EMF5XV6T1G [ONSEMI]

互补双极数字晶体管 (BRT);
EMF5XV6T1G
型号: EMF5XV6T1G
厂家: ONSEMI    ONSEMI
描述:

互补双极数字晶体管 (BRT)

数字晶体管
文件: 总6页 (文件大小:70K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMF5XV6T5  
Preferred Devices  
Power Management,  
Dual Transistors  
NPN Silicon Surface Mount Transistors  
with Monolithic Bias Resistor Network  
http://onsemi.com  
Features  
Simplifies Circuit Design  
Reduces Board Space  
(3)  
(2)  
(1)  
Reduces Component Count  
These are Pb−Free Devices  
Q
1
Q
2
MAXIMUM RATINGS  
R
2
R
1
Rating  
Symbol  
Value  
Unit  
(4)  
(5)  
(6)  
Q (T = 25°C unless otherwise noted, common for Q and Q )  
1
A
1
2
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
V
V
50  
50  
Vdc  
Vdc  
CBO  
CEO  
6
I
100  
mAdc  
C
Electrostatic Discharge  
ESD  
HBM Class 1  
MM Class B  
1
Q (T = 25°C)  
2
A
SOT−563  
CASE 463A  
PLASTIC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
V
−12  
Vdc  
Vdc  
Vdc  
Adc  
CEO  
CBO  
EBO  
V
V
−15  
−6.0  
Collector Current − Peak  
I
−1.0 (Note 1)  
−0.5  
MARKING DIAGRAM  
C
Collector Current − Continuous  
Electrostatic Discharge  
ESD  
HBM Class 3B  
MM Class C  
UY M G  
THERMAL CHARACTERISTICS  
G
Characteristic  
1
(One Junction Heated)  
Symbol  
Max  
Unit  
Total Device Dissipation  
P
D
UY = Specific Device Code  
T = 25°C  
357 (Note 2)  
2.9 (Note 2)  
mW  
mW/°C  
A
M
= Date Code  
Derate above 25°C  
G
= Pb−Free Package  
(Note: Microdot may be in either location)  
Thermal Resistance,  
Junction-to-Ambient  
R
q
JA  
350 (Note 2)  
°C/W  
Characteristic  
(Both Junctions Heated)  
ORDERING INFORMATION  
Symbol  
Max  
Unit  
Device  
Package  
Shipping  
Total Device Dissipation  
P
D
T = 25°C  
Derate above 25°C  
500 (Note 2)  
4.0 (Note 2)  
mW  
A
EMF5XV6T5  
SOT−563  
(Pb−Free)  
8000/Tape & Reel  
mW/°C  
Thermal Resistance,  
Junction-to-Ambient  
R
250 (Note 2)  
°C/W  
q
JA  
EMF5XV6T5G  
SOT−563  
(Pb−Free)  
8000/Tape & Reel  
Junction and Storage  
Temperature Range  
T , T  
J stg  
55 to +150  
°C  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
1. Single pulse 1.0 ms.  
Preferred devices are recommended choices for future use  
2. FR−4 @ Minimum Pad.  
and best overall value.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
November, 2005 − Rev. 2  
EMF5XV6T5/D  
 
EMF5XV6T5  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted, common for Q and Q )  
A
1
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Q1  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current  
Collector-Emitter Cutoff Current  
Emitter-Base Cutoff Current  
(V = 50 V, I = 0)  
I
I
100  
500  
0.1  
nAdc  
nAdc  
mAdc  
Vdc  
CB  
E
CBO  
CEO  
(V = 50 V, I = 0)  
CE  
B
(V = 6.0 V, I = 0)  
I
EBO  
EB  
C
Collector-Base Breakdown Voltage  
Collector-Emitter Breakdown Voltage (Note 3)  
ON CHARACTERISTICS (Note 3)  
DC Current Gain  
(I = 10 mA, I = 0)  
V
V
50  
50  
C
E
(BR)CBO  
(BR)CEO  
(I = 2.0 mA, I = 0)  
Vdc  
C
B
(V = 10 V, I = 5.0 mA)  
h
FE  
80  
140  
CE  
C
Collector-Emitter Saturation Voltage  
(I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
0.2  
Vdc  
Vdc  
Vdc  
k W  
C
B
Output Voltage (on)  
Output Voltage (off)  
Input Resistor  
(V = 5.0 V, V = 3.5 V, R = 1.0 kW)  
V
CC  
B
L
OL  
(V = 5.0 V, V = 0.5 V, R = 1.0 kW)  
V
4.9  
32.9  
0.8  
CC  
B
L
OH  
R1  
R1/R2  
47  
1.0  
61.1  
1.2  
Resistor Ratio  
Q2  
OFF CHARACTERISTICS  
CollectorEmitter Breakdown Voltage  
CollectorBase Breakdown Voltage  
EmitterBase Breakdown Voltage  
Collector Cutoff Current  
(I = −10 mAdc, I = 0)  
V
−12  
−15  
−6.0  
Vdc  
Vdc  
C
B
(BR)CEO  
(BR)CBO  
(BR)EBO  
(I = −0.1 mAdc, I = 0)  
V
V
C
E
(I = −0.1 mAdc, I = 0)  
Vdc  
E
C
(V = −15 Vdc, I = 0)  
I
CBO  
−0.1  
−0.1  
mAdc  
mAdc  
CB  
E
Emitter Cutoff Current  
(V = −6.0 Vdc)  
EB  
I
EBO  
ON CHARACTERISTICS  
DC Current Gain (Note 4)  
(I = −10 mA, V = −2.0 V)  
h
FE  
270  
680  
−250  
−0.90  
−0.875  
C
CE  
CollectorEmitter Saturation Voltage (Note 4)  
BaseEmitter Saturation Voltage (Note 4)  
BaseEmitter Turn−on Voltage (Note 4)  
Input Capacitance  
(I = −200 mA, I = −10 mA)  
V
mV  
V
C
B
CE(sat)  
BE(sat)  
(I = −150 mA, I = −20 mA)  
V
−0.81  
−0.81  
52  
C
B
(I = −150 mA, V = −3.0 V)  
V
BE(on)  
V
C
CE  
(V = 0 V, f = 1.0 MHz)  
EB  
C
pF  
pF  
ns  
ns  
ibo  
obo  
on  
Output Capacitance  
(V = 0 V, f = 1.0 MHz)  
CB  
C
t
30  
Turn−On Time  
Turn−Off Time  
(I = −50 mA, I = −500 mA, R = 3.0 W)  
50  
BI  
C
L
(I = I = −50 mA, I = −500 mA, R = 3.0 W)  
t
80  
B1  
B2  
C
L
off  
3. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%.  
4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle 2%.  
300  
250  
200  
150  
100  
R
q
JA  
= 833°C/W  
50  
0
50  
0
50  
100  
150  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Derating Curve  
http://onsemi.com  
2
 
EMF5XV6T5  
TYPICAL ELECTRICAL CHARACTERISTICS FOR Q1  
10  
1
1000  
V
= 10 V  
CE  
I /I = 10  
C B  
T ꢀ=ꢀ75°C  
A
25°C  
−25°C  
25°C  
75°C  
100  
T ꢀ=ꢀ−25°C  
A
0.1  
0.01  
10  
0
20  
40  
50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 2. VCE(sat) versus IC  
Figure 3. DC Current Gain  
1
100  
10  
1
25°C  
f = 1 MHz  
= 0 V  
75°C  
I
E
T ꢀ=ꢀ−25°C  
A
0.8  
T
= 25°C  
A
0.6  
0.4  
0.1  
0.01  
0.2  
0
V
= 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 4. Output Capacitance  
Figure 5. Output Current versus Input Voltage  
100  
V
= 0.2 V  
O
T ꢀ=ꢀ−25°C  
A
25°C  
75°C  
10  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 6. Input Voltage versus Output Current  
http://onsemi.com  
3
EMF5XV6T5  
TYPICAL ELECTRICAL CHARACTERISTICS FOR Q2  
1
0.1  
1
I /I = 100  
C
B
25°C  
I /I = 200  
C
B
−55°C  
100  
50  
0.1  
0.01  
0.001  
10  
T = 125°C  
A
T = 25°C  
A
0.01  
0.001  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Collector Emitter Saturation Voltage  
vs. Collector Current  
Figure 8. Collector Emitter Saturation Voltage  
vs. Collector Current  
1
600  
500  
400  
300  
200  
100  
0
I /I = 50  
C
B
V
= 1.0 V  
CE  
25°C  
125°C  
25°C  
0.1  
−55°C  
T = 125°C  
A
T = −55°C  
A
0.01  
0.001  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 9. DC Current Gain  
Figure 10. Collector Emitter Saturation Voltage  
vs. Collector Current  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1
T = 25°C  
A
−55°C  
25°C  
I
= 1.0 A  
C
0.8  
T = 125°C  
0.6  
0.4  
0.2  
0
A
500 mA  
50 mA  
250 mA  
100 mA  
10 mA  
5.0 mA  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I , BASE CURRENT (AMPS)  
B
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Collector Emitter Saturation Voltage  
vs Base Current  
Figure 12. Base Emitter Saturation Voltage vs.  
Collector Current  
http://onsemi.com  
4
EMF5XV6T5  
1.2  
55  
50  
V
= 3.0 V  
CE  
f = 1 MHz  
= 0 A  
T = 25°C  
A
I
C
1
0.8  
0.6  
0.4  
0.2  
0
−55°C  
25°C  
45  
40  
35  
30  
25  
20  
T = 125°C  
A
0.001  
0.01  
0.1  
1
0
1
2
3
4
5
6
I , COLLECTOR CURRENT (AMPS)  
C
V
, EMITTER BASE VOLTAGE  
EB  
Figure 13. Base Emitter Turn−On Voltage vs.  
Collector Current  
Figure 14. Input Capacitance  
35  
30  
25  
20  
f = 1 MHz  
I
= 0 A  
E
T = 25°C  
A
15  
10  
0
2
4
6
8
10  
12  
14  
V
, COLLECTOR BASE VOLTAGE  
CB  
Figure 15. Output Capacitance  
http://onsemi.com  
5
EMF5XV6T5  
PACKAGE DIMENSIONS  
SOT−563, 6 LEAD  
CASE 463A−01  
ISSUE F  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETERS  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE MATERIAL.  
A
−X−  
L
6
5
2
4
3
E
−Y−  
H
E
MILLIMETERS  
DIM MIN NOM MAX MIN  
INCHES  
NOM MAX  
1
A
b
C
D
E
e
0.50  
0.17  
0.08  
1.50  
1.10  
0.55  
0.22  
0.12  
1.60  
1.20  
0.5 BSC  
0.20  
1.60  
0.60 0.020 0.021 0.023  
0.27 0.007 0.009 0.011  
0.18 0.003 0.005 0.007  
1.70 0.059 0.062 0.066  
1.30 0.043 0.047 0.051  
0.02 BSC  
b 56 PL  
C
e
M
0.08 (0.003)  
X Y  
L
0.10  
1.50  
0.30 0.004 0.008 0.012  
1.70 0.059 0.062 0.066  
H
E
SOLDERING FOOTPRINT*  
0.3  
0.0118  
0.45  
0.0177  
1.0  
0.0394  
1.35  
0.0531  
0.5  
0.5  
0.0197 0.0197  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
EMF5XV6T5/D  

相关型号:

EMF5XV6T5

Power Management, Dual Transistors NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network
ONSEMI

EMF5XV6T5G

Power Management, Dual Transistors NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network
ONSEMI

EMF5_08

Power management (dual transistors)
ROHM

EMF6

Power management (dual transistors)
ROHM

EMF7

Power management (dual transistors)
ROHM

EMF8

Power management (dual transistors)
ROHM

EMF8_1

Power management (dual transistors)
ROHM

EMF9

Power management (dual transistors)
ROHM

EMF9T2R

Small Signal Field-Effect Transistor, 0.1A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, EMT6, 6 PIN
ROHM

EMF9_08

Power management (dual transistors)
ROHM

EMG050J60N

Dual Mode PFC, 60 A
VISHAY

EMG1

General purpose (dual digital transistors)
ROHM