74LVXT4066 [ONSEMI]

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS; 四路模拟开关/多路复用器/多路解复用器高性能硅栅CMOS
74LVXT4066
型号: 74LVXT4066
厂家: ONSEMI    ONSEMI
描述:

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
四路模拟开关/多路复用器/多路解复用器高性能硅栅CMOS

解复用器 开关 栅
文件: 总12页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVXT4066  
Quad Analog Switch/  
Multiplexer/Demultiplexer  
High−Performance Silicon−Gate CMOS  
The MC74LVXT4066 utilizes silicon−gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low  
OFF−channel leakage current. This bilateral switch/multiplexer/  
demultiplexer controls analog and digital voltages that may vary  
http://onsemi.com  
MARKING  
DIAGRAMS  
across the full power−supply range (from V to GND).  
CC  
The LVXT4066 is identical in pinout to the metal−gate CMOS  
MC14066 and the high−speed CMOS HC4066A. Each device has four  
independent switches. The device has been designed so that the ON  
14  
SOIC−14  
D SUFFIX  
CASE 751A  
LVXT4066  
AWLYWW  
resistances (R ) are much more linear over input voltage than R  
14  
ON  
ON  
of metal−gate CMOS analog switches.  
1
The ON/OFF control inputs are compatible with standard LSTTL  
outputs. The input protection circuitry on this device allows  
overvoltage tolerance on the ON/OFF control inputs, allowing the  
device to be used as a logic−level translator from 3.0 V CMOS logic to  
5.0 V CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic  
while operating at the higher−voltage power supply.  
The MC74LVXT4066 input structure provides protection when  
voltages up to 7.0 V are applied, regardless of the supply voltage. This  
allows the MC74LVXT4066 to be used to interface 5.0 V circuits to  
3.0 V circuits.  
1
14  
TSSOP−14  
DT SUFFIX  
CASE 948G  
LVXT  
4066  
ALYW  
14  
1
1
Features  
Fast Switching and Propagation Speeds  
High ON/OFF Output Voltage Ratio  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
14  
74LVXT4066  
ALYW  
SOEIAJ−14  
M SUFFIX  
CASE 965  
14  
Wide Power−Supply Voltage Range (V − GND) = 2.0 to 6.0 V  
CC  
1
1
Analog Input Voltage Range (V − GND) = 2.0 to 6.0 V  
CC  
Improved Linearity and Lower ON Resistance over Input Voltage  
than the MC14016 or MC14066  
A
=
=
=
=
Assembly Location  
Wafer Lot  
Year  
Low Noise  
Pb−Free Packages are Available*  
WL or L  
Y
WW or W  
Work Week  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
March, 2005 − Rev. 2  
MC74LVXT4066/D  
MC74LVXT4066  
LOGIC DIAGRAM  
PIN CONNECTION (Top View)  
1
2
V
X
Y
A
X
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
CC  
A
A
A ON/OFF  
CONTROL  
13  
4
Y
A
A ON/OFF CONTROL  
D ON/OFF  
CONTROL  
Y
B
3
9
X
B
Y
B
Y
C
Y
D
X
B
X
D
5
ANALOG  
B ON/OFF  
CONTROL  
B ON/OFF CONTROL  
Y
D
Y
C
OUTPUTS/INPUTS  
8
C ON/OFF  
CONTROL  
X
C
7
8
X
C
GND  
6
C ON/OFF CONTROL  
11  
12  
10  
X
D
D ON/OFF CONTROL  
ANALOG INPUTS/OUTPUTS = X , X , X , X  
D
A
B
C
PIN 14 = V  
CC  
PIN 7 = GND  
FUNCTION TABLE  
On/Off Control  
State of  
Input  
Analog Switch  
L
H
Off  
On  
ORDERING INFORMATION  
Device  
Package  
SOIC−14  
SOIC−14  
Shipping  
MC74LVXT4066DR2  
MC74LVXT4066DR2G  
2500 Tape & Reel  
2500 Tape & Reel  
(Pb−Free)  
TSSOP−14*  
SOEIAJ−14  
MC74LVXT4066DTR2  
MC74LVXT4066M  
2500 Tape & Reel  
50 Units / Rail  
50 Units / Rail  
MC74LVXT4066MG  
SOEIAJ−14  
(Pb−Free)  
MC74LVXT4066MEL  
MC74LVXT4066MELG  
SOEIAJ−14  
2000 Tape & Reel  
2000 Tape & Reel  
SOEIAJ−14  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*This package is inherently Pb−Free.  
http://onsemi.com  
2
MC74LVXT4066  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high−impedance cir-  
V
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
DC Current Into or Out of Any Pin  
– 0.5 to + 7.0  
CC  
V
– 0.5 to V + 0.5  
V
IS  
CC  
V
– 0.5 to V + 0.5  
V
in  
CC  
I
−20  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
in  
out  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
T
stg  
Storage Temperature  
– 65 to + 150  
260  
_C  
_C  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
I/O pins must be connected to a  
properly terminated line or bus.  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings  
applied to the device are individual stress limit values (not normal operating conditions) and are  
not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
†Derating − SOIC Package: – 7 mW/_C from 65_ to 125_C  
TSSOP Package: − 6.1 mW/_C from 65_ to 125_C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
Unit  
V
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature, All Package Types  
Input Rise and Fall Time, ON/OFF Control  
5.5  
V
IS  
GND  
GND  
V
CC  
V
CC  
V
V
in  
V
V *  
IO  
1.2  
V
T
A
– 55  
+ 85  
_C  
ns/V  
t , t  
r
f
Inputs (Figure 10)  
V
CC  
V
CC  
= 3.3 V ± 0.3 V  
= 5.0 V ± 0.5 V  
0
0
100  
20  
*For voltage drops across the switch greater than 1.2 V (switch on), excessive V current may  
CC  
be drawn; i.e., the current out of the switch may contain both V and switch input components.  
CC  
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
V
– 55 to 25_C  
v 85_C  
v 125_C  
Symbol  
Parameter  
Test Conditions  
Unit  
V
IH  
Minimum High−Level Voltage  
ON/OFF Control Inputs  
(Note 1)  
R
R
= Per Spec  
3.0  
4.5  
5.5  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
V
on  
on  
V
IL  
Maximum Low−Level Voltage  
ON/OFF Control Inputs  
(Note 1)  
= Per Spec  
3.0  
4.5  
5.5  
0.53  
0.8  
0.8  
0.53  
0.8  
0.8  
0.53  
0.8  
0.8  
V
I
Maximum Input Leakage Current  
ON/OFF Control Inputs  
V
V
= V or GND  
5.5  
± 0.1  
± 1.0  
± 1.0  
mA  
mA  
in  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
= V or GND V = 0 V  
5.5  
4.0  
40  
160  
CC  
in  
CC  
IO  
1. Specifications are for design target only. Not final specification limits.  
http://onsemi.com  
3
MC74LVXT4066  
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)  
Guaranteed Limit  
– 55 to  
V
CC  
25_C  
V
v 85_C  
v 125_C  
Symbol  
Parameter  
Test Conditions  
Unit  
R
Maximum “ON” Resistance  
W
V
V
I
= V  
2.0†  
3.0  
4.5  
5.5  
40  
25  
20  
45  
28  
25  
50  
35  
30  
on  
in  
IH  
= V to GND  
IS  
CC  
v 2.0 mA (Figures 1, 2)  
S
V
V
I
= V  
2.0  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
in  
IH  
= V or GND (Endpoints)  
v 2.0 mA (Figures 1, 2)  
IS  
CC  
S
DR  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
I
= V  
IH  
= 1/2 (V − GND)  
v 2.0 mA  
= V  
IL  
3.0  
4.5  
5.5  
15  
10  
10  
20  
12  
12  
25  
15  
15  
W
on  
in  
IS  
CC  
S
I
off  
Maximum Off−Channel Leakage  
Current, Any One Channel  
V
V
5.5  
0.1  
0.5  
1.0  
mA  
mA  
in  
= V or GND  
IO  
CC  
Switch Off (Figure 3)  
I
on  
Maximum On−Channel Leakage  
Current, Any One Channel  
V
V
= V  
IH  
5.5  
0.1  
0.5  
1.0  
in  
= V or GND  
IS  
CC  
(Figure 4)  
†At supply voltage (V ) approaching 2 V the analog switch−on resistance becomes extremely non−linear. Therefore, for low−voltage  
CC  
operation, it is recommended that these devices only be used to control digital signals.  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, ON/OFF Control Inputs: t = t = 6 ns)  
L
r
f
Guaranteed Limit  
V
CC  
V
– 55 to 25_C v 85_C  
v 125_C  
Symbol  
Parameter  
Unit  
t
t
t
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figures 8 and 9)  
2.0  
3.0  
4.5  
5.5  
4.0  
3.0  
1.0  
1.0  
6.0  
5.0  
2.0  
2.0  
8.0  
6.0  
2.0  
2.0  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 11)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
ns  
ns  
pF  
PLZ  
t
PHZ  
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 1 1)  
2.0  
3.0  
4.5  
5.5  
20  
12  
8.0  
8.0  
25  
14  
10  
10  
30  
15  
12  
12  
PZL  
t
PZH  
C
Maximum Capacitance  
ON/OFF Control Input  
10  
10  
10  
Control Input = GND  
Analog I/O  
35  
1.0  
35  
1.0  
35  
1.0  
Feedthrough  
Typical @ 25°C, V = 5.0 V  
CC  
15  
C
Power Dissipation Capacitance (Per Switch) (Figure 13)*  
pF  
PD  
2
* Used to determine the no−load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
4
MC74LVXT4066  
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)  
V
CC  
Limit*  
V
25_C  
Symbol  
Parameter  
Test Conditions  
= 1 MHz Sine Wave  
Unit  
BW  
Maximum On−Channel Bandwidth or  
Minimum Frequency Response  
(Figure 5)  
f
in  
4.5  
5.5  
150  
MHz  
Adjust f Voltage to Obtain 0 dBm at V  
160  
in  
OS  
Increase f Frequency Until dB Meter Reads – 3 dB  
in  
R = 50 W, C = 10 pF  
L
L
Off−Channel Feedthrough Isolation  
(Figure 6)  
f
Sine Wave  
4.5  
5.5  
− 50  
− 50  
dB  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in  
IS  
f
= 10 kHz, R = 600 W, C = 50 pF  
L L  
in  
f
= 1.0 MHz, R = 50 W, C = 10 pF  
4.5  
5.5  
− 37  
− 37  
in  
L
L
Feedthrough Noise, Control to Switch  
(Figure 7)  
V
v 1 MHz Square Wave (t = t = 3 ns)  
4.5  
5.5  
100  
200  
mV  
in  
r
f
PP  
Adjust R at Setup so that I = 0 A  
L
S
R = 600 W, C = 50 pF  
L
L
R = 10 kW, C = 10 pF  
4.5  
5.5  
50  
100  
L
L
Crosstalk Between Any Two Switches  
(Figure 12)  
f
Sine Wave  
4.5  
5.5  
– 70  
– 70  
dB  
%
in  
Adjust f Voltage to Obtain 0 dBm at V  
in  
IS  
f
= 10 kHz, R = 600 W, C = 50 pF  
L L  
in  
f
= 1.0 MHz, R = 50 W, C = 10 pF  
4.5  
5.5  
– 80  
– 80  
in  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
in  
= 1 kHz, R = 10 kW, C = 50 pF  
L
L
THD = THD  
− THD  
Measured  
Source  
V
IS  
V
IS  
= 4.0 V sine wave  
4.5  
5.5  
0.10  
0.06  
PP  
= 5.0 V sine wave  
PP  
*Guaranteed limits not tested. Determined by design and verified by qualification.  
http://onsemi.com  
5
MC74LVXT4066  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
I = 1mA  
s
−55°C  
25°C  
85°C  
I = 5mA  
s
125°C  
I = 9mA  
s
50  
0
I = 15mA  
s
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Vin (Volts)  
Vin (Volts)  
Figure 1a. Typical On Resistance, VCC = 2.0 V, T = 25°C  
Figure 1b. Typical On Resistance, VCC = 2.0 V  
35  
30  
25  
25  
20  
15  
10  
125°C  
20  
85°C  
25°C  
125°C  
85°C  
25°C  
15  
−55°C  
−55°C  
10  
5
0
5
0
0
1
2
3
4
0
1
2
3
4
5
Vin (Volts)  
Vin (Volts)  
Figure 1c. Typical On Resistance, VCC = 3.0 V  
Figure 1d. Typical On Resistance, VCC = 4.5 V  
18  
16  
PLOTTER  
125°C  
85°C  
14  
12  
10  
8
PROGRAMMABLE  
POWER  
SUPPLY  
25°C  
MINI COMPUTER  
DC ANALYZER  
−55°C  
+
V
CC  
DEVICE  
6
UNDER TEST  
4
2
ANALOG IN  
COMMON OUT  
0
0
1
2
3
4
5
6
GND  
Vin (Volts)  
Figure 2. On Resistance Test Set−Up  
Figure 1e. Typical On Resistance, VCC = 5.5 V  
http://onsemi.com  
6
MC74LVXT4066  
V
CC  
V
CC  
V
CC  
V
CC  
14  
14  
GND  
N/C  
A
ON  
A
OFF  
GND  
V
CC  
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
IL  
V
IH  
7
7
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set−Up  
Figure 4. Maximum On Channel Leakage Current,  
Test Set−Up  
V
OS  
V
OS  
V
CC  
V
CC  
V
IS  
14  
14  
f
in  
f
in  
ON  
OFF  
dB  
dB  
0.1mF  
0.1mF  
C *  
L
C *  
L
R
L
METER  
METER  
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
CC  
7
7
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 5. Maximum On−Channel Bandwidth  
Test Set−Up  
Figure 6. Off−Channel Feedthrough Isolation,  
Test Set−Up  
V
CC  
V
CC/2  
V
CC/2  
14  
R
L
R
L
V
OS  
I
S
OFF/ON  
V
CC  
C *  
L
50%  
ANALOG IN  
SELECTED  
CONTROL  
INPUT  
GND  
7
V
1 MHz  
t = t = 3 ns  
t
t
PHL  
in  
PLH  
r
f
V
IH  
CONTROL  
V
IL  
50%  
ANALOG OUT  
*Includes all probe and jig capacitance.  
Figure 7. Feedthrough Noise, ON/OFF Control to  
Analog Out, Test Set−Up  
Figure 8. Propagation Delays, Analog In to  
Analog Out  
http://onsemi.com  
7
MC74LVXT4066  
V
CC  
t
r
t
f
14  
V
CC  
90%  
50%  
10%  
CONTROL  
ANALOG IN  
ANALOG OUT  
C *  
TEST  
ON  
POINT  
GND  
L
t
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
50%  
50%  
SELECTED  
CONTROL  
INPUT  
V
IH  
10%  
90%  
V
OL  
ANALOG  
OUT  
7
t
PZH  
PHZ  
V
OH  
HIGH  
*Includes all probe and jig capacitance.  
IMPEDANCE  
Figure 9. Propagation Delay Test Set−Up  
Figure 10. Propagation Delay, ON/OFF Control  
to Analog Out  
V
IS  
1
POSITIONꢀꢀꢁWHEN TESTING t  
AND t  
PHZ  
PZH  
V
CC  
2
POSITIONꢀꢀWHEN TESTING t AND t  
PLZ  
PZL  
1
2
14  
R
L
V
OS  
V
CC  
f
in  
ON  
V
CC  
0.1 mF  
1 kW  
14  
1
2
TEST  
POINT  
OFF  
ON/OFF  
V
IH  
OR V  
IL  
R
L
C *  
L
R
L
C *  
L
C *  
L
R
L
SELECTED  
CONTROL  
INPUT  
V
SELECTED  
CONTROL  
INPUT  
IH  
V
CC/2  
V
CC/2  
V
IL  
7
7
V
CC/2  
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 11. Propagation Delay Test Set−Up  
Figure 12. Crosstalk Between Any Two Switches,  
Test Set−Up  
V
CC  
A
V
IS  
V
CC  
V
OS  
14  
0.1 mF  
TO  
N/C  
N/C  
OFF/ON  
f
in  
ON  
DISTORTION  
METER  
C *  
L
R
L
V
SELECTED  
CONTROL  
INPUT  
CC/2  
7
SELECTED  
CONTROL  
INPUT  
V
IH  
7
V
IH  
ON/OFF CONTROL  
V
IL  
*Includes all probe and jig capacitance.  
Figure 13. Power Dissipation Capacitance  
Test Set−Up  
Figure 14. Total Harmonic Distortion, Test Set−Up  
http://onsemi.com  
8
MC74LVXT4066  
0
−ꢂ10  
−ꢂ20  
−ꢂ30  
−ꢂ40  
FUNDAMENTAL FREQUENCY  
−ꢂ50  
−ꢂ60  
−ꢂ70  
−ꢂ80  
−ꢂ90  
DEVICE  
SOURCE  
1.0  
2.0  
FREQUENCY (kHz)  
3.0  
Figure 15. Plot, Harmonic Distortion  
APPLICATION INFORMATION  
The ON/OFF Control pins should be at V or V logic  
Therefore, using the configuration in Figure 16, a maximum  
analog signal of six volts peak−to−peak can be controlled.  
IH  
IL  
levels, V being recognized as logic high and V being  
IH  
IL  
recognized as a logic low. Unused analog inputs/outputs  
may be left floating (not connected). However, it is  
When voltage transients above V and/or below GND  
CC  
are anticipated on the analog channels, external diodes (Dx)  
are recommended as shown in Figure 17. These diodes  
should be small signal, fast turn−on types able to absorb the  
maximum anticipated current surges during clipping. An  
alternate method would be to replace the Dx diodes with  
Mosorbs (Mosorb is an acronym for high current surge  
protectors). Mosorbs are fast turn−on devices ideally suited  
for precise DC protection with no inherent wear out  
mechanism.  
advisable to tie unused analog inputs and outputs to V or  
CC  
GND through a low value resistor. This minimizes crosstalk  
and feedthrough noise that may be picked−up by the unused  
I/O pins.  
The maximum analog voltage swings are determined by  
the supply voltages V and GND. The positive peak analog  
CC  
voltage should not exceed V . Similarly, the negative peak  
CC  
analog voltage should not go below GND. In the example  
below, the difference between V and GND is six volts.  
CC  
V
CC  
V
CC  
V
CC  
= 6.0 V  
D
D
D
D
14  
x
x
16  
+ 6.0 V  
0 V  
+ 6.0 V  
0 V  
ANALOG I/O  
ANALOG O/I  
ON  
ON  
x
x
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
IH  
V
IH  
OTHER CONTROL  
OTHER CONTROL  
INPUTS  
(V OR V )  
INPUTS  
(V OR V )  
7
7
IH  
IL  
IH  
IL  
Figure 16. 6.0 V Application  
Figure 17. Transient Suppressor Application  
http://onsemi.com  
9
MC74LVXT4066  
+
                
3 V  
+ꢂ5 V  
+3V  
+3V  
14  
14  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
ANALOG  
SIGNALS  
SIGNALS  
GND  
GND  
LVXT4066  
LVXT4066  
LSTTL/  
NMOS/  
ABT/  
5
6
5
6
1.8 − 2.5V  
CIRCUITRY  
CONTROL  
INPUTS  
CONTROL  
INPUTS  
ALS  
14  
15  
14  
15  
7
7
R* = 2 TO 10 kW  
a. Low Voltage Logic Level Shifting Control  
b. Using LVXT4066  
Figure 18. Low Voltage CMOS Interface  
1 OF 4  
CHANNEL 4  
CHANNEL 3  
CHANNEL 2  
CHANNEL 1  
SWITCHES  
1 OF 4  
SWITCHES  
COMMON I/O  
1 OF 4  
SWITCHES  
1 OF 4  
OUTPUT  
1 OF 4  
INPUT  
SWITCHES  
+
LF356 OR  
SWITCHES  
EQUIVALENT  
0.01 mF  
1
2
3
4
CONTROL INPUTS  
Figure 19. 4−Input Multiplexer  
Figure 20. Sample/Hold Amplifier  
http://onsemi.com  
10  
MC74LVXT4066  
PACKAGE DIMENSIONS  
SOIC−14  
D SUFFIX  
CASE 751A−03  
ISSUE G  
NOTES:  
−A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
14  
8
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
−B−  
P 7 PL  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
M
M
B
0.25 (0.010)  
7
1
G
F
R X 45  
_
C
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
−T−  
SEATING  
PLANE  
J
M
K
D 14 PL  
M
S
S
0.25 (0.010)  
T
B
A
1.27 BSC  
0.19  
0.10  
0
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
TSSOP−14  
DT SUFFIX  
CASE 948G−01  
ISSUE A  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
−U−  
L
N
PIN 1  
IDENT.  
F
7
1
DETAIL E  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
S
K
0.15 (0.006) T U  
A
K1  
−V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION N−N  
G
H
J
J1  
K
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
−W−  
C
0.10 (0.004)  
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
SEATING  
PLANE  
−T−  
H
G
DETAIL E  
D
0
8
0
8
_
_
_
_
http://onsemi.com  
11  
MC74LVXT4066  
PACKAGE DIMENSIONS  
SOEIAJ−14  
M SUFFIX  
CASE 965−01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE MEASURED  
AT THE PARTING LINE. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
L
14  
8
E
Q
1
H
E
_
E
M
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
L
7
1
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
A
e
c
MILLIMETERS  
INCHES  
MIN  
−−−  
DIM MIN  
MAX  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
−−−  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
b
A
1
A
1
b
c
0.20 0.002  
0.50 0.014  
0.27 0.007  
M
0.13 (0.005)  
0.10 (0.004)  
D
E
e
10.50 0.390  
5.45 0.201  
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20 0.291  
0.85 0.020  
1.50 0.043  
0.323  
0.033  
0.059  
E
L
L
E
M
0
10  
0.90 0.028  
10  
_
0.035  
0.056  
0
_
_
_
Q
0.70  
−−−  
1
Z
1.42  
−−−  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC74LVXT4066/D  

相关型号:

74LVXU04

LOW VOLTAGE CMOS HEX INVERTER (SINGLE STAGE) WITH 5V TOLERANT INPUTS
STMICROELECTR

74LVXU04

Hex Inverter(Unbuffered)
ONSEMI

74LVXU04M

Hex Inverter
ETC

74LVXU04MTR

LOW VOLTAGE CMOS HEX INVERTER (SINGLE STAGE) WITH 5V TOLERANT INPUTS
STMICROELECTR

74LVXU04T

Hex Inverter
ETC

74LVXU04TTR

LOW VOLTAGE CMOS HEX INVERTER (SINGLE STAGE) WITH 5V TOLERANT INPUTS
STMICROELECTR

74LVXZ161284

Low Voltage IEEE 161284 Translating Transceiver with Power-Up Protection
FAIRCHILD

74LVXZ161284BMT

Line Transceiver, 13 Func, 14 Driver, 13 Rcvr, PDSO48, 6.10 MM, MO-153, TSSOP-48
FAIRCHILD

74LVXZ161284BTX

Line Transceiver, 13 Func, 14 Driver, 13 Rcvr, PDSO48, 6.10 MM, MO-153, TSSOP-48
FAIRCHILD

74LVXZ161284MEA

Low Voltage IEEE 161284 Translating Transceiver with Power-Up Protection
FAIRCHILD

74LVXZ161284MEX

Low Voltage IEEE 161284 Translating Transceiver with Power-Up Protection
FAIRCHILD

74LVXZ161284MTD

Low Voltage IEEE 161284 Translating Transceiver with Power-Up Protection
FAIRCHILD