AMIS30543C5431RG [ONSEMI]

微步进电机驱动器;
AMIS30543C5431RG
型号: AMIS30543C5431RG
厂家: ONSEMI    ONSEMI
描述:

微步进电机驱动器

电动机控制 电机 驱动 驱动器
文件: 总39页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMIS-30543  
Micro-Stepping Motor  
Driver  
Introduction  
The AMIS30543 is a microstepping stepper motor driver for  
bipolar stepper motors. The chip is connected through I/O pins and an  
SPI interface with an external microcontroller. It has an onchip  
voltage regulator, resetoutput and watchdog reset, able to supply  
peripheral devices. AMIS30543 contains a currenttranslation table  
and takes the next microstep depending on the clock signal on the  
“NXT” input pin and the status of the “DIR” (=direction) register or  
input pin. The chip provides a socalled “speed and load angle”  
output. This allows the creation of stall detection algorithms and  
control loops based on loadangle to adjust torque and speed. It is  
using a proprietary PWM algorithm for reliable current control.  
The AMIS30543 is implemented in I2T100 technology, enabling  
both highvoltage analog circuitry and digital functionality on the  
same chip. The chip is fully compatible with the automotive voltage  
requirements.  
www.onsemi.com  
1
32  
QFN32  
CASE 485J  
MARKING DIAGRAM  
32  
1
The AMIS30543 is ideally suited for generalpurpose stepper  
motor applications in the automotive, industrial, medical, and marine  
environment. With the onchip voltage regulator it further reduces the  
BOM for mechatronic stepper applications.  
AMIS30543  
0C543001  
AWLYYWWG  
Key Features  
Dual HBridge for 2Phase Stepper Motors  
Programmable PeakCurrent Up to 3 A  
OnChip Current Translator  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
SPI Interface  
Speed and Load Angle Output  
Eleven Step Modes from Full Step Up to 128 MicroSteps  
Fully Integrated CurrentSense  
PWM Current Control with Automatic Selection of Fast and Slow  
Decay  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 37 of this data sheet.  
Low EMC PWM with Selectable Voltage Slopes  
Active FlyBack Diodes  
Full Output Protection and Diagnosis  
Thermal Warning and Shutdown  
Compatible with 5 V and 3.3 V Microcontrollers  
Integrated 5 V Regulator to Supply External Microcontroller  
Integrated Reset Function to Reset External Microcontroller  
Integrated Watchdog Function  
These Devices are PbFree and are RoHS Compliant  
© Semiconductor Components Industries, LLC, 2014  
1
Publication Order Number:  
April, 2019 Rev. 3  
AMIS30543/D  
AMIS30543  
BLOCK DIAGRAM  
VDD  
CPN CPP VCP  
VBB  
Timebase  
Vreg  
CLK  
Chargepump  
POR  
OTP  
EMC  
MOTXP  
MOTXN  
CS  
DI  
P
W
M
T
R
A
N
S
L
A
T
O
R
SPI  
Isense  
DO  
NXT  
DIR  
SLA  
Logic &  
Registers  
EMC  
Load  
Angle  
MOTYP  
MOTYN  
P
W
M
Tem. p  
Sense  
Isense  
POR/WD  
CLR  
AMIS30543  
Band−  
gap  
ERR  
TST0  
GND  
Figure 1. Block Diagram AMIS30543  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
GND  
GND  
23  
22  
2
3
GND  
DI  
CLK  
NXT  
MOTXN  
MOTXN  
MOTYN  
21  
20  
19  
4
5
6
AMIS30543  
DIR  
ERR  
SLA  
MOTYN  
GND  
GND  
18  
17  
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 2. Pin Out AMIS30543  
www.onsemi.com  
2
AMIS30543  
Table 1. PIN LIST AND DESCRIPTION  
Equivalent  
Schematic  
Name  
GND  
DI  
Pin  
1
Description  
Type  
Supply  
Ground  
2
SPI Data In  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Output  
Analog Output  
Type 2  
Type 2  
Type 2  
Type 2  
Type 4  
Type 5  
CLK  
3
SPI Clock Input  
NXT  
4
Next microstep input  
Direction input  
DIR  
5
ERR  
SLA  
6
Error output (open drain)  
Speed load angle output  
7
/
8
No function (to be left open in normal operation)  
Negative connection of charge pump capacitor  
Positive connection of charge pump capacitor  
Charge pump filtercapacitor  
CPN  
CPP  
VCP  
CLR  
9
High Voltage  
High Voltage  
High Voltage  
Digital Input  
Digital Input  
Supply  
10  
11  
12  
“Clear” = chip reset input  
Type 1  
Type 2  
Type 3  
CS  
13  
SPI chip select input  
VBB  
MOTYP  
GND  
MOTYN  
MOTXN  
GND  
MOTXP  
VBB  
POR/WD  
TST0  
/
14  
High voltage supply Input  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27  
Negative end of phase Y coil output  
Ground, heat sink  
Driver Output  
Supply  
Positive end of phase Y coil output  
Positive end of phase X coil output  
Ground, heat sink  
Driver Output  
Driver Output  
Supply  
Negative end of phase X coil output  
High voltage supply input  
Driver Output  
Supply  
Type 3  
Type 4  
28  
Poweronreset and watchdog reset output (open drain)  
Test pin input (to be tied to ground in normal operation)  
No function (to be left open in normal operation)  
SPI data output (open drain)  
Digital Output  
Digital Input  
29  
30  
DO  
31  
Digital Output  
Supply  
Type 4  
Type 3  
VDD  
32  
Logic supply output (needs external decoupling capacitor)  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
0.3  
55  
50  
2  
Max  
Unit  
V
BB  
T
ST  
Analog DC supply voltage (Note 1)  
+40  
+160  
+175  
+2  
V
Storage temperature  
°C  
°C  
kV  
kV  
T
J
Junction Temperature under bias (Note 2)  
V
ESD  
V
ESD  
Electrostatic discharges on component level, All pins (Note 3)  
Electrostatic discharges on component level, HiV pins (Note 4)  
8  
+8  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. For limited time < 0.5 s.  
2. Circuit functionality not guaranteed.  
3. Human body model (100 pF via 1.5 kW, according to JEDEC EIAJESD22A114B).  
4. HiV = High Voltage Pins MOTxx, V , GND; (100 pF via 1.5 kW, according to JEDEC EIAJESD22A114B).  
BB  
www.onsemi.com  
3
 
AMIS30543  
EQUIVALENT SCHEMATICS  
Following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified  
representations of the circuits used.  
4K  
IN  
OUT  
TYPE 1: CLR input  
4 K  
TYPE 4: DO, ERRB and PORB/WD open drain outputs  
Rout  
IN  
SLA  
TYPE 2: CLK , DI, CSB , NXT , DIR inputs  
TYPE 5: SLA analog output  
VDD  
VBB  
VDD  
VBB  
.
TYPE 3: VDD and VBB power supply inputs  
Figure 3. Inand Output Equivalent Diagrams  
www.onsemi.com  
4
AMIS30543  
PACKAGE THERMAL CHARACTERISTICS  
The AMIS30543 is available in a NQFP32 package. For  
The Rthja for 2S2P is simulated conform JEDEC  
cooling optimizations, the NQFP has an exposed thermal  
pad which has to be soldered to the PCB ground plane. The  
ground plane needs thermal vias to conduct the heat to the  
bottom layer. Figure 4 gives an example for good power  
distribution solutions.  
For precise thermal cooling calculations the major  
thermal resistances of the device are given in Table 5. The  
thermal media to which the power of the devices has to be  
given are:  
JESD51 as follows:  
A 4layer printed circuit board with inner power planes  
and outer (top and bottom) signal layers is used  
Board thickness is 1.46 mm (FR4 PCB material)  
The 2 signal layers: 70 mm thick copper with an area of  
2
5500 mm copper and 20% conductivity  
The 2 power internal planes: 36 mm thick copper with  
2
an area of 5500 mm copper and 90% conductivity  
The Rthja for 1S0P is simulated conform to JEDEC  
JESD51 as follows:  
Static environmental air (via the case)  
PCB board copper area (via the exposed pad)  
The major thermal resistances of the device are the Rth  
from the junction to the ambient (Rthja) and the overall Rth  
from the junction to exposed pad (Rthjp). In Table 4 below  
one can find the values for the Rthja and Rthjp, simulated  
according to JESD51.  
A 1layer printed circuit board with only 1 layer  
Board thickness is 1.46 mm (FR4 PCB material)  
The layer has a thickness of 70 mm copper with an area  
2
of 5500 mm copper and 20% conductivity  
NQFP32  
Figure 4. Example of NQFP32 PCB Ground Plane Layout in Top View (Preferred Layout at Top and Bottom)  
ELECTRICAL SPECIFICATION  
Recommend Operation Conditions  
ranges is not guaranteed. Operating outside the  
recommended operating ranges for extended periods of time  
may affect device reliability.  
Operating ranges define the limits for functional  
operation and parametric characteristics of the device. Note  
that the functionality of the chip outside these operating  
Table 3. OPERATING RANGES  
Symbol  
Parameter  
Min  
+6  
Max  
+30  
Unit  
V
V
BB  
Analog DC Supply  
T
J
Junction Temperature (Note 5)  
40  
+172  
°C  
5. No more than 100 cumulative hours in life time above T .  
tw  
www.onsemi.com  
5
 
AMIS30543  
Table 4. DC PARAMETERS (The DC parameters are given for V and temperature in their operating ranges unless otherwise  
BB  
specified) Convention: currents flowing in the circuit are defined as positive.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY AND VOLTAGE REGULATORS  
V
I
Nominal operating supply range  
6
30  
12  
V
BB  
V
BB  
Total internal current consumption Unloaded outputs  
(Note 6)  
mA  
BB  
V
Regulated Output Voltage  
I
within limits  
4.5  
4
5
5.5  
5.5  
V
V
DD  
LOAD  
V
Regulated Output Voltage in Sleep 1 mA I  
Mode  
0 mA  
DD_SLP  
LOAD  
> 9 V  
V
BB  
mA  
I
Internal load current (Note 6)  
Max Output Current  
Unloaded outputs  
8
INT  
I
6 V v V < 8 V  
15  
40  
V
DD  
LOAD  
BB  
8 V v V v 30 V  
BB  
I
Current limitation  
Pin shorted to ground  
200  
mA  
DDLIM  
I
Current Consumption when in  
Sleep Mode  
V
BB  
> 9 V  
230  
mA  
LOAD_SLP  
POWERONRESET (POR)  
V
Internal POR comparator threshold  
Internal POR comparator threshold  
V
V
rising  
falling  
3.9  
4.2  
4.4  
V
V
V
DDH  
DD  
V
3.86  
0.35  
DDL  
DD  
V
DD  
V
Internal POR comparator  
hysteresis  
DDHYS  
MOTORDRIVER  
I
MOTXP Max current through motor coil in  
T = 130°C  
J
3000  
mA  
MDmax,Peak  
MOTXN normal operation  
MOTYP  
MOTYN  
R
Onresistance highside driver,  
0.15  
0.1  
0.2  
0.4  
0.8  
0.4  
0.45  
0.4  
W
W
W
W
W
W
W
W
W
W
HS  
CUR[4:0] = 0...31 (Note 7)  
T = 160°C  
J
R
Onresistance lowside driver,  
CUR[4:0] = 16...25 (Note 7)  
LS3  
T = 160°C  
J
0.45  
0.7  
R
Onresistance lowside driver,  
CUR[4:0] = 10...15 (Note 7)  
LS2  
T = 160°C  
J
0.8  
R
Onresistance lowside driver,  
CUR[4:0] = 3...9 (Note 7)  
1.1  
LS1  
T = 160°C  
J
1.25  
2.2  
R
Onresistance lowside driver,  
CUR[4:0] = 0...2 (Note 7)  
LS0  
T = 160°C  
J
2.50  
DIGITAL INPUTS  
I
Input Leakage (Note 8)  
Logic Low Threshold  
T = 160°C  
J
1
mA  
V
leak  
DI, CLK  
NXT, DIR  
CLR, CS  
V
0
2.35  
120  
3
0.65  
IL  
V
Logic High Threshold  
V
DD  
V
IH  
R
CLR  
Internal Pulldown Resistor  
Internal Pulldown Resistor  
200  
300  
9
kW  
kW  
pd_CLR  
R
TST0  
pd_TST  
6. Current with oscillator running, all analogue cells active, SPI communication and NXT pulses applied. No floating inputs. Parameter  
guaranteed by design.  
7. Characterization Data Only  
8. Not valid for pins with internal Pulldown resistor  
www.onsemi.com  
6
 
AMIS30543  
Table 4. DC PARAMETERS (The DC parameters are given for V and temperature in their operating ranges unless otherwise  
BB  
specified) Convention: currents flowing in the circuit are defined as positive.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL OUTPUTS  
V
OL  
DO, ERR, Logic Low level open drain  
POR/WD  
I
OL  
= 5 mA  
0.5  
V
THERMAL WARNING AND SHUTDOWN  
T
Thermal Warning  
150  
160  
170  
°C  
°C  
tw  
T
tsd  
Thermal shutdown (Notes 9  
and 10)  
T
+ 20  
tw  
CHARGE PUMP  
V
cp  
Output voltage  
6 V< V < 15 V  
2 * V – 2  
V
V
BB  
BB  
15 V < V < 30 V  
V
BB  
+ 9  
V
BB  
+ 12.5  
V
BB  
+16  
VCP  
BB  
C
C
External buffer capacitor  
180  
220  
470  
nF  
nF  
buffer  
CPP CPN External pump capacitor  
180  
220  
470  
pump  
PACKAGE THERMAL RESISTANCE VALUE  
Rth  
Thermal Resistance  
Simulated Conform JEDEC  
30  
60  
K/W  
K/W  
K/W  
ja  
JunctiontoAmbient  
JESD51, 2S2P  
NQFP  
Simulated Conform JEDEC  
JESD51, 1S0P  
Rth  
Thermal Resistance  
JunctiontoExposed Pad  
0.95  
jp  
NQFP  
SPEED AND LOAD ANGLE OUTPUT  
V
out  
Output Voltage Range  
0.2  
V
DD  
0.2  
V
V
Output Offset SLA pin  
Gain of SLA Pin = V  
50  
50  
mV  
off  
SLA  
G
/ V  
COIL  
SLAG = 0  
SLAG = 1  
0.5  
sla  
BEMF  
0.25  
R
Output Resistance SLA pin  
1
kW  
out  
9. No more than 100 cumulated hours in life time above T .  
tw  
10.Thermal shutdown is derived from thermal warning. Characterization Data Only.  
www.onsemi.com  
7
 
AMIS30543  
Table 5. AC PARAMETERS (The AC parameters are given for V and temperature in their operating ranges)  
BB  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
INTERNAL OSCILLATOR  
f
Frequency of internal oscillator  
3.6  
4
4.4  
MHz  
osc  
MOTOR DRIVER  
f
PWM frequency  
20.5  
41.0  
22.8  
45.6  
200  
140  
70  
25.1  
50.2  
kHz  
kHz  
PWM  
Frequency depends only on  
internal oscillator  
MOTxx  
Double PWM frequency  
tb  
EMC[1:0] = 00  
EMC[1:0] = 01  
EMC[1:0] = 10  
EMC[1:0] = 11  
EMC[1:0] = 00  
EMC[1:0] = 01  
EMC[1:0] = 10  
EMC[1:0] = 11  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
rise  
Turnon voltage slope, 10% to  
90%  
MOTxx  
35  
tb  
200  
140  
70  
fall  
Turnoff voltage slope, 90% to  
10%  
MOTxx  
35  
DIGITAL OUTPUTS  
t
DO  
Output falltime from V to V  
inL  
Capacitive load 400 pF and  
50  
5
ns  
H2L  
inH  
ERR  
pullup resistor of 1.5 kW  
CHARGE PUMP  
CPN CPP Charge pump frequency  
f
250  
kHz  
ms  
CP  
t
MOTxx  
Startup time of charge pump  
(Note 11)  
Spec external components  
CPU  
CLR FUNCTION  
t
CLR  
Hard reset duration time  
Powerup time  
100  
ms  
ms  
CLR  
POWERUP  
t
V
= 12 V, I  
LOAD  
= 50 mA,  
100  
PU  
BB  
LOAD  
C
= 220 nF  
POR/WD  
t
Reset duration  
Reset filter time  
See Figure 16  
See Figure 16  
100  
0.5  
ms  
POR  
t
RF  
ms  
WATCHDOG  
t
Watchdog time out interval  
32  
512  
ms  
ms  
WDTO  
WDPR  
POR/WD  
t
Prohibited watchdog  
acknowledge delay  
2
NXT FUNCTION  
t
NXT Minimum, High Pulse Width See Figure 5  
NXT Minimum, Low Pulse Width See Figure 5  
2
2
ms  
ms  
ms  
NXT_HI  
NXT_HI  
t
t
NXT Hold Time, Following  
Change of DIR  
See Figure 5  
0.5  
DIR_SET  
NXT  
t
NXT Hold Time, Before Change  
of DIR  
See Figure 5  
0.5  
ms  
DIR_HOLD  
11. Guaranteed by design  
www.onsemi.com  
8
 
AMIS30543  
tNXT_HI  
tNXT_LO  
0.5 VCC  
NXT  
DIR  
tDIR_SET  
tDIR_HOLD  
VALID  
Figure 5. NXTInput Timing Diagram  
Table 6. SPI TIMING PARAMETERS  
Symbol  
Parameter  
Min  
1
Typ  
Max  
Unit  
ms  
t
SPI Clock Period  
CLK  
CLK_HIGH  
t
SPI Clock High Time  
SPI Clock Low Time  
100  
100  
50  
ns  
ns  
ns  
ns  
ms  
t
CLK_LOW  
t
DI Set Up Time, Valid Data Before Rising Edge of CLK  
DI Hold Time, Hold Data After Rising Edge of CLK  
CS High Time  
SET_DI  
t
50  
HOLD_DI  
t
2.5  
100  
100  
CSB_HIGH  
t
CS Set Up Time, CS Low Before Rising Edge of CLK  
CLK Set Up Time, CLK Low Before Rising Edge of CS  
ns  
ns  
SET_CSB  
t
SET_CLK  
0.2 VCC  
0.2 VCC  
CS  
tSET _CSB  
tCLK  
tSET_CLK  
0.8 VCC  
CLK  
0,2 VCC  
0.2 VCC  
tCLK_HI  
tHOLD_DI  
tCLK _LO  
tSET_DI  
0.8 VCC  
DI  
VALID  
Figure 6. SPI Timing  
www.onsemi.com  
9
AMIS30543  
TYPICAL APPLICATION SCHEMATIC  
D1  
100 nF  
C2  
100 nF  
C3  
100 nF  
C4  
VBAT  
C1  
C5  
C6  
mF  
100  
R2 R3  
R4  
100 nF  
VDD  
32  
VBB  
14  
VBB  
27  
220 nF  
VCP  
CPN  
11  
9
POR/WD  
28  
5
C7  
DIR  
AMIS30543  
220 nF  
NXT  
10  
4
CPP  
DO  
DI  
31  
2
MOTXP  
25, 26  
21, 22  
CLK  
MOTXN  
mC  
3
CS  
13  
12  
6
M
MOTYP  
MOTYN  
CLR  
ERR  
SLA  
15, 16  
19, 20  
7
R1  
C8  
1
23 24 29  
17 18  
GND  
Figure 7. Typical Application Schematic AMIS30543  
TSTO  
Table 7. EXTERNAL COMPONENTS LIST AND DESCRIPTION  
Component  
Function  
Typ Value  
100  
Tolerance  
20 +80%  
20 +80%  
Unit  
mF  
C
V
V
Buffer Capacitor (Note 12)  
Decoupling Block Capacitor  
1
BB  
C , C  
100  
nF  
2
3
BB  
(Note 13)  
C
V
V
Buffer Capacitor  
100  
100  
$20%  
$20%  
$20%  
$20%  
$20%  
$1%  
nF  
nF  
nF  
nF  
nF  
kW  
kW  
4
DD  
DD  
C
Buffer Capacitor  
5
C
Charge Pump Buffer Capacitor  
Charge Pump Pumping Capacitor  
Low Pass Filter SLA  
220  
6
C
220  
7
C
1
8
R
Low Pass Filter SLA  
5.6  
1
R
R
2, 3,  
R
Pullup Resistor Open Drain Output  
Optional Reverse Protection Diode  
4.7  
$1%  
4
D
MURD530  
1
12.ESR < 1 W.  
13.ESR < 50 mW.  
www.onsemi.com  
10  
 
AMIS30543  
FUNCTIONAL DESCRIPTION  
HBridge Drivers  
transistors will be adapted such that excellent currentsense  
accuracy is maintained. The R of the highside  
transistors remain unchanged; see Table 4 DC Parameters  
for more details.  
A full Hbridge is integrated for each of the two stator  
windings. Each Hbridge consists of two lowside and two  
highside Ntype MOSFET switches. Writing logic ‘0’ in  
bit <MOTEN> disables all drivers (highimpedance).  
Writing logic ‘1’ in this bit enables both bridges and current  
can flow in the motor stator windings.  
In order to avoid large currents through the Hbridge  
switches, it is guaranteed that the topand bottomswitches  
of the same halfbridge are never conductive  
simultaneously (interlock delay).  
DS(on)  
PWM Current Control  
A PWM comparator compares continuously the actual  
winding current with the requested current and feeds back  
the information to a digital regulation loop. This loop then  
generates a PWM signal, which turns on/off the Hbridge  
switches. The switching points of the PWM dutycycle are  
synchronized to the onchip PWM clock. The frequency of  
the PWM controller can be doubled and an artificial jitter  
can be added (see Table 12 SPI Control Parameter Overview  
PWMJ). The PWM frequency will not vary with changes in  
the supply voltage. Also variations in motorspeed or  
loadconditions of the motor have no effect. There are no  
external components required to adjust the PWM frequency.  
A twostage protection against shorts on motor lines is  
implemented. In a first stage, the current in the driver is  
limited. Secondly, when excessive voltage is sensed across  
the transistor, the transistor is switched off.  
In order to reduce the radiated/conducted emission,  
voltage slope control is implemented in the output switches.  
The output slope is defined by the gatedrain capacitance of  
output transistor and the (limited) current that drives the  
gate. There are two trimming bits for slope control (see  
Table 12 SPI Control Parameter Overview EMC[1:0]).  
The power transistors are equipped with socalled “active  
diodes”: when a current is forced trough the transistor switch  
in the reverse direction, i.e. from source to drain, then the  
transistor is switched on. This ensures that most of the  
current flows through the channel of the transistor instead of  
through the inherent parasitic drainbulk diode of the  
transistor.  
Automatic Forward and SlowFast Decay  
The PWM generation is in steadystate using a  
combination of forward and slowdecay. The absence of  
fastdecay in this mode, guarantees the lowest possible  
currentripple “by design”. For transients to lower current  
levels, fastdecay is automatically activated to allow  
highspeed response. The selection of fast or slow decay is  
completely transparent for the user and no additional  
parameters are required for operation.  
Depending on the desired current range and the  
microstep position at hand, the R  
of the lowside  
DS(on)  
Icoil  
Set value  
Actual value  
t
0
TPWM  
Forward & Slow Decay  
Forward & Slow Decay  
Fast Decay & Forward  
Figure 8. Forward and Slow/Fast Decay PWM  
www.onsemi.com  
11  
AMIS30543  
Automatic Duty Cycle Adaptation  
process is completely automatic and requires no additional  
parameters for operation. The overall currentripple is  
divided by two if PWM frequency is doubled (see Table 12  
SPI Control Parameter Overview PWMF)  
In case the supply voltage is lower than 2*Bemf, then the  
duty cycle of the PWM is adapted automatically to > 50% to  
maintain the requested average current in the coils. This  
Icoil  
Duty Cycle  
<
50%  
Duty Cycle< 50%  
Duty Cycle> 50%  
Actual value  
Set value  
t
Figure 9. Automatic Duty Cycle Adaption  
TPWM  
Step Translator and Step Mode  
step mode, subsequent translator positions are all in the same  
column and increased or decreased with 1. Table 9 lists the  
output current vs. the translator position.  
The step translator provides the control of the motor by  
means of SM[2:0], ESM[2:0], SPI register DIRCTRL and  
input pins DIR and NXT. It is translating consecutive steps  
in corresponding currents in both motor coils for a given step  
mode.  
One out of eleven possible stepping modes can be selected  
through SPIbits SM[2:0] and ESM[2:0] (see Table 12 SPI  
Control Parameter Overview). After poweron or hard  
reset, the coilcurrent translator is set to the default 1/32  
microstepping at position ‘0’. When remaining in the same  
As shown in Figure 10 the output currentpairs can be  
projected approximately on a circle in the (I , I ) plane.  
x
y
There are, however, two exceptions: uncompensated half  
step and uncompensated full step. In these step modes the  
currents are not regulated to a fraction of I  
but are in all  
max  
intermediate steps regulated at 100%. In the (I , I ) plane the  
x
y
currentpairs are projected on a square. Table 8 lists the  
output current vs. the translator position for these cases.  
Table 8. SQUARE TRANSLATOR TABLE FOR UNCOMPENSATED FULL STEP AND UNCOMPENSATED HALF  
STEP  
Stepmode ( SM[2:0] )  
% of I  
max  
101  
110  
Uncompensated Half Step  
Uncompensated Full Step  
MSP[8:0]  
Coil x  
0
Coil y  
0 0000 0000  
0 0100 0000  
0 1000 0000  
0 1100 0000  
1 0000 0000  
1 0100 0000  
1 1000 0000  
1 1100 0000  
0
1
2
3
4
5
6
7
1
2
3
0
100  
100  
0
100  
100  
100  
0
100  
100  
100  
0
100  
100  
100  
100  
www.onsemi.com  
12  
 
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE  
SM[2:0]  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
010  
ESM[2:0]  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
0
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001000  
000001001  
000001010  
000001011  
000001100  
000001101  
000001110  
000001111  
000010000  
000010001  
000010010  
000010011  
000010100  
000010101  
000010110  
000010111  
000011000  
000011001  
000011010  
000011011  
000011100  
000011101  
000011110  
000011111  
000100000  
000100001  
000100010  
000100011  
000100100  
000100101  
000100110  
000100111  
000101000  
000101001  
000101010  
0
0
0
0
0
0
0
0
100  
100  
100  
100  
100  
100  
100  
100  
100  
99  
1
1
2
1
2
2
3
4
4
1
2
5
5
6
6
3
7
7
9
8
4
1
2
3
4
5
10  
11  
12  
13  
15  
16  
17  
18  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
33  
34  
35  
36  
37  
38  
39  
41  
42  
43  
44  
45  
46  
47  
48  
49  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
5
99  
99  
6
3
99  
99  
7
99  
98  
8
4
1
98  
98  
9
98  
97  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
5
97  
97  
96  
96  
6
96  
95  
95  
95  
7
94  
94  
93  
93  
8
2
1
92  
92  
91  
91  
9
90  
90  
89  
89  
10  
88  
88  
87  
www.onsemi.com  
13  
 
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
000101011  
000101100  
000101101  
000101110  
000101111  
000110000  
000110001  
000110010  
000110011  
000110100  
000110101  
000110110  
000110111  
000111000  
000111001  
000111010  
000111011  
000111100  
000111101  
000111110  
000111111  
001000000  
001000001  
001000010  
001000011  
001000100  
001000101  
001000110  
001000111  
001001000  
001001001  
001001010  
001001011  
001001100  
001001101  
001001110  
001001111  
001010000  
001010001  
001010010  
001010011  
001010100  
001010101  
50  
51  
52  
53  
55  
56  
57  
58  
59  
60  
61  
62  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
72  
73  
74  
75  
76  
77  
77  
78  
79  
80  
80  
81  
82  
82  
83  
84  
84  
85  
86  
86  
86  
86  
85  
84  
84  
83  
82  
82  
81  
80  
80  
79  
78  
77  
77  
76  
75  
74  
73  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
62  
61  
60  
59  
58  
57  
56  
55  
53  
52  
51  
50  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
6
3
7
8
4
2
1
0
9
10  
5
www.onsemi.com  
14  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
86  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
001010110  
001010111  
001011000  
001011001  
001011010  
001011011  
001011100  
001011101  
001011110  
001011111  
001100000  
001100001  
001100010  
001100011  
001100100  
001100101  
001100110  
001100111  
001101000  
001101001  
001101010  
001101011  
001101100  
001101101  
001101110  
001101111  
001110000  
001110001  
001110010  
001110011  
001110100  
001110101  
001110110  
001110111  
001111000  
001111001  
001111010  
001111011  
001111100  
001111101  
001111110  
001111111  
010000000  
43  
87  
88  
49  
48  
47  
46  
45  
44  
43  
42  
41  
39  
38  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
25  
24  
23  
22  
21  
20  
18  
17  
16  
15  
13  
12  
11  
10  
9
87  
88  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
22  
11  
88  
89  
89  
90  
89  
91  
90  
92  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
90  
93  
91  
94  
91  
95  
92  
96  
12  
13  
14  
15  
16  
6
3
92  
97  
93  
98  
93  
99  
94  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
94  
95  
95  
95  
96  
96  
96  
97  
97  
97  
98  
98  
7
98  
98  
99  
99  
99  
99  
99  
99  
100  
100  
100  
100  
100  
100  
100  
100  
100  
7
6
5
4
2
1
8
4
2
1
0
www.onsemi.com  
15  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
010000001  
010000010  
010000011  
010000100  
010000101  
010000110  
010000111  
010001000  
010001001  
010001010  
010001011  
010001100  
010001101  
010001110  
010001111  
010010000  
010010001  
010010010  
010010011  
010010100  
010010101  
010010110  
010010111  
010011000  
010011001  
010011010  
010011011  
010011100  
010011101  
010011110  
010011111  
010100000  
010100001  
010100010  
010100011  
010100100  
010100101  
010100110  
010100111  
010101000  
010101001  
010101010  
010101011  
100  
100  
100  
100  
100  
100  
100  
100  
99  
99  
99  
99  
99  
99  
98  
98  
98  
98  
97  
97  
97  
96  
96  
96  
95  
95  
95  
94  
94  
93  
93  
92  
92  
91  
91  
90  
90  
89  
89  
88  
88  
87  
86  
1  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
2  
4  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
5  
6  
7  
9  
17  
18  
19  
20  
21  
10  
11  
12  
13  
15  
16  
17  
18  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
33  
34  
35  
36  
37  
38  
39  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
9
10  
5
www.onsemi.com  
16  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
010101100  
010101101  
010101110  
010101111  
010110000  
010110001  
010110010  
010110011  
010110100  
010110101  
010110110  
010110111  
010111000  
010111001  
010111010  
010111011  
010111100  
010111101  
010111110  
010111111  
011000000  
011000001  
011000010  
011000011  
011000100  
011000101  
011000110  
011000111  
011001000  
011001001  
011001010  
011001011  
011001100  
011001101  
011001110  
011001111  
011010000  
011010001  
011010010  
011010011  
011010100  
011010101  
011010110  
86  
43  
86  
85  
84  
84  
83  
82  
82  
81  
80  
80  
79  
78  
77  
77  
76  
75  
74  
73  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
62  
61  
60  
59  
58  
57  
56  
55  
53  
52  
51  
50  
49  
51  
52  
53  
55  
56  
57  
58  
59  
60  
61  
62  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
72  
73  
74  
75  
76  
77  
77  
78  
79  
80  
80  
81  
82  
82  
83  
84  
84  
85  
86  
86  
87  
87  
88  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
22  
11  
89  
90  
91  
92  
23  
24  
25  
26  
93  
94  
95  
96  
12  
6
3
1
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
13  
www.onsemi.com  
17  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
011010111  
011011000  
011011001  
011011010  
011011011  
011011100  
011011101  
011011110  
011011111  
011100000  
011100001  
011100010  
011100011  
011100100  
011100101  
011100110  
011100111  
011101000  
011101001  
011101010  
011101011  
011101100  
011101101  
011101110  
011101111  
011110000  
011110001  
011110010  
011110011  
011110100  
011110101  
011110110  
011110111  
011111000  
011111001  
011111010  
011111011  
011111100  
011111101  
011111110  
011111111  
100000000  
100000001  
48  
47  
46  
45  
44  
43  
42  
41  
39  
38  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
25  
24  
23  
22  
21  
20  
18  
17  
16  
15  
13  
12  
11  
10  
9
88  
88  
89  
89  
90  
90  
91  
91  
92  
92  
93  
93  
94  
94  
95  
95  
95  
96  
96  
96  
97  
97  
97  
98  
98  
98  
98  
99  
99  
99  
99  
99  
99  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
54  
27  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
28  
29  
30  
31  
32  
14  
7
15  
7
6
5
4
2
1
16  
8
4
2
0
1  
www.onsemi.com  
18  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
100000010  
100000011  
100000100  
100000101  
100000110  
100000111  
100001000  
100001001  
100001010  
100001011  
100001100  
100001101  
100001110  
100001111  
100010000  
100010001  
100010010  
100010011  
100010100  
100010101  
100010110  
100010111  
100011000  
100011001  
100011010  
100011011  
100011100  
100011101  
100011110  
100011111  
100100000  
100100001  
100100010  
100100011  
100100100  
100100101  
100100110  
100100111  
100101000  
100101001  
100101010  
100101011  
100101100  
129  
2  
100  
100  
100  
100  
100  
100  
100  
99  
99  
99  
99  
99  
99  
98  
98  
98  
98  
97  
97  
97  
96  
96  
96  
95  
95  
95  
94  
94  
93  
93  
92  
92  
91  
91  
90  
90  
89  
89  
88  
88  
87  
86  
86  
4  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
65  
5  
6  
7  
9  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
33  
10  
11  
12  
13  
15  
16  
17  
18  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
33  
34  
35  
36  
37  
38  
39  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
34  
35  
36  
37  
17  
18  
9
www.onsemi.com  
19  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
100101101  
100101110  
100101111  
100110000  
100110001  
100110010  
100110011  
100110100  
100110101  
100110110  
100110111  
100111000  
100111001  
100111010  
100111011  
100111100  
100111101  
100111110  
100111111  
101000000  
101000001  
101000010  
101000011  
101000100  
101000101  
101000110  
101000111  
101001000  
101001001  
101001010  
101001011  
101001100  
101001101  
101001110  
101001111  
101010000  
101010001  
101010010  
101010011  
101010100  
101010101  
101010110  
101010111  
52  
53  
55  
56  
57  
58  
59  
60  
61  
62  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
72  
73  
74  
75  
76  
77  
77  
78  
79  
80  
80  
81  
82  
82  
83  
84  
84  
85  
86  
86  
87  
88  
85  
84  
84  
83  
82  
82  
81  
80  
80  
79  
78  
77  
77  
76  
75  
74  
73  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
62  
61  
60  
59  
58  
57  
56  
55  
53  
52  
51  
50  
49  
48  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
38  
19  
39  
40  
41  
42  
20  
10  
5
2
21  
www.onsemi.com  
20  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
101011000  
101011001  
101011010  
101011011  
101011100  
101011101  
101011110  
101011111  
101100000  
101100001  
101100010  
101100011  
101100100  
101100101  
101100110  
101100111  
101101000  
101101001  
101101010  
101101011  
101101100  
101101101  
101101110  
101101111  
101110000  
101110001  
101110010  
101110011  
101110100  
101110101  
101110110  
101110111  
101111000  
101111001  
101111010  
101111011  
101111100  
101111101  
101111110  
101111111  
110000000  
110000001  
110000010  
172  
86  
43  
88  
89  
89  
90  
90  
91  
91  
92  
92  
93  
93  
94  
94  
95  
95  
95  
96  
96  
96  
97  
97  
97  
98  
98  
98  
98  
99  
99  
99  
99  
99  
99  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
47  
46  
45  
44  
43  
42  
41  
39  
38  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
25  
24  
23  
22  
21  
20  
18  
17  
16  
15  
13  
12  
11  
10  
9  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
44  
45  
46  
47  
48  
22  
11  
23  
7  
6  
5  
4  
2  
1  
24  
12  
6
3
0
1
2
www.onsemi.com  
21  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
110000011  
110000100  
110000101  
110000110  
110000111  
110001000  
110001001  
110001010  
110001011  
110001100  
110001101  
110001110  
110001111  
110010000  
110010001  
110010010  
110010011  
110010100  
110010101  
110010110  
110010111  
110011000  
110011001  
110011010  
110011011  
110011100  
110011101  
110011110  
110011111  
110100000  
110100001  
110100010  
110100011  
110100100  
110100101  
110100110  
110100111  
110101000  
110101001  
110101010  
110101011  
110101100  
110101101  
100  
100  
100  
100  
100  
100  
99  
99  
99  
99  
99  
99  
98  
98  
98  
98  
97  
97  
97  
96  
96  
96  
95  
95  
95  
94  
94  
93  
93  
92  
92  
91  
91  
90  
90  
89  
89  
88  
88  
87  
86  
86  
85  
4
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
97  
5
6
7
9
98  
49  
10  
11  
12  
13  
15  
16  
17  
18  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
33  
34  
35  
36  
37  
38  
39  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
99  
100  
101  
102  
103  
104  
105  
106  
107  
50  
51  
52  
53  
25  
26  
13  
www.onsemi.com  
22  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
110101110  
110101111  
110110000  
110110001  
110110010  
110110011  
110110100  
110110101  
110110110  
110110111  
110111000  
110111001  
110111010  
110111011  
110111100  
110111101  
110111110  
110111111  
111000000  
111000001  
111000010  
111000011  
111000100  
111000101  
111000110  
111000111  
111001000  
111001001  
111001010  
111001011  
111001100  
111001101  
111001110  
111001111  
111010000  
111010001  
111010010  
111010011  
111010100  
111010101  
111010110  
111010111  
111011000  
215  
84  
84  
83  
82  
82  
81  
80  
80  
79  
78  
77  
77  
76  
75  
74  
73  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
62  
61  
60  
59  
58  
57  
56  
55  
53  
52  
51  
50  
49  
48  
47  
53  
55  
56  
57  
58  
59  
60  
61  
62  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
72  
73  
74  
75  
76  
77  
77  
78  
79  
80  
80  
81  
82  
82  
83  
84  
84  
85  
86  
86  
87  
88  
88  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
108  
54  
27  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
55  
56  
57  
58  
59  
28  
14  
7
3
29  
www.onsemi.com  
23  
AMIS30543  
Table 9. CIRCULAR TRANSLATOR TABLE (continued)  
SM[2:0]  
010  
xxx  
001  
xxx  
010  
000  
000  
001  
000  
011  
000  
100  
000  
xxx  
011  
xxx  
100  
ESM[2:0]  
000  
% of  
Imax  
Comp  
full  
2ph  
Comp  
full  
1ph  
Comp  
1/2  
1/128  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
1/64  
1/32  
1/16  
1/8  
1/4  
Coil X  
Coil Y  
MSP[8:0]  
111011001  
111011010  
111011011  
111011100  
111011101  
111011110  
111011111  
111100000  
111100001  
111100010  
111100011  
111100100  
111100101  
111100110  
111100111  
111101000  
111101001  
111101010  
111101011  
111101100  
111101101  
111101110  
111101111  
111110000  
111110001  
111110010  
111110011  
111110100  
111110101  
111110110  
111110111  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
46  
45  
44  
43  
42  
41  
39  
38  
37  
36  
35  
34  
33  
31  
30  
29  
28  
27  
25  
24  
23  
22  
21  
20  
18  
17  
16  
15  
13  
12  
11  
10  
9  
89  
89  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
90  
119  
120  
121  
122  
123  
124  
125  
126  
127  
90  
91  
91  
92  
60  
61  
62  
63  
30  
15  
92  
93  
93  
94  
94  
95  
95  
95  
96  
96  
96  
97  
97  
97  
98  
98  
31  
98  
98  
99  
99  
99  
99  
99  
99  
100  
100  
100  
100  
100  
100  
100  
100  
7  
6  
5  
4  
2  
1  
www.onsemi.com  
24  
AMIS30543  
IY  
IY  
IY  
Start = 0  
Start = 0  
Start = 0  
Step 1  
Step 1  
Step 2  
Step 1  
Step 3  
Step 2  
Step 2  
IX  
IX  
IX  
Step 3  
Step 3  
1/4th micro step  
Uncompensated  
half step  
Compensated  
half step  
IY  
IY  
IY  
Step 3  
Start = 0  
Start = 0  
Start = 0  
Step 3  
Step 1  
IX  
IX  
IX  
Step 1  
Step 2  
Step 1  
Step 2  
Step 2  
Uncompensated  
full step  
Compensated full  
step, 1 phase on  
Compensated full  
step, 2 phase on  
Figure 10. Translator Table: Circular and Square  
Direction  
Parameter Overview), the next step is initiated either on the  
rising edge or the falling edge of the NXT input.  
The direction of rotation is selected by means of following  
combination of the DIR input pin and the SPIcontrolled  
direction bit <DIRCTRL>. (see Table 12 SPI Control  
Parameter Overview)  
Translator Position  
The translator position MSP[8:0] can be read in SPI Status  
Register 3 and Status Register 4 (See Table 14 SR3 and  
th  
NXT Input  
SR4). This is a 9bit number equivalent to the 1/128  
Changes on the NXT input will move the motor current  
one step up/down in the translator table (even when the  
microstep (see Table 9 “Circular Translator Table”). The  
translator position is updated immediately following a NXT  
trigger.  
motor is disabled: <MOTEN>  
= 0). Depending on the  
NXTpolarity bit <NXTP> (see Table 12 SPI Control  
NXT  
Update  
Translator Position  
Update  
Translator Position  
Figure 11. Translator Position Timing Diagram  
Synchronization of Step Mode and NXT Input  
When step mode is reprogrammed to another resolution  
(Figure 12), then this is put in effect immediately upon the  
first arriving “NXT” input. If the microstepping resolution  
is increased, the coil currents will be regulated to the nearest  
microstep, according to the fixed grid of the increased  
resolution. If however the microstepping resolution is  
decreased, then it is possible to introduce an offset (or phase  
shift) in the microstep translator table.  
If the step resolution is decreased at a translator table  
position that is shared both by the old and new resolution  
setting, then the offset is zero and microstepping is  
proceeds according to the translator table.  
If the translator position is not shared both by the old and  
new resolution setting, then the microstepping proceeds  
with an offset relative to the translator table (See Figure 12  
right hand side).  
www.onsemi.com  
25  
AMIS30543  
Change from lower to higher resolution  
Iy Iy  
Change from higher to lower resolution  
Iy Iy  
DIR  
DIR  
DIR  
DIR  
NXT1  
NXT2  
NXT1  
endpos  
startpos  
endpos  
NXT3  
NXT4  
startpos  
NXT2  
Ix  
Ix  
Ix  
Ix  
NXT3  
1/8th step  
Halfstep  
1/4th step  
Figure 12. NXTStep Mode Synchronization  
Halfstep  
PC20070604.6  
Left: Change from lower to higher resolution. The lefthand side depicts the ending halfstep position during which a new  
step mode resolution was programmed. The righthand side diagram shows the effect of subsequent NXT commands on the  
microstep position.  
Right: Change from higher to lower resolution. The lefthand side depicts the ending microstep position during which a new  
step mode resolution was programmed. The righthand side diagram shows the effect of subsequent NXT commands on the  
halfstep position.  
Note: It is advised to reduce the microstepping resolution only at microstep positions that overlap with desired microstep  
positions of the new resolution.  
Programmable PeakCurrent  
The amplitude of the current waveform in the motor coils  
Overview). Whenever this parameter is changed, the  
coilcurrents will be updated immediately at the next PWM  
period. Figure 13 presents the PeakCurrent and Current  
Ratings in conjunction to the Current setting CUR[4:0].  
(coil peak current = I ) is adjusted by means of an SPI  
max  
parameter “CUR[4:0]” (see Table 12 SPI Control Parameter  
Peak Current  
3090 mA  
Current Range 3  
CUR[4:0] = 16 > 25  
1205 mA  
Current Range 2  
CUR[4:0] = 10 > 15  
680 mA  
305 mA  
Current Range 1  
CUR[4:0] = 3 > 9  
Current Range 0  
CUR[4:0] = 0 > 2  
0
2
9
15  
25  
CUR[4:0]  
Figure 13. Programmable PeakCurrent Overview  
www.onsemi.com  
26  
 
AMIS30543  
Speed and Load Angle Output  
current zero crossings”. Per coil, two zerocurrent positions  
exist per electrical period, yielding in total four zerocurrent  
observation points per electrical period.  
The SLApin provides an output voltage that indicates the  
level of the Backe.m.f. voltage of the motor. This  
Backe.m.f. voltage is sampled during every socalled ”coil  
VBEMF  
ICOIL  
t
ZOOM  
Previous  
Microstep  
Next  
Microstep  
Coil Current Zero Crossing  
Current Decay  
Zero Current  
ICOIL  
t
V COIL  
Voltage Transient  
VBB  
|VBEMF  
|
t
Figure 14. Principle of Bemf Measurement  
Because of the relatively high recirculation currents in the  
coil during current decay, the coil voltage V shows a  
behavior of the coil voltage is not visible anymore, this mode  
generates smoother Back e.m.f. input for postprocessing,  
e.g. by software.  
COIL  
transient behavior. As this transient is not always desired in  
application software, two operating modes can be selected  
by means of the bit <SLAT>(see “SLAtransparency” in  
Table 12 SPI Control Parameter Overview). The SLA pin  
shows in “transparent mode” full visibility of the voltage  
transient behavior. This allows a sanitycheck of the  
speedsetting versus motor operation and characteristics  
and supply voltage levels. If the bit “SLAT” is cleared, then  
only the voltage samples at the end of each coil current zero  
crossing are visible on the SLApin. Because the transient  
In order to bring the sampled Back e.m.f. to a descent  
output level (0 V to 5 V), the sampled coil voltage V  
is  
COIL  
divided by 2 or by 4. This divider is set through an SPI bit  
<SLAG>. (see Table 12 SPI Control Parameter Overview)  
The following drawing illustrates the operation of the  
SLApin and the transparencybit. “PWMsh” and “I  
=
COIL  
0” are internal signals that define together with SLAT the  
sampling and hold moments of the coil voltage.  
www.onsemi.com  
27  
AMIS30543  
Ssh  
Sh  
div2  
div4  
VCOIL  
buf  
SLApin  
Ch  
Csh  
Icoil=0  
SLAT  
PWMsh  
NOT(Icoil=0)  
PWMsh  
Icoil=0  
SLAT  
VCOIL  
t
SLApin  
last sample  
is retained  
VBEMF  
retain last sample  
previous output is kept at SLA pin  
t
SLAT = 1 => SLApin is “transparent” during  
sampling @ Coil Current Zero  
SLAT = 0 => SLApin is not “transparent” during  
sampling @ Coil Current Zero Crossing.  
V
V
BEMF  
BEMF  
Crossing. SLApin is updated “realtime”.  
SLApin is updated when leaving currentless state.  
Figure 15. Timing Diagram of SLAPin  
Warning, Error Detection and Diagnostics  
Feedback  
Open Coil/Current Not Reached Detection  
Open coil detection is based on the observation of 100%  
duty cycle of the PWM regulator. If in a coil 100% duty cycle  
is detected for longer than 200 ms then the related driver  
transistors are disabled (highimpedance) and an  
appropriate bit in the SPI status register is set (<OPENX>or  
<OPENY>). (Table 14)  
When the resistance of a motor coil is very large and the  
supply voltage is low, it can happen that the motor driver is  
not able to deliver the requested current to the motor. Under  
these conditions the PWM controller duty cycle will be  
100% and after 200 ms the error pin and <OPENX>,  
<OPENY> will flag this situation (motor current is kept  
alive). This feature can be used to test if the operating  
conditions (supply voltage, motor coil resistance) still allow  
reaching the requested coilcurrent or else the coil current  
should be reduced.  
Thermal Warning and Shutdown  
When junction temperature rises above T , the thermal  
TW  
warning bit <TW> is set (Table 14 SPI Status registers  
Address SR0). If junction temperature increases above  
thermal shutdown level, then the circuit goes in “Thermal  
Shutdown” mode (<TSD>) and all driver transistors are  
disabled (high impedance) (see Table 14 SPI Status registers  
Address SR2). The conditions to reset flag <TSD>is to be  
at a temperature lower than T and to clear the <TSD>flag  
tw  
by reading it using any SPI read command.  
Overcurrent Detection  
The overcurrent detection circuit monitors the load  
current in each activated output stage. If the load current  
exceeds the overcurrent detection threshold, then the  
overcurrent flag is set and the drivers are switched off to  
reduce the power dissipation and to protect the integrated  
circuit. Each driver transistor has an individual detection bit  
(see Table 14 SPI Status Registers Address SR1 and SR2:  
<OVCXij> and <OVCYij>). Error condition is latched  
and the microcontroller needs to clean the status bits to  
reactivate the drivers.  
Charge Pump Failure  
The charge pump is an important circuit that guarantees  
low R  
for all drivers, especially for low supply  
DS(on)  
voltages. If supply voltage is too low or external components  
are not properly connected to guarantee R of the  
DS(on)  
drivers, then the bit <CPFAIL>is set (Table 14). Also after  
POR the charge pump voltage will need some time to exceed  
the required threshold. During that time <CPFAIL>will be  
set to “1”.  
Note: Successive reading the SPI Status Registers 1 and 2 in  
case of a short circuit condition, may lead to damage to the  
drivers.  
www.onsemi.com  
28  
AMIS30543  
Error Output  
circuitry, the specified I  
should be reduced with the  
load  
This is a digital output to flag a problem to the external  
microcontroller. The signal on this output is active low and  
the logic combination of:  
consumption of internal circuitry (unloaded outputs) and the  
loads connected to logic outputs. See Table 4. DC  
parameters  
NOT(ERRB) = <TW> OR <TSD> OR <OVCXij> OR  
<OVCYij>OR <OPENi>OR <CPFAIL>  
PowerOn Reset (POR) Function  
The open drain output pin POR/WD provides an “active  
low” reset for external purposes. At powerup of  
AMIS30543, this pin will be kept low for some time to reset  
for example an external microcontroller. A small analogue  
filter avoids resetting due to spikes or noise on the V  
supply.  
Logic Supply Regulator  
AMIS30543 has an onchip 5 V lowdrop regulator  
with external capacitor to supply the digital part of the chip,  
some lowvoltage analog blocks and external circuitry. The  
voltage level is derived from an internal bandgap reference.  
To calculate the available drivecurrent for external  
DD  
VBB  
t
tPD  
VDD  
tPU  
VDDH  
VDDL  
t
< tRF  
POR/WD pin  
tPOR  
tRF  
Figure 16. PoweronReset Timing Diagram  
Watchdog Function  
The voltage regulator and charge pump remains  
functional during and after the reset and the POR/WD pin is  
not activated. Watchdog function is reset completely.  
The watchdog function is enabled/disabled through  
<WDEN> bit (Table 11: SPI CONTROL REGISTERS).  
Once this bit has been set to “1” (watchdog enable), the  
microcontroller needs to rewrite this bit to clear an internal  
timer before the watchdog timeout interval expires. In case  
the timer is activated and WDEN is acknowledged too early  
Sleep Mode  
The bit <SLP>in SPI Control Register 2 (See Table 10)  
is provided to enter a socalled “sleep mode”. This mode  
allows reduction of currentconsumption when the motor is  
not in operation. The effect of sleep mode is as follows:  
The drivers are put in HiZ  
All analog circuits are disabled and in lowpower mode  
All internal registers are maintaining their logic content  
NXT and DIR inputs are forbidden  
SPI communication remains possible (slight current  
increase during SPI communication)  
Oscillator and digital clocks are silent, except during  
SPI communication  
(before t  
) or not within the interval (after t  
), then  
WDPR  
WDTO  
a reset of the microcontroller will occur through POR/WD  
pin. In addition, a warm/cold boot bit <WD>is available (see  
Tables 14 and 15) for further processing when the external  
microcontroller is alive again.  
CLR pin (=Hard Reset)  
Logic 0 on CLR pin allows normal operation of the chip.  
To reset the complete digital inside AMIS30543, the input  
CLR needs to be pulled to logic 1 during minimum time  
given by t  
(Table 5 AC Parameters). This reset function  
CLR  
clears all internal registers without the need of a  
powercycle, except in sleep mode. Logic 0 on CLR pin  
resumes normal operation again.  
Registers cannot be cleared by using the CLR pin  
VBB should be minimum 9 V to be able to enter  
Sleep Mode.  
www.onsemi.com  
29  
AMIS30543  
The voltage regulator remains active but with reduced  
currentoutput capability (I ). The watchdog timer  
Normal operation is resumed after writing logic ‘0’ to bit  
<SLP>. A startup time is needed for the charge pump to  
LOADSLP  
stops running and it’s value is kept in the counter. Upon  
leaving sleep mode, this timer continues from the value it  
had before entering sleep mode.  
stabilize. After this time, NXT commands can be issued.  
VBB  
t
VDD  
VDDH  
tPU  
t
tPOR  
POR/WD pin  
tWDRD  
tPOR  
tDSPI  
Enable WD  
= tWDPR or = tWDTO  
> tWDPR and < tWDTO  
Acknowledge WD  
t
tWDTO  
WD timer  
t
Figure 17. Watchdog Timing Diagram  
NOTE:  
t
is the time needed by the external microcontroller to shiftin the <WDEN> bit after a powerup.  
DSPI  
The duration of the watchdog timeout interval is programmable through the WDT[3:0] bits (See also Table 11: SPI  
CONTROL REGISTERS. The timing is given in Table 10 below.  
Table 10. WATCHDOG TIMEOUT INTERVAL AS FUNCTION OF WDT[3.0]  
Index WDT[3:0]  
0000  
t
(ms)  
Index WDT[3:0]  
1000  
t
(ms)  
WDTO  
WDTO  
0
1
2
3
4
5
6
7
32  
8
288  
0001  
64  
9
1001  
320  
352  
384  
416  
448  
480  
512  
0010  
96  
10  
11  
12  
13  
14  
15  
1010  
0011  
128  
160  
192  
224  
256  
1011  
0100  
1100  
0101  
1101  
0110  
1110  
0111  
1111  
www.onsemi.com  
30  
 
AMIS30543  
SPI INTERFACE  
The serial peripheral interface (SPI) allows an external  
DO signal is the output from the Slave (AMIS30543), and  
DI signal is the output from the Master. A chip select line  
(CS) allows individual selection of a Slave SPI device in a  
multipleslave system. The CS line is active low. If  
AMIS30543 is not selected, DO is pulled up with the  
external pull up resistor. Since AMIS30543 operates as a  
Slave in MODE 0 (CPOL = 0; CPHA = 0) it always clocks  
data out on the falling edge and samples data in on rising  
edge of clock. The Master SPI port must be configured in  
MODE 0 too, to match this operation. The SPI clock idles  
low between the transferred bytes.  
microcontroller (Master) to communicate with  
AMIS30543. The implemented SPI block is designed to  
interface directly with numerous microcontrollers from  
several manufacturers. AMIS30543 acts always as a Slave  
and can’t initiate any transmission. The operation of the  
device is configured and controlled by means of SPI  
registers which are observable for read and/or write from the  
Master.  
SPI Transfer Format and Pin Signals  
During a SPI transfer, data is simultaneously transmitted  
(shifted out serially) and received (shifted in serially). A  
serial clock line (CLK) synchronizes shifting and sampling  
of the information on the two serial data lines (DO and DI).  
The diagram below is both a Master and a Slave timing  
diagram since CLK, DO and DI pins are directly connected  
between the Master and the Slave.  
# CLK cycle  
CS  
1
2
3
4
5
6
7
8
CLK  
DI  
MSB  
MSB  
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
DO  
Figure 18. Timing Diagram of a SPI Transfer  
NOTE: At the falling edge of the eight clock pulse the dataout shift register is updated with the content of the addressed internal SPI  
register. The internal SPI registers are updated at the first rising edge of the AMIS30543 system clock when CS = High  
Transfer Packet:  
Serial data transfer is assumed to follow MSB first rule.  
The transfer packet contains one or more bytes.  
BYTE 1  
BYTE 2  
Data  
Command and SPI Register Address  
MSB  
LSB  
MSB  
D7  
LSB  
D0  
CMD2 CMD1 CMD0 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0  
D6  
D5  
D4  
D3  
D2  
D1  
Command  
SPI Register Address  
Figure 19. SPI Transfer Packet  
Byte 1 contains the Command and the SPI Register  
Address and indicates to AMIS30543 the chosen type of  
operation and addressed register. Byte 2 contains data, or  
sent from the Master in a WRITE operation, or received  
from AMIS30543 in a READ operation.  
www.onsemi.com  
31  
AMIS30543  
Two command types can be distinguished in the  
READ command. This READ command contains the  
address of the SPI register to be read out. At the falling edge  
of the eight clock pulse the dataout shift register is updated  
with the content of the corresponding internal SPI register.  
In the next 8bit clock pulse train this data is shifted out via  
DO pin. At the same time the data shifted in from DI  
(Master) should be interpreted as the following successive  
command or the same command.  
communication between master and AMIS30543:  
READ from SPI Register with address ADDR[4:0]:  
CMD2 = “0”  
WRITE to SPI Register with address ADDR[4:0]:  
CMD2 = “1”  
READ Operation  
If the Master wants to read data from Status or Control  
Registers, it initiates the communication by sending a  
Registers are updated with internal status at the rising  
edge of the internal AMIS30543 clock when CS = 1  
CS  
COMMAND  
COMMAND  
DI  
READ DATA from ADDR 1  
DATA from previous command or  
NOT VALID after POR or RESET  
DATA  
DATA  
DO  
OLD DATA or NOT VALID  
DATA from ADDR1  
Figure 20. Single READ Operation where DATA from SPI Register with Address 1 is Read by the Master  
All 4 Status Registers (see SPI Registers) contain 7 data  
bits and a parity check bit. The most significant bit (D7)  
represents a parity of D[6:0]. If the number of logical ones  
in D[6:0] is odd, the parity bit D7 equals “1”. If the number  
of logical ones in D[6:0] is even then the parity bit D7 equals  
“0”. This simple mechanism protects against noise and  
increases the consistency of the transmitted data. If a parity  
check error occurs it is recommended to initiate an  
additional READ command to obtain the status again.  
Also the Control Registers can be read out following the  
same routine. Control Registers don’t have a parity check.  
The CS line is active low and may remain low between  
successive READ commands as illustrated in Figure 22.  
There is however one exception. In case an error condition  
is latched in one of Status Registers (see SPI Registers) the  
ERR pin is activated (See Section Error Output). This signal  
flags a problem to the external microcontroller. By reading  
the Status Registers information about the root cause of the  
problem can be determined. After this READ operation the  
Status Registers are cleared. Because the Status Registers  
and ERR pin (see SPI Registers) are only updated by the  
internal system clock when the CS line is high, the Master  
should force CS high immediately after the READ  
operation. For the same reason it is recommended to keep  
the CS line high always when the SPI bus is idle.  
WRITE Operation  
If the Master wants to write data to a Control Register it  
initiates the communication by sending a WRITE  
command. This contains the address of the SPI register to  
write to. The command is followed with a data byte. This  
incoming data will be stored in the corresponding Control  
Register after CS goes from low to high! AMIS30543  
responds on every incoming byte by shifting out via DO the  
data stored in the last received address.  
It is important that the writing action (command address  
and data) to the Control Register is exactly 16 bits long. If  
more or less bits are transmitted the complete transfer packet  
is ignored.  
A WRITE command executed for a readonly register  
(e.g. Status Registers) will not affect the addressed register  
and the device operation.  
Because after a poweronreset the initial address is  
unknown the data shifted out via DO is not valid.  
www.onsemi.com  
32  
AMIS30543  
The NEW DATA is written into the corresponding  
internal register at the rising edge of CS  
CS  
DI  
COMMAND  
DATA  
NEW DATA for ADDR3  
WRITE DATA to ADDR3  
DATA from previous command or  
NOT VALID after POR or RESET  
DATA  
DATA  
DO  
OLD DATA or NOT VALID  
OLD DATA from ADDR3  
Figure 21. Single WRITE Operation Where DATA from the Master is Written in SPI Register with Address 3  
Examples of combined READ and WRITE  
Operations  
In the following examples successive READ and WRITE  
operations are combined. In Figure 22 the Master first reads  
the status from Register at ADDR4 and at ADDR5 followed  
by writing a control byte in Control Register at ADDR2.  
Note that during the write command the old data of the  
pointed register is returned at the moment the new data is  
shifted in  
Registers are updated with the internal  
status at the rising edge of the internal  
AMIS30543 clock when CS = 1  
The NEW DATA is written into the  
corresponding internal register at  
the rising edge of CS  
CS  
COMMAND  
DATA  
COMMAND  
COMMAND  
WRITE DATA  
to ADDR2  
READ DATA  
from ADDR4  
READ DATA  
from ADDR5  
NEW DATA  
for ADDR2  
DI  
DATA from previous  
command or NOT VALID  
after POR or RESET  
DATA  
DATA  
DATA  
DATA  
DATA  
from ADDR4  
OLD DATA  
from ADDR2  
OLD DATA  
or NOT VALID  
DATA  
from ADDR5  
DO  
Figure 22. 2 Successive READ Commands Followed by a WRITE Command  
After the write operation the Master could initiate a read  
back command in order to verify the data correctly written  
as illustrated in Figure 23. During reception of the READ  
command the old data is returned for a second time. Only  
after receiving the READ command the new data is  
transmitted. This rule also applies when the master device  
wants to initiate an SPI transfer to read the Status Registers.  
Because the internal system clock updates the Status  
Registers only when CS line is high, the first read out byte  
might represent old status information.  
www.onsemi.com  
33  
 
AMIS30543  
The NEW DATA is written into the  
corresponding internal register at  
the rising edge of CS  
Registers are updated with  
the internal status at the  
rising edge of CS  
CS  
DI  
COMMAND  
DATA  
COMMAND  
READ DATA  
from ADDR2  
WRITE DATA  
to ADDR2  
NEW DATA  
forADDR2  
COMMAND  
DATA from previous  
command or NOT VALID  
after POR or RESET  
DATA  
DATA  
DATA  
DATA  
NEW DATA  
from ADDR2  
OLD DATA  
or NOT VALID  
OLD DATA  
fromADDR2  
OLD DATA  
from ADDR2  
DO  
Figure 23. A WRITE Operation Where DATA from the Master is Written in SPI Register with Address 2 Followed by  
a READ Back Operation to Confirm a Correct WRITE Operation  
NOTE: The internal dataout shift buffer of AMIS30543 is updated with the content of the selected SPI register only at the last (every  
eight) falling edge of the CLK signal (see SPI Transfer Format and Pin Signals). As a result, new data for transmission cannot be  
written to the shift buffer at the beginning of the transfer packet and the first byte shifted out might represent old data.  
Table 11. SPI CONTROL REGISTERS (All SPI control registers have Read/Write Access and default to “0” after poweron or hard  
reset)  
Structure  
Bit 7  
R/W  
0
Bit 6  
R/W  
0
Bit 5  
R/W  
0
Bit 4  
R/W  
0
Bit 3  
R/W  
0
Bit 2  
Bit 1  
R/W  
0
Bit 0  
R/W  
0
Content  
Access  
Reset  
Data  
R/W  
0
Address  
WR (00h)  
CR0 (01h)  
CR1 (02h)  
CR2 (03h)  
CR3 (09h)  
WDEN  
WDT[3:0]  
Data  
SM[2:0]  
NXTP  
SLP  
CUR[4:0]  
PWMJ  
Data  
DIRCTRL  
MOTEN  
SLAG  
SLAT  
PWMF  
EMC[1:0]  
Data  
Data  
ESM[2:0]  
Where:  
R/W  
Reset:  
Read and Write access  
Status after powerOn or hard reset  
www.onsemi.com  
34  
AMIS30543  
Table 12. SPI CONTROL PARAMETER OVERVIEW  
Symbol  
Description  
Status  
<DIRCTRL> = 0  
Value  
DIRCTRL  
Controls the direction of rotation (in combination with  
logic level on input DIR)  
<DIR> = 0  
<DIR> = 1  
CW motion (Note 15)  
<DIRCTRL> = 1  
<DIRCTRL> = 0  
<DIRCTRL> = 1  
CCW motion  
(Note 15)  
CCW motion  
(Note 15)  
CW motion (Note 15)  
NXTP  
Selects if NXT triggers on rising or falling edge  
<NXTP> = 0  
<NXTP> = 1  
00  
Trigger on rising edge  
Trigger on falling edge  
Very Fast  
EMC[1:0]  
Turn On – Turnoff Slopes of motor driver (Note 14)  
01  
Fast  
10  
Slow  
11  
Very Slow  
SLAT  
SLAG  
Speed load angle transparency bit  
Speed load angle gain setting  
<SLAT> = 0  
<SLAT> = 1  
<SLAG> = 0  
<SLAG> = 1  
<PWMF> = 0  
<PWMF> = 1  
<PWMJ> = 0  
<PWMJ> = 1  
000  
SLA is not transparent  
SLA is transparent  
Gain = 0.5  
Gain = 0.25  
PWMF  
PWMJ  
SM[2:0]  
Enables doubling of the PWM frequency (Note 14)  
Enables jittery PWM  
Default Frequency  
Double Frequency  
Jitter disabled  
Jitter enabled  
Stepmode (only valid if ESM[2:0] = 000)  
1/32 Micro Step  
1/16 Micro Step  
1/8 Micro Step  
001  
010  
011  
1/4 Micro Step  
100  
Compensated Half Step  
Uncompensated Half Step  
Uncompensated full step  
Uncompensated full step  
1/128 MicroStep  
1/64 MicroStep  
101  
110  
111  
001  
ESM[2:0]  
Stepmode  
010  
011  
Compensated full step, 2 phase on  
Compensated full step, 1 phase on  
Stepping mode defined by SM[2:0]  
Active mode  
100  
Other  
SLP  
Enables sleep mode (if V > 9 V)  
<SLP> = 0  
<SLP> = 1  
<MOTEN> = 0  
<MOTEN> = 1  
BB  
Sleep mode  
MOTEN  
Activates the motor driver outputs  
Drivers disabled  
Drivers enabled  
14.The typical values can be found in Table 4: DC Parameters and in Table 5: AC parameters  
15.Depending on the wiring of the motor connections  
www.onsemi.com  
35  
 
AMIS30543  
CUR[4:0]  
Selects IMCmaxpeak. This is the peak or amplitude of the regulated current waveform in the motor coils.  
Table 13. SPI CONTROL PARAMETER OVERVIEW CUR[4:0]  
Current Range  
Current (mA)  
Current Range  
Current (mA)  
(Note 17)  
(Note 16)  
(Note 17)  
(Note 16)  
Index CUR[4:0]  
Index CUR[4:0]  
16  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
132  
245  
355  
395  
445  
485  
540  
585  
640  
715  
780  
870  
955  
1060  
1150  
1260  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1405  
1520  
1695  
1850  
2070  
2240  
2440  
2700  
2845  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
1
2
3
4
5
6
7
3
8
9
10  
11  
12  
13  
14  
15  
2
16.Typical current amplitude at T = 125  
J
17.Reducing the current over different current ranges might trigger overcurrent detection. See dedicated application note for solutions  
SPI Status Register Description  
All 5 SPI status registers have Read Access and are default to “0” after poweron or hard reset.  
Table 14. SPI STATUS REGISTERS  
Structure  
Bit 7  
R
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
Bit 1  
Bit 0  
Content  
Access  
R
0
R
0
R
0
Reset  
0
0
0
0
0
Address  
SR0 (04h)  
SR1 (05h)  
SR2 (06h)  
SR3 (07h)  
SR4 (0Ah)  
Data is not latched  
Data is latched  
Data is latched  
Data is not latched  
Data is not latched  
PAR  
PAR  
PAR  
PAR  
PAR  
TW  
CPFAIL  
OVCXPB  
OVCYPB  
WD  
OPENX  
OVCXNB  
OVCYNB  
OPENY  
OVCXPT  
OVCYPT  
OVCXNT  
OVCYNT  
TSD  
MSP[8:2]  
MSP[6:0]  
Where:  
R
Read only mode access  
Reset  
PAR  
Status after poweron or hard reset  
Parity check  
www.onsemi.com  
36  
 
AMIS30543  
Table 15. SPI STATUS FLAGS OVERVIEW  
Length  
Related  
SPI Register  
Reset  
State  
(bit)  
Mnemonic  
Flag  
Comment  
CPFail  
Charge pump failure  
1
Status Register 0  
‘0’ = no failure  
‘1’ = failure: indicates that the charge pump does  
not reach the required voltage level. Note 1  
‘0’  
MSP[8:0]  
Microstep position  
9
Status Register 3 and Translator micro step position  
Status Register 4  
‘000000000’  
OPENX  
OPENY  
OPEN Coil X  
OPEN Coil Y  
1
1
1
Status Register 0  
Status Register 0  
Status Register 1  
‘1’ = Open coil detected  
‘1’ = Open coil detected  
‘0’  
‘0’  
‘0’  
OVCXNB OVer Current on X  
Hbridge; MOTXN  
terminal; Bottom  
tran.  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at bottom transistor XNterminal  
OVCXNT OVer Current on X  
Hbridge; MOTXN  
1
1
Status Register 1  
Status Register 1  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at top transistor XNterminal  
‘0’  
‘0’  
terminal; Top transist.  
OVCXPB OVer Current on X  
Hbridge; MOTXP  
terminal; Bottom  
tran.  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at bottom transistor XPterminal  
OVCXPT  
OVer Current on X  
Hbridge; MOTXP  
terminal; Top transist.  
1
1
Status Register 1  
Status Register 2  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at top transistor XPterminal  
‘0’  
‘0’  
OVCYNB OVer Current on Y  
Hbridge; MOTYN  
terminal; Bottom  
tran.  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at bottom transistor YNterminal  
OVCYNT OVer Current on Y  
Hbridge; MOTYN  
1
1
Status Register 2  
Status Register 2  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at top transistor YNterminal  
‘0’  
‘0’  
terminal; Top transist.  
OVCYPB OVer Current on Y  
Hbridge; MOTYP  
terminal; Bottom  
tran.  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at bottom transistor YPterminal  
OVCYPT  
OVer Current on Y  
Hbridge; MOTYP  
terminal; Top transist.  
1
Status Register 2  
‘0’ = no failure  
‘1’ = failure: indicates that over current is detected  
at top transistor YPterminal  
‘0’  
TSD  
TW  
Thermal shutdown  
Thermal warning  
Watchdog event  
1
1
1
Status Register 2  
Status Register 0  
Status Register 0  
‘0’  
‘0’  
‘0’  
WD  
‘1’ = watchdog reset after timeout  
NOTE: WD This bit indicates that the watchdog timer has not been cleared properly. If the master reads that WD is set to “1” after reset,  
it means that a watchdog reset occurred (warm boot) instead of POR (cold boot). WD bit will be cleared only when the master  
writes “0” to WDEN bit.  
Table 16. ORDERING INFORMATION  
Temperature  
Range  
Part No.  
AMIS30543C5431G  
Peak Current  
Package  
Shipping  
3000 mA  
40°C to 125°C  
NQFP32 (7 x 7 mm)  
(PbFree)  
Units / Tubes  
AMIS30543C5431RG  
3000 mA  
40°C to 125°C  
NQFP32 (7 x 7 mm)  
(PbFree)  
Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
37  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
QFN32 7x7, 0.65P  
CASE 485J02  
ISSUE E  
DATE 30 JAN 2013  
1
32  
NOTES:  
B
E
D
A
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
SCALE 2:1  
L
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.25MM FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
INDICATOR  
L1  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
0.15  
C
2X  
A3  
0.20 REF  
b
D
0.25  
7.00 BSC  
0.35  
EXPOSED Cu  
MOLD CMPD  
2X  
0.15 C  
D2 5.16  
5.36  
TOP VIEW  
E
7.00 BSC  
5.36  
DETAIL B  
A3  
0.10  
C
C
DETAIL B  
−−−  
0.50  
0.15  
ALTERNATE  
A
CONSTRUCTION  
0.08  
A1  
SIDE VIEW  
D2  
SEATING  
PLANE  
NOTE 4  
GENERIC  
MARKING DIAGRAM*  
C
DETAIL A  
32X  
1
L
K
9
16  
XXXXXXXXX  
XXXXXXXXX  
AWLYYWWG  
17  
8
1
E2  
A
= Assembly Location  
WL = Wafer Lot  
YY = Year  
24  
32  
25  
WW = Work Week  
32X  
b
0.10 C  
e
e/2  
G
= PbFree Package  
A B  
0.05 C  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
NOTE 3  
BOTTOM VIEW  
RECOMMENDED  
PbFree indicator, “G” or microdot “ G”,  
MOUNTING FOOTPRINT  
may or may not be present.  
7.30  
5.46  
32X  
0.63  
PACKAGE  
OUTLINE  
1
5.46  
7.30  
32X  
0.40  
0.65  
PITCH  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON11451D  
QFN32 7X7, 0.65MM PITCH  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY