTERISTICS  
V
= 5.0 V +/– 10% or 3.3 V +/– 10% unless otherwise specified; T  
= –40°C to +85°C for industrial, unless otherwise specified.  
DD  
amb  
Limits  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
64  
Max  
80  
I
Power supply current, operating  
5.0 V, 30 MHz  
3.3 V, 30 MHz  
5.0 V, 30 MHz  
3.3 V, 30 MHz  
5.0 V, 3.0 V  
mA  
mA  
mA  
mA  
µA  
V
DD  
55  
70  
I
ID  
Power supply current, Idle mode  
50  
70  
44  
60  
1
I
Power supply current, Power Down mode  
RAM keep-alive voltage  
500  
PDI  
V
RAM  
1.5  
–0.5  
2.2  
V
IL  
Input low voltage  
0.22 V  
V
DD  
V
IH  
Input high voltage, except Xtal1, RST  
Input high voltage to Xtal1, RST  
V
V
IH1  
For both 3.0 & 5.0 V  
0.7 V  
V
DD  
8
V
OL  
Output low voltage all ports  
I
I
= 3.2 mA, V = 4.5 V  
0.5  
0.4  
V
OL  
DD  
= 1.0 mA, V = 3.0 V  
V
OL  
DD  
V
Output high voltage, all ports  
Output high voltage, all ports  
Input/Output pin capacitance  
I
= –100 µA, V = 4.5 V  
2.4  
2.0  
2.4  
2.2  
V
OH1  
OH2  
OH  
DD  
I
= –30 µA, V = 3.0 V  
V
OH  
DD  
V
I
I
= 3.2 mA, V = 4.5 V  
V
OH  
DD  
= 1.0 mA, V = 3.0 V  
V
OH  
DD  
C
15  
pF  
µA  
µA  
µA  
µA  
IO  
7
I
I
Logical 0 input current, all ports  
V
IN  
= 0.45 V  
–50  
±10  
IL  
6
Input leakage current, all ports  
V
IN  
= V or V  
IL IH  
LI  
5
I
Logical 1 to 0 transition current, all ports  
At V = 5.5 V  
–650  
–250  
TL  
DD  
At V = 3.6 V  
DD  
NOTE:  
1. V must be raised to within the operating range before power down mode is exited.  
DD  
2. Ports in quasi-bidirectional mode with weak pullup.  
3. Ports in PUSH-PULL mode, both pullup and pulldown assumed to be the same strength.  
4. In all output modes.  
5. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to 0. This current is highest when  
is approximately 2 V.  
V
IN  
6. Measured with port in high impedance mode.  
7. Measured with port in quasi-bidirectional mode.  
8. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum I per port pin:  
15 mA (NOTE: This is +85°C specification for V = 5 V)  
OL  
DD  
Maximum I per 8-bit port:  
26 mA  
71 mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
27  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
PRELIMINARY AC ELECTRICAL CHARACTERISTICS (5.0 V +/–10%)  
Limits  
Symbol  
Figure  
Parameter  
All Cycles  
Unit  
Min  
Max  
F
System Clock Frequency  
System Clock Period = 1/FC  
XTALIN High Time  
0
30  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
t
C
13  
13  
13  
13  
13  
All  
All  
All  
All  
All  
14  
33.33  
t
t * 0.5  
CHCX  
C
t
XTALIN Low Time  
t * 0.4  
CLCX  
CLCH  
CHCL  
C
t
t
XTALIN Rise Time  
5
XTALIN Fall Time  
5
t
Address Valid to Strobe low  
t
– 21  
AVSL  
C
7
t
Address hold after CLKOUT rising edge  
1
1
1
CHAH  
t
Delay from CLKOUT rising edge to address valid  
25  
21  
19  
CHAV  
CHSH  
7
t
Delay from CLKOUT rising edge to Strobe High  
7
t
Delay from CLKOUT rising edge to Strobe Low  
CHSL  
t
ClkOut Duty Cycle High (into 40 pF max.)  
t
–7  
t
+3  
CODH  
CHCX  
CHCX  
Data Read Only  
t
10  
Address hold (A19 – A1 only, not A0) after CS, BLE, BHE rise at end  
of Data Read Cycle (not code fetch)  
t
C
– 12  
ns  
AHDR  
Data Read and Instruction Fetch Cycles  
t
7, 8, 10, 11  
7, 8, 10, 11  
10  
Data In Valid setup to ClkOut rising edge  
25  
0
ns  
ns  
ns  
DIS  
2
t
Data In Valid hold after ClkOut rising edge  
DIH  
t
OE high to XA Data Bus Driver Enable  
Write Cycles  
t
C
– 14  
OHDE  
t
t
9
Clock High to Data Valid  
25  
ns  
ns  
ns  
ns  
CHDV  
t
12  
Data Valid prior to Strobe Low  
t
C
t
C
t
C
– 23  
– 25  
– 25  
DVSL  
SHAH  
SHDH  
9, 12  
9, 12  
Minimum Address Hold Time after strobe goes inactive  
Data hold after strobes (CS and BHE/BLE) high  
Wait Input  
t
t
15  
15  
WAIT setup (stable high or low) to CLKOUT rising edge  
WAIT hold (stable high or low) after CLKOUT rising edge  
20  
0
ns  
ns  
WS  
t
WH  
NOTE:  
1. On a 16-bit bus, if only one byte is being written, then only one of BLE or BHE will go active. On an 8-bit bus, BLE goes active for all (odd or  
even address) accesses. BHE will not go active during any accesses on an 8 bit bus.  
2. The bus timing is designed to make meeting hold time very straightforward without glue logic. On all reads and fetches, in order to meet hold  
time, the slave should hold data valid on the bus until the earliest of CS, BHE/BLE, OE, goes high (inactive), or until the address changes.  
3. To avoid 3-State fights during read cycles and fetch cycles, do not drive data bus until OE goes active  
4. WARNING: ClkOut is specified at 40 pF max. More than 40 pf on ClkOut may significantly degrade the ClkOut waveform. Load capacitance  
for all outputs (except ClkOut) = 80 pF.  
5. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA-H3 User Manual for details.  
6. When code is being fetched on the external bus, a burst mode fetch is used. This burst can be from 2 to 16 bytes long. On a 16-bit bus,  
A3 – A1 are incremented for each new word of the burst. On an 8-bit bus, A3 – A0 are incremented for each new byte of the burst code fetch.  
7. The MIN value for this parameter is guaranteed by design and is not tested in production to the specified limit. In those cases where a  
maximum value is specified in the table for this parameter, it is tested.  
28  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
AC ELECTRICAL CHARACTERISTICS (3.3 V +/–10%)  
Vdd = 3.3 V +/– 10%; T  
= –40°C to +85°C ( industrial )  
amb  
Limits  
Symbol  
Figure  
Parameter  
All Cycles  
Unit  
Min  
Max  
F
System Clock (internally called CClk) Frequency  
System Clock Period = 1/FC  
XTALIN High Time  
0
30  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
t
C
13  
13  
13  
13  
13  
All  
All  
All  
All  
All  
14  
33.33  
t
t * 0.5  
CHCX  
C
t
XTALIN Low Time  
t * 0.4  
CLCX  
CLCH  
CHCL  
C
t
t
XTALIN Rise Time  
5
XTALIN Fall Time  
5
t
Address Valid to Strobe low  
t
– 21  
AVSL  
C
7
t
Address hold after CLKOUT rising edge  
1
1
1
CHAH  
t
Delay from CLKOUT rising edge to address valid  
30  
28  
25  
CHAV  
CHSH  
7
t
Delay from CLKOUT rising edge to Strobe High  
Delay from CLKOUT rising edge to Strobe Low  
ClkOut Duty Cycle High (into 40 pF max.)  
Data Read Only  
7
t
CHSL  
t
t
–7  
t
+3  
CODH  
CHCX  
CHCX  
t
10  
Address hold (A19 – A1 only, not A0) after CS, BLE, BHE rise at end  
of Data Read Cycle (not code fetch)  
t
C
– 12  
ns  
AHDR  
Data Read and Instruction Fetch Cycles  
t
7, 8, 10, 11  
7, 8, 10, 11  
10  
Data In Valid setup to ClkOut rising edge  
32  
0
ns  
ns  
ns  
DIS  
2
t
Data In Valid hold after ClkOut rising edge  
DIH  
t
OE high to XA Data Bus Driver Enable  
Write Cycles  
t
C
– 19  
OHDE  
t
t
9
Clock High to Data Valid  
30  
ns  
ns  
ns  
ns  
CHDV  
t
12  
Data Valid prior to Strobe Low  
t
– 23  
DVSL  
SHAH  
SHDH  
C
9, 12  
9, 12  
Minimum Address Hold Time after strobe goes inactive  
Data hold after strobes (CS and BHE/BLE) high  
Wait Input  
tC – 25  
t
t
C
– 25  
t
15  
15  
WAIT setup (stable high or low)prior to CLKOUT rising edge  
WAIT hold (stable high or low) after CLKOUT rising edge  
25  
0
ns  
ns  
WS  
t
WH  
NOTE:  
1. On a 16-bit bus, if only one byte is being written, then only one of BLE or BHE will go active. On an 8-bit bus, BLE goes active for all (odd or  
even address) accesses. BHE will not go active during any accesses on an 8-bit bus.  
2. The bus timing is designed to make meeting hold time very straightforward without glue logic. On all reads and fetches, in order to meet hold  
time, the slave should hold data valid on the bus until the earliest of CS, BHE/BLE, OE, goes high (inactive), or until the address changes.  
3. To avoid 3-State fights during read cycles and fetch cycles, do not drive data bus until OE goes active  
4. WARNING: ClkOut is specified at 40 pF max. More than 40 pf on ClkOut may significantly degrade the ClkOut waveform. Load capacitance  
for all outputs (except ClkOut) = 80 pF.  
5. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA-H3 User Manual for details.  
6. When code is being fetched on the external bus, a burst mode fetch is used. This burst can be from 2 to 16 bytes long. On a 16-bit bus,  
A3 – A1 are incremented for each new word of the burst. On an 8-bit bus, A3 – A0 are incremented for each new byte of the burst code fetch.  
7. The MIN value for this parameter is guaranteed by design and is not tested in production to the specified limit. In those cases where a  
maximum value is specified in the table for this parameter, it is tested.  
29  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
TIMING DIAGRAMS  
All references to numbered Notes are to the notes following the AC Electrical Characteristics tables  
ClkOut  
A0  
t
t
CHAV  
CHAH  
A19–A1  
t
t
(Does Not Include A0)  
CHSL  
AHDR  
t
AVSL  
CS  
BHE/BLE  
OE  
t
CHSH  
Note 3  
t
(Note 2)  
DIH  
t
DIS  
D15–D0  
Note:  
On Generic Data Reads, A0 can terminate a full clock period before A19–A1, and therefore  
should not be used on some peripheral devices.  
SU01277  
Figure 7. Read on 16-Bit Bus  
ClkOut  
A[19:0]  
t
t
CHAV  
CHAV  
t
CHAV  
Address  
Address + 2  
Address + 4  
t
CHSL  
t
CHSH  
t
AVSL  
CS  
BHE/BLE  
t
OHDE  
Note 3  
OE  
t
t
t
DIH  
(Note 2)  
DIH  
DIH  
Note 2  
Note 2  
t
t
DIS  
t
DIS  
DIS  
Driven  
by XA  
D[15:0]  
Driven by XA  
Note:  
The processor can prefetch from one to eight words.  
SU01131  
Figure 8. Burst Code Fetch on 16-Bit Bus  
30  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
ClkOut  
t
t
CHSH  
CHAV  
A
t
CHSL  
t
CS  
AVSL  
t
SHAH  
Note 1  
BHE/BLE  
WE  
t
SHDH  
t
CHDV  
D
SU01278  
Figure 9. Write ( byte write on 8-bit bus, or all writes on 16-bit bus )  
ClkOut  
A19 – A1  
A0  
t
t
AHDR  
CHAV  
t
CHSL  
t
CHSH  
CS  
t
AVSL  
BLE  
OE  
Note 3  
t
OHDE  
t
DIH  
t
Note 2  
t
DIS  
DIS  
Driven by XA  
Note 2  
Driven by XA  
D7 – D0  
On all cycles on 8-bit bus, BHE remains high (inactive)  
Note:  
On the external bus, ALL XA-H4 reads are 16-bit reads. If the CPU instruction only specifies 8-bits, then the CPU uses the appropriate byte, and discards the  
extra byte. Thus, “8-Bit Reads” and “16-Bit Reads” appear to be identical on the bus. On an 8-bit bus, this will appear as two consecutive 8-bit reads even  
though the CPU will only use one of the two bytes.  
WARNING: Some 8-bit I/O devices (especially FIFOS) cannot operate correctly with 2 bytes being read for a one byte read. The most common (and least expensive)  
solution is to operate these 8-bit devices on a 16-bit bus, and access them in software on all odd byte (or all even byte) boundaries. An added benefit of this tech-  
nique is that byte reads are faster than on an 8-bit bus, because only 1 word is fetched (a single read) instead of 2 consecutive bytes.  
SU01283  
Figure 10. Read (16-Bit or 8-Bit) on 8 Bit Bus  
31  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Clkout  
t
CHAV  
t
t
t
CHAV  
CHAV  
CHAV  
Even Address  
Address + 1  
Address + 2  
Address + 3  
t
CHAV  
t
Note 3  
CHSH  
OE, BLE, CS  
D[7:0]  
t
t
t
t
t
t
t
t
DIH  
DIS  
DIH  
DIS  
DIH  
DIS  
DIH  
DIS  
Note 2  
Note 2  
Note 2  
Note 2  
LS Byte  
MS Byte  
LS Byte  
MS Byte  
Note:  
BHE remains high (inactive) for all accesses on an 8-bit bus. A burst code fetch can be  
from 1 to 8 words (1 word = 2 bytes), a 2 word fetch is shown here.  
SU01245  
Figure 11. Burst Code Fetch on 8-bit bus  
Clkout  
t
t
t
CHSH  
CHAV  
CHSL  
A19 – A1  
t
t
SHAH  
A0  
SHAH  
t
CHSL  
CS  
t
AVSL  
t
t
AVSL  
BLE, WE  
t
SHDH  
DVSL  
D7 – D0  
Note. OE is inactive during all writes.  
SU01246  
Figure 12. 16-Bit Write on 8-Bit Bus  
32  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
V
– 0.5  
DD  
0.7 V  
DD  
XTALIN  
0.2 V – 0.1  
DD  
0.45 V  
t
CHCX  
t
t
t
CLCH  
CHCL  
CLCX  
t
C
SU01146  
Figure 13. External Clock Input Drive  
t
CODH  
ClkOut  
WARNING: ClkOut is specified into 40 pF max, do not overload.  
SU01147  
Figure 14. ClkOut Duty Cycle  
ClkOut  
t
t
WH  
WS  
WAIT  
t
t
– Setup time of WAIT to rising edge of ClkOut.  
– Hold time of WAIT after ClkOut High.  
WS  
WH  
SU01148  
Figure 15. External WAIT Pin Timing  
33  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
34  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
NOTES  
35  
1999 Sep 24  
Philips Semiconductors  
Preliminary specification  
CMOS 16-bit highly integrated microcontroller  
XA-H3  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1999  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 09-99  
Document order number:  
9397 750 06431  
Philips  
Semiconductors  

相关型号:

XA-H4

Single-chip 16-bit microcontroller
NXP

XA-S3

XA 16-bit microcontroller 32 K/1 K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage 2.7 V.5.5 V, I2C, 2 UARTs, 16 MB address range
NXP

XA-SCC

CMOS 16-bit communications microcontroller
NXP

XA1000

DC-18.0 GHz GaAs MMIC 5-Bit Digital Attenuator
MIMIX

XA1000-BD

DC-18.0 GHz GaAs MMIC 5-Bit Digital Attenuator
MIMIX

XA1000-BD-000V

DC-18.0 GHz GaAs MMIC 5-Bit Digital Attenuator
MIMIX

XA1000-BD-EV1

DC-18.0 GHz GaAs MMIC 5-Bit Digital Attenuator
MIMIX

XA120033

SPARK QUENCHER
OKAYA

XA1201

SPARK QUENCHER
OKAYA

XA15A-4N

Ring Terminal
AMPHENOL

XA1619

FM/AM Radio
SONY

XA16A-4N

Ring Terminal
AMPHENOL