BUL45D2G [ONSEMI]

High Speed, High Gain Bipolar NPN Power Transistor; 高速,高增益双极NPN功率晶体管
BUL45D2G
型号: BUL45D2G
厂家: ONSEMI    ONSEMI
描述:

High Speed, High Gain Bipolar NPN Power Transistor
高速,高增益双极NPN功率晶体管

晶体 晶体管 功率双极晶体管 开关 局域网
文件: 总11页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BUL45D2G  
High Speed, High Gain  
Bipolar NPN Power  
Transistor  
with Integrated CollectorEmitter Diode  
and Builtin Efficient Antisaturation  
Network  
The BUL45D2G is stateofart High Speed High gain BiPolar  
transistor (H2BIP). High dynamic characteristics and lottolot  
minimum spread ( 150 ns on storage time) make it ideally suitable for  
http://onsemi.com  
POWER TRANSISTOR  
5.0 AMPERES,  
700 VOLTS, 75 WATTS  
light ballast applications. Therefore, there is no need to guarantee an h  
FE  
window. It’s characteristics make it also suitable for PFC application.  
Features  
Low Base Drive Requirement  
High Peak DC Current Gain (55 Typical) @ I = 100 mA  
C
Extremely Low Storage Time Min/Max Guarantees Due to  
the H2BIP Structure which Minimizes the Spread  
Integrated CollectorEmitter Free Wheeling Diode  
Fully Characterized and Guaranteed Dynamic V  
CE(sat)  
“6 Sigma” Process Providing Tight and Reproductible  
Parameter Spreads  
TO220AB  
CASE 221A09  
STYLE 1  
These Devices are PbFree and are RoHS Compliant*  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
700  
700  
12  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
1
2
3
CollectorEmitter Sustaining Voltage  
CollectorBase Breakdown Voltage  
CollectorEmitter Breakdown Voltage  
EmitterBase Voltage  
V
CEO  
V
CBO  
V
V
CES  
MARKING DIAGRAM  
EBO  
Collector Current Continuous  
Peak (Note 1)  
I
5
10  
C
I
CM  
Base Current  
Continuous  
Peak (Note 1)  
I
2
4
Adc  
B
I
BM  
BUL45D2G  
AY WW  
Total Device Dissipation @ T = 25_C  
P
75  
W
C
D
Derate above 25°C  
0.6  
W/_C  
Operating and Storage Temperature  
T , T  
J
65 to 150  
_C  
stg  
THERMAL CHARACTERISTICS  
Characteristics  
Symbol  
Max  
1.65  
62.5  
260  
Unit  
_C/W  
_C/W  
_C  
A
Y
= Assembly Location  
= Year  
Thermal Resistance, JunctiontoCase  
Thermal Resistance, JunctiontoAmbient  
R
q
JC  
R
q
JA  
WW  
G
= Work Week  
= PbFree Package  
Maximum Lead Temperature for Soldering  
Purposes 1/8from Case for 5 Seconds  
T
L
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
50 Units / Rail  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
BUL45D2G  
TO220  
(PbFree)  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
April, 2010 Rev. 5  
BUL45D2/D  
 
BUL45D2G  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
400  
700  
12  
450  
910  
14.1  
Vdc  
Vdc  
CEO(sus)  
CollectorBase Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
EmitterBase Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
mAdc  
mAdc  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
@ T = 25°C  
I
100  
500  
100  
CE  
CES EB  
C
CES  
@ T = 125°C  
C
Collector Cutoff Current (V = 500 V, V = 0)  
@ T = 125°C  
CE  
EB  
C
EmitterCutoff Current  
(V = 10 Vdc, I = 0)  
I
100  
mAdc  
EBO  
EB  
C
ON CHARACTERISTICS  
BaseEmitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
V
Vdc  
BE(sat)  
@ T = 25°C  
0.8  
0.7  
1
0.9  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.89  
0.79  
1
0.9  
C
B
C
@ T = 125°C  
C
CollectorEmitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
Vdc  
CE(sat)  
@ T = 25°C  
0.28  
0.32  
0.4  
0.5  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.32  
0.38  
0.5  
0.6  
C
B
C
@ T = 125°C  
C
(I = 0.8 Adc, I = 40 mAdc)  
@ T = 25°C  
0.46  
0.62  
0.75  
1
C
B
C
@ T = 125°C  
C
DC Current Gain  
(I = 0.8 Adc, V = 1 Vdc)  
C
h
FE  
@ T = 25°C  
22  
20  
34  
29  
CE  
C
@ T = 125°C  
C
(I = 2 Adc, V = 1 Vdc)  
@ T = 25°C  
10  
7
14  
9.5  
C
CE  
C
@ T = 125°C  
C
DIODE CHARACTERISTICS  
Forward Diode Voltage  
V
EC  
V
(I = 1 Adc)  
@ T = 25°C  
1.04  
0.7  
1.5  
1.6  
1.2  
EC  
C
@ T = 125°C  
C
(I = 2 Adc)  
EC  
@ T = 25°C  
1.2  
C
@ T = 125°C  
C
(I = 0.4 Adc)  
EC  
@ T = 25°C  
0.85  
0.62  
C
@ T = 125°C  
C
Forward Recovery Time (see Figure 27)  
T
330  
ns  
fr  
(I = 1 Adc, di/dt = 10 A/ms)  
F
@ T = 25°C  
C
(I = 2 Adc, di/dt = 10 A/ms)  
@ T = 25°C  
360  
320  
F
C
(I = 0.4 Adc, di/dt = 10 A/ms)  
F
@ T = 25°C  
C
http://onsemi.com  
2
BUL45D2G  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
Symbol  
Min  
Typ  
Max  
Unit  
f
T
13  
50  
MHz  
pF  
(I = 0.5 Adc, V = 10 Vdc, f = 1 MHz)  
C
CE  
Output Capacitance  
C
ob  
75  
(V = 10 Vdc, I = 0, f = 1 MHz)  
CB  
E
Input Capacitance  
C
ib  
340  
500  
pF  
(V = 8 Vdc)  
EB  
DYNAMIC SATURATION VOLTAGE  
V
3.7  
9.4  
V
V
V
V
@ 1 ms  
@ 3 ms  
@ 1 ms  
@ 3 ms  
@ T = 25°C  
C
CE(dsat)  
I
= 1 A  
= 100 mA  
= 300 V  
@ T = 125°C  
C
C
I
V
B1  
Dynamic Saturation  
Voltage:  
@ T = 25°C  
0.35  
2.7  
C
CC  
@ T = 125°C  
C
Determined 1 ms and  
3 ms respectively after  
@ T = 25°C  
3.9  
12  
C
rising I reaches  
B1  
I
C
= 2 A  
= 0.8 A  
= 300 V  
@ T = 125°C  
C
90% of final I  
B1  
I
B1  
@ T = 25°C  
0.4  
1.5  
C
V
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 ms)  
Turnon Time  
Turnoff Time  
Turnon Time  
Turnoff Time  
@ T = 25°C  
t
90  
105  
150  
1.3  
150  
2.4  
ns  
ms  
ns  
ms  
C
on  
I
= 2 Adc, I = 0.4 Adc  
B1  
@ T = 125°C  
C
C
C
I
B2  
= 1 Adc  
@ T = 25°C  
t
1.15  
1.5  
C
off  
V
CC  
= 300 Vdc  
@ T = 125°C  
C
@ T = 25°C  
t
on  
90  
110  
C
I
= 2 Adc, I = 0.4 Adc  
@ T = 125°C  
B1  
C
I
= 0.4 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
2.1  
C
off  
V
CC  
@ T = 125°C  
3.1  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 mH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
90  
93  
150  
0.9  
ns  
ms  
ns  
ns  
ms  
ns  
C
f
@ T = 125°C  
C
I
= 1 Adc  
= 100 mAdc  
= 500 mAdc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
t
0.72  
1.05  
C
s
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
95  
95  
150  
150  
2.25  
300  
C
c
@ T = 125°C  
C
@ T = 25°C  
t
f
80  
105  
C
@ T = 125°C  
C
I
C
= 2 Adc  
= 0.4 Adc  
= 0.4 Adc  
Storage Time  
Crossover Time  
@ T = 25°C  
t
s
t
c
1.95  
C
I
I
B1  
B2  
@ T = 125°C  
2.9  
C
@ T = 25°C  
225  
450  
C
@ T = 125°C  
C
http://onsemi.com  
3
BUL45D2G  
TYPICAL STATIC CHARACTERISTICS  
100  
80  
60  
40  
20  
0
100  
V
CE  
= 1 V  
V
CE  
= 5 V  
T = 125°C  
T = 125°C  
J
80  
60  
40  
20  
0
J
T = 25°C  
J
T = 25°C  
J
T = -ꢀ20°C  
J
T = -ꢀ20°C  
J
0.001  
0.01  
0.1  
1
10  
10  
10  
0.001  
0.01  
0.1  
1
10  
10  
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volt  
4
3
2
10  
T = 25°C  
J
I /I = 5  
C B  
T = 25°C  
J
1
T = 125°C  
J
5 A  
3 A  
1
0
2 A  
4 A  
T = -ꢀ20°C  
J
1 A  
I = 500 mA  
C
0.1  
0.001  
0.001  
0.01  
0.1  
I , BASE CURRENT (AMPS)  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
B
Figure 3. Collector Saturation Region  
Figure 4. CollectorEmitter Saturation Voltage  
10  
10  
I /I = 10  
C B  
I /I = 20  
C B  
1
1
T = 125°C  
J
T = 25°C  
J
T = -ꢀ20°C  
T = -ꢀ20°C  
J
J
T = 125°C  
J
T = 25°C  
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 5. CollectorEmitter Saturation Voltage  
Figure 6. CollectorEmitter Saturation Voltage  
http://onsemi.com  
4
BUL45D2G  
TYPICAL STATIC CHARACTERISTICS  
10  
10  
I /I = 5  
C B  
I /I = 10  
C B  
T = 25°C  
J
T = -ꢀ20°C  
J
1
1
T = -ꢀ20°C  
J
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. BaseEmitter Saturation Region  
Figure 8. BaseEmitter Saturation Region  
10  
10  
I /I = 20  
C B  
25°C  
1
1
T = -ꢀ20°C  
J
125°C  
T = 125°C  
J
T = 25°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
REVERSE EMITTER-COLLECTOR CURRENT (AMPS)  
Figure 9. BaseEmitter Saturation Region  
Figure 10. Forward Diode Voltage  
1000  
100  
1000  
900  
800  
700  
600  
T = 25°C  
(test)  
T = 25°C  
J
J
C (pF)  
ib  
BVCER @ 10 mA  
f
= 1 MHz  
C
ob  
(pF)  
10  
1
BVCER(sus) @ 200 mA  
500  
400  
1
10  
100  
10  
100  
(W)  
1000  
V , REVERSE VOLTAGE (VOLTS)  
R
R
BE  
Figure 11. Capacitance  
Figure 12. BVCER = f(ICER)  
http://onsemi.com  
5
BUL45D2G  
TYPICAL SWITCHING CHARACTERISTICS  
5
1000  
800  
600  
400  
I = I  
Bon Boff  
I
= I  
T = 125°C  
T = 25°C  
J
Bon Boff  
J
V
CC  
= 300 V  
V
= 300 V  
I /I = 10  
C B  
CC  
4
3
2
PW = 20 ms  
PW = 20 ms  
I /I = 10  
C B  
I /I = 5  
C B  
I /I = 5  
C B  
1
0
T = 125°C  
T = 25°C  
J
J
200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4
4
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 14. Resistive Switch Time, toff  
Figure 13. Resistive Switch Time, ton  
5
4
3
2
4
3
2
I
= I  
Bon Boff  
= 15 V  
I
= I  
Bon Boff  
= 15 V  
I /I = 5  
C B  
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
L = 200 mH  
C
L = 200 mH  
C
1
0
1
0
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
T = 25°C  
J
0
1
2
3
4
0
1
2
3
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 16. Inductive Storage Time,  
Figure 15. Inductive Storage Time,  
t
si @ IC/IB = 10  
t
si @ IC/IB = 5  
600  
500  
400  
300  
200  
400  
300  
200  
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
J
I
= I  
Boff Bon  
= 15 V  
V
CC  
T = 25°C  
J
V
CC  
V = 300 V  
Z
V = 300 V  
Z
t
c
L = 200 mH  
C
L = 200 mH  
C
100  
0
100  
0
T = 125°C  
J
T = 25°C  
J
t
fi  
0
1
2
3
0
1
2
3
4
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 17. Inductive Switching,  
tc & tfi @ IC/IB = 5  
Figure 18. Inductive Switching,  
tfi @ IC/IB = 10  
http://onsemi.com  
6
BUL45D2G  
TYPICAL SWITCHING CHARACTERISTICS  
1500  
1000  
5
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
T = 25°C  
J
I
= I  
Boff Bon  
= 15 V  
T = 125°C  
T = 25°C  
J
J
J
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
I = 1 A  
C
L = 200 mH  
C
L = 200 mH  
C
4
3
500  
I = 2 A  
C
0
2
0
1
2
3
4
0
5
10  
15  
20  
I , COLLECTOR CURRENT (AMPS)  
C
h
FE  
, FORCED GAIN  
Figure 19. Inductive Switching,  
tc @ IC/IB = 10  
Figure 20. Inductive Storage Time  
450  
350  
250  
1400  
1200  
1000  
800  
I
= I  
Boff Bon  
= 15 V  
T = 125°C  
T = 25°C  
J
I
= I  
Bon Boff  
= 15 V  
T = 125°C  
T = 25°C  
J
J
J
V
CC  
V
CC  
V = 300 V  
Z
V = 300 V  
Z
I = 1 A  
C
L = 200 mH  
C
L = 200 mH  
C
I = 2 A  
C
600  
400  
150  
50  
200  
0
I = 2 A  
C
I = 1 A  
C
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
h , FORCED GAIN  
FE  
12  
14  
16  
18  
20  
h
FE  
, FORCED GAIN  
Figure 21. Inductive Fall Time  
Figure 22. Inductive Crossover Time  
3000  
2000  
360  
340  
I = I  
B1 B2  
I
= I  
Bon Boff  
= 15 V  
V
dI/dt = 10 A/ms  
T = 25°C  
CC  
V = 300 V  
Z
C
L = 200 mH  
C
I = 50 mA  
B
I = 100 mA  
B
1000  
320  
300  
I = 200 mA  
B
I = 500 mA  
B
I = 1 A  
B
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
I , COLLECTOR CURRENT (AMPS)  
C
I , FORWARD CURRENT (AMP)  
F
Figure 23. Inductive Storage Time, tsi  
Figure 24. Forward Recovery Time tfr  
http://onsemi.com  
7
BUL45D2G  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
CE  
9
I
C
90% I  
C
dyn 1 ms  
8
7
6
t
fi  
t
si  
dyn 3 ms  
10% I  
C
0 V  
V
10% V  
clamp  
clamp  
5
4
3
2
t
c
90% I  
B
I
B
90% I  
B1  
1 ms  
I
B
1
0
3 ms  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 25. Dynamic Saturation  
Voltage Measurements  
Figure 26. Inductive Switching Measurements  
V
FRM  
V
(1.1 V unless  
F
otherwise specified)  
FR  
V
F
V
F
t
fr  
0.1 V  
F
0
I
F
10% I  
F
0
2
4
6
8
10  
Figure 27. tfr Measurements  
http://onsemi.com  
8
BUL45D2G  
TYPICAL SWITCHING CHARACTERISTICS  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I PEAK  
C
100 mF  
1 mF  
100 W  
3 W  
MTP8P10  
150 W  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
R
B1  
MPF930  
I 1  
B
MUR105  
MJE210  
MPF930  
I
+10 V  
out  
I
B
A
I 2  
B
50  
R
B2  
W
COMMON  
MTP12N10  
150 W  
3 W  
V
(BR)CEO(sus)  
L = 10 mH  
Inductive Switching  
RBSOA  
L = 500 mH  
L = 200 mH  
R
500 mF  
R
= ∞  
= 20 Volts  
= 100 mA  
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
selected for  
B2  
CC  
B2  
B2  
V
V
V
CC  
CC  
1 mF  
I
R
B1  
desired I  
R
B1  
C(pk)  
-V  
off  
desired I  
B1  
B1  
TYPICAL CHARACTERISTICS  
100  
6
T
125°C  
C
5
GAIN 5  
L = 2 mH  
1 ms  
10  
1
C
10 ms  
1 ms  
4
3
2
5 ms  
DC  
-5 V  
0.1  
1
0
0 V  
-1.5 V  
600  
0.01  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
200  
300  
400  
500  
700  
800  
V
CE  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 28. Forward Bias Safe Operating Area  
Figure 29. Reverse Bias Safe Operating Area  
http://onsemi.com  
9
 
BUL45D2G  
TYPICAL CHARACTERISTICS  
1
0.8  
0.6  
SECOND BREAKDOWN  
DERATING  
THERMAL DERATING  
0.4  
0.2  
0
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 30. Forward Bias Power Derating  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
Figure 28 may be found at any case temperature by using the  
appropriate curve on Figure 30.  
breakdown. Safe operating area curves indicate I V  
T
may be calculated from the data in Figure 31. At any  
C
CE  
J(pk)  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate. The data of Figure 28 is  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turnoff with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating area  
(Figure 29). This rating is verified under clamped conditions  
so that the device is never subjected to an avalanche mode.  
based on T = 25°C; T  
is variable depending on power  
level. Second breakdown pulse limits are valid for duty  
C
J(pk)  
cycles to 10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
q
JC  
q
JC  
0.1  
0.05  
= 2.5°C/W MAX  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.02  
t
1
1
t
2
SINGLE PULSE  
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 31. Typical Thermal Response (ZqJC(t)) for BUL45D2  
http://onsemi.com  
10  
 
BUL45D2G  
PACKAGE DIMENSIONS  
TO220AB  
CASE 221A09  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
SEATING  
PLANE  
T−  
C
S
B
F
T
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.36  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
4.09  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
B
C
D
F
G
H
J
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.014  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.161  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
A
K
Q
Z
1
2
3
U
H
K
L
N
Q
R
S
T
U
V
Z
L
R
J
V
G
D
0.080  
2.04  
N
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
BUL45D2/D  

相关型号:

BUL45F

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS
MOTOROLA

BUL45F

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS
ONSEMI

BUL45G

NPN Silicon Power Transistor
ONSEMI

BUL45L

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45N

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45S

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45T

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45U

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45U2

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45UA

5A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45W

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45WD

5A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA