MSM54V16272-60GS-K [OKI]

Video DRAM, 256KX16, 60ns, CMOS, PDSO64, 0.525 INCH, 0.80 MM PITCH, PLASTIC, SSOP-64;
MSM54V16272-60GS-K
型号: MSM54V16272-60GS-K
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

Video DRAM, 256KX16, 60ns, CMOS, PDSO64, 0.525 INCH, 0.80 MM PITCH, PLASTIC, SSOP-64

动态存储器 光电二极管 内存集成电路
文件: 总40页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDS54V16272-05  
This version: Feb. 2000  
Previous version: Jan. 1998  
¡ Semiconductor  
MSM54V16272  
262,144-Word ¥ 16-Bit Multiport DRAM  
DESCRIPTION  
The MSM54V16272 is a 4-Mbit CMOS multiport DRAM composed of a 262,144-word by 16-bit  
dynamic RAM, and a 512-word by 16-bit SAM. Its RAM and SAM operate independently and  
asynchronously.  
It supports three types of operations: random access to RAM port, high speed serial access to  
SAM port, and bidirectional transfer of data between any selected row in the RAM port and the  
SAMport.InadditiontotheconventionalmultiportDRAMoperatingmodes,theMSM54V16272  
features block write and flash write functions on the RAM port, and a split data transfer  
capability on the SAM port. The SAM port requires no refresh operation because it uses static  
CMOS flip-flops.  
FEATURES  
• Single power supply: 3.3 V ±0.3 V  
• Full TTL compatibility  
• Multiport organization  
RAM : 256K word ¥ 16 bits  
SAM : 512 word ¥ 16 bits  
• Fast page mode  
RAS only refresh  
CAS before RAS refresh  
CAS before RAS self-refresh  
• Hidden refresh  
• Serial read/write  
• 512 tap location  
• Write per bit  
• Byte read/write  
• Bidirectional data transfer  
• Split transfer  
• Masked flash write  
• Masked block write (8 columns)  
• Package options:  
• Masked write transfer  
• Refresh: 512 cycles/8 ms  
64-pin 525 mil plastic SSOP  
(SSOP64-P-525-0.80-K) (Product:MSM54V16272-xxGS-K)  
70/64-pin 400 mil plastic TSOP (Type II)(TSOPII70/64-P-400-0.65-K)(Product:MSM54V16272-xxTS-K)  
xx indicates speed rank.  
PRODUCT FAMILY  
Access Time  
Cycle Time  
RAM SAM  
Power Dissipation  
Family  
RAM  
60 ns  
70 ns  
SAM  
Operating  
Standby  
8 mA  
MSM54V16272-60  
MSM54V16272-70  
18 ns 120 ns 22 ns  
20 ns 140 ns 22 ns  
160 mA  
150 mA  
8 mA  
1/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
PIN CONFIGURATION (TOP VIEW)  
VCC  
TRG  
VSS  
SDQ0  
DQ0  
SDQ1  
DQ1  
VCC  
1
2
3
4
5
6
7
8
9
70 SC  
69 SE  
68 VSS  
VCC  
TRG  
VSS  
SDQ0  
DQ0  
SDQ1  
DQ1  
VCC  
1
2
3
4
5
6
7
8
9
64 SC  
63 SE  
62 VSS  
67 SDQ15  
66 DQ15  
65 SDQ14  
64 DQ14  
63 VCC  
62 SDQ13  
61 DQ13  
60 SDQ12  
59 DQ12  
58 VSS  
61 SDQ15  
60 DQ15  
59 SDQ14  
58 DQ14  
57 VCC  
56 SDQ13  
55 DQ13  
54 SDQ12  
53 DQ12  
52 VSS  
51 SDQ11  
50 DQ11  
49 SDQ10  
48 DQ10  
47 VCC  
46 SDQ9  
45 DQ9  
44 SDQ8  
43 DQ8  
42 VSS  
41 DSF  
40 NC  
39 CASU  
38 QSF  
37 A0  
36 A1  
35 A2  
34 A3  
33 VSS  
SDQ2  
DQ2 10  
SDQ3 11  
DQ3 12  
VSS 13  
SDQ4 14  
DQ4 15  
SDQ5 16  
SDQ2  
DQ2 10  
SDQ3 11  
DQ3 12  
VSS 13  
SDQ4 14  
DQ4 15  
SDQ5 16  
DQ5 17  
VCC 18  
SDQ6 19  
DQ6 20  
SDQ7 21  
DQ7 22  
VSS 23  
CASL 24  
WE 25  
57 SDQ11  
56 DQ11  
55 SDQ10  
DQ5 20  
51 DQ10  
VCC 21  
SDQ6 22  
DQ6 23  
SDQ7 24  
DQ7 25  
VSS 26  
CASL 27  
WE 28  
RAS 29  
A8 30  
50 VCC  
49 SDQ9  
48 DQ9  
47 SDQ8  
46 DQ8  
45 VSS  
44 DSF  
43 NC  
42 CASU  
41 QSF  
40 A0  
39 A1  
38 A2  
RAS 26  
A8 27  
A7 28  
A6 29  
A5 30  
A7 31  
A6 32  
A5 33  
A4 34  
A4 31  
VCC 32  
37 A3  
VCC 35  
36 VSS  
64-Pin Plastic SSOP  
70/64-Pin Plastic TSOP (II)  
(K Type)  
Pin Name  
A0 - A8  
DQ0 - DQ15  
SDQ0 - SDQ15  
RAS  
Pin Name  
Function  
Address Input  
Function  
Serial Clock  
SC  
SE  
RAM Inputs/Outputs  
SAM Port Enable  
DSF  
QSF  
VCC  
VSS  
NC  
SAM Inputs/Outputs  
Special Function Input  
Special Function Output  
Power Supply (3.3 V)  
Ground (0 V)  
Row Address Strobe  
Column Address Strobe Lower  
Column Address Strobe Upper  
Write Enable  
CASL  
CASU  
WE  
No Connection  
TRG  
Transfer/Output Enable  
Note: The same power supply voltage must be provided to every V pin, and the same GND  
CC  
voltage level must be provided to every V pin.  
SS  
2/40  
Column  
Address  
Buffer  
Block Write  
Control  
Column Mask  
Register  
Column Decoder  
Sense Amp.  
RAM Input  
Buffer  
I/O Control  
Color Register  
Mask Register  
DQ 0 - 15  
RAM Output  
Buffer  
Row  
Address  
Buffer  
512 ¥ 512 ¥ 16  
RAM ARRAY  
Flash Write  
Control  
SAM Input  
A0 - A8  
Refresh  
Counter  
RAS  
Gate  
SAM  
Gate  
SAM  
Buffer  
CASU / CASL  
SDQ 0 - 15  
SAM Output  
Buffer  
TRG  
WE  
DSF  
SC  
Timing  
Serial Decoder  
Generator  
SAM  
Address  
Buffer  
SAM Address  
SE  
QSF  
Counter  
SE  
VCC  
VSS  
SAM Stop  
Control  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
(Note: 1)  
Parameter  
Input Output Voltage  
Output Current  
Symbol  
VT  
Condition  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
Rating  
Unit  
V
–0.5 to 4.6  
50  
IOS  
mA  
W
Power Dissipation  
PD  
1
Topr  
Tstg  
Operating Temperature  
Storage Temperature  
0 to 70  
–55 to 150  
°C  
°C  
Recommended Operating Conditions  
(Ta = 0°C to 70°C) (Note: 2)  
Parameter  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
Symbol  
VCC  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
V
V
VIH  
2.0  
VCC + 0.3  
0.8  
VIL  
–0.3  
Capacitance  
(VCC = 3.3 V 0.3 Vꢀ f = 1 MHꢁꢀ Ta = 25°C)  
Parameter  
Input Capacitance  
Symbol  
Ci  
Min.  
Max.  
Unit  
pF  
6
7
7
Input/Output Capacitance  
Output Capacitance  
Cio  
pF  
Co(QSF)  
pF  
Note: This parameter is periodically sampled and is not 100% tested.  
DC Characteristics 1  
Parameter  
Output "H" Level Voltage  
Output "L" Level Voltage  
Symbol  
VOH  
Condition  
IOH = –2 mA  
IOL = 2 mA  
Min.  
2.4  
Max.  
Unit  
V
VOL  
0.4  
0 £ VIN £ VCC  
All other pins not  
under test = 0 V  
Input Leakage Current  
Output Leakage Current  
ILI  
–10  
–10  
10  
10  
mA  
0 £ VOUT £ VCC  
Output Disable  
ILO  
4/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
DC Characteristics 2  
(VCC = 3.3 V 0.3 Vꢀ Ta = 0°C to 70°C)  
-60  
Max.  
120  
160  
8
-70  
Max.  
110  
150  
8
Item (RAM)  
SAM  
Symbol  
Unit Note  
Operating Current  
Standby  
Active  
ICC1  
3ꢀ 4  
17  
(RASCAS Cyclingꢀ tRC = tRC min.)  
Standby Current  
ICC1  
ICC2  
ICC2  
ICC3  
ICC3  
ICC4  
ICC4  
ICC5  
ICC5  
ICC6  
ICC6  
ICC7  
ICC7  
ICC8  
ICC8  
A
Standby  
Active  
(RASCAS = VIH)  
A
55  
55  
3ꢀ 4  
3ꢀ 4  
17  
RAS Only Refresh Current  
(RAS Cyclingꢀ CAS = VIHꢀ tRC = tRC min.)  
Page Mode Current  
Standby  
Active  
120  
160  
120  
160  
100  
140  
110  
150  
110  
150  
110  
150  
110  
150  
110  
150  
90  
A
Standby  
Active  
3ꢀ 4  
(RAS = VILCAS Cyclingꢀ tPC = tPC min.)  
CAS before RAS Refresh Current  
(RAS Cyclingꢀ CAS before RASꢀ tRC = tRCmin.)  
Data Transfer Current  
A
18  
mA  
Standby  
Active  
3ꢀ 4  
A
130  
100  
140  
100  
140  
100  
140  
3ꢀ 4  
3ꢀ 4  
17  
Standby  
Active  
(RASCAS Cyclingꢀ tRC = tRC min.)  
Flash Write Current  
A
Standby  
Active  
3ꢀ 4  
3ꢀ 4  
3ꢀ 4  
3ꢀ 4  
(RASCAS Cyclingꢀ tRC = tRC min.)  
Block Write Current  
A
Standby  
Active  
(RASCAS Cyclingꢀ tRC = tRC min.)  
CAS before RAS Self-Refresh Current  
(RASCAS £ 0.2 V)  
A
Standby  
ICC9  
1
1
3ꢀ 4  
5/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
AC Characteristics (1/3)  
-60  
-70  
Parameter  
Symbol  
Unit Note  
Max.  
Min.  
120  
170  
40  
85  
0
Max.  
60  
30  
18  
35  
15  
35  
10k  
100k  
10k  
42  
30  
Min.  
140  
185  
45  
90  
0
Random Read or Write Cycle Time  
Read Modify Write Cycle  
tRC  
tRWC  
tPC  
70  
35  
20  
40  
17  
35  
10k  
100k  
10k  
50  
35  
ns  
ns  
Fast Page Mode Cycle Time  
Fast Page Mode Read Modify Write Cycle Time  
Access Time from RAS  
ns  
tPRWC  
tRAC  
tAA  
ns  
ns 8ꢀ 14  
ns 8ꢀ 14  
ns 8ꢀ 15  
ns 8ꢀ 15  
Access Time from Column Address  
Access Time from CAS  
tCAC  
tCPA  
tOFF  
tT  
Access Time from CAS Precharge  
Output Buffer Turn-off Delay  
Transition Time (Rise and Fall)  
RAS Precharge Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
7
3
3
tRP  
50  
60  
60  
15  
60  
15  
20  
15  
30  
5
60  
70  
70  
20  
70  
20  
20  
15  
35  
10  
10  
0
RAS Pulse Width  
tRAS  
tRASP  
tRSH  
tCSH  
tCAS  
tRCD  
tRAD  
tRAL  
tCRP  
tCP  
RAS Pulse Width (Fast Page Mode Only)  
RAS Hold Time  
CAS Hold Time  
CAS Pulse Width  
RAS to CAS Delay Time  
14  
14  
RAS to Column Address Delay Time  
Column Address to RAS Lead Time  
CAS to RAS Precharge Time  
CAS Precharge Time (Fast Page Mode)  
Row Address Set-up Time  
10  
0
tASR  
tRAH  
tASC  
tCAH  
tAR  
Row Address Hold Time  
10  
0
10  
0
Column Address Set-up Time  
Column Address Hold Time  
Column Address Hold Time referenced to RAS  
Read Command Set-up Time  
Read Command Hold Time  
10  
50  
0
10  
55  
0
tRCS  
tRCH  
tRRH  
tWCS  
tWCH  
tWCR  
tWP  
0
0
11  
11  
13  
Read Command Hold Time referenced to RAS  
Write Command Set-up Time  
Write Command Hold Time  
0
0
0
0
10  
50  
10  
15  
15  
12  
55  
12  
20  
20  
Write Command Hold Time referenced to RAS  
Write Command Pulse Width  
Write Command to RAS Lead Time  
Write Command to CAS Lead Time  
tRWL  
tCWL  
6/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
AC Characteristics (2/3)  
-60  
Max.  
-70  
Parameter  
Symbol  
Unit Note  
Max.  
Min.  
0
Min.  
0
Data Set-up Time  
tDS  
tDH  
18  
15  
8
20  
17  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12  
12  
Data Hold Time  
10  
50  
80  
50  
35  
0
12  
55  
90  
55  
40  
0
Data Hold Time referenced to RAS  
RAS to WE Delay Time  
tDHR  
tRWD  
tAWD  
tCWD  
tDZC  
tDZO  
tOEA  
tOEZ  
tOEH  
tROH  
tCSR  
tCHR  
tRPC  
tREF  
tWSR  
tRWH  
tFSR  
tRFH  
tFHR  
tFSC  
tCFH  
tMS  
13  
13  
13  
Column Address to WE Delay Time  
CAS to WE Delay Time  
Data to CAS Delay Time  
Data to TRG Delay Time  
0
0
Access Time from TRG  
0
0
Output Buffer Turn-off Delay from TRG  
TRG Command Hold Time  
10  
10  
10  
10  
0
10  
15  
10  
10  
0
RAS Hold Time referenced to TRG  
CAS Set-up Time for CAS before RAS Cycle  
CAS Hold Time for CAS before RAS Cycle  
RAS Precharge to CAS Active Time  
Refresh Period  
0
0
WE Set-up Time  
10k  
10k  
10k  
10k  
WE Hold Time  
10  
0
10  
0
DSF Set-up Time referenced to RAS  
DSF Hold Time referenced to RAS (1)  
DSF Hold Time referenced to RAS (2)  
DSF Set-up Time referenced to CAS  
DSF Hold Time referenced to CAS  
Write Per Bit Mask Data Set-up Time  
Write Per Bit Mask Data Hold Time  
RAS Pulse Width (CAS before RAS Self-Refresh)  
RAS Precharge Time (CAS before RAS Self-Refresh)  
CAS Hold Time (CAS before RAS Self-Refresh)  
TRG High Set-up Time  
10  
50  
0
10  
55  
0
10  
0
10  
0
tMH  
10  
100  
120  
0
10  
100  
140  
0
tRASS  
tRPS  
tCHS  
tTHS  
tTHH  
tTLS  
tTLH  
tRTH  
tATH  
tCTH  
0
0
TRG High Hold Time  
10  
0
10  
0
TRG Low Set-up Time  
TRG Low Hold Time  
10  
50  
20  
15  
10  
60  
25  
20  
TRG Low Hold Time referenced to RAS  
TRG Low Hold Time referenced to Column Address  
TRG Low Hold Time referenced to CAS  
7/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
AC Characteristics (3/3)  
-60  
-70  
Parameter  
Symbol  
Unit Note  
Max.  
Min.  
50  
20  
60  
40  
20  
5
Max.  
30  
18  
18  
15  
25  
25  
30  
70  
Min.  
60  
20  
70  
45  
20  
5
TRG to RAS Precharge Time  
TRG Precharge Time  
tTRP  
tTP  
40  
20  
20  
17  
25  
25  
35  
75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RAS to First SC Delay Time (Read Transfer)  
Column Address to First SC Delay Time  
CAS to First SC Delay Time (Read Transfer)  
Last SC to TRG Lead Time  
tRSD  
tASD  
tCSD  
tTSL  
tTSD  
tSRS  
tSDZ  
tSCC  
tSC  
TRG to First SC Delay Time (Read Transfer)  
Last SC to RAS Set-up Time (Serial Input)  
Serial Output Buffer Turn-off Delay from RAS  
SC Cycle Time  
15  
20  
10  
22  
5
15  
25  
10  
22  
5
10  
SC Pulse Width (SC High Time)  
SC Precharge Time (SC Low Time)  
Access Time from SC  
tSCP  
tSCA  
tSOH  
tSEA  
tSE  
5
5
5
5
9
19  
9
Serial Output Hold Time from SC  
Access Time from SE  
10  
10  
0
10  
10  
0
SE Pulse Width  
SE Precharge Time  
tSEP  
tSEZ  
tSTS  
tSTH  
tSQD  
tTQD  
tCQD  
tRQD  
tSDD  
tSDS  
tSDH  
tSZE  
tSZS  
tSWS  
tSWH  
tSWIS  
tSWIH  
Serial Output Buffer Turn-off Delay from SE  
Split Transfer Set-up Time  
10  
25  
25  
30  
0
25  
25  
40  
0
Split Transfer Hold Time  
SC-QSF Delay Time  
TRG-QSF Delay Time  
CAS-QSF Delay Time  
RAS-QSF Delay Time  
RAS to Serial Input Delay Time  
Serial Input Set-up Time  
Serial Input Hold Time  
10  
0
10  
0
Serial Input to SE Delay Time  
Serial Input to First SC Delay Time  
Serial Write Enable Set-up Time  
Serial Write Enable Hold Time  
Serial Write Disable Set-up Time  
Serial Write Disable Hold Time  
0
0
0
0
10  
0
10  
0
10  
10  
8/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Notes: 1. Exposure beyond the "Absolute Maximum Ratings" may cause permanent damage  
to the device.  
2. All voltages are referenced to V .  
SS  
3. These parameters depend on the cycle rate.  
4. Theseparametersdependonoutputloading.Specifiedvaluesareobtainedwiththe  
output open.  
5. An initial pause of 200 ms is required after power up followed by any 8 RAS cycles  
(TRG = "high") and any 8 SC cycles before proper device operation is achieved.  
In the case of using an internal refresh counter, a minimum of 8 CAS before RAS  
cycles instead of 8 RAS cycles are required.  
6. AC measurements assume t = 5 ns.  
T
7. V (Min.)andV (Max.)arereferencelevelsformeasuringtimingofinputsignals.  
IH  
IL  
Also, transition times are measured between V and V .  
IH  
IL  
8. RAM port outputs are measured with a load equivalent to 1 TTL load and 50 pF.  
DOUT reference levels : V /V = 2.0 V/0.8 V.  
OH  
OL  
9. SAM port outputs are measured with a load equivalent to 1 TTL load and 30 pF.  
DOUT reference levels : V /V = 2.0 V/0.8 V.  
OH  
OL  
10. t  
(Max.), t  
(Max.), t  
(Max.) and t  
(Max.) define the time at which the  
OFF  
OEZ  
SDZ  
SEZ  
outputsachievetheopencircuitcondition, andarenotreferencedtooutputvoltage  
levels. This parameter is sampled and not 100% tested.  
11. Either t  
or t  
must be satisfied for a read cycle.  
RCH  
RRH  
12. These parameters are referenced to CAS leading edge of early write cycles, and to  
WE leading edge in TRG controlled write cycles and read modify write cycles.  
13. t  
, t  
, t  
and t  
are not restrictive operating parameters.  
AWD  
WCS RWD CWD  
They are included in the data sheet as electrical characteristics only.  
If t t (Min.), the cycle is an early write cycle, and the data out pin will  
WCS  
WCS  
remain open circuit throughout the entire cycle; If t  
t  
(Min.), t  
t  
RWD RWD  
CWD CWD  
(Min.) and t  
t  
(Min.), the cycle is a read modify write cycle, and the data  
AWD AWD  
out will contain data read from the selected cell; If neither of the above sets of  
conditions are satisfied, the condition of the data out is indeterminate.  
14. Operation within the t  
(Max.) limit ensures that t  
(Max.) can be met.  
RCD  
RAC  
t
t
(Max.)isspecifiedasareferencepointonly:Ift  
(Max.) limit, then access time is controlled by t  
isgreaterthanthespecified  
RCD  
RCD  
.
RCD  
CAC  
15. Operation within the t  
(Max.) limit ensures that t  
(Max.) can be met. t  
RAD  
RAC  
RAD  
RAD  
(Max.)isspecifiedasareferencepointonly:Ift  
isgreaterthanthespecifiedt  
RAD  
(Max.) limit, then access time is controlled by t  
16. Input levels at the AC testing are 3.0 V/0 V.  
.
AA  
17. Address (A0 - A8) may be changed two times or less while RAS = V .  
IL  
18. Address (A0 - A8) may be changed once or less while CAS = V and RAS = V .  
IH  
IL  
19. This is guaranteed by design. (t  
/t  
= t  
/t  
- output transition time)  
SOH COH  
SCA CAC  
This parameter is not 100% tested.  
9/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
TIMING WAVEFORM  
Read Cycle  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASL  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASU  
tAR  
tRAD  
tRAH  
tRAL  
tASR  
Row  
tASC  
tCAH  
Address  
Column  
tFHR  
tFSR tRFH  
tFSC  
tCFH  
DSF  
tRCS  
tRRH  
tRCH  
tOFF  
WE  
tCAC  
tAA  
Open  
Open  
DQ0 - 7  
Valid Data  
Valid Data  
tRAC  
DQ8 - 15  
tROH  
tTHS  
tTHH  
tOEA  
tOEZ  
TRG  
"H" or "L"  
10/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Fast Page Mode Read Cycle  
tRASP  
tRP  
RAS  
tCSH  
tPC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
CASL  
CASU  
tCSH  
tPC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
tAR  
tRAD  
tRAH  
tRAL  
tASR  
tASC tCAH  
Column  
tASC tCAH  
Column  
tASC tCAH  
Column  
Address  
DSF  
Row  
tFHR  
tFSR tRFH  
tFSC tCFH  
tFSC tCFH  
tFSC tCFH  
tRCH  
tRRH  
tRCS  
tRCS  
tRCS  
tRCH  
tRCH  
WE  
tCAC  
tAA  
tCAC  
tCAC  
tAA  
tAA  
tOFF  
tOFF  
tOFF  
Valid  
Valid  
Valid  
DQ0 - 7  
Open  
Open  
Data  
Data  
Data  
tRAC  
tCPA  
tCPA  
Valid  
Data  
Valid  
Data  
Valid  
Data  
DQ8 - 15  
tOEZ  
tTHS  
tTHH  
tOEA  
TRG  
"H" or "L"  
11/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Write Cycle Function Table  
RAS Falling Edge  
CAS Falling Edge  
Code  
A
C
D
B
E
Function  
DSF WE  
DQ  
DSF  
DQ  
RWM  
BWM  
FWM  
RW  
0
0
1
0
0
1
0
0
0
1
1
1
Write Mask  
0
1
X
0
1
1
Valid Data  
Column Mask  
X
Masked Write  
Write Mask  
Masked Block Write  
Masked Flash Write  
Normal Write  
Write Mask  
X
X
X
Valid Data  
Column Mask  
Color Data  
BW  
Block Write  
LCR  
Load Color Register  
WRITE MASK DATA: "Low" = Mask, "High" = No Mask  
Column Mask Data  
DQ0 - 15  
DQ0  
Column Mask Data  
Column 0 (A0 = 0ꢀ A1 = 0ꢀ A2 = 0)  
DQ1  
Column 1 (A0 = 1ꢀ A1 = 0ꢀ A2 = 0)  
Column 2 (A0 = 0ꢀ A1 = 1ꢀ A2 = 0)  
Column 3 (A0 = 1ꢀ A1 = 1ꢀ A2 = 0)  
Column 4 (A0 = 0ꢀ A1 = 0ꢀ A2 = 1)  
Column 5 (A0 = 1ꢀ A1 = 0ꢀ A2 = 1)  
Column 6 (A0 = 0ꢀ A1 = 1ꢀ A2 = 1)  
Column 7 (A0 = 1ꢀ A1 = 1ꢀ A2 = 1)  
Column 0 (A0 = 0ꢀ A1 = 0ꢀ A2 = 0)  
Column 1 (A0 = 1ꢀ A1 = 0ꢀ A2 = 0)  
Column 2 (A0 = 0ꢀ A1 = 1ꢀ A2 = 0)  
Column 3 (A0 = 1ꢀ A1 = 1ꢀ A2 = 0)  
Column 4 (A0 = 0ꢀ A1 = 0ꢀ A2 = 1)  
Column 5 (A0 = 1ꢀ A1 = 0ꢀ A2 = 1)  
Column 6 (A0 = 0ꢀ A1 = 1ꢀ A2 = 1)  
Column 7 (A0 = 1ꢀ A1 = 1ꢀ A2 = 1)  
DQ2  
DQ3  
Low : Mask  
Lower Byte  
DQ4  
High : No Mask  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
Low : Mask  
Upper Byte  
High : No Mask  
12/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Early Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASL  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASU  
tAR  
tRAD  
tRAH  
tRAL  
tASR  
tASC  
tCAH  
Address  
DSF  
Row  
Column  
tFHR  
tFSR  
tRFH  
tFSC  
tCFH  
A
B
tCWL  
tRWL  
tWSR tRWH  
C
tWP  
WE  
tWCR  
tWCS  
tWCH  
tDHR  
tDS  
tMS  
tMH  
tDH  
DQ0 - 7  
D
D
E
E
tDHR  
tDS  
tMS  
tMH  
tDH  
DQ8 - 15  
tTHS  
tTHH  
TRG  
"H" or "L"  
13/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Late Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASL  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASU  
tAR  
tRAD  
tRAH  
tRAL  
tASR  
tASC  
tCAH  
Address  
DSF  
Row  
Column  
tFHR  
tFSC  
tFSR  
tRFH  
tCFH  
A
B
tCWL  
tRWL  
tWSR tRWH  
C
tRCS  
tWP  
WE  
tWCR  
tDHR  
tMS  
tMH  
tDS  
tDH  
DQ0 - 7  
D
D
E
E
tDHR  
tMS  
tMH  
tDS  
tDH  
DQ8 - 15  
tTHS  
tOEH  
TRG  
"H" or "L"  
14/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Read Modify Write Cycle  
tRWC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASL  
tCSH  
tRSH  
tCAS  
tCRP  
tRCD  
CASU  
tAR  
tRAD  
tRAH  
tRAL  
tASR  
Row  
tASC  
tCAH  
Address  
DSF  
Column  
tAWD  
tFHR  
tFSR  
tRFH  
tFSC  
tCFH  
A
B
tCWL  
tRWL  
tWP  
tWSR tRWH  
C
tRCS  
tRWD  
tRAC  
tCWD  
WE  
tCAC  
tMS  
tMH tDZC  
tDS  
tDH  
Valid  
DQ0 - 7  
D
D
E
E
Data  
tMS  
tMH  
tDS  
tDH  
Valid  
Data  
DQ8 - 15  
tDZO  
tOEZ  
tTHS  
tTHH  
tOEA  
tOEH  
TRG  
"H" or "L"  
15/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Fast Page Mode Early Write Cycle  
tRASP  
tRP  
RAS  
tCSH  
tPC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
CASL  
CASU  
tCSH  
tPC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
tAR  
tRAL  
tCAH  
tRAD  
tRAH  
tASR  
tASC  
tCAH  
tASC  
tCAH  
tASC  
Address  
DSF  
Row  
Column  
Column  
Column  
tFHR  
tFSC tCFH  
tFSR  
tRFH  
tFSC tCFH  
tFSC tCFH  
B
A
B
B
tCWL  
tCWL  
tCWL  
tWP  
tWSR  
tRWH  
tWP  
tWP  
WE  
DQ0 - 7  
C
tMS  
tMH  
tDS tDH  
E
tDS tDH  
E
tDS  
tDH  
tDS  
tDH  
D
D
E
E
E
E
tMS  
tMH  
tDS  
tDH  
tDS  
tDH  
DQ8 - 15  
tTHS  
tTHH  
TRG  
"H" or "L"  
16/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Fast Page Mode Read Modify Write Cycle  
tRASP  
tRP  
RAS  
tCSH  
tPRWC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
CASL  
CASU  
tCSH  
tPRWC  
tCAS  
tRSH  
tCAS  
tCRP  
tRCD  
tCAS  
tCP  
tCP  
tAR  
tRAL  
tCAH  
tRAD  
tASC  
tASR  
tRAH  
tCAH  
Column  
tASC  
tCAH  
tASC  
Address  
DSF  
Row  
Column  
Column  
tFHR  
tFSC tCFH  
tFSR  
tRFH  
tFSC tCFH  
B
tFSC tCFH  
B
A
B
tCWL  
tAWD  
tCWL  
tAWD  
tCWL  
tAWD  
tWSR  
tRWH  
WE  
C
tWP  
tCWD  
tWP  
tCWD  
tWP  
tCWD  
tRCS  
tCAC  
tCAC  
tCAC  
tDH  
tDH  
tDH  
tAA  
tAA  
tAA  
tMS  
tMH  
tDS  
tDS  
tDS  
Out In  
Out In  
Out In  
DQ0 - 7  
D
D
tMS  
tMH  
Out In  
Out In  
Out In  
DQ8 - 15  
tOEZ  
tOEZ  
tOEZ  
tTHS  
tOEA  
tOEA  
tOEA  
tTHH  
TRG  
"H" or "L"  
17/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
RAS Only Refresh Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tRPC  
CASL/U  
tASR  
tRAH  
Address  
DSF  
Row  
tFSR  
tRFH  
WE  
Open  
DQ0 - 15  
TRG  
tTHS  
tTHH  
"H" or "L"  
18/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
CAS before RAS Refresh Cycle  
tRC  
tRP  
tRAS  
tRP  
RAS  
tRPC  
tCSR tCHR  
tRPC  
CASL/U  
Address  
DSF  
Inhibit Falling Transition  
WE  
DQ0 - 15  
TRG  
tOFF  
Open  
"H" or "L"  
19/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
CAS before RAS Self-Refresh Cycle  
tRP  
tRASS  
tRPS  
RAS  
tRPC  
tRPC tCSR  
tCHS  
CASL/U  
tOFF  
Open  
DQ0 - 15  
"H" or "L"  
Note:  
Address, DSF, WE, TRG = "H" or "L"  
20/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Hidden Refresh Cycle  
tRC  
tRAS  
tRP  
tRAS  
RAS  
tCRP  
tRCD  
tRSH  
tCHR  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tCAH  
tASC  
tASR  
Row  
Address  
DSF  
Column  
tCFH  
tFHR  
tFSC  
tFSR  
tRFH  
tRCS  
WE  
tRRH  
tCAC  
tAA  
tOFF  
Open  
DQ0 - 15  
TRG  
Valid Data  
tRAC  
tTHS tTHH  
tOEA  
tOEZ  
"H" or "L"  
21/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Read Transfer 1  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tRCD  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tASC  
SAM Start  
tASR  
tCAH  
Address  
DSF  
Row  
tFSR tRFH  
tWSR tRWH  
WE  
tASD  
tCSD  
DQ0 - 15  
TRG  
Open  
tRSD  
tTRP  
tTP  
tTLS  
tTLH  
tSRS  
tTSD  
tSCC  
tSC  
tSCP  
tSC  
SC  
Note 2  
tSCA  
tSOH  
tSIS  
tSZS  
tSCA  
tSIH  
Din  
SDQ0 - 15  
QSF  
Data Out  
Note 3  
tTQD  
tCQD  
tRQD  
Note 3  
"H" or "L"  
Note 1: SE = "L"  
Note 2: There must be no rising transitions  
Note 3: QSF = "L"-- Lower SAM (0 - 255) is active  
QSF = "H"-- Upper SAM (256 - 511) is active  
22/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Read Transfer 2 (Real Time Read Transfer)  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tRCD  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tASC  
tASR  
Row  
tCAH  
Address  
DSF  
SAM Start  
tFSR tRFH  
tWSR tRWH  
WE  
tCTH  
tATH  
DQ0 - 15  
TRG  
Open  
tTRP  
tTP  
tTLS  
tRTH  
tSCC  
tTSL  
tTSD  
tSCP  
tSC  
SC  
tSCA  
tSOH  
tSCA  
tSOH  
SDQ0 - 15  
Data Out  
Data Out  
Data Out  
Data Out  
tTQD  
Note 2  
Note 2  
QSF  
"H" or "L"  
Note 1: SE = "L"  
Note 2: QSF = "L"-- Lower SAM (0 - 255) is active  
QSF = "H"-- Upper SAM (256 - 511) is active  
23/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Split Read Transfer  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tRCD  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tASC  
SAM Start Sj  
tASR  
tCAH  
Address  
DSF  
Row  
tFSR tRFH  
tWSR tRWH  
WE  
tCTH  
tATH  
DQ0 - 15  
TRG  
Open  
tRTH  
tTLS  
tTLH  
tSTS  
tSCC  
tSCP  
tSC  
SC  
STOP i  
tSCA  
tSOH  
S i  
tSCA  
tSOH  
STOP  
j - 1  
STOP j  
S j  
SDQ0 - 15  
QSF  
Data Out  
tSQD  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
tSQD  
Note 2  
Note 2  
Note 2  
"H" or "L"  
Note 1: SE = "L"  
Note 2: QSF = "L"-- Lower SAM (0 - 255) is active  
QSF = "H"-- Upper SAM (256 - 511) is active  
Note 3: Si is the SAM start address in before SRT  
Note 4: STOP i and STOP j are programmable stop addresses  
24/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Masked Write Transfer  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tRCD  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tASC  
SAM Start  
tASR  
Row  
tCAH  
Address  
DSF  
tFSR tRFH  
tWSR tRWH  
WE  
tCSD  
tMS  
tMH  
DQ0 - 15  
TRG  
Open  
Mask Data  
tRSD  
tTLS  
tTLH  
tSRS  
tSCC  
tSC  
tSCP  
tSC  
SC  
Note 2  
tSDZ  
tSDS  
tSDH  
tSDS  
tSDH  
Data In  
tSOH  
SDQ0 - 15  
QSF  
Dout  
Dout  
tRQD  
Data In  
tSDD  
tCQD  
Note 3  
Note 3  
"H" or "L"  
Note 1: SE = "L"  
Note 2: There must be no rising transitions  
Note 3: QSF = "L"-- Lower SAM (0 - 255) is active  
QSF = "H"-- Upper SAM (256 - 511) is active  
25/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Masked Split Write Transfer  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tRSH  
tCAS  
tRCD  
CASL/U  
tAR  
tRAD  
tRAH  
tRAL  
tASC  
SAM Start Sj  
tASR  
Row  
tCAH  
Address  
DSF  
tFSR tRFH  
tWSR tRWH  
WE  
tCTH  
tATH  
tMS  
tMH  
DQ0 - 15  
TRG  
Open  
Mask Data  
tRTH  
tTLS  
tTLH  
tSTS  
tSCC  
tSCP  
tSC  
SC  
STOP i  
S i  
tSDH  
Data In  
STOP  
j - 1  
STOP j  
S j  
tSDS  
tSDS  
Data In  
tSDH  
SDQ0 - 15  
QSF  
Data In  
Data In  
Data In  
Data In  
tSQD  
Note 2  
tSQD  
Note 2  
Note 2  
"H" or "L"  
Note 1: SE = "L"  
Note 2: QSF = "L"-- Lower SAM (0 - 255) is active  
QSF = "H"-- Upper SAM (256 - 511) is active  
Note 3: Si is the SAM start address in before SWT  
Note 4: STOP i and STOP j are programmable stop addresses  
26/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Serial Read Cycle  
tSEP  
SE  
tSCC  
tSC  
SC  
tSCA  
tSCP  
tSCA  
tSOH  
tSCA  
tSOH  
tSOH  
tSEZ  
tSEA  
SDQ0 - 15  
Data Out  
Data  
Data  
Data Out  
Data Out  
Serial Write Cycle  
tSEP  
SE  
tSWIS  
tSCC  
tSCP  
tSWH  
tSWIH  
tSWS  
tSC  
SC  
tSDS  
Data In  
tSDS  
tSDH  
tSZE  
tSDH  
SDQ0 - 15  
Data In  
Data In  
Data In  
"H" or "L"  
27/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
PIN FUNCTIONS  
Address Input: A0 - A8  
The 18 address bits decode 16 bits of the 4,194,304 locations in the MSM54V16272 memory array.  
The address bits are multiplexed to 9 address input pins (A0 - A8) as standard DRAM. 9 row  
address bits are latched at the falling edge of RAS. The following 9 column address bits are  
latched at the falling edge of CAS.  
Row Address Strobe: RAS  
RAS is a basic RAM control signal. The RAM port is in standby mode when the RAS level is  
"high". As the standard DRAM’s RAS signal function, RAS is the control input that latches the  
row address bits, and a random access cycle begins at the falling edge of RAS.  
In addition to the conventional RAS signal function, the level of the input signals CAS, TRG, WE  
and DSF at the falling edge of RAS, determines the MSM54V16272 operation mode.  
Column Address Strobe: CASL and CASU  
As the standard DRAM’s CAS signal function, CAS is the control input signal that latches the  
columnaddressinput,andthestateofthespecialfunctioninputDSFtoselectinconjunctionwith  
the RAS control, either read/write operations or the special block write feature on the RAM port  
when the DSF is held "low" at the falling edge of RAS.  
CAS also acts as a RAM port output enable signal.  
Data Transfer/Output Enable: TRG  
TRG is also a control input signal having multiple functions. As the standard DRAM’sOE signal  
function, TRG is used as an output enable control when TRG is "high" at the falling edge of RAS.  
In addition to the conventional OE signal function, a data transfer operation is started between  
the RAM port and the SAM port when TRG is "low" at the falling edge of RAS.  
Write Per Bit/Write Enable: WE  
WE is control input signal having multiple functions. As the standard DRAM’s WE signal  
function, this is used to write data into the memory on the RAM port when WE is "high" at the  
falling edge of RAS.  
In addition to the conventional WE signal function, the WE determines the write-per-bit  
function, when WE is "low" at the falling edge of RAS during RAM port operations.  
TheWE also determines the direction of data transfer between the RAM and SAM. When theWE  
is "high" at the falling edge of RAS, the data is transferred from RAM to SAM (read transfer).  
When the WE is "low" at the falling edge of RAS, the data is transferred SAM to RAM (write  
transfer).  
28/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Write Mask Data/Data Input and Output: DQ0 - DQ15  
In conventional write-per bit mode, the DQ pins function as mask data at the falling edge ofRAS.  
DataiswrittenonlytohighDQpins.DataonlowDQpinsismaskedandinternaldataisretained.  
After that, they function as input/output pins similar to a standard DRAM.  
Serial Clock: SC  
SC is a main serial cycle control input signal. All operations of the SAM port are synchronized  
with the serial clock SC. Data is shifted in or out of the SAM registers at the rising edge of SC. In  
a serial read cycle, the output data becomes valid on the SDQ pins after the maximum specified  
serial access time t  
from the rising edge of SC.  
SCA  
In a serial write cycle, data on SDQ pins at the rising edge of SC are fetched into the SAM register.  
Serial Enable: SE  
The SE is a serial access enable control and serial read/write control signal. In a serial read cycle,  
SE is used as an output control. In a serial write cycle, SE is used as a write enable control. When  
SE is "high", serial access is disabled. However, the serial address pointer location is still  
incremented when SC is clocked even when SE is "high".  
Special Function Input: DSF  
The DSF is latched at the falling edge of RAS and CAS. It allows for the selection of several RAM  
portsandtransferoperatingmodes.InadditiontotheconventionalmultiportDRAM,thespecial  
functions consisting of flash write, block write, load/read color register, and split read/write  
transfer can be invoked.  
Special Function Output: QSF  
QSF is an output signal, which during split register mode indicates which half of the split SAM  
is being accessed. QSF "low" indicates that the lower split SAM (0 - 255) is being accessed. QSF  
"high" indicates that the upper SAM (256 - 511) is being accessed.  
QSF is enabled by SE. When SE is "high", QSF is in high impedance.  
Serial Input/Output: SDQ0 - SDQ15  
Serial input/output mode is determined by the most recent read or write transfer cycle. When  
a read transfer cycle is performed, the SAM port is in the output mode. When a write or pseudo  
write transfer cycle is performed, the SAM port is switched from output mode to input mode.  
29/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
OPERATION MODES  
Table-1 shows the function truth table for a listing of all available RAM ports, and transfer  
operations of the MSM54V16272.  
The RAM port and data transfer operations are determined by the state of CAS, TRG, WE and  
DSF at the falling edge of RAS, and by the level of DSF at the falling edge of CAS.  
Table-1. Function Truth Table  
CASØ  
RASØ  
Address  
W/IO  
Write  
Mask  
Color  
Code  
CAS  
Function  
CAS TRG WE DSF DSF RASØ CASØ RASØ  
Register  
/WEØ  
CBR  
ROR  
MWT  
MSWT  
RT  
0
1
1
1
1
1
1
1
1
1
1
1
*
1
0
0
0
0
1
1
1
1
1
1
*
*
0
0
1
1
0
0
0
1
1
1
*
0
0
1
0
1
0
0
1
0
0
1
*
*
*
*
*
*
*
CBR Refresh  
Row  
RAS Only Refresh  
Row TAP WM1  
Row TAP WM1  
Yes  
Yes  
Masked Write Transfer  
Masked Split  
*
*
Write Transfer  
*
Row TAP  
Row TAP  
*
*
*
Read Transfer  
SRT  
*
*
Split Read Transfer  
Read/Write  
(Mask)  
RWM  
BWM  
FWM  
RW  
0
Row Column WM1 DinꢀDout  
Yes  
Yes  
Yes  
No  
No  
Column  
A3c - 8c  
Column  
Select  
1
Row  
Row  
WM1  
Use  
Use  
Masked Block Write  
Masked Flash Write  
*
*
WM1  
Read/Write  
(No Mask)  
Block Write  
(No Mask)  
0
Row Column  
*
*
*
DinꢀDout  
Column  
Row  
Column  
Select  
Color  
Data  
BW  
1
Use  
Load  
A3c - 8c  
LCR  
1
Row  
*
Load Color Register  
If the DSF is "high" at the falling edge of RAS, special functions such as split transfer, flash write,  
load color register can be invoked.  
If the DSF is "low" at the falling edge of RAS and "high" at the falling edge of CAS, the block write  
feature can be invoked.  
30/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
RAM PORT OPERATION  
RAM Read Cycle: RAS falling edge --- TRG = CAS = "H", DSF = "L"  
CAS falling edge --- DSF = "L"  
Row address is entered at the falling edge of RAS and column address at the falling edge of CAS  
to the device as in conventional DRAM. When the WE is "high" and TRG is "low" while CAS is  
"low", the data outputs through DQ pins.  
RAM Write Cycle: RAS falling edge --- TRG = CAS = "H", DSF = "L"  
CAS falling edge --- DSF = "L"  
1) Write cycle with no mask: RAS falling edge -- WE = "H"  
If WE is set "low" at the falling edge of CAS after RAS goes "low", a write cycle is excuted. If WE  
is set "low" before the CAS falling edge, this cycle becomes an early write cycle, and all DQ pins  
attain high impedance.  
If WE is "low" when CAS goes "low", the write affects only those corresponding 8 bits with the  
latched data.  
If WE is set "low" after the CAS falling edge, this cycle becomes a late write cycle, and all 16 data  
are latched on the falling edge of WE.  
Byte write occurs if either CASL or CASU falls during the cycle. DQ pins don't achieve high  
impedance in this cycle, so data should be entered with TRG in "high".  
2) Write cycle with mask: RAS falling edge -- WE = "L"  
If WE is set "low" at the falling edge of RAS, the mask write mode can be invoked.  
Mask data is loaded and used. The mask data on DQ0 - DQ15 is latched into the write mask  
register at the falling edge of RAS. When the mask data is low, writing is inhibited into the RAM  
and the mask data is high, data is written into the RAM. This mask data is in effect during the  
RAS cycle. In page mode cycle the mask data is retained during page access.  
31/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Load/Read Color Register: RAS falling edge --- CAS = TRG = WE = DSF = "H"  
CAS falling edge --- DSF = "H"  
TheMSM54V16272isprovidedwithanon-chip16-bitcolorregisterforuseduringtheflashwrite  
or block write operation. Each bit of the color register corresponds to one of the DRAM I/O  
blocks.  
The data presented on the DQi lines is subsequently latched into the color register at the falling  
edge of either CAS or WE whichever occurs later.  
The read color register cycle is activated by holding WE "high" at the falling edge of CAS, and  
throughout the remainder of the cycle. The data in the color register becomes valid on the DQi  
lines after the specified access times from RAS and TRG are satisfied.  
During the load/read color register cycle, the memory cells on the row address latched at the  
falling edge of RAS are refreshed.  
Flash Write: RAS falling edge --- CAS = TRG = DSF = "H", WE = "L"  
Flash write allows for the data in the color register to be written into all the memory locations of  
a selected row.  
Each bit of the color register corresponds to one of the DRAM I/O blocks. The flash write  
operation can be selectively controlled on an I/O basis in the same manner as the write per bit  
operation. The mask data is the same as that of a RAM write cycle.  
32/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Block Write: RAS falling edge --- CAS = TRG = "H", DSF = "L"  
CAS falling edge --- DSF = "H"  
Block write allows for the data in the color register to be written into 8 consecutive column  
address locations, starting from a selected column address in a selected row.  
The block write operation can be selectively controlled on an I/O basis, and a column mask  
capability is also available. This function is implemented as lower byte and upper byte. During  
a block write cycle, the 3 least significant column address locations (A0C, A1C and A2C) are  
internally controlled, and only the 6 most significant column addresses (A3C - A8C) are latched  
at the falling edge of CAS.  
1) No mask block write: WE "high" at the falling edge of RAS  
The data on 16 DQ pins is cleared by the data of the color register.  
2) Masked block write: WE "low" at the falling edge of RAS  
The mask data is the same as that of a RAM write cycle. (new mask and persistent mask)  
Bit 0  
Bit 15  
01110011  
01101011  
00111100  
Color Register  
I/O Mask  
11001110  
11111010  
10010011  
Column Mask  
Lower Byte Upper Byte  
8 Column ¥ 8 DQ (Lower Byte)  
8 Column ¥ 8 DQ (Upper Byte)  
Column 7  
Column 6  
Column 5  
Column 4  
Column 3  
Column 2  
Column 1  
Column 0  
1
1
*
*
1
*
*
1
1
1
*
*
1
*
*
1
0
0
*
*
0
*
*
0
0
0
*
*
0
*
*
0
1
1
*
*
1
*
*
1
*
*
*
*
*
*
*
*
1
1
*
*
1
*
*
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
*
*
*
*
1
1
1
1
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
*
*
*
*
1
1
1
1
*
*
Note : Location "*" can not be loaded.  
Example of Block Write  
33/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
SAM PORT OPERATION  
Single Register Mode  
High speed serial read or write operations can be performed through the SAM port independent  
of the RAM port operation, except during read/write transfer cycles.  
The preceding transfer operation determines the direction of data flow through the SAM port.  
If the preceding transfer is a read transfer, the SAM port is in the output mode. If the preceding  
transfer is write transfer, the SAM port is in the input mode.  
SerialdatacanbereadoutoftheSAMafterareadtransferhasbeenperformed.Thedataisshifted  
out of the SAM starting at any of the 512 bits locations.  
The TAP location corresponds to the column address selected at the falling edge of CAS during  
the read or write transfer cycle. The SAM registers are configured as a circular data register. The  
data is shifted out sequentially. It starts from the selected TAP location at the most significant bit  
(511), then wraps around to the least significant bit (0).  
Split Register Mode  
In split register mode data can be shifted into or out of one half of the SAM, while a split read or  
split write transfer is being performed on the other half of the SAM.  
Conventional (non split) read, or write transfer cycle must precede any split read or split write  
transfers. The split read and write transfers will not change the SAM port mode set by the  
preceding conventional transfer operation. In the split register mode, serial data can be shifted  
in or out of one of the split SAM registers, starting from any at the 256 TAP locations, excluding  
the last address of each split SAM the data is shifted in or out sequentially starting from the  
selected TAP location at the most significant bit (255 or 511) of the first split SAM, and then the  
SAM pointer moves to the TAP location selected for the second split SAM to shift data in or out  
sequentially, starts from this TAP location at the most significant bit (511 or 255), and finally  
wraps around to the least significant bit.  
TAP  
TAP  
0
1
2
255  
256 257  
511  
34/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
DATA TRANSFER OPERATIONS  
The MSM54V16272 features two types of bidirectional data transfer capability between RAM  
and SAM.  
1) Conventional (non split) transfer: 512 words by 16 bits of data can be loaded from RAM to  
SAM (Read transfer), or from SAM to RAM (Write transfer).  
2) Split transfer: 256 words by 16 bits of data can be loaded from the lower/upper half of the  
RAM to the lower/upper half of the SAM (Split read transfer), or from the lower/upper half  
of SAM to the lower/upper half of RAM (Split write transfer).  
The conventional transfer and split transfer modes are controlled by the DSF input signal.  
Data transfer is invoked by holding the TRG signal "low" at the falling edge of RAS.  
The MSM54V16272 supports 4 types of transfer operations: Read transfer, Split read transfer,  
Write transfer and Split write transfer as shown in the truth table. The type of transfer operation  
is determined by the state of CAS, WE and DSF latched at the falling edge of RAS. During  
conventional transfer operations, the SAM port is switched from input to output mode (Read  
transfer), or output to input mode (Write transfer). It remains unchanged during split transfer  
operation (Split read transfer or Split write transfer).  
Both RAM and SAM are divided by the most significant row address (AX8), as shown in Figure  
1. Therefore, no data transfer between AX8 = 0 side RAM and AX8 = 1 side RAM can be provided  
through the SAM. Care must be taken if the split read transfer on AX8 = 1 side (or AX8 = 0 side)  
is provided after the read transfer or the split read transfer, is provided on AX8 = 0 side (or AX8  
= 1 side).  
256 ¥ 256 ¥ 16  
Memory  
256 ¥ 256 ¥ 16  
Memory  
Array  
Array  
256 ¥ 256 ¥ 16  
Memory  
256 ¥ 256 ¥ 16  
Memory  
Array  
Array  
AX8 = 0  
AX8 = 1  
SAM I/O Buffer  
SDQ0 - 15  
Figure 1. RAM and SAM Configuration  
35/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Read Transfer: RAS falling edge --- CAS = WE = "H", TRG = DSF = "L"  
Read transfer consists of loading a selected row of data from the RAM into the SAM register. A  
read transfer is invoked by holding CAS "high", TRG "low", WE "high", and DSF "low" at the  
fallingedgeofRAS. TherowaddressselectedatthefallingedgeofRASdeterminestheRAMrow  
to be transferred into the SAM. The transfer cycle is completed at the rising edge of TRG. When  
the transfer is completed, the SAM port is set into the output mode. In a read/real time read  
transfer cycle, the transfer of a new row of data is completed at the rising edge of TRG, and this  
data becomes valid on the SDQ lines after the specified access time t  
from the rising edge of  
SCA  
the subsequent SC cycles. The start address of the serial pointer of the SAM is determined by the  
column address selected at the falling edge of CAS. In a read transfer cycle (which is preceded  
by a write transfer cycle), SC clock must be held at a constant V or V after the SC high time  
IL  
IH  
has been satisfied. A rising edge of the SC clock must not occur until after the specified delay t  
TSD  
from the rising edge of TRG.  
In a real time read transfer cycle (which is preceded by another read transfer cycle), the previous  
row data appears on the SQD lines until the TRG signal goes "high", and the serial access time  
t
for the following serial clock is satisfied. This feature allows for the first bit of the new row  
SCA  
of data to appear on the serial output as soon as the last bit of the previous row has been strobed  
withoutanytimingloss. Tomakethiscontinuousdataflowpossible, therisingedgeofTRGmust  
be synchronized with RAS, CAS, and the subsequent rising edge of SC (t  
must be satisfied).  
, t  
and t /t  
RTH CTH TSL TSD  
Masked Write Transfer: RAS falling edge --- CAS = "H", TRG = DSF = "L"  
WE = "L"  
Write transfer cycle consists of loading the content of the SAM register into a selected row of the  
RAM. This write transfer operation, which is the same as a mask write operation in RAM, can be  
selectively controlled for 16 DQis by inputing the mask data from DQ0 - DQ15 at the falling edge  
of RAS.  
If the SAM data to be transferred must first be loaded through the SAM, a Masked write transfer  
operation (all DQ pins "low" at falling edge of RAS) must precede the write transfer cycles. A  
masked write transfer is invoked by holding CAS "high", TRG "low", WE "low", and DSF "low"  
at the falling edge of RAS. The row address selected at the falling edge of RAS determines the  
RAM row address into which the data will be transferred. The column address selected at the  
falling edge of CAS determines the start address of the serial pointer of the SAM. After the write  
transfer is completed, the SDQ lines are set in the input mode so that serial data synchronized  
with the SC clock can be loaded.  
When consecutive write transfer operations are performed, new data must not be written into  
the serial register until the RAScycle of the preceding write transfer is completed. Consequently,  
the SC clock must be held at a constant V or V during the RAS cycle. A rising edge of the SC  
IL  
IH  
clockisonlyallowedafterthespecifieddelayt  
a new row of data can be written in the serial register.  
fromthefallingedgeoftheCAS, atwhichtime  
CSD  
Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to the  
other address of RAM by write transfer cycle. However, the address to write data must be the  
same as that of the read transfer cycle (row address AX8).  
36/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
Split Data Transfer and QSF  
The MSM54V16272 features a bidirectional split data transfer capability between the RAM and  
SAM. During split data transfer operation, the serial register is split into two halves which can  
be controlled independently. Split read or split write transfer operation can be performed to or  
from one half of the serial register, while serial data can be shifted into or out of the other half of  
the serial register. The most significant column address location (A8C) is controlled internally to  
determine which half of the serial register will be reloaded from the RAM. QSF is an output  
which indicates which half of the serial register is in an active state. QSF changes state when the  
last SC clock is applied to active split SAM.  
Split Read Transfer: RAS falling edge --- CAS = WE = DSF = "H", TRG = "L"  
Split read transfer consists of loading 256 words by 16 bits of data from a selected row of the split  
RAM into the corresponding non-active split SAM register. Serial data can be shifted out from  
the other half of the split SAM register simultaneously. During split read transfer operation, the  
RAM port input clocks do not have to be synchronized with the serial clock SC, thus eliminating  
timingrestrictionsasinthecaseofrealtimereadtransfers. Asplitreadtransfercanbeperformed  
after a delay of t  
from the change of state of the QSF output is satisfied.  
STS  
Conventional (non-split) read transfer operation must precede split read transfer cycles.  
Masked Split Write Transfer: RAS falling edge --- CAS = DSF = "H", TRG = "L"  
WE = "L"  
Split write transfer consists of loading 256 words by 16 bits of data from the non-active split SAM  
register into a selected row of the corresponding split RAM. Serial data can be shifted into the  
other half of the split SAM register simultaneously. During split write transfer operation, the  
RAM port input clocks do not have to be synchronized with the serial clock SC, thus allowing  
for real time transfer. This write transfer operation, which is the same as a mask write operation  
in RAM, can be selectively controlled for 16 DQis by inputing the mask data from DQ0 - DQ15  
at the falling edge of RAS.  
A split write transfer can be performed after a delay of t  
output is satisfied.  
from the change of state of the QSF  
STS  
A masked write transfer operation must precede split write transfer. The purpose is to switch the  
SAM port from output mode to input mode, and to set the initial TAP location prior to split write  
transfer operations.  
POWER UP  
Power must be applied to the RAS and TRG input signals to pull them "high" before, or at the  
same time as, the V supply is turned on. After power-up, a pause of 200 ms minimum is  
CC  
required with RAS and TRG held "high". After the pause, a minimum of 8 RAS and 8 SC dummy  
cycles must be performed to stabilize the internal circuitry, before valid read, write or transfer  
operations can begin. During the initialization period, the TRG signal must be held "high". If the  
internal refresh counter is used, a minimum 8 CAS before RAS cycles are required instead of 8  
RAS cycles.  
(NOTE) INITIAL STATE AFTER POWER UP  
The initial state can not be guaranteed for various power up conditions and input signal levels.  
Therefore, it is recommended that the initial state be set after the initialization of the device is  
performed and before valid operations begin.  
37/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
PACKAGE DIMENSIONS  
SSOP64-P-525-0.80-K  
(Unit : mm)  
Mirror finish  
Package material  
Epoxy resin  
Lead frame material  
Pin treatment  
Solder plate thickness  
Package weight (g)  
42 alloy  
Solder plating  
5 mm or more  
1.34 TYP.  
Notes for Mounting the Surface Mount Type Package  
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type  
packages, which are very susceptible to heat in reflow mounting and humidity absorbed in  
storage. Therefore, before you perform reflow mounting, contact Oki’s responsible sales person  
ontheproductname,packagename,pinnumber,packagecodeanddesiredmountingconditions  
(reflow method, temperature and times).  
38/40  
FEDS54V16272-05  
MSM54V16272  
¡ Semiconductor  
(Unit : mm)  
TSOPII70/64-P-400-0.65-K  
Mirror finish  
Package material  
Epoxy resin  
Lead frame material  
Pin treatment  
Solder plate thickness  
Package weight (g)  
42 alloy  
Solder plating  
5 mm or more  
0.59 TYP.  
Notes for Mounting the Surface Mount Type Package  
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type  
packages, which are very susceptible to heat in reflow mounting and humidity absorbed in  
storage. Therefore, before you perform reflow mounting, contact Oki’s responsible sales person  
ontheproductname,packagename,pinnumber,packagecodeanddesiredmountingconditions  
(reflow method, temperature and times).  
39/40  
FEDS54V16272-05  
NOTICE  
1.  
The information contained herein can change without notice owing to product and/or  
technical improvements. Before using the product, please make sure that the information  
being referred to is up-to-date.  
2.  
The outline of action and examples for application circuits described herein have been  
chosen as an explanation for the standard action and performance of the product. When  
planning to use the product, please ensure that the external conditions are reflected in the  
actual circuit, assembly, and program designs.  
3.  
4.  
When designing your product, please use our product below the specified maximum  
ratings and within the specified operating ranges including, but not limited to, operating  
voltage, power dissipation, and operating temperature.  
Oki assumes no responsibility or liability whatsoever for any failure or unusual or  
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration  
or accident, improper handling, or unusual physical or electrical stress including, but not  
limited to, exposure to parameters beyond the specified maximum ratings or operation  
outside the specified operating range.  
5.  
6.  
Neither indemnity against nor license of a third party’s industrial and intellectual property  
right, etc. is granted by us in connection with the use of the product and/or the information  
and drawings contained herein. No responsibility is assumed by us for any infringement  
of a third party’s right which may result from the use thereof.  
The products listed in this document are intended for use in general electronics equipment  
for commercial applications (e.g., office automation, communication equipment,  
measurement equipment, consumer electronics, etc.). These products are not authorized  
for use in any system or application that requires special or enhanced quality and reliability  
characteristics nor in any system or application where the failure of such system or  
application may result in the loss or damage of property, or death or injury to humans.  
Such applications include, but are not limited to, traffic and automotive equipment, safety  
devices, aerospace equipment, nuclear power control, medical equipment, and life-support  
systems.  
7.  
8.  
Certain products in this document may need government approval before they can be  
exported to particular countries. The purchaser assumes the responsibility of determining  
thelegalityofexportoftheseproductsandwilltakeappropriateandnecessarystepsattheir  
own expense for these.  
No part of the contents contained herein may be reprinted or reproduced without our prior  
permission.  
Copyright 2000 Oki Electric Industry Co., Ltd.  
Printed in Japan  
40/40  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY