BC307BRLRM [ONSEMI]

100mA, 45V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN;
BC307BRLRM
型号: BC307BRLRM
厂家: ONSEMI    ONSEMI
描述:

100mA, 45V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN

文件: 总34页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
PNP Silicon  
COLLECTOR  
1
2
BASE  
3
EMITTER  
1
2
3
CASE 29–04, STYLE 17  
TO–92 (TO–226AA)  
MAXIMUM RATINGS  
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
EmitterBase Voltage  
Symbol BC307, B, C  
BC308C  
–25  
Unit  
Vdc  
V
CEO  
V
CBO  
V
EBO  
–45  
–50  
–30  
Vdc  
–5.0  
Vdc  
Collector Current — Continuous  
I
C
–100  
mAdc  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
350  
2.8  
mW  
mW/°C  
A
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
1.0  
8.0  
Watts  
mW/°C  
C
Operating and Storage Junction  
Temperature Range  
T , T  
55 to +150  
°C  
J
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
357  
125  
Unit  
°C/W  
°C/W  
Thermal Resistance, Junction to Ambient  
Thermal Resistance, Junction to Case  
R
R
JA  
JC  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Breakdown Voltage  
(I = –2.0 mAdc, I = 0)  
BC307,B,C  
BC308C  
V
V
–45  
–25  
Vdc  
Vdc  
(BR)CEO  
C
B
EmitterBase Breakdown Voltage  
(I = –100 Adc, I = 0)  
BC307,B,C  
BC308C  
–5.0  
–5.0  
(BR)EBO  
E
C
Collector–Emitter Leakage Current  
I
CES  
(V  
CES  
(V  
CES  
(V  
CES  
(V  
CES  
= –50 V, V  
= –30 V, V  
= –50 V, V  
= –30 V, V  
= 0)  
= 0)  
BC307,B,C  
BC308C  
BC307,B,C  
BC308C  
–0.2  
–0.2  
–0.2  
–0.2  
–15  
–15  
–4.0  
–4.0  
nAdc  
BE  
BE  
BE  
BE  
= 0) T = 125°C  
= 0) T = 125°C  
µA  
A
A
REV 1  
2–88  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain  
(I = –10 µAdc, V  
C CE  
h
FE  
= –5.0 Vdc)  
BC307B  
BC307C/308C  
150  
270  
(I = –2.0 mAdc, V  
C
= –5.0 Vdc)  
BC307  
BC307B/308B  
BC307C/308C  
120  
200  
420  
290  
500  
800  
460  
800  
CE  
(I = –100 mAdc, V  
C CE  
= –5.0 Vdc)  
BC307B  
BC307C/308C  
180  
300  
CollectorEmitter Saturation Voltage  
(I = –10 mAdc, I = –0.5 mAdc)  
V
V
Vdc  
CE(sat)  
–0.10  
–0.30  
–0.25  
–0.3  
–0.6  
C
B
(I = –10 mAdc, I = see Note 1)  
C
C
B
B
(I = –100 mAdc, I = –5.0 mAdc)  
BaseEmitter Saturation Voltage  
(I = –10 mAdc, I = –0.5 mAdc)  
Vdc  
Vdc  
BE(sat)  
–0.7  
–1.0  
C
C
B
B
(I = –100 mAdc, I = –5.0 mAdc)  
Base–Emitter On Voltage  
(I = –2.0 mAdc, V = –5.0 Vdc)  
V
–0.55  
–0.62  
–0.7  
BE(on)  
C
CE  
DYNAMIC CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
T
MHz  
(I = –10 mAdc, V  
= –5.0 Vdc, f = 100 MHz)  
CE  
BC307,B,C  
BC308C  
280  
320  
C
Common Base Capacitance  
(V = –10 Vdc, I = 0, f = 1.0 MHz)  
C
6.0  
pF  
dB  
cbo  
CB  
Noise Figure  
C
NF  
(I = –0.2 mAdc, V  
C
= –5.0 Vdc, R = 2.0 k,  
S
CE  
f = 1.0 kHz)  
BC307,B,C  
BC308C  
2.0  
10  
10  
(I = –0.2 mAdc, V  
= –5.0 Vdc, R = 2.0 k,  
S
C
CE  
f = 1.0 kHz, f = 200 Hz)  
2.0  
1. I = –10 mAdc on the constant base current characteristic, which yields the point I = –11 mAdc, V  
= –1.0 V.  
C
C
CE  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
2–89  
TYPICAL CHARACTERISTICS  
2.0  
1.5  
–1.0  
T = 25°C  
A
V
= –10 V  
–0.9  
–0.8  
–0.7  
–0.6  
–0.5  
–0.4  
CE  
V
@ I /I = 10  
BE(sat) C B  
T = 25°C  
A
1.0  
V
BE(on)  
@ V = –10 V  
CE  
0.7  
0.5  
–0.3  
–0.2  
–0.1  
0
0.3  
0.2  
V
@ I /I = 10  
CE(sat) C B  
–0.2 –0.5 –1.0 –2.0 –5.0 –10 –20  
–50 –100 –200  
–0.1 –0.2  
–0.5 –1.0 –2.0  
–5.0 –10 –20  
–50 –100  
I , COLLECTOR CURRENT (mAdc)  
C
I , COLLECTOR CURRENT (mAdc)  
C
Figure 1. Normalized DC Current Gain  
Figure 2. “Saturation” and “On” Voltages  
10  
7.0  
5.0  
400  
300  
C
ib  
200  
150  
V
= –10 V  
T = 25°C  
A
CE  
T = 25°C  
A
100  
80  
3.0  
2.0  
C
ob  
60  
40  
30  
20  
–0.5  
1.0  
–1.0  
–2.0 –3.0 –5.0  
–10  
–20 –30 –50  
–0.4 –0.6 –1.0  
–2.0  
–4.0 –6.0 –10  
–20 –30 –40  
I , COLLECTOR CURRENT (mAdc)  
C
V , REVERSE VOLTAGE (VOLTS)  
R
Figure 3. Current–Gain — Bandwidth Product  
Figure 4. Capacitances  
1.0  
150  
140  
0.5  
0.3  
V
= –10 V  
CE  
f = 1.0 kHz  
V
= –10 V  
CE  
f = 1.0 kHz  
T = 25°C  
A
T = 25°C  
A
130  
120  
110  
100  
0.1  
0.05  
0.03  
0.01  
–0.1  
–0.2  
–0.5  
–1.0  
–2.0  
–5.0  
–10  
–0.1  
–0.2 –0.3 –0.5  
–1.0  
–2.0 –3.0 –5.0  
–10  
I , COLLECTOR CURRENT (mAdc)  
C
I , COLLECTOR CURRENT (mAdc)  
C
Figure 5. Output Admittance  
Figure 6. Base Spreading Resistance  
2–90  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
EMBOSSED TAPE AND REEL  
SOT-23, SC-59, SC-70/SOT-323, SC–90/SOT–416, SOT-223 and SO-16 packages are available only in  
Tape and Reel. Use the appropriate suffix indicated below to order any of the SOT-23, SC-59,  
SC-70/SOT-323, SOT-223 and SO-16 packages. (See Section 6 on Packaging for additional information).  
SOT-23:  
SC-59:  
SC-70/  
available in 8 mm Tape and Reel  
Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.  
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.  
available in 8 mm Tape and Reel  
Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.  
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.  
available in 8 mm Tape and Reel  
SOT-323: Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.  
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.  
SOT-223: available in 12 mm Tape and Reel  
Use the device title (which already includes the “T1” suffix) to order the 7 inch/1000 unit reel.  
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/4000 unit reel.  
SO-16:  
available in 16 mm Tape and Reel  
Add an “R1” suffix to the device title to order the 7 inch/500 unit reel.  
Add an “R2” suffix to the device title to order the 13 inch/2500 unit reel.  
RADIAL TAPE IN FAN FOLD BOX OR REEL  
TO-92 packages are available in both bulk shipments and in Radial Tape in Fan Fold Boxes or Reels.  
Fan Fold Boxes and Radial Tape Reel are the best methods for capturing devices for automatic insertion in  
printed circuit boards.  
TO-92:  
available in Fan Fold Box  
Add an “RLR” suffix and the appropriate Style code* to the device title to order the Fan Fold box.  
available in 365 mm Radial Tape Reel  
Add an “RLR” suffix and the appropriate Style code* to the device title to order the Radial Tape  
Reel.  
*Refer to Section 6 on Packaging for Style code characters and additional information on ordering  
*requirements.  
DEVICE MARKINGS/DATE CODE CHARACTERS  
SOT-23, SC-59, SC-70/SOT-323, and the SC–90/SOT–416 packages have a device marking and a date  
code etched on the device. The generic example below depicts both the device marking and a representa-  
tion of the date code that appears on the SC-70/SOT-323, SC-59 and SOT-23 packages.  
D
ABC  
The “D” represents a smaller alpha digit Date Code. The Date Code indicates the actual month in which the  
part was manufactured.  
2–2  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Tape and Reel Specifications  
and Packaging Specifications  
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the  
shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure  
cavity for the product when sealed with the “peel–back” cover tape.  
Two Reel Sizes Available (7and 13)  
Used for Automatic Pick and Place Feed Systems  
Minimizes Product Handling  
SOD–123, SC–59, SC–70/SOT–323, SC–70ML/SOT–363,  
SOT–23, TSOP–6, in 8 mm Tape  
SOT–223 in 12 mm Tape  
EIA 481, –1, –2  
SO–14, SO–16 in 16 mm Tape  
Usethestandarddevicetitleandaddtherequiredsuffixaslistedintheoptiontableonthefollowingpage. Notethattheindividual  
reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum lot size is  
one full reel for each line item, and orders are required to be in increments of the single reel quantity.  
SC–70ML/SOT–363, TSOP–6  
T1 ORIENTATION  
SC–59, SC–70/SOT–323, SOT–23  
SOD–123  
8 mm  
8 mm  
8 mm  
SC–70ML/SOT–363  
SOT–223  
SO–14, 16  
DIRECTION  
OF FEED  
T2 ORIENTATION  
12 mm  
16 mm  
8 mm  
EMBOSSED TAPE AND REEL ORDERING INFORMATION  
Devices Per Reel  
and Minimum  
Order Quantity  
Tape Width  
(mm)  
Pitch  
(inch)  
Reel Size  
mm (inch)  
Device  
Suffix  
mm  
Package  
SC–59  
8
4.0 ± 0.1 (.157 ± .004)  
4.0 ± 0.1 (.157 ± .004)  
178  
(7)  
3,000  
T1  
SC–70/SOT–323  
8
8
178  
330  
(7)  
(13)  
3,000  
10,000  
T1  
T3  
SO–14  
SO–16  
16  
16  
8.0 ± 0.1 (.315 ± .004)  
8.0 ± 0.1 (.315 ± .004)  
4.0 ± 0.1 (.157 ± .004)  
4.0 ± 0.1 (.157 ± .004)  
8.0 ± 0.1 (.315 ± .004)  
4.0 ± 0.1 (.157 ± .004)  
4.0 ± 0.1 (.157 ± .004)  
178  
330  
(7)  
(13)  
500  
2,500  
R1  
R2  
16  
16  
178  
330  
(7)  
(13)  
500  
2,500  
R1  
R2  
SOD–123  
8
8
178  
330  
(7)  
(13)  
3,000  
10,000  
T1  
T3  
SOT–23  
8
8
178  
330  
(7)  
(13)  
3,000  
10,000  
T1  
T3  
SOT–223  
12  
12  
178  
330  
(7)  
(13)  
1,000  
4,000  
T1  
T3  
SC–70ML/SOT–363  
TSOP–6  
8
8
178  
178  
(7)  
(7)  
3,000  
3,000  
T1  
T2  
8
178  
(7)  
3,000  
T1  
Tape and Reel Specifications  
6–2  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
EMBOSSED TAPE AND REEL DATA FOR DISCRETES  
CARRIER TAPE SPECIFICATIONS  
10 Pitches Cumulative Tolerance on Tape  
P
0
± 0.2 mm  
(± 0.008)  
K
t
P
2
D
E
F
Top Cover  
Tape  
A
0
W
K
0
B
0
B
1
See  
Note 1  
P
D
1
Center Lines  
of Cavity  
Embossment  
For Components  
2.0 mm x 1.2 mm and Larger  
For Machine Reference Only  
Including Draft and RADII  
User Direction of Feed  
Concentric Around B  
0
* Top Cover Tape  
Thickness (t )  
0.10 mm  
1
Bar Code Label  
R Min  
(.004) Max.  
Tape and Components  
Shall Pass Around Radius R”  
Without Damage  
Bending Radius  
Embossed Carrier  
100 mm  
(3.937)  
Embossment  
10°  
Maximum Component Rotation  
1 mm Max  
Typical Component  
Cavity Center Line  
Tape  
1 mm  
(.039) Max  
250 mm  
(9.843)  
Typical Component  
Center Line  
Camber (Top View)  
Allowable Camber To Be 1 mm/100 mm Nonaccumulative Over 250 mm  
DIMENSIONS  
Tape  
Size  
B
Max  
D
D
E
F
K
P
P
2
R Min  
T Max  
W Max  
1
1
0
8 mm  
4.55 mm  
(.179)  
1.0 Min  
(.039)  
3.5±0.05 mm  
(.138±.002)  
2.4 mm Max  
(.094)  
25 mm  
(.98)  
8.3 mm  
(.327)  
1.5+0.1 mm  
0.0  
1.75±0.1 mm  
(.069±.004)  
4.0±0.1 mm  
(.157±.004)  
2.0±0.1 mm  
(.079±.002)  
0.6 mm  
(.024)  
(.059+.004″  
0.0)  
12 mm  
16 mm  
24 mm  
8.2 mm  
(.323)  
5.5±0.05 mm  
(.217±.002)  
6.4 mm Max  
(.252)  
12±.30 mm  
(.470±.012)  
1.5 mm Min  
(.060)  
30 mm  
(1.18)  
12.1 mm  
(.476)  
7.5±0.10 mm  
(.295±.004)  
7.9 mm Max  
(.311)  
16.3 mm  
(.642)  
20.1 mm  
(.791)  
11.5±0.1 mm  
(.453±.004)  
11.9 mm Max  
(.468)  
24.3 mm  
(.957)  
Metric dimensions govern — English are in parentheses for reference only.  
NOTE 1: A , B , and K are determined by component size. The clearance between the components and the cavity must be within .05 mm min. to .50 mm max.,  
0
0
0
NOTE 1: the component cannot rotate more than 10° within the determined cavity.  
NOTE 2: If B exceeds 4.2 mm (.165) for 8 mm embossed tape, the tape may not feed through all tape feeders.  
1
NOTE 3: Pitch information is contained in the Embossed Tape and Reel Ordering Information on pg. 5.12–3.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Tape and Reel Specifications  
6–3  
EMBOSSED TAPE AND REEL DATA FOR DISCRETES  
T Max  
Outside Dimension  
Measured at Edge  
1.5 mm Min  
(.06)  
13.0 mm ± 0.5 mm  
(.512″ ± .002)  
A
20.2 mm Min  
(.795)  
50 mm Min  
(1.969)  
Full Radius  
Inside Dimension  
G
Measured Near Hub  
Size  
A Max  
G
T Max  
8 mm  
330 mm  
8.4 mm + 1.5 mm, 0.0  
14.4 mm  
(12.992)  
(.33+ .059, 0.00)  
(.56)  
12 mm  
16 mm  
24 mm  
330 mm  
(12.992)  
12.4 mm + 2.0 mm, 0.0  
(.49+ .079, 0.00)  
18.4 mm  
(.72)  
360 mm  
(14.173)  
16.4 mm + 2.0 mm, 0.0  
(.646+ .078, 0.00)  
22.4 mm  
(.882)  
360 mm  
24.4 mm + 2.0 mm, 0.0  
30.4 mm  
(14.173)  
(.961+ .070, 0.00)  
(1.197)  
Reel Dimensions  
Metric Dimensions Govern — English are in parentheses for reference only  
Tape and Reel Specifications  
6–4  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TO–92 EIA, IEC, EIAJ  
Radial Tape in Fan Fold  
Box or On Reel  
TO–92  
RADIAL  
TAPE IN  
FAN FOLD  
BOX OR  
ON REEL  
Radial tape in fan fold box or on reel of the reliable TO–92 package are  
the best methods of capturing devices for automatic insertion in printed  
circuit boards. These methods of taping are compatible with various  
equipment for active and passive component insertion.  
Available in Fan Fold Box  
Available on 365 mm Reels  
Accommodates All Standard Inserters  
Allows Flexible Circuit Board Layout  
2.5 mm Pin Spacing for Soldering  
EIA–468, IEC 286–2, EIAJ RC1008B  
Ordering Notes:  
When ordering radial tape in fan fold box or on reel, specify the style per  
Figures 3 through 8. Add the suffix “RLR” and “Style” to the device title, i.e.  
MPS3904RLRA. This will be a standard MPS3904 radial taped and  
supplied on a reel per Figure 9.  
Fan Fold Box Information — Order in increments of 2000.  
Reel Information — Order in increments of 2000.  
US/European Suffix Conversions  
US  
EUROPE  
RL  
RLRA  
RLRE  
RLRM  
RL1  
ZL1  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Packaging Specifications  
6–5  
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL  
H2A  
H2A  
H2B  
H2B  
H
W2  
H4  
H5  
T1  
L1  
H1  
W1  
W
L
T
T2  
F1  
F2  
D
P2  
P1  
P2  
P
Figure 1. Device Positioning on Tape  
Specification  
Millimeter  
Inches  
Symbol  
D
Item  
Min  
Max  
Min  
Max  
0.1496  
0.015  
0.0945  
.059  
0.1653  
3.8  
4.2  
Tape Feedhole Diameter  
D2  
F1, F2  
H
0.020  
0.110  
.156  
0.38  
2.4  
1.5  
8.5  
0
0.51  
2.8  
Component Lead Thickness Dimension  
Component Lead Pitch  
4.0  
Bottom of Component to Seating Plane  
Feedhole Location  
H1  
H2A  
H2B  
H4  
H5  
L
0.3346  
0
0.3741  
0.039  
0.051  
0.768  
0.649  
0.433  
9.5  
1.0  
Deflection Left or Right  
0
0
1.0  
Deflection Front or Rear  
0.7086  
0.610  
0.3346  
0.09842  
0.4921  
0.2342  
0.1397  
0.06  
18  
19.5  
16.5  
11  
Feedhole to Bottom of Component  
Feedhole to Seating Plane  
Defective Unit Clipped Dimension  
Lead Wire Enclosure  
15.5  
8.5  
2.5  
12.5  
5.95  
3.55  
0.15  
L1  
P
0.5079  
0.2658  
0.1556  
0.08  
12.9  
6.75  
3.95  
0.20  
1.44  
0.65  
19  
Feedhole Pitch  
P1  
Feedhole Center to Center Lead  
First Lead Spacing Dimension  
Adhesive Tape Thickness  
Overall Taped Package Thickness  
Carrier Strip Thickness  
P2  
T
T1  
0.0567  
0.027  
0.7481  
0.2841  
0.01968  
T2  
0.014  
0.6889  
0.2165  
.0059  
0.35  
17.5  
5.5  
.15  
W
Carrier Strip Width  
W1  
W2  
6.3  
Adhesive Tape Width  
0.5  
Adhesive Tape Position  
NOTES:  
1. Maximum alignment deviation between leads not to be greater than 0.2 mm.  
2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.  
3. Component lead to tape adhesion must meet the pull test requirements established in Figures 5, 6 and 7.  
4. Maximum non–cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.  
5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.  
6. No more than 1 consecutive missing component is permitted.  
7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.  
8. Splices will not interfere with the sprocket feed holes.  
Packaging Specifications  
6–6  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL  
FAN FOLD BOX STYLES  
ADHESIVE TAPE ON  
TOP SIDE  
ADHESIVE TAPE ON  
TOP SIDE  
330 mm  
13”  
MAX  
FLAT SIDE  
ROUNDED SIDE  
CARRIER  
STRIP  
CARRIER  
STRIP  
252 mm  
9.92”  
MAX  
FLAT SIDE OF TRANSISTOR  
AND ADHESIVE TAPE VISIBLE.  
ROUNDED SIDE OF TRANSISTOR AND  
ADHESIVE TAPE VISIBLE.  
58 mm  
2.28”  
MAX  
Style M fan fold box is equivalent to styles E and F of  
reel pack dependent on feed orientation from box.  
Style P fan fold box is equivalent to styles A and B of  
reel pack dependent on feed orientation from box.  
Figure 2. Style M  
Figure 3. Style P  
Figure 4. Fan Fold Box Dimensions  
ADHESION PULL TESTS  
500 GRAM PULL FORCE  
70 GRAM  
PULL FORCE  
100 GRAM  
PULL FORCE  
16 mm  
16 mm  
HOLDING  
FIXTURE  
HOLDING  
FIXTURE  
HOLDING  
FIXTURE  
There shall be no deviation in the leads and  
no component leads shall be pulled free of  
the tape with a 500 gram load applied to the  
component body for 3 ± 1 second.  
The component shall not pull free with a 300 gram  
load applied to the leads for 3 ± 1 second.  
The component shall not pull free with a 70 gram  
load applied to the leads for 3 ± 1 second.  
Figure 5. Test #1  
Figure 6. Test #2  
Figure 7. Test #3  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Packaging Specifications  
6–7  
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL  
REEL STYLES  
CORE DIA.  
82mm ± 1mm  
ARBOR HOLE DIA.  
30.5mm ± 0.25mm  
MARKING NOTE  
HUB RECESS  
76.2mm ± 1mm  
RECESS DEPTH  
9.5mm MIN  
365mm + 3, – 0mm  
38.1mm ± 1mm  
48 mm  
MAX  
Material used must not cause deterioration of components or degrade lead solderability  
Figure 8. Reel Specifications  
ADHESIVE TAPE ON REVERSE SIDE  
CARRIER STRIP  
ROUNDED  
CARRIER STRIP  
FLAT SIDE  
SIDE  
ADHESIVE TAPE  
FEED  
FEED  
Rounded side of transistor and adhesive tape visible.  
Flat side of transistor and carrier strip visible  
(adhesive tape on reverse side).  
Figure 9. Style A  
Figure 10. Style B  
ADHESIVE TAPE ON REVERSE SIDE  
CARRIER STRIP  
ROUNDED  
SIDE  
CARRIER STRIP  
FLAT SIDE  
ADHESIVE TAPE  
FEED  
FEED  
Flat side of transistor and adhesive tape visible.  
Rounded side of transistor and carrier strip visible  
(adhesive tape on reverse side).  
Figure 11. Style E  
Figure 12. Style F  
Packaging Specifications  
6–8  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING SURFACE MOUNT PACKAGES  
RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to ensure proper solder connection inter-  
face between the board and the package. With the correct  
pad geometry, the packages will self align when subjected to  
a solder reflow process.  
POWER DISSIPATION FOR A SURFACE MOUNT DEVICE  
The power dissipation for a surface mount device is a func-  
tion of the drain/collector pad size. These can vary from the  
minimum pad size for soldering to a pad size given for  
maximum power dissipation. Power dissipation for a surface  
Although the power dissipation can almost be doubled with  
this method, area is taken up on the printed circuit board  
which can defeat the purpose of using surface mount  
technology. For example, a graph of R  
area is shown in Figure 1.  
versus drain pad  
θJA  
mount device is determined by T  
junction temperature of the die, R  
, the maximum rated  
, the thermal resistance  
J(max)  
θJA  
from the device junction to ambient, and the operating  
temperature, T . Using the values provided on the data  
Another alternative would be to use a ceramic substrate or  
an aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
A
sheet, P can be calculated as follows:  
D
T
– T  
A
θJA  
J(max)  
P
=
D
R
160  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
Board Material = 0.0625″  
G–10/FR–4, 2 oz Copper  
T = 25°C  
A
140  
120  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device. For example,  
0.8 Watts  
for a SOT–223 device, P is calculated as follows.  
D
150°C – 25°C  
156°C/W  
1.5 Watts  
= 800 milliwatts  
P
=
1.25 Watts*  
D
100  
80  
The 156°C/W for the SOT–223 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 800 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the surface mount packages. One is to increase the  
area of the drain/collector pad. By increasing the area of the  
drain/collector pad, the power dissipation can be increased.  
*Mounted on the DPAK footprint  
0.2 0.4  
0.0  
0.6  
A, AREA (SQUARE INCHES)  
0.8  
1.0  
Figure 1. Thermal Resistance versus Drain Pad  
Area for the SOT–223 Package (Typical)  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
circuit board, solder paste must be applied to the pads.  
Solder stencils are used to screen the optimum amount.  
These stencils are typically 0.008 inches thick and may be  
made of brass or stainless steel. For packages such as the  
SOT–23, SC–59, SC–70/SOT–323, SC–90/SOT–416,  
SOD–123, SOT–223, SOT–363, SO–14, SO–16, and  
TSOP–6 packages, the stencil opening should be the same  
as the pad size or a 1:1 registration.  
Surface Mount Information  
7–10  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to mini-  
mize the thermal stress to which the devices are subjected.  
Always preheat the device.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used since the use of forced  
cooling will increase the temperature gradient and will  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied during  
cooling.  
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference should be a maximum of 10°C.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of control  
settings that will give the desired heat pattern. The operator  
must set temperatures for several heating zones and a figure  
for belt speed. Taken together, these control settings make  
up a heating “profile” for that particular circuit board. On  
machines controlled by a computer, the computer remem-  
bers these profiles from one operating session to the next.  
Figure 2 shows a typical heating profile for use when  
soldering a surface mount device to a printed circuit board.  
This profile will vary among soldering systems, but it is a  
good starting point. Factors that can affect the profile include  
the type of soldering system in use, density and types of  
components on the board, type of solder used, and the type  
of board or substrate material being used. This profile shows  
temperature versus time. The line on the graph shows the  
actual temperature that might be experienced on the surface  
of a test board at or near a central solder joint. The two  
profiles are based on a high density and a low density board.  
The Vitronics SMD310 convection/infrared reflow soldering  
system was used to generate this profile. The type of solder  
used was 62/36/2 Tin Lead Silver with a melting point  
between 177189°C. When this type of furnace is used for  
solder reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
STEP 6  
VENT  
STEP 7  
COOLING  
STEP 1  
STEP 4  
STEP 2  
VENT  
SOAK”  
STEP 3  
HEATING  
ZONES 4 & 7  
SPIKE”  
PREHEAT  
ZONE 1  
RAMP”  
HEATING  
ZONES 3 & 6  
SOAK”  
HEATING  
ZONES 2 & 5  
RAMP”  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
200°C  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
100°C  
140°C  
MASS OF ASSEMBLY)  
100°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
50°C  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 2. Typical Solder Heating Profile  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Surface Mount Information  
7–11  
Footprints for Soldering  
0.037  
0.95  
0.037  
0.95  
0.037  
0.95  
0.037  
0.95  
0.094  
2.4  
0.079  
2.0  
0.039  
1.0  
0.035  
0.9  
inches  
mm  
0.031  
0.8  
inches  
0.031  
0.8  
mm  
SC–59  
SOT–23  
0.025  
0.65  
0.025  
0.65  
0.5 min. (3x)  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
1.4  
inches  
mm  
SC–70/SOT–323  
SOT 416/SC–90  
0.15  
3.8  
0.060  
1.52  
0.079  
2.0  
0.275  
7.0  
0.155  
4.0  
0.248  
6.3  
0.091  
2.3  
0.091  
2.3  
0.079  
2.0  
0.024  
0.6  
0.050  
1.270  
inches  
mm  
0.059  
1.5  
0.059  
1.5  
0.059  
1.5  
inches  
mm  
SOT–223  
SO–14, SO–16  
Surface Mount Information  
7–12  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
0.5 mm (min)  
0.91  
0.036  
1.22  
0.048  
2.36  
0.093  
4.19  
mm  
inches  
0.165  
1.9 mm  
SOD–123  
SOT–363  
(SC–70 6 LEAD)  
0.094  
2.4  
0.037  
0.95  
0.074  
1.9  
0.037  
0.95  
0.028  
0.7  
0.039  
1.0  
inches  
mm  
TSOP–6  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Surface Mount Information  
7–13  
Package Outline Dimensions  
Dimensions are in inches unless otherwise noted.  
NOTES:  
A
B
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
R
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSION D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
P
L
F
SEATING  
PLANE  
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.45  
4.32  
3.18  
0.41  
0.41  
1.15  
2.42  
0.39  
MAX  
5.20  
5.33  
4.19  
0.55  
0.48  
1.39  
2.66  
0.50  
–––  
A
B
C
D
F
G
H
J
K
L
N
P
0.175  
0.170  
0.125  
0.016  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
–––  
0.205  
0.210  
0.165  
0.022  
0.019  
0.055  
0.105  
0.020  
D
X X  
G
H
J
V
C
––– 12.70  
SECTION X–X  
–––  
0.105  
0.100  
–––  
6.35  
2.04  
–––  
2.93  
3.43  
–––  
1
2.66  
2.54  
–––  
N
N
R
V
0.115  
0.135  
–––  
–––  
STYLE 2:  
STYLE 1:  
PIN 1. EMITTER  
STYLE 3:  
STYLE 4:  
PIN 1. CATHODE  
STYLE 5:  
PIN 1. DRAIN  
STYLE 7:  
PIN 1. SOURCE  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
PIN 1. ANODE  
2. ANODE  
3. CATHODE  
2. BASE  
3. COLLECTOR  
2. CATHODE  
3. ANODE  
2. SOURCE  
3. GATE  
2. DRAIN  
3. GATE  
STYLE 14:  
STYLE 15:  
STYLE 17:  
STYLE 21:  
STYLE 22:  
STYLE 30:  
PIN 1. EMITTER  
2. COLLECTOR  
3. BASE  
PIN 1. ANODE 1  
2. CATHODE  
3. ANODE 2  
PIN 1. COLLECTOR  
2. BASE  
3. EMITTER  
PIN 1. COLLECTOR  
2. EMITTER  
3. BASE  
PIN 1. SOURCE  
2. GATE  
3. DRAIN  
PIN 1. DRAIN  
2. GATE  
3. SOURCE  
CASE 029–04  
(TO–226AA) TO–92  
PLASTIC  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSIONS D AND J APPLY BETWEEN L AND K  
MIMIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
B
R
SEATING  
PLANE  
P
L
F
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.44  
7.37  
3.18  
0.46  
0.41  
1.15  
2.42  
0.46  
MAX  
5.21  
7.87  
4.19  
0.56  
0.48  
1.39  
2.66  
0.61  
–––  
A
B
C
D
F
G
H
J
K
L
N
P
R
V
0.175  
0.290  
0.125  
0.018  
0.016  
0.045  
0.095  
0.018  
0.500  
0.250  
0.080  
–––  
0.205  
0.310  
0.165  
0.022  
0.019  
0.055  
0.105  
0.024  
X X  
G
D
H
J
V
––– 12.70  
–––  
0.105  
0.100  
–––  
6.35  
2.04  
–––  
3.43  
3.43  
–––  
SECTION X–X  
2.66  
2.54  
–––  
C
1
2
3
N
0.135  
0.135  
N
–––  
–––  
STYLE 1:  
PIN 1. EMITTER  
STYLE 14:  
PIN 1. EMITTER  
STYLE 22:  
PIN 1. SOURCE  
2. BASE  
3. COLLECTOR  
2. COLLECTOR  
3. BASE  
2. GATE  
3. DRAIN  
CASE 029–05  
(TO–226AE) TO–92  
1–WATT PLASTIC  
Package Outline Dimensions  
8–2  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE OUTLINE DIMENSIONS (continued)  
B
NOTES:  
1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B  
AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE  
INCLUDED WITHIN THIS CYLINDER, BUT SHALL  
NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.  
2. LEAD DIA NOT CONTROLLED IN ZONES F, TO  
ALLOW FOR FLASH, LEAD FINISH BUILDUP,  
AND MINOR IRREGULARITIES OTHER THAN  
HEAT SLUGS.  
D
K
F
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
A
B
D
F
5.84  
2.16  
0.46  
–––  
7.62 0.230 0.300  
2.72 0.085 0.107  
0.56 0.018 0.022  
F
1.27  
––– 0.050  
K
25.40 38.10 1.000 1.500  
K
All JEDEC dimensions and notes apply.  
CASE 51–02  
(DO–204AA)  
DO–7  
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND ZONE R IS  
UNCONTROLLED.  
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSIONS D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIM K MINIMUM.  
R
SEATING  
PLANE  
D
L
P
F
J
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.45  
4.32  
3.18  
0.41  
MAX  
5.21  
5.33  
4.49  
0.56  
0.482  
A
B
C
D
F
0.175  
0.170  
0.125  
0.016  
0.016  
0.205  
0.210  
0.165  
0.022  
SECTION X–X  
X X  
D
G
H
0.019 0.407  
G
H
J
K
L
N
P
0.050 BSC  
0.100 BSC  
0.014 0.016  
––– 12.70  
1.27 BSC  
3.54 BSC  
0.36  
0.41  
–––  
–––  
2.66  
1.27  
–––  
–––  
0.500  
0.250  
0.080  
–––  
V
–––  
0.105  
0.050  
–––  
6.35  
2.03  
–––  
2.93  
3.43  
C
R
V
0.115  
0.135  
–––  
1
2
N
N
STYLE 1:  
PIN 1. ANODE  
2. CATHODE  
CASE 182–02  
(T0–226AC) TO–92  
PLASTIC  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Package Outline Dimensions  
8–3  
PACKAGE OUTLINE DIMENSIONS (continued)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIUMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS OF  
BASE MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.0005 0.0040 0.013 0.100  
0.0034 0.0070 0.085 0.177  
K
L
S
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
0.69  
1.02  
2.64  
0.60  
H
J
D
V
K
STYLE 10:  
STYLE 11:  
PIN 1. ANODE  
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
STYLE 8:  
STYLE 9:  
PIN 1. ANODE  
PIN 1. DRAIN  
2. SOURCE  
3. GATE  
PIN 1. ANODE  
2. NO CONNECTION  
3. CATHODE  
2. CATHODE  
3. CATHODE–ANODE  
2. ANODE  
3. CATHODE  
3. COLLECTOR  
STYLE 12:  
STYLE 18:  
PIN 1. NO CONNECTION  
STYLE 19:  
PIN 1. CATHODE  
STYLE 21:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
2. CATHODE  
3. ANODE  
2. ANODE  
3. CATHODE–ANODE  
CASE 318–08  
(TO–236AB) SOT–23  
PLASTIC  
A
L
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
3
S
B
A
B
C
D
G
H
J
2.70  
1.30  
1.00  
0.35  
1.70  
0.013  
0.09  
0.20  
1.25  
2.50  
3.10 0.1063 0.1220  
1.70 0.0512 0.0669  
1.30 0.0394 0.0511  
0.50 0.0138 0.0196  
2.10 0.0670 0.0826  
0.100 0.0005 0.0040  
0.18 0.0034 0.0070  
0.60 0.0079 0.0236  
1.65 0.0493 0.0649  
3.00 0.0985 0.1181  
2
1
D
G
K
L
S
J
C
K
H
STYLE 4:  
PIN 1. N.C.  
STYLE 5:  
STYLE 1:  
PIN 1. EMITTER  
2. BASE  
STYLE 2:  
PIN 1. N.C.  
2. ANODE  
3. CATHODE  
STYLE 3:  
PIN 1. ANODE  
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
2. CATHODE  
3. ANODE  
2. ANODE  
3. CATHODE  
3. COLLECTOR  
CASE 318D–04  
SC–59  
Package Outline Dimensions  
8–4  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE OUTLINE DIMENSIONS (continued)  
A
F
NOTES:  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
4. CONTROLLING DIMENSION: INCH.  
4
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
B
MIN  
6.30  
3.30  
1.50  
0.60  
2.90  
2.20  
MAX  
6.70  
3.70  
1.75  
0.89  
3.20  
2.40  
0.100  
0.35  
2.00  
1.05  
10  
1
2
3
A
B
C
D
F
G
H
J
K
L
M
S
0.249  
0.130  
0.060  
0.024  
0.115  
0.087  
0.263  
0.145  
0.068  
0.035  
0.126  
0.094  
D
L
0.0008 0.0040 0.020  
G
0.009  
0.060  
0.033  
0
0.014  
0.078  
0.041  
10  
0.24  
1.50  
0.85  
0
J
C
0.08 (0003)  
0.264  
0.287  
6.70  
7.30  
M
H
K
STYLE 1:  
PIN 1. BASE  
STYLE 2:  
PIN 1. ANODE  
STYLE 3:  
PIN 1. GATE  
2. DRAIN  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
2. CATHODE  
3. NC  
4. CATHODE  
3. SOURCE  
4. DRAIN  
CASE 318E–04  
SOT–223  
A
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
6
5
2
4
B
S
1
3
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
D
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
G
M
J
C
0.05 (0.002)  
K
10  
0
10  
H
2.50  
3.00 0.0985 0.1181  
STYLE 1:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
4. SOURCE  
5. DRAIN  
6. DRAIN  
CASE 318G–02  
TSOP–6  
PLASTIC  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Package Outline Dimensions  
8–5  
PACKAGE OUTLINE DIMENSIONS (continued)  
A
L
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
3
2. CONTROLLING DIMENSION: INCH.  
B
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
1
2
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
0.425 REF  
0.650 BSC  
0.700 REF  
0.80  
2.00  
0.30  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
A
B
C
D
G
H
J
K
L
N
R
S
0.071 0.087  
0.045 0.053  
0.035 0.049  
0.012 0.016  
0.047 0.055  
0.000 0.004  
0.004 0.010  
0.017 REF  
D
V
G
0.026 BSC  
R
J
N
C
0.028 REF  
0.031 0.039  
0.079 0.087  
0.012 0.016  
1.00  
2.20  
0.40  
0.05 (0.002)  
V
K
H
STYLE 2:  
PIN 1. ANODE  
2. N.C.  
STYLE 3:  
PIN 1. BASE  
2. EMITTER  
STYLE 4:  
STYLE 5:  
PIN 1. ANODE  
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
2. ANODE  
3. CATHODE  
3. CATHODE  
3. COLLECTOR  
STYLE 7:  
STYLE 9:  
PIN 1. ANODE  
STYLE 10:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
PIN 1. CATHODE  
2. ANODE  
3. ANODE–CATHODE  
2. CATHODE  
3. CATHODE–ANODE  
CASE 419–02  
SC–70/SOT–323  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
G
V
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
A
B
C
D
G
H
J
K
N
S
0.071 0.087  
0.045 0.053  
0.031 0.043  
0.004 0.012  
0.026 BSC  
6
5
4
3
S
–B–  
0.65 BSC  
1
2
–––  
0.004  
–––  
0.10  
0.10  
0.10  
0.25  
0.30  
0.004 0.010  
0.004 0.012  
0.008 REF  
0.079 0.087  
0.012 0.016  
0.20 REF  
2.00  
0.30  
2.20  
0.40  
M
M
0.2 (0.008)  
B
D6 PL  
V
STYLE 1:  
PIN 1. EMITTER 2  
N
2. BASE 2  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
J
6. COLLECTOR 2  
C
STYLE 6:  
PIN 1. ANODE 2  
2. N/C  
3. CATHODE 1  
4. ANODE 1  
5. N/C  
K
H
6. CATHODE 2  
CASE 419B-01  
SOT–363  
Package Outline Dimensions  
8–6  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE OUTLINE DIMENSIONS (continued)  
A
C
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
H
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.40  
2.55  
0.95  
0.50  
0.25  
0.00  
–––  
MAX  
1.80  
2.85  
1.35  
0.70  
–––  
0.10  
0.15  
3.85  
A
B
C
D
E
H
J
0.055  
0.100  
0.037  
0.020  
0.004  
0.000  
–––  
0.071  
0.112  
0.053  
0.028  
–––  
0.004  
0.006  
0.152  
K
B
K
0.140  
3.55  
E
2
STYLE 1:  
PIN 1. CATHODE  
2. ANODE  
J
D
CASE 425–04  
SOD–123  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
–A–  
S
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
2
A
B
C
D
G
H
J
K
L
S
0.70  
1.40  
0.60  
0.15  
0.80 0.028 0.031  
1.80 0.055 0.071  
0.90 0.024 0.035  
0.30 0.006 0.012  
3
G
–B–  
1
D 3 PL  
0.20 (0.008)  
1.00 BSC  
0.039 BSC  
M
B
–––  
0.10  
1.45  
0.10  
0.10  
––– 0.004  
0.20 (0.008) A  
0.25 0.004 0.010  
1.75 0.057 0.069  
0.20 0.004 0.008  
K
0.50 BSC  
0.020 BSC  
STYLE 1:  
J
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
C
STYLE 4:  
L
H
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
CASE 463–01  
SOT–416/SC–90  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Package Outline Dimensions  
8–7  
PACKAGE OUTLINE DIMENSIONS (continued)  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
A
F
INCHES  
DIM MIN MAX  
0.770 18.16  
MILLIMETERS  
MIN  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
L
0.260  
0.185  
0.021  
0.070  
6.10  
3.69  
0.38  
1.02  
C
G
H
J
K
L
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
SEATING  
PLANE  
K
0.300 BSC  
7.62 BSC  
H
G
D
M
M
N
0
10  
0.039  
0
0.39  
10  
1.01  
0.015  
CASE 646–06  
14–PIN DIP  
PLASTIC  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
9
8
B
S
1
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
MIN MAX  
F
A
B
C
D
F
C
L
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
0.040  
0.70  
SEATING  
PLANE  
–T–  
G
H
J
K
L
M
S
0.100 BSC  
0.050 BSC  
0.008 0.015  
2.54 BSC  
1.27 BSC  
K
M
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295 0.305  
10  
0.020 0.040  
0.130  
2.80  
7.50  
0
G
D 16 PL  
0
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
CASE 648–08  
16–PIN DIP  
PLASTIC  
Package Outline Dimensions  
8–8  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE OUTLINE DIMENSIONS (continued)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
1
8
7
–B–  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
K
M
P
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T B  
A
7
0
5.80  
0.25  
6.20 0.228  
0.50 0.010  
0.244  
0.019  
R
CASE 751A–03  
SO–14  
PLASTIC  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00 0.386  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
R X 45  
K
C
G
J
K
M
P
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
J
M
D
16 PL  
7
0
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
R
CASE 751B–05  
SO–16  
PLASTIC  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Package Outline Dimensions  
8–9  
where:  
λ = failure rate  
OUTGOING QUALITY  
χ2 = chi–square function  
The Average Outgoing Quality (AOQ) refers to the number  
of devices per million that are outside the specification limits  
at the time of shipment. Motorola has established Six Sigma  
goals to improve its outgoing quality and will continue its ”error  
free performance” focus to achieve its goal of zero parts per  
million(PPM)outgoingquality. Motorola’spresentqualitylevel  
has lead to vendor certification programs with many of its  
customers. These programs ensure a level of quality which  
allows the customer either to reduce or eliminate the need for  
incoming inspections.  
α = (100 – confidence level) / 100  
d.f. = degrees of freedom = 2r + 2  
r = number of failures  
t = device hours  
Chi–square values for 60% and 90% confidence intervals for  
up to 12 failures are shown in Table 1–1.  
Table 1–1 – Chi–Square Table  
Chi–Square Distribution Function  
60% Confidence Level  
90% Confidence Level  
AVERAGE OUTGOING QUALITY (AOQ)  
CALCULATION  
No. Fails  
χ2 Quantity  
No. Fails  
χ2 Quantity  
0
1
2
3
4
5
6
7
8
1.833  
4.045  
6.211  
0
1
2
3
4
5
6
7
8
4.605  
7.779  
AOQ = (Process Average) (Probability of Acceptance)  
6
10.645  
13.362  
15.987  
18.549  
21.064  
23.542  
25.989  
28.412  
30.813  
33.196  
35.563  
(10 ) (PPM)  
8.351  
Total Projected Reject Devices  
Process Average =  
10.473  
12.584  
14.685  
16.780  
18.868  
20.951  
23.031  
25.106  
27.179  
Total Number of Devices  
Defects in Sample  
Projected Reject Devices =  
Lot Size  
Sample Size  
Total Number of Devices = Sum of units in each submitted lot  
9
9
Number of Lots Rejected  
Probability of Acceptance = 1 ±  
10  
11  
12  
10  
11  
12  
Number of Lots Tested  
6
10 = Conversion to parts per million (PPM)  
The failure rate of semiconductor devices is inherently low.  
As a result, the industry uses a technique called accelerated  
testing to assess the reliability of semiconductors. During  
accelerated tests, elevated stresses are used to produce, in  
a short period, the same failure mechanisms as would be  
observed under normal use conditions. The objective of this  
testing is to identify these failure mechanisms and eliminate  
them as a cause of failure during the useful life of the product.  
Temperature, relative humidity, and voltage are the most  
frequently used stresses during accelerated testing. Their  
relationshiptofailurerateshasbeenshowntofollowanEyring  
type of equation of the form:  
RELIABILITY DATA ANALYSIS  
Reliability is the probability that a semiconductor device will  
perform its specified function in a given environment for a  
specified period. In other words, reliability is quality over time  
and environmental conditions. The most frequently used  
reliability measure for semiconductor devices is the failure  
rate ( λ ). The failure rate is obtained by dividing the number  
of failures observed by the product of the number of devices  
on test and the interval in hours, usually expressed as percent  
per thousand hours or failures per billion device hours (FITS).  
This is called a point estimate because it is obtained from  
observations on a portion (sample) of the population of  
devices.  
To project from the sample to the population in general, one  
must establish confidence intervals. The application of  
confidence intervals is a statement of how ‘‘confident’’ one is  
that the sample failure rate approximates that for the  
population. To obtain failure rates at different confidence  
levels, it is necessary to make use of specific probability  
distributions. The chi–square (χ2) distribution that relates  
observed and expected frequencies of an event is frequently  
used to establish confidence intervals. The relationship  
between failure rate and the chi–square distribution is as  
follows:  
λ = A exp(φkT) exp(B/RH) exp(CE)  
Where A, B, C, φ, and k are constants, more specifically B,  
C, and φ are numbers representing the apparent energy at  
which various failure mechanisms occur. These are called  
activation energies. ‘‘T’’ is the temperature, ‘‘RH’’ is the  
relative humidity, and ‘‘E’’ is the electric field. The most familiar  
form of this equation (shown on following page) deals with the  
first exponential term that shows an Arrhenius type  
relationship of the failure rate versus the junction temperature  
of semiconductors. The junction temperature is related to the  
ambient temperature through the thermal resistance and  
power dissipation. Thus, we can test devices near their  
maximum junction temperatures, analyze the failures to  
assure that they are the types that are accelerated by  
temperature and then by applying known acceleration factors,  
estimate the failure rates for lower junction.  
χ2 (α, d. f.)  
The table on the following page shows observed activation  
energies with references.  
λ =  
2t  
Reliability and Quality Assurance  
9–12  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Table 1–2 – Time Dependent Failure Mechanisms in Semiconductor Devices  
(Applicable to Discrete and Integrated Circuits)  
Typical  
Device  
Association  
Relevant  
Factors  
Accelerating  
Factors  
Activation  
Energy in eV  
Process  
Model  
Reference  
Silicon Oxide  
Silicon–Silicon  
Oxide Interface  
Surface Charges  
Inversion, Accumulation E/V, T  
Mobile Ions  
T, V  
1.0  
Fitch, et al.  
Peck  
1A  
2
Oxide Pinholes  
E/V, T  
E/V, T  
E, T  
E, T  
E, T  
E, T  
J, T  
0.7–1.0 (Bipolar)  
1.0 (Bipolar)  
1984 WRS  
Hokari, et al.  
18  
5
Dielectric Breakdown  
(TDDB)  
0.3–0.4 (MOS)  
0.3 (MOS)  
Domangue, et al.  
Crook, D.L.  
3
4
Charge Loss  
0.8 (MOS)  
EPROM  
Gear, G.  
11  
6
Metallization  
Electromigration  
T, J  
1.0 Large grain Al  
(glassivated)  
Nanda, et al.  
Black, J.R.  
Black, J.R.  
Lycoudes, N.E.  
Grain Size  
Doping  
0.5  
7
Small grain Al  
0.7 Cu–Al/Cu–Si–Al  
(sputtered)  
12  
8
Corrosion  
Chemical  
Galvanic  
Contamination H, E/V, T  
0.6–0.7  
(for electrolysis)  
E/V may have  
thresholds  
Electrolytic  
Bond and Other  
Intermetallic  
T, Impurities  
T
1.0 (Au/Al)  
Fitch, W.T  
9
Mechanical Interfaces Growth  
Bond Strength  
Various Water Fab,  
Assembly, and  
Silicon Defects  
Metal Scratches  
Mask Defects, etc.  
Silicon Defects  
T, V  
T, V  
0.5–0.7 eV  
0.5 eV  
Howes, et al.  
MMPD  
10  
13  
V = voltage; E = electric field; T = temperature; J = current density; H = humidity  
NO. REFERENCE  
1A  
1.0 eV activation for leakage type failures.  
6
7
8
9
1.0 eV for large grain Al–Si (compared to line width).  
Fitch, W.T.; Greer, P.; Lycoudes, N.; ‘‘Data to Support 0.001%/1000  
Hours for Plastic I/C’s.’’ Case study on linear product shows 0.914 eV  
activation energy which is within experimental error of 0.9 to 1.3 eV  
activation energies for reversible leakage (inversion) failures reported  
in the literature.  
Nanda, Vangard, Gj–P; Black, J.R.; ‘‘Electromigration of Al–Si Alloy  
Films’’, 1978 Reliability Physics Symposium.  
0.5 eV Al, 0.7 eV Cu–Al small grain (compared to line width).  
Black, J.R.; ‘‘Current Limitation of Thin Film Conductor’’ 1982 Reli-  
ability Physics Symposium.  
1B  
0.7 To 1.0 eV for oxide defect failures for bipolar structures. This is  
under investigation subsequent to information obtained from 1984  
Wafer Reliability Symposium, especially for bipolar capacitors with  
silicon nitride as dielectric.  
0.65 eV for corrosion mechanism.  
Lycoudes, N.E.; ‘‘The Reliability of Plastic Microcircuits in Moist  
Environments’’, 1978 Solid State Technology.  
2
3
4
1.0 eV activation for leakage type failures.  
1.0 eV for open wires or high resistance bonds at the pad bond  
due to Au–Al intermetallics.  
Peck, D.S.; ‘‘New Concerns About Integrated Circuit Reliability’’ 1978  
Reliability Physics Symposium.  
Fitch, W.T.; ‘‘Operating Life vs Junction Temperatures for Plastic  
Encapsulated I/C (1.5 mil Au wire)’’, unpublished report.  
0.36 eV for dielectric breakdown for MOS gate structures.  
Domangue, E.; Rivera, R.; Shedard, C.; ‘‘Reliability Prediction Using  
Large MOS Capacitors’’, 1984 Reliability Physics Symposium.  
10  
11  
0.7 eV for assembly related defects.  
Howes, M.G.; Morgan, D.V.; ‘‘Reliability and Degradation, Semi-  
conductor Devices and CIrcuits’’ John Wiley and Sons, 1981.  
0.3 eV for dielectric breakdown.  
Crook, D.L.; ‘‘Method of Determining Reliability Screens for Time  
Dependent Dielectric Breakdown’’, 1979 Reliability Physics  
Symposium.  
Gear, G.; ‘‘FAMOUS PROM Reliability Studies’’, 1976 Reliability  
Physics Symposium.  
12  
13  
Black, J.R.: unpublished report.  
5
1.0 eV for dielectric breakdown.  
Hokari, Y.; et al.; IEDM Technical Digest, 1982.  
Motorola Memory Products Division; unpublished report.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Reliability and Quality Assurance  
9–13  
fixedpowerdissipation.)Bothsystemairflowandthepackage  
mounting technique affect the θ thermal resistance term.  
THERMAL RESISTANCE  
CA  
is essentially independent of air flow and external  
Circuit performance and long–term circuit reliabiity are  
affected by die temperature. Normally, both are improved by  
keeping the junction temperatures low.  
θ
JC  
mounting method, but is sensitive to package material, die  
bonding method, and die area.  
Electrical power dissipated in any semiconductor device is  
a source of heat. This heat source increases the temperature  
of the die about some reference point, normally the ambient  
temperature of 25°C in still air. The temperature increase,  
then, depends on the amount of power dissipated in the circuit  
and on the net thermal resistance between the heat source  
and the reference point.  
For applications where the case is held at essentially a fixed  
temperature by mounting on a large or temperature controlled  
heat sink, the estimated junction temperature is calculated by:  
T = T + P (θ )  
(3)  
J
C
D
JC  
where T = maximum case temperature and the other  
C
parameters are as previously defined.  
The temperature at the junction depends on the packaging  
and mounting system’s ability to remove heat generated in the  
circuit from the junction region to the ambient environment.  
The basic formula for converting power dissipation to  
estimated junction temperature is:  
AIR FLOW  
Air flow over the packages (due to a decrease in θ  
)
JC  
reduces the thermal resistance of the package, therefore  
permitting a corresponding increase in power dissipation  
without exceeding the maximum permissible operating  
junction temperature.  
T = T + P (θ  
+ θ )  
CA  
(1)  
J
A
D
JC  
or  
For thermal resistance values for specific packages, see  
the Motorola Data Book or Design Manual for the appropriate  
device family or contact your local Motorola sales office.  
T = T + P (θ )  
JA  
(2)  
J
A
D
where:  
T
T
A
D
= maximum junction temperature  
= maximum ambient temperature  
= calculated maximum power dissipation, including  
effects of external loads when applicable  
J
P
ACTIVATION ENERGY  
Determination of activation energies is accomplished by  
testing randomly selected samples from the same population  
at various stress levels and comparing failure rates due to the  
same failure mechanism. The activation energy is  
represented by the slope of the curve relating to the natural  
logarithm of the failure rate to the various stress levels.  
In calculating failure rates, the comprehensive method is to  
use the specific activation energy for each failure mechanism  
applicable to the technology and circuit under consideration.  
A common alternative method is to use a single activation  
energy value for the ‘‘expected’’ failure mechanism(s) with the  
lowest activation energy.  
θ
= average thermal resistance, junction to case  
= average thermal resistance, case to ambient  
= average thermal resistance, junction to ambient  
JC  
θ
θ
CA  
JA  
This Motorola recommended formula has been approved  
by RADC and DESC for calculating a ‘‘practical’’ maximum  
operating junction temperature for MIL–M–38510 devices.  
Only two terms on the right side of equation (1) can be  
varied by the user, the ambient temperature and the device  
case–to–ambient thermal resistance, θ . (To some extent  
the device power dissipation can also be controlled, but under  
recommended use the supply voltage and loading dictate a  
CA  
Reliability and Quality Assurance  
9–14  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
RELIABILITY STRESS TESTS  
The following are brief descriptions of the reliability tests  
commonly used in the reliability monitoring program. Not all of  
the tests listed are performed by each product division. Other  
tests may be performed when appropriate.  
HIGH TEMPERATURE REVERSE BIAS  
(HTRB)  
The purpose of this test is to align mobile ions by means of  
temperature and voltage stress to form a high–current  
leakage path between two or more junctions.  
AUTOCLAVE (aka, PRESSURE COOKER)  
Typical Test Conditions: T = 85°C to 150°C, Bias =  
80% to 100% of Data Book max. rating, t = 120 to 1000  
hours  
Common Failure Modes: Parametric shifts in leakage  
and gain  
Common Failure Mechanisms: Ionic contamination on  
the surface or under the metallization of the die  
Military Reference: MIL–STD–750, Method 1039  
A
Autoclave is an environmental test which measures device  
resistance to moisture penetration and the resultant effect of  
galvanic corrosion. Autoclave is a highly accelerated and  
destructive test.  
Typical Test Conditions: T = 121°C, rh = 100%, p = 1  
A
atmosphere (15 psig), t = 24 to 96 hours  
Common Failure Modes: Parametric shifts, high leak-  
age and/or catastrophic  
Common Failure Mechanisms: Die corrosion or con-  
taminants such as foreign material on or within the pack-  
age materials. Poor package sealing.  
HIGH TEMPERATURE STORAGE LIFE  
(HTSL)  
HIGH HUMIDITY HIGH TEMPERATURE  
BIAS (H3TB, H3TRB, or THB)  
High temperature storage life testing is performed to  
accelerate failure mechanisms which are thermally activated  
through the application of extreme temperatures  
This is an environmental test designed to measure the  
moisture resistance of plastic encapsulated devices. A bias is  
applied to create an electrolytic cell necessary to accelerate  
corrosion of the die metallization. With time, this is a  
catastrophically destructive test.  
Typical Test Conditions: T = 70°C to 200°C, no bias, t  
A
= 24 to 2500 hours  
Common Failure Modes: Parametric shifts in leakage  
and gain  
Common Failure Mechanisms: Bulk die and diffusion  
defects  
Typical Test Conditions: T = 85°C to 95°C, rh = 85%  
A
to 95%, Bias = 80% to 100% of Data Book max. rating, t  
= 96 to 1750 hours  
Military Reference: MIL–STD–750, Method 1032  
Common Failure Modes: Parametric shifts, high leak-  
age and/or catastrophic  
Common Failure Mechanisms: Die corrosion or con-  
taminants such as foreign material on or within the pack-  
age materials. Poor package sealing.  
INTERMITTENT OPERATING LIFE (IOL)  
The purpose of this test is the same as SSOL in addition to  
checking the integrity of both wire and die bonds by means of  
thermal stressing  
HIGH TEMPERATURE GATE BIAS (HTGB)  
This test is designed to electrically stress the gate oxide under  
a bias condition at high temperature.  
Typical Test Conditions: T = 25°C, Pd = Data Book  
A
maximum rating, T = T  
on off  
=
of 50°C to 100°C, t = 42  
Typical Test Conditions: T = 150°C, Bias = 80% of  
to 30000 cycles  
A
Data Book max. rating, t = 120 to 1000 hours  
Common Failure Modes: Parametric shifts in gate leak-  
age and gate threshold voltage  
Common Failure Mechanisms: Random oxide defects  
and ionic contamination  
Common Failure Modes: Parametric shifts and cata-  
strophic  
Common Failure Mechanisms: Foreign material, crack  
and bulk die defects, metallization, wire and die bond  
defects  
Military Reference: MIL–STD–750, Method 1042  
Military Reference: MIL–STD–750, Method 1037  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Reliability and Quality Assurance  
9–15  
MECHANICAL SHOCK  
STEADY STATE OPERATING LIFE (SSOL)  
The purpose of this test is to evaluate the bulk stability of the  
die and to generate defects resulting from manufacturing  
aberrations that are manifested as time and  
stress–dependent failures.  
This test is used to determine the ability of the device to  
withstandasuddenchangeinmechanicalstressduetoabrupt  
changes in motion as seen in handling, transportation, or  
actual use.  
Typical Test Conditions: T = 25°C, P = Data Book  
maximum rating, t = 16 to 1000 hours  
Common Failure Modes: Parametric shifts and cata-  
strophic  
Typical Test Conditions: Acceleration = 1500 g’s, Orienta-  
A
D
tion = X , Y , Y plane, t = 0.5 msec, Blows = 5  
1
1
2
Common Failure Modes: Open, short, excessive leak-  
age, mechanical failure  
Common Failure Mechanisms: Foreign material, crack  
die, bulk die, metallization, wire and die bond defects  
Military Reference: MIL–STD–750, Method 1026  
Common Failure Mechanisms: Die and wire bonds,  
cracked die, package defects  
Military Reference: MIL–STD–750, Method 2015  
TEMPERATURE CYCLING (AIR TO AIR)  
MOISTURE RESISTANCE  
The purpose of this test is to evaluate the ability of the device  
to withstand both exposure to extreme temperatures and  
transitions between temperature extremes. This testing will  
also expose excessive thermal mismatch between materials.  
The purpose of this test is to evaluate the moisture resistance  
of components under temperature/humidity conditions typical  
of tropical environments.  
Typical Test Conditions: T = –10°C to 65°C, rh = 80%  
A
Typical Test Conditions: T = –65°C to 200°C, cycle =  
A
to 98%, t = 24 hours/cycles, cycle = 10  
Common Failure Modes: Parametric shifts in leakage  
and mechanical failure  
10 to 4000  
Common Failure Modes: Parametric shifts and cata-  
strophic  
Common Failure Mechanisms: Wire bond, cracked or  
lifted die and package failure  
Common Failure Mechanisms: Corrosion or contami-  
nants on or within the package materials. Poor package  
sealing  
Military Reference: MIL–STD–750, Method 1051  
Military Reference: MIL–STD–750, Method 1021  
THERMAL SHOCK (LIQUID TO LIQUID)  
SOLDERABILITY  
The purpose of this test is to evaluate the ability of the device  
to withstand both exposure to extreme temperatures and  
sudden transitions between temperature extremes. This  
testing will also expose excessive thermal mismatch between  
materials.  
The purpose of this test is to measure the ability of the device  
leads/terminals to be soldered after an extended period of  
storage (shelf life).  
Typical Test Conditions: Steam aging = 8 hours, Flux =  
R, Solder = Sn60, Sn63  
Common Failure Modes: Pin holes, dewetting, nonwet-  
ting  
Common Failure Mechanisms: Poor plating, contami-  
nated leads  
Military Reference: MIL–STD–750, Method 2026  
Typical Test Conditions: T = 0°C to 100°C, cycle = 20  
A
to 300  
Common Failure Modes: Parametric shifts and cata-  
strophic  
Common Failure Mechanisms: Wire bond, cracked or  
lifted die and package failure  
Military Reference: MIL–STD–750, Method 1056  
SOLDER HEAT  
VARIABLE FREQUENCY VIBRATION  
This test is used to measure the ability of a device to withstand  
the temperatures as may be seen in wave soldering  
operations. Electrical testing is the endpoint critierion for this  
stress.  
This test is used to examine the ability of the device to  
withstand deterioration due to mechanical resonance.  
Typical Test Conditions: Peak acceleration = 20 g’s,  
Frequency range = 20 Hz to KHz, t = 48 minutes  
Common Failure Modes: Open, short, excessive leak-  
age, mechanical failure  
Typical Test Conditions: Solder Temperature = 260°C, t  
= 10 seconds  
Common Failure Modes: Parameter shifts, mechanical  
failure  
Common Failure Mechanisms: Poor package design  
Military Reference: MIL–STD–750, Method 2031  
Common Failure Mechanisms: Die and wire bonds,  
cracked die, package defects  
Military Reference: MIL–STD–750, Method 2056  
Reliability and Quality Assurance  
9–16  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
STATISTICAL PROCESS CONTROL  
Communication Power & Signal Technologies Group  
(CPSTG) is continually pursuing new ways to improveproduct  
quality. Initial design improvement is one method that can be  
used to produce a superior product. Equally important to  
outgoing product quality is the ability to produce product that  
consistently conforms to specification. Process variability is  
the basic enemy of semiconductor manufacturing since it  
leads to product variability. Used in all phases of Motorola’s  
productmanufacturing, STATISTICAL PROCESS CONTROL  
(SPC) replaces variability with predictability. The traditional  
philosophy in the semiconductor industry has been  
adherence to the data sheet specification. Using SPC  
methods ensures that the product will meet specific process  
requirements throughout the manufacturing cycle. The  
emphasis is on defect prevention, not detection. Predictability  
through SPC methods requires the manufacturing culture to  
focus on constant and permanent improvements. Usually,  
these improvements cannot be bought with state–of–the–art  
equipment or automated factories. With quality in design,  
process, and material selection, coupled with manufacturing  
predictability, Motorola can produce world class products.  
The immediate effect of SPC manufacturing is predictability  
through process controls. Product centered and distributed  
well within the product specification benefits Motorola with  
fewer rejects, improved yields, and lower cost. The direct  
benefit to Motorola’s customers includes better incoming  
quality levels, less inspection time, and ship–to–stock  
capability. Circuit performance is often dependent on the  
cumulative effect of component variability. Tightly controlled  
component distributions give the customer greater circuit  
predictability. Many customers are also converting to  
just–in–time (JIT) delivery programs. These programs require  
improvements in cycle time and yield predictability achievable  
only through SPC techniques. The benefit derived from SPC  
helps the manufacturer meet the customer’s expectations of  
higher quality and lower cost product.  
–6σ –5σ –4σ –3σ –2σ –1σ  
0
1σ 2σ 3σ 4σ 5σ 6σ  
Standard Deviations From Mean  
Distribution Centered  
At ± 3σ 2700 ppm defective  
Distribution Shifted ± 1.5  
66810 ppm defective  
93.32% yield  
99.73% yield  
At ± 4σ 63 ppm defective  
6210 ppm defective  
99.379% yield  
99.9937% yield  
At ± 5σ 0.57 ppm defective  
233 ppm defective  
99.9767% yield  
99.999943% yield  
At ± 6σ 0.002 ppm defective  
3.4 ppm defective  
99.99966% yield  
99.9999998% yield  
Figure 1. AOQL and Yield from a Normal  
Distribution of Product With 6σ Capability  
To better understand SPC principles, brief explanations  
have been provided. These cover process capability,  
implementation, and use.  
PROCESS CAPABILITY  
One goal of SPC is to ensure a process is CAPABLE.  
Process capability is the measurement of a process to  
produce products consistently to specification requirements.  
The purpose of a process capability study is to separate the  
inherent RANDOM VARIABILITY from ASSIGNABLE  
CAUSES. Once completed, steps are taken to identify and  
eliminate the most significant assignable causes. Random  
variability is generally present in the system and does not  
fluctuate. Sometimes, the random variability is due to basic  
limitations associated with the machinery, materials,  
personnel skills, or manufacturing methods. Assignable  
cause inconsistencies relate to time variations in yield,  
performance, or reliability.  
Ultimately, Motorola will have Six Sigma capability on all  
products. Thismeansparametricdistributionswillbecentered  
withinthespecificationlimits, withaproductdistributionofplus  
or minus Six Sigma about mean. Six Sigma capability, shown  
graphically in Figure 1, details the benefit in terms of yield and  
outgoing quality levels. This compares a centered distribution  
versus a 1.5 sigma worst case distribution shift.  
Traditionally, assignable causes appear to be random due  
to the lack of close examination or analysis. Figure 2 shows  
the impact on predictability that assignable cause can have.  
Figure 3 shows the difference between process control and  
process capability.  
A process capability study involves taking periodic samples  
from the process under controlled conditions. The  
performance characteristics of these samples are charted  
against time. In time, assignable causes can be identified and  
engineered out. Careful documentation of the process is the  
key to accurate diagnosis and successful removal of the  
assignable causes. Sometimes, the assignable causes will  
remain unclear, requiring prolonged experimentation.  
Elements which measure process variation control and  
capability are Cp and Cpk, respectively. Cp is the specification  
width divided by the process width or Cp = (specification  
width) / 6σ. Cpk is the absolute value of the closest  
specification value to the mean, minus the mean, divided by  
NewproductdevelopmentatMotorolarequiresmorerobust  
design features that make them less sensitive to minor  
variations in processing. These features make the  
implementation of SPC much easier.  
A complete commitment to SPC is present throughout  
Motorola. All managers, engineers, production operators,  
supervisors, and maintenance personnel have received  
multiple training courses on SPC techniques. Manufacturing  
has identified 22 wafer processing and 8 assembly steps  
considered critical to the processing of semiconductor  
products. Processes controlled by SPC methods that have  
shown significant improvement are in the diffusion,  
photolithography, and metallization areas.  
half the process width or Cpk = closest specification – /3σ.  
X
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Reliability and Quality Assurance  
9–17  
PREDICTION  
In control assignable  
causes eliminated  
TIME  
TIME  
Out of control  
(assignable causes present)  
SIZE  
Process “under control” – all assignable causes are  
removed and future distribution is predictable.  
SIZE  
?
?
?
?
?
?
?
?
?
?
?
Lower  
Specification Limit  
PREDICTION  
Upper  
Specification Limit  
In control and capable  
(variation from random  
variability reduced)  
TIME  
In control but not capable  
TIME  
SIZE  
(variation from random variability  
excessive)  
SIZE  
Figure 2. Impact of Assignable Causes  
on Process Predictable  
Figure 3. Difference Between Process  
Control and Process Capability  
At Motorola, for critical parameters, the process capability  
is acceptable with a Cpk = 1.50 with continual improvement  
our goal. The desired process capability is a Cpk = 2 and the  
ideal is a Cpk = 5. Cpk, by definition, shows where the current  
production process fits with relationship to the specification  
limits. Off center distributions or excessive process variability  
will result in less than optimum conditions.  
be collected at appropriate time intervals to detect variations  
in the process. As the process begins to show improved  
stability, the interval may be increased. The data collected  
must be carefully documented and maintained for later  
correlation. Examples of common documentation entries are  
operator, machine, time, settings, product type, etc.  
Oncetheplanisestablished, datacollectionmaybegin. The  
data collected with generate X and R values that are plotted  
with respect to time. X refers to the mean of the values within  
a given subgroup, while R is the range or greatest value minus  
least value. When approximately 20 or more X and R values  
have been generated, the average of these values is  
computed as follows:  
SPC IMPLEMENTATION AND USE  
CPSTG uses many parameters that show conformance to  
specification. Some parameters are sensitive to process  
variations while others remain constant for a given product  
line. Often, specific parameters are influenced when changes  
to other parameters occur. It is both impractical and  
unnecessary to monitor all parameters using SPC methods.  
Only critical parameters that are sensitive to process  
variability are chosen for SPC monitoring. The process steps  
affecting these critical parameters must be identified as well.  
It is equally important to find a measurement in these process  
steps that correlates with product performance. This  
measurement is called a critical process parameter.  
Once the critical process parameters are selected, a  
sample plan must be determined. The samples used for  
measurement are organized into RATIONAL SUBGROUPS  
of approximately two to five pieces. The subgroup size should  
be such that variation among the samples within the subgroup  
remain small. All samples must come from the same source  
e.g.,thesamemoldpressoperator, etc. Subgroupdatashould  
X = (X + X2 + X3 + . . .)/K  
R = (R1 + R2 + R2 + . . .)/K  
where K = the number of subgroups measured.  
ThevaluesofXandRareusedtocreatetheprocesscontrol  
chart. Control charts are the primary SPC tool used to signal  
a problem. Shown in Figure 4, process control charts show X  
and R values with respect to time and concerning reference  
to upper and lower control limit values. Control limits are  
computed as follows:  
R upper control limit = UCL = D4 R  
R
R lower control limit = LCL = D3 R  
R
X upper control limit = UCL = X + A2 R  
X
X lower control limit = LCL = X – A2 R  
X
Reliability and Quality Assurance  
9–18  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
154  
153  
UCL = 152.8  
= 150.4  
152  
151  
X
150  
149  
148  
147  
LCL = 148.0  
UCL = 7.3  
7
6
5
4
= 3.2  
R
3
2
1
0
LCL = 0  
Figure 4. Example of Process Control Chart Showing Oven Temperature Data  
Where D4, D3, and A2 are constants varying by sample size,  
with values for sample sizes from 2 to 10 shown in the  
following partial table:  
σ tot =  
σ tot =  
2
2
2
2
2
σ A + σ B + σ C + σ D + σ E  
2
2
2
2
2
5 + 3 + 2 + 1 +(0.4) = 6.3  
n
2
3
4
5
2.11  
*
6
7
8
9
10  
2.00 1.92 1.86 1.82 1.78  
0.08 0.14 0.18 0.22  
If only D is identified and eliminated, then:  
σ tot =  
D
3.27 2.57 2.28  
4
3
2
2
2
2
2
5 + 3 + 2 + (0.4) = 6.2  
D
A
*
*
*
*
This results in less than 2% total variability improvement. If  
B, C, and D were eliminated, then:  
1.88 1.02 0.73 0.58 0.48 0.42 0.37 0.34 0.31  
*For sample sizes below 7, the LCL would technically be a negative number;  
R
inthosecasesthereisnolowercontrollimit;thismeansthatforasubgroupsize  
6, six ‘‘identical’’ measurements would not be unreasonable.  
σ tot =  
2
2
5 + (0.4) = 5.02  
This gives a considerably better improvement of 23%. If  
only A is identified and reduced from 5 to 2, then:  
Control charts are used to monitor the variability of critical  
process parameters. The R chart shows basic problems with  
piece to piece variability related to the process. The X chart can  
often identify changes in people, machines, methods, etc. The  
source of the variability can be difficult to find and may require  
experimental design techniques to identify assignable causes.  
Some general rules have been established to help determine  
when a process is OUT–OF–CONTROL. Figure 5 shows a  
control chart subdivided into zones A, B, and C corresponding  
to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figures  
6 through 9 four of the tests that can be used to identify  
excessive variability and the presence of assignable causes  
are shown. As familiarity with a given process increases, more  
subtle tests may be employed successfully.  
Once the variability is identified, the cause of the variability  
must be determined. Normally, only a few factors have a  
significant impact on the total variability of the process. The  
importance of correctly identifying these factors is stressed in  
the following example. Suppose a process variability depends  
on the variance of five factors A, B, C, D, and E. Each has a  
variance of 5, 3, 2, 1, and 0.4, respectively.  
σ tot =  
2
2
2
2
2
2 + 3 + 2 + 1 + (0.4) = 4.3  
Identifying and improving the variability from 5 to 2 yields a  
total variability improvement of nearly 40%.  
Most techniques may be employed to identify the primary  
assignable cause(s). Out–of–control conditions may be  
correlated to documented process changes. The product may  
be analyzed in detail using best versus worst part comparisons  
or Product Analysis Lab equipment. Multi–variance analysis  
can be used to determine the family of variation (positional,  
critical, or temporal). Lastly, experiments may be run to test  
theoretical or factorial analysis. Whatever method is used,  
assignable causes must be identified and eliminated in the  
most expeditious manner possible.  
After assignable causes have been eliminated, new control  
limits are calculated to provide a more challenging variablility  
criteria for the process. As yields and variability improve, it may  
become more difficult to detect improvements because they  
become much smaller. When all assignable causes have been  
eliminated and the points remain within control limits for 25  
groups, the process is said to in a state of control.  
Since:  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Reliability and Quality Assurance  
9–19  
UCL  
UCL  
A
B
C
C
B
A
ZONE A (+ 3 SIGMA)  
ZONE B (+ 2 SIGMA)  
ZONE C (+ 1 SIGMA)  
ZONE C (– 1 SIGMA)  
ZONE B (– 2 SIGMA)  
ZONE A (– 3 SIGMA)  
CENTERLINE  
LCL  
LCL  
UCL  
Figure 5. Control Chart Zones  
Figure 6. One Point Outside Control Limit  
Indicating Excessive Variability  
UCL  
A
B
C
C
B
A
A
B
C
C
B
A
LCL  
LCL  
Figure 7. Two Out of Three Points in Zone A or  
Beyond Indicating Excessive Variability  
Figure 8. Four Out of Five Points in Zone B or  
Beyond Indicating Excessive Variability  
UCL  
A
B
C
C
B
A
LCL  
Figure 9. Seven Out of Eight Points in Zone C or  
Beyond Indicating Excessive Variability  
SUMMARY  
Motorola is committed to the use of STATISTICAL  
PROCESS CONTROLS. These principles, used throughout  
manufacturing have already resulted in many significant  
improvements to the processes. Continued dedication to the  
SPC culture will allow Motorola to reach the Six Sigma and  
zero defect capability goals. SPC will further enhance the  
commitment to TOTAL CUSTOMER SATISFACTION.  
Reliability and Quality Assurance  
9–20  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
REPLACEMENT DEVICES  
DEVICE  
REPLACEMENT  
MV2101  
DEVICE  
REPLACEMENT  
DEVICE  
REPLACEMENT  
BC560C  
1N5139  
1N5139A  
1N5140  
1N5140A  
1N5141  
1N5141A  
1N5142  
1N5142A  
1N5143  
1N5143A  
2N3053A  
2N3244  
2N3250  
2N3251  
2N3251A  
2N3467  
2N3468  
2N3497  
2N3500  
2N3501  
MPSA05  
2N4403  
2N4403  
MPS2907A  
MPS2907A  
MPSA56  
MPSA56  
2N5401  
BC560B  
MV2101  
BC849ALT1  
BC850ALT1  
BC857CLT1  
BCY70  
BCY71  
BCY72  
BDB01D  
BDB02D  
BDC02D  
BC848ALT1  
BC848ALT1  
BC857ALT1  
MPS2222A  
MPS2222A  
MPS2222A  
BDB01C  
MMBV2103LT1  
MMBV2103LT1  
MMBV2104LT1  
MMBV2104LT1  
MMBV2105LT1  
MMBV2105LT1  
MMBV2105LT1  
MMBV2105LT1  
2N5551  
2N5551  
BDB02C  
BDC01D  
1N5144  
1N5144A  
1N5145  
1N5145A  
1N5146  
1N5146A  
1N5147  
1N5147A  
1N5441A  
1N5443A  
MMBV2107LT1  
MMBV2107LT1  
MMBV2108LT1  
MMBV2108LT1  
MMBV2109LT1  
MV2109  
MV2111  
MV2111  
MV2101  
MV2103  
2N3546  
2N3634  
2N3635  
2N3636  
2N3637  
2N3700  
2N3799  
2N3947  
2N3963  
2N3964  
MPSH17  
2N5401  
2N5401  
MPSA92  
MPSA92  
MPSA06  
MPSA18  
MPS2222A  
MPSA18  
MPSA18  
BDC05  
BF244A  
BF244B  
BF245  
BF245A  
BF245B  
BF245C  
BF246A  
BF246B  
BF247B  
MPSW42  
2N3819  
2N3819  
BF245A  
BF245A  
BF245A  
BF245A  
BF245A  
BF245A  
BF245A  
1N5444A  
1N5445A  
1N5449A  
1N5450A  
1N5451A  
1N5452A  
1N5453A  
1N5455A  
2N697  
MV2104  
MV2105  
MV2108  
MV2109  
MV2111  
MV2111  
MV2111  
MV2115  
MPSA20  
MPSA05  
2N4014  
2N4032  
2N4033  
2N4036  
2N4037  
2N4126  
2N4265  
2N4405  
2N4407  
2N4931  
MPS2222A  
MPS2907A  
MPSA56  
MPSA56  
MPSA56  
MPS4126  
2N4264  
MPS8599  
MPS8599  
MPSA92  
BF256B  
BF256C  
BF258  
BF374  
BF391  
BF392  
BF492  
BF493  
BFW43  
BSP20AT1  
BF256A  
BF256A  
BF422  
BC338  
MPSA42  
MPSA42  
MPSA92  
MPSA92  
2N5401  
BF720T1  
2N718A  
2N720A  
2N930  
2N930A  
2N956  
2N1613  
2N1711  
2N1893  
2N2102  
2N2218A  
2N2219  
MPSA06  
MPSA18  
MPSA18  
MPSA05  
2N4410  
MPSA05  
MPSA06  
2N4410  
2N5086  
2N5668  
2N5669  
2N5670  
2N6431  
2N6433  
2N6516  
BA582T1  
BC107  
2N5087  
2N3819  
2N3819  
2N3819  
MPSA42  
MPSA92  
2N6517  
MMBV3401LT1  
BC237  
BSS71  
BSS72  
BSS73  
BSS74  
BSS75  
BSS76  
BSS89  
BSV16–10  
BSX20  
CV12253  
MPSA42  
MPSA42  
MPSA42  
MPSA92  
MPSA92  
MPSA92  
BS107  
MPS2907A  
MPS2369A  
MPSA06  
MPS2222A  
MPS2222A  
BC107A  
BC237  
2N2219A  
2N2222  
2N2222A  
2N2270  
2N2369  
2N2369A  
2N2484  
2N2895  
2N2896  
2N2904  
MPS2222A  
MPS2222  
MPS2222A  
MPSA05  
MPS2369  
MPS2369A  
2N5087  
MPSA06  
2N5551  
MPS2907  
BC107B  
BC108  
BC109C  
BC140–10  
BC140–16  
BC141–10  
BC141–16  
BC160–16  
BC161–16  
BC177  
BC237  
IRFD110  
IRFD113  
IRFD120  
IRFD123  
IRFD210  
IRFD213  
IRFD220  
IRFD223  
IRFD9120  
IRFD9123  
BSS123LT1  
MMBF170LT1  
BSS123LT1  
MMBF170LT1  
MMFT107T1  
MMFT107T1  
MMFT107T1  
MMFT107T1  
BSS123LT1  
2N7002LT1  
BC3338  
MPSW06  
MPSW06  
MPSW06  
MPSW06  
MPSW56  
MPSW56  
BC547  
2N2904A  
2N2905  
2N2905A  
2N2906  
2N2906A  
2N2907  
2N2907A  
2N3019  
2N3020  
2N3053  
MPS2907A  
MPS2907  
MPS2907A  
MPS2907  
MPS2907A  
MPS2907  
MPS2907A  
MPSA06  
BC177A  
BC177B  
BC238  
BC309B  
BC393  
BC394  
BC450  
BC450A  
BC546A  
BC559  
BC547A  
BC547B  
BC238B  
BC308C  
MPSA92  
MPSA42  
MPSA92  
MPSA92  
BC546B  
BC559B  
J111  
J113  
J203  
J300  
J111RLRA  
J113RL1  
2N5458  
2N5486  
J305  
MMBF5484LT1  
BAS16LT1  
BAS16LT1  
BAS16LT1  
BAS16LT1  
BAS16LT1  
MAD130P  
MAD1103P  
MAD1107P  
MAD1108P  
MAD1109P  
MPSA06  
MPSA20  
Replacement Devices  
10–2  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
REPLACEMENT DEVICES  
DEVICE  
REPLACEMENT  
2N5551  
MPS2222A  
2N5401  
DEVICE  
REPLACEMENT  
DEVICE  
REPLACEMENT  
MV2115  
MM3001  
MM3725  
MM4001  
MMAD1106  
MMBF4856LT1  
MMBF4860LT1  
MMBF5459LT1  
MMBF5486LT1  
MMBT8599LT1  
MMBV2104LT1  
MPS6530  
MPS6531  
MPS6562  
MPS6568A  
MPS6571  
MPS6595  
MPS8093  
MPSA16  
MPS6530RLRM  
MPS6530RLRM  
MPS6651  
MPS918  
MPSA18  
MPS3563  
2N4402  
MPSA17  
MPSH17  
MPSH17  
MV2114  
MVAM108  
MVAM109  
MVAM115  
MVAM125  
PBF259  
PBF259S  
PBF259RS  
PBF493  
MMBV2109LT1  
MMBV2109LT1  
MMBV2109LT1  
MMBV2109LT1  
MMBT6517LT1  
MMBT6517LT1  
MMBT6517LT1  
MMBTA92LT1  
MMBTA92LT1  
BAS16LT1  
MMBF4391LT1  
MMBF5457LT1  
MMBF5457LT1  
2N5486  
MMBT5551LT1  
MMBV2103LT1  
MPSH04  
MPSH07A  
PBF493R  
MMPQ3799  
MMSV3401T1  
MPF970  
MMPQ3725  
MMBV3401LT1  
MMBFJ175LT1  
MMBFJ175LT1  
MMBF5457LT1  
MMBF5457LT1  
MPF4391RLRA  
2N5639  
MPSH20  
MPSH24  
MPSH34  
MPSH69  
MSA1022–BT1  
MSB709–ST1  
MSB710–QT1  
MSB1218A–ST1  
MSC1621T1  
MSC2404–CT1  
MPSH17  
MPSH17  
MPSH17  
MPSH81  
MSA1022–CT1  
MSB709–RT1  
MSB710–RT1  
MSB1218A–RT1  
MSD602–RT1  
MSC2295–CT1  
PBF493RS  
PBF493S  
VN1706L  
MMBTA92LT1  
MMBTA92LT1  
MMFT107T1  
MPF971  
MPF3821  
MPF3822  
MPF4856  
MPF4857  
MPF4858  
MPF4859  
J112  
2N5638RLRA  
MPF4860  
MPF4861  
MPQ6501  
MPS3638  
MPS3866  
MPS4123  
MPS4125  
MPS4258  
MPS5771  
MPS6520  
2N5638RLRA  
J112  
MPQ6502  
MPS3638A  
BF224  
MPS4124  
MPS4126  
MPS3640  
MPS3640  
MPS6521  
MSD1819A–ST1 MSD1819A–RT1  
MV1620  
MV1624  
MV1636  
MV1640  
MV1642  
MV1644  
MV2103  
MV2107  
MV2113  
MV2101  
MMBV2103LT1  
MV2108  
MV2109  
MV2111  
MV2111  
MMBV2103LT1  
MV2108  
MV2111  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Replacement Devices  
10–3  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY