CS5204-1GDP3 [ONSEMI]

4.0 A Adjustable, and 3.3 V and 5.0 V Fixed Linear Regulators; 4.0可调, 3.3 V和5.0 V固定线性稳压器
CS5204-1GDP3
型号: CS5204-1GDP3
厂家: ONSEMI    ONSEMI
描述:

4.0 A Adjustable, and 3.3 V and 5.0 V Fixed Linear Regulators
4.0可调, 3.3 V和5.0 V固定线性稳压器

线性稳压器IC 电源电路
文件: 总10页 (文件大小:76K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5204−1, CS5204−3,  
CS5204−5  
4.0 A Adjustable, and  
3.3 V and 5.0 V Fixed  
Linear Regulators  
http://onsemi.com  
The CS5204−x series of linear regulators provides 4.0 A at  
adjustable and fixed voltages with an accuracy of ±1.0% and ±2.0%  
respectively. The adjustable version uses two external resistors to set  
the output voltage within a 1.25 V to 13 V range.  
Adjustable  
Output  
The regulators are intended for use as post regulators and  
microprocessor supplies. The fast loop response and low dropout  
voltage make these regulators ideal for applications where low voltage  
operation and good transient response are important.  
TO−220−3  
T SUFFIX  
CASE 221A  
Tab = V  
OUT  
Pin 1. Adj  
2. V  
OUT  
3. V  
IN  
The circuit is designed to operate with dropout voltages as low as  
1.0 V depending on the output current level. The maximum quiescent  
current is only 10 mA at full load.  
The regulators are fully protected against overload conditions with  
protection circuitry for Safe Operating Area (SOA), overcurrent and  
thermal shutdown.  
1
Fixed  
2
3
Output  
2
Tab = V  
D PAK−3  
OUT  
Pin 1. GND  
DP SUFFIX  
CASE 418AB  
2. V  
OUT  
3. V  
1
IN  
2
3
The regulators are available in TO−220−3 and surface mount  
2
D PAK−3 packages.  
MARKING DIAGRAMS  
2
TO−220−3  
D PAK−3  
Features  
Output Current to 4.0 A  
Output Trimmed to ±1.0%  
Dropout Voltage 1.10 V @ 4.0 A  
Fast Transient Response  
Fault Protection Circuitry  
Thermal Shutdown  
CS5204−X  
AWLYWW  
CS5204−X  
AWLYWW  
1
1
Overcurrent Protection  
Safe Area Protection  
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
ORDERING INFORMATION  
V
OUT  
See detailed ordering and shipping information in the package  
V
IN  
dimensions section on page 7 of this data sheet.  
Output  
Current  
Limit  
Thermal  
Shutdown  
+
Error  
Amplifier  
Adj  
Bandgap  
Figure 1. Block Diagram − CS5204−1  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
January, 2004 − Rev. 8  
CS5204−1/D  
CS5204−1, CS5204−3, CS5204−5  
V
OUT  
V
IN  
Output  
Current  
Limit  
Thermal  
Shutdown  
+
Error  
Amplifier  
Bandgap  
GND  
Figure 2. Block Diagram − CS5204−3, −5  
Parameter  
MAXIMUM RATINGS*  
Value  
17  
Unit  
V
Supply Voltage, V  
CC  
Operating Temperature Range  
Junction Temperature  
−40 to +70  
150  
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature Soldering:  
−60 to +150  
Wave Solder (through hole styles only) Note 1  
Reflow (SMD styles only) Note 2  
260 Peak  
230 Peak  
°C  
1. 10 second maximum.  
2. 60 second maximum above 183°C.  
*The maximum package power dissipation must be observed.  
ELECTRICAL CHARACTERISTICS (C = 10 mF, C  
= 22 mF Tantalum, V − V  
= 3.0 V, V 15 V,  
OUT IN  
IN  
OUT  
IN  
0°C T 70°C, T +150°C, unless otherwise specified, I  
= 4.0 A.)  
A
J
full load  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Adjustable Output Voltage (CS5204−1)  
Reference Voltage (Notes 3 and 4)  
V
− V  
= 1.5 V; V = 0 V,  
1.241  
(−1%)  
1.254  
1.266  
(+1%)  
V
IN  
OUT  
Adj  
10 mA I  
4.0 A  
OUT  
Line Regulation  
1.5 V V − V  
6.0 V; I = 10 mA  
OUT  
0.04  
0.05  
1.1  
0.20  
0.4  
%
%
V
IN  
OUT  
Load Regulation (Notes 3 and 4)  
Dropout Voltage (Note 5)  
Current Limit  
V
IN  
− V  
= 1.5 V; 10 mA I  
4.0 A  
OUT  
OUT  
I
= 4.0 A  
1.2  
OUT  
V
IN  
V
IN  
− V  
− V  
= 3.0 V; T 25°C  
= 9.0 V  
4.5  
8.5  
1.0  
A
A
OUT  
OUT  
J
Minimum Load Current  
Adjust Pin Current  
V
− V  
= 7.0 V  
1.2  
50  
6.0  
100  
5.0  
mA  
mA  
mA  
IN  
OUT  
Adjust Pin Current Change  
1.5 V V − V  
4.0 V;  
0.2  
IN  
OUT  
10 mA I  
4.0 A  
OUT  
Thermal Regulation  
30 ms pulse; T = 25°C  
0.003  
%/W  
A
3. Load regulation and output voltage are measured at a constant junction temperature by low duty cycle pulse testing. Changes in output  
voltage due to thermal gradients or temperature changes must be taken into account separately.  
4. Specifications apply for an external Kelvin sense connection at a point on the output pin 1/4” from the bottom of the package.  
5. Dropout voltage is a measurement of the minimum input/output differentials at full load.  
http://onsemi.com  
2
 
CS5204−1, CS5204−3, CS5204−5  
ELECTRICAL CHARACTERISTICS (continued) (C = 10 mF, C  
= 22 mF Tantalum, V − V  
= 3.0 V, V 15 V,  
OUT IN  
IN  
OUT  
IN  
0°C T 70°C, T +150°C, unless otherwise specified, I  
= 4.0 A.)  
A
J
full load  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Adjustable Output Voltage (CS5204−1) (continued)  
Ripple Rejection  
f = 120 Hz; C = 25 mF; I  
= 4.0 A  
82  
0.5  
dB  
%
Adj  
OUT  
Temperature Stability  
RMS Output Noise  
10 Hz f 10 kHz; T = 25°C  
0.003  
180  
25  
%V  
OUT  
A
Thermal Shutdown  
150  
°C  
°C  
Thermal Shutdown Hysteresis  
ELECTRICAL CHARACTERISTICS (C = 10 mF, C  
= 22 mF Tantalum, V − V  
= 3.0 V, V 10 V,  
OUT IN  
IN  
OUT  
IN  
0°C T 70°C, T +150°C, unless otherwise specified, I  
= 4.0 A.)  
A
J
full load  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Fixed Output Voltage (CS5204−3, CS5204−5)  
Reference Voltage (Notes 6 and 7)  
CS5204−5  
CS5204−3  
V
IN  
V
IN  
− V  
− V  
= 1.5 V; 0 IOUT 4.0 A  
= 1.5 V; 0 IOUT 4.0 A  
4.9 (−2%)  
3.234 (−2%)  
5.0  
3.3  
5.1 (+2%)  
3.366 (+2%)  
V
V
OUT  
OUT  
Line Regulation  
1.5 V V − V  
6.0 V; I = 10 mA  
OUT  
0.04  
0.05  
1.1  
0.20  
0.4  
%
%
V
IN  
OUT  
Load Regulation (Notes 6 and 7)  
Dropout Voltage (Note 8)  
Current Limit  
V
IN  
− V  
= 1.5 V; 10 mA I  
4.0 A  
OUT  
OUT  
I
= 4.0 A  
1.2  
OUT  
V
IN  
V
IN  
− V  
− V  
= 3.0 V; T 25°C  
= 9.0 V  
4.5  
8.5  
1.0  
A
A
OUT  
OUT  
J
Quiescent Current  
Thermal Regulation  
Ripple Rejection  
V
9.0 V; I  
= 10 mA  
5.0  
0.003  
75  
10  
mA  
%/W  
dB  
IN  
OUT  
30 ms pulse; T = 25°C  
A
f = 120 Hz; I  
= 4.0 A  
OUT  
Temperature Stability  
0.5  
%
RMS Output Noise (%V  
Thermal Shutdown  
)
10 Hz f 10 kHz  
0.003  
180  
25  
%V  
OUT  
OUT  
150  
°C  
°C  
Thermal Shutdown Hysteresis  
6. Load regulation and output voltage are measured at a constant junction temperature by low duty cycle pulse testing. Changes in output  
voltage due to thermal gradients or temperature changes must be taken into account separately.  
7. Specifications apply for an external Kelvin sense connection at a point on the output pin 1/4” from the bottom of the package.  
8. Dropout voltage is a measurement of the minimum input/output differentials at full load.  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
CS5204−1  
CS5204−3, −5  
2
2
D PAK−3  
TO−220−3  
D PAK−3  
TO−220−3  
Pin Symbol  
Function  
1
2
1
2
N/A  
2
N/A  
2
Adj  
Adjust pin (low side of the internal reference).  
V
OUT  
Regulated output voltage (case).  
Input voltage.  
3
3
3
3
V
IN  
N/A  
N/A  
1
1
GND  
Ground connection.  
http://onsemi.com  
3
 
CS5204−1, CS5204−3, CS5204−5  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.10  
0.08  
0.06  
0.04  
T
= 0°C  
CASE  
0.02  
0.00  
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−0.12  
T
= 125°C  
CASE  
T
= 25°C  
CASE  
0.85  
0.80  
0.75  
0.70  
0
1
2
Output Current (A)  
3
4
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
T (°C)  
J
Figure 3. Dropout Voltage vs. Output  
Current  
Figure 4. Reference Voltage vs.  
Temperature  
0.200  
0.175  
0.150  
0.125  
0.100  
2.500  
2.175  
1.850  
1.525  
1.200  
0.875  
0.550  
T
= 0°C  
CASE  
T
= 25°C  
CASE  
0.075  
0.050  
0.025  
0
T
= 25°C  
CASE  
T
= 125°C  
CASE  
1
T
= 125°C  
CASE  
7
T
= 0°C  
CASE  
3
0
2
4
1
2
3
4
5
6
8
9
Output Current (A)  
V
IN  
− V  
(V)  
OUT  
Figure 5. Load Regulation vs. Output  
Current  
Figure 6. Minimum Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
65  
60  
55  
50  
45  
I
= 10 mA  
O
T
= 25°C  
= 4.0 A  
CASE  
I
OUT  
(V − V  
V
) = 3.0 V  
OUT  
IN  
= 1.6 V  
RIPPLE  
PP  
40  
0
1
2
3
4
5
10 20 30 40 50 60 70 80 90 100 110 120 130  
10  
10  
10  
10  
10  
Temperature (°C)  
Frequency (Hz)  
Figure 7. Adjust Pin Current vs.  
Temperature  
Figure 8. Ripple Rejection vs. Frequency  
(Fixed Versions)  
http://onsemi.com  
4
CS5204−1, CS5204−3, CS5204−5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
= 4.0 A  
CASE  
I
OUT  
(V − V  
V
C
) = 3.0 V  
OUT  
IN  
= 1.6 V  
PP  
RIPPLE  
= 25 mF  
Adj  
1
2
3
4
5
10  
10  
10  
10  
10  
Frequency (Hz)  
Figure 9. Ripple Rejection vs. Frequency  
(Adjustable Versions)  
APPLICATIONS INFORMATION  
The CS5204−x family of linear regulators provides fixed  
or adjustable voltages at currents up to 4.0 A. The regulators  
are protected against short circuit, and include thermal  
shutdown and safe area protection (SOA) circuitry. The  
SOA protection circuitry decreases the maximum available  
output current as the input−output differential voltage  
increases.  
The CS5204−x has a composite PNP−NPN output  
transistor and requires an output capacitor for stability. A  
detailed procedure for selecting this capacitor is included in  
the Stability Considerations section.  
V
IN  
V
OUT  
V
OUT  
V
IN  
CS5204−1  
C
1
V
REF  
Adj  
R
R
1
2
C
2
I
Adj  
C
Adj  
Adjustable Operation  
Figure 10. Resistor Divider Scheme for the  
Adjustable Version  
The adjustable regulator (CS5204−1) has an output  
voltage range of 1.25 V to 13 V. An external resistor divider  
sets the output voltage as shown in Figure 10. The regulator  
maintains a fixed 1.25 V (typical) reference between the  
output pin and the adjust pin.  
A resistor divider network R1 and R2 causes a fixed  
current to flow to ground. This current creates a voltage  
across R2 that adds to the 1.25 V across R1 and sets the  
overall output voltage. The adjust pin current (typically  
50 mA) also flows through R2 and adds a small error that  
Stability Considerations  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start−up  
delay, load transient response and loop stability.  
The capacitor value and type is based on cost, availability,  
size and temperature constraints. A tantalum or aluminum  
electrolytic capacitor is best, since a film or ceramic  
capacitor with almost zero ESR, can cause instability. The  
aluminum electrolytic capacitor is the least expensive  
solution. However, when the circuit operates at low  
temperatures, both the value and ESR of the capacitor will  
vary considerably. The capacitor manufacturers data sheet  
provides this information.  
should be taken into account if precise adjustment of V  
is necessary.  
The output voltage is set according to the formula:  
OUT  
R1 ) R2  
ǒ
Ǔ) I  
V
+ V  
 
  R2  
OUT  
REF  
Adj  
R1  
The term I × R2 represents the error added by the adjust  
pin current.  
A 22 mF tantalum capacitor will work for most  
applications, but with high current regulators such as the  
CS5204−x the transient response and stability improve with  
higher values of capacitor. The majority of applications for  
this regulator involve large changes in load current so the  
output capacitor must supply the instantaneous load current.  
Adj  
R1 is chosen so that the minimum load current is at least  
10 mA. R1 and R2 should be the same type, e.g. metal film  
for best tracking over temperature. The adjust pin is  
bypassed to improve the transient response and ripple  
rejection of the regulator.  
http://onsemi.com  
5
 
CS5204−1, CS5204−3, CS5204−5  
Output Voltage Sensing  
The ESR of the output capacitor causes an immediate drop  
in output voltage given by:  
Since the CS5204−x is a three terminal regulator, it is not  
possible to provide true remote load sensing. Load  
regulation is limited by the resistance of the conductors  
connecting the regulator to the load. For best results the  
fixed regulators should be connected as shown in Figure 13.  
DV + DI   ESR  
For microprocessor applications it is customary to use an  
output capacitor network consisting of several tantalum and  
ceramic capacitors in parallel. This reduces the overall ESR  
and reduces the instantaneous output voltage drop under  
load transient conditions. The output capacitor network  
should be as close as possible to the load for the best results.  
Conductor Parasitic  
Resistance  
R
C
V
IN  
V
IN  
V
OUT  
CS5204−x  
R
LOAD  
Protection Diodes  
GND  
When large external capacitors are used with a linear  
regulator it is sometimes necessary to add protection diodes.  
If the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator. The  
discharge current depends on the value of the capacitor, the  
output voltage and the rate at which V drops. In the  
IN  
Figure 13. Conductor Parasitic Resistance can be  
Minimized with the Above Grounding Scheme for  
Fixed Output Regulators  
CS5204−x family of linear regulators, the discharge path is  
through a large junction and protection diodes are not  
usually needed. If the regulator is used with large values of  
output capacitance and the input voltage is instantaneously  
shorted to ground, damage can occur. In this case, a diode  
connected as shown in Figures 11 and 12 is recommended.  
For the adjustable regulator, the best load regulation  
occurs when R1 is connected directly to the output pin of the  
regulator as shown in Figure 14. If R1 is connected to the  
load, R is multiplied by the divider ratio and the effective  
C
resistance between the regulator and the load becomes  
IN4002 (optional)  
R1 ) R2  
ǒ
Ǔ
R1  
R
 
C
V
IN  
V
IN  
V
OUT  
V
OUT  
CS5204−1  
C
1
where R = conductor parasitic resistance.  
C
Adj  
R
1
C
2
Conductor Parasitic  
Resistance  
R
C
V
IN  
V
IN  
V
OUT  
C
R
Adj  
2
CS5204−1  
R
R
1
2
R
LOAD  
Adj  
Figure 11. Protection Diode Scheme for Adjustable  
Output Regulator  
IN4002 (optional)  
V
OUT  
V
OUT  
V
IN  
V
IN  
CS5204−x  
C
1
GND  
Figure 14. Grounding Scheme for Adjustable Output  
Regulator to Minimize Parasitics  
C
2
Figure 12. Protection Diode Scheme for Fixed Output  
Regulators  
http://onsemi.com  
6
 
CS5204−1, CS5204−3, CS5204−5  
Calculating Power Dissipation and Heat Sink  
Requirements  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment has a thermal resistance. Like series  
electrical resistances, these resistances are summed to  
The CS5204−x series of linear regulators includes thermal  
shutdown and current limit circuitry to protect the device.  
High power regulators such as these usually operate at high  
junction temperatures so it is important to calculate the  
power dissipation and junction temperatures accurately to  
ensure that an adequate heat sink is used.  
determine R , the total thermal resistance between the  
qJA  
junction and the surrounding air.  
The case is connected to V  
on the CS5204−x,  
OUT  
1. Thermal Resistance of the junction to case, R  
qJC  
electrical isolation may be required for some applications.  
Thermal compound should always be used with high current  
regulators such as these.  
(°C/W)  
2. Thermal Resistance of the case to Heat Sink, R  
qCS  
(°C/W)  
The thermal characteristics of an IC depend on the  
following four factors:  
3. Thermal Resistance of the Heat Sink to the ambient  
air, R (°C/W)  
qSA  
These are connected by the equation:  
1. Maximum Ambient Temperature T (°C)  
A
2. Power dissipation P (Watts)  
D
3. Maximum junction temperature T (°C)  
4. Thermal resistance junction to ambient R  
J
R
+ R  
) R  
) R  
QSA  
(3)  
QJA  
QJC  
QCS  
(°C/W)  
qJA  
The value for R  
is calculated using equation (3) and the  
result can be substituted in equation (1).  
The value for R is 3.5°C/W for a given package type  
qJA  
These four are related by the equation  
qJC  
based on an average die size. For a high current regulator  
such as the CS5204−x the majority of the heat is generated  
T + T ) P   R  
QJA  
(1)  
J
A
D
The maximum ambient temperature and the power  
dissipation are determined by the design while the  
maximum junction temperature and the thermal resistance  
depend on the manufacturer and the package type.  
in the power transistor section. The value for R  
depends  
qSA  
on the heat sink type, while R  
depends on factors such as  
qCS  
package type, heat sink interface (is an insulator and thermal  
grease used?), and the contact area between the heat sink and  
the package. Once these calculations are complete, the  
The maximum power dissipation for a regulator is:  
maximum permissible value of R  
can be calculated and  
qJA  
{
}
I
P
+ V  
* V  
) V  
I
D(max)  
IN(max)  
OUT(min) OUT(max)  
IN(max) Q  
the proper heat sink selected. For further discussion on heat  
sink selection, see application note “Thermal  
Management,” document number AND8036/D, available  
through the Literature Distribution Center or via our website  
at http://onsemi.com.  
(2)  
where:  
V
V
is the maximum input voltage,  
IN(max)  
OUT(min)  
OUT(max)  
is the minimum output voltage,  
is the maximum output current, for the  
I
application  
I is the maximum quiescent current at I  
Q
.
OUT(max)  
ORDERING INFORMATION  
Orderable Part Number  
CS5204−1GT3  
Type  
Package  
Shipping  
4.0 A, Adj. Output  
4.0 A, Adj. Output  
4.0 A, Adj. Output  
4.0 A, 3.3 V Output  
4.0 A, 3.3 V Output  
4.0 A, 3.3 V Output  
4.0 A, 5.0 V Output  
TO−220−3, STRAIGHT  
50 Units / Rail  
50 Units / Rail  
750 / Tape & Reel  
50 Units / Rail  
50 Units / Rail  
750 / Tape & Reel  
50 Units / Rail  
2
CS5204−1GDP3  
CS5204−1GDPR3  
CS5204−3GT3  
D PAK−3  
2
D PAK−3  
TO−220−3, STRAIGHT  
2
CS5204−3GDP3  
CS5204−3GDPR3  
CS5204−5GT3  
D PAK−3  
2
D PAK−3  
TO−220−3, STRAIGHT  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
7
 
CS5204−1, CS5204−3, CS5204−5  
PACKAGE DIMENSIONS  
TO−220−3  
T SUFFIX  
CASE 221A−08  
ISSUE AA  
NOTES:  
SEATING  
PLANE  
−T−  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
F
−B−  
C
T
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
MIN  
14.23  
9.66  
3.56  
0.64  
3.53  
MAX  
15.87  
10.66  
4.82  
A
B
C
D
F
0.560  
0.380  
0.140  
0.025  
0.139  
0.625  
0.420  
0.190  
0.035  
0.155  
4
Q
A
K
0.89  
3.93  
1
2
3
U
G
H
J
0.100 BSC  
2.54 BSC  
−−−  
0.012  
0.500  
0.045  
0.280  
0.045  
0.580  
0.060  
−−−  
0.31  
7.11  
1.14  
H
L
−Y−  
K
L
12.70  
1.15  
14.73  
1.52  
N
Q
R
S
T
0.200 BSC  
5.08 BSC  
0.100  
0.080  
0.020  
0.235  
0.000  
0.045  
0.135  
0.115  
0.055  
0.255  
0.050  
−−−  
2.54  
2.04  
0.51  
5.97  
0.00  
1.15  
3.42  
2.92  
1.39  
6.47  
1.27  
−−−  
R
V
G
J
U
V
D 3 PL  
M
M
0.25 (0.010)  
B
Y
N
http://onsemi.com  
8
CS5204−1, CS5204−3, CS5204−5  
PACKAGE DIMENSIONS  
D2PAK−3  
DP SUFFIX  
CASE 418AB−01  
ISSUE O  
For D2PAK Outline and  
Dimensions − Contact Factory  
PACKAGE THERMAL DATA  
2
Parameter  
TO−220−3  
D PAK−3  
Unit  
°C/W  
°C/W  
R
R
Typical  
Typical  
1.6  
50  
1.6  
q
q
JC  
JA  
10−50*  
+ R  
* Depending on thermal properties of substrate. R  
= R  
q
JC  
q
q
CA  
JA  
http://onsemi.com  
9
CS5204−1, CS5204−3, CS5204−5  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
CS5204−1/D  

相关型号:

CS5204-1GDPR3

4.0 A Adjustable, and 3.3 V and 5.0 V Fixed Linear Regulators
ONSEMI

CS5204-1GT3

4.0 A Adjustable, and 3.3 V and 5.0 V Fixed Linear Regulators
ONSEMI

CS5204-1_06

4.0 A Adjustable, and 3.3 V and 5.0 V Fixed Linear Regulators
ONSEMI

CS5204-2

4.0 A, 1.5 V Fixed Linear Regulator
ONSEMI

CS5204-2/D

4A , 1.5V Fixed Linear Regulator
ETC

CS5204-2GDP3

4.0 A, 1.5 V Fixed Linear Regulator
ONSEMI

CS5204-2GDP3

1.5 V FIXED POSITIVE LDO REGULATOR, 1.2 V DROPOUT, PSSO3, D2PAK-3
ROCHESTER

CS5204-2GDPR3

4.0 A, 1.5 V Fixed Linear Regulator
ONSEMI

CS5204-2GDPR3

1.5 V FIXED POSITIVE LDO REGULATOR, 1.2 V DROPOUT, PSSO3, D2PAK-3
ROCHESTER

CS5204-2GT3

4.0 A, 1.5 V Fixed Linear Regulator
ONSEMI

CS5204-2GT3

1.5 V FIXED POSITIVE LDO REGULATOR, 1.2 V DROPOUT, PSFM3, TO-220, 3 PIN
ROCHESTER

CS5204-2_06

4.0 A, 1.5 V Fixed Linear Regulator
ONSEMI