FAN53555UC42X [ONSEMI]

Switching Regulator;
FAN53555UC42X
型号: FAN53555UC42X
厂家: ONSEMI    ONSEMI
描述:

Switching Regulator

开关
文件: 总25页 (文件大小:2053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
November 2013  
FAN53555  
5 A, 2.4 MHz, Digitally Programmable TinyBuck™ Regulator  
Features  
Description  
The FAN53555 is a step-down switching voltage regulator  
that delivers a digitally programmable output from an input  
voltage supply of 2.5 V to 5.5 V. The output voltage is  
programmed through an I2C interface capable of operating up  
to 3.4 MHz.  
. Fixed-Frequency Operation: 2.4 MHz  
. Best-in-Class Load Transient  
. Continuous Output Current Capability: 5 A  
. Pulse Current Capability: 6.5 A (05 Option)  
. 2.5 V to 5.5 V Input Voltage Range  
. Digitally Programmable Output Voltage:  
Using  
a
proprietary architecture with synchronous  
rectification, the FAN53555 is capable of delivering 5 A  
continuous at over 80% efficiency, while maintaining over  
80% efficiency at load currents as low as 10 mA. Pulse  
currents as high as 6.5 A can be supported by the 05 option.  
The regulator operates at a nominal fixed frequency of  
2.4 MHz, which reduces the value of the external components  
to 330 nH for the output induction and as low as 20 µF for the  
output capacitor. Additional output capacitance can be added  
to improve regulation during load transients without affecting  
stability. Inductance up to 1.2 µH may be used with additional  
output capacitance.  
00/01/03/05/08/18 Options: 0.60-1.23 V in 10 mV  
Steps  
04/042/09/ Option: 0.603-1.411 V in 12.826 mV Steps  
24 Option : 0.603-1.420 V in 12.967 mV Steps  
13 Option: 0.80-1.43 V in 10 mV steps  
. Programmable Slew Rate for Voltage Transitions  
. I2C-Compatible Interface Up to 3.4 Mbps  
. PFM Mode for High Efficiency in Light Load  
. Quiescent Current in PFM Mode: 60 µA (Typical)  
. Internal Soft-Start  
At moderate and light loads, Pulse Frequency Modulation  
(PFM) is used to operate in Power-Save Mode with a typical  
quiescent current of 60 µA. Even with such a low quiescent  
current, the part exhibits excellent transient response during  
large load swings. At higher loads, the system automatically  
switches to fixed-frequency control, operating at 2.4 MHz. In  
Shutdown Mode, the supply current drops below 1 µA,  
reducing power consumption. PFM Mode can be disabled if  
constant frequency is desired. The FAN53555 is available in a  
20-bump, 1.6 x 2 mm, WLCSP.  
. Input Under-Voltage Lockout (UVLO)  
. Thermal Shutdown and Overload Protection  
. 20-Bump Wafer-Level Chip Scale Package (WLCSP)  
Applications  
PVIN  
. Application, Graphic, and DSP Processors  
CIN1  
CIN  
ARM, Krait, OMAP™, NovaThor, ARMADA™  
EN  
SDA  
VOUT  
SW  
. Hard Disk Drives  
L1  
COUT  
. Tablets, Netbooks, Ultra-Mobile PCs  
. Smart Phones  
FAN53555  
VDD  
Core  
SCL  
VSEL  
GND  
Processor  
. Gaming Devices  
(System Load)  
AGND  
GND  
Figure 1. Typical Application  
All trademarks are the property of their respective owners.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
 
Ordering Information  
Power-Up  
Defaults  
Max.  
I2C  
Slave  
Address  
Max.  
RMS  
Current  
A1 PIN  
Function  
Pulse Temperature  
Current  
(50 ms)  
Packing  
Method  
Part Number  
Package  
Range  
VSEL0 VSEL1  
FAN53555UC00X  
FAN53555UC01X  
FAN53555UC03X  
FAN53555UC04X  
FAN53555UC24X  
1.05  
0.90  
0.90  
1.10  
1.225  
1.20  
OFF  
N/A  
VSEL  
VSEL  
PGOOD  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
5 A  
5 A  
5 A  
5 A  
4 A  
4 A  
5 A  
5 A  
4 A  
4 A  
3 A  
3 A  
5 A  
5 A  
5 A  
5 A  
5 A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6.5 A  
6.5 A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.20  
1.212  
1.212  
OFF  
OFF  
1.15  
1.15  
1.10  
1.10  
1.15  
1.15  
1.15  
1.15  
1.20  
FAN53555BUC24X(1) 1.225  
FAN53555UC05X  
FAN53555BUC05X(1)  
FAN53555UC08X  
FAN53555BUC08X(1)  
FAN53555BUC09X(1)  
FAN53555UC09X  
FAN53555UC13X  
FAN53555BUC13X(1)  
FAN53555UC18X  
FAN53555BUC18X(1)  
FAN53555UC042X(2)  
Notes:  
0.90  
0.90  
1.02  
1.02  
1.10  
1.10  
1.15  
1.15  
1.02  
1.02  
1.10  
C0  
WLCSP- Tape and  
-40 to 85°C  
20  
Reel  
C4  
1. The FAN53555BUC24X, FAN53555BUC05X, FAN53555BUC08X, FAN53555BUC09X, FAN53555BUC13X, and  
FAN53555BUC18X include backside lamination.  
2. The 042 option is the same as the 04 option, except the I2C slave addresses.  
Recommended External Components  
Table 1. Recommended External Components for 5 A Maximum Load Current  
Component  
Description  
Vendor  
Parameter  
Typ.  
0.33  
13  
Unit  
µH  
L
L1  
330 nH Nominal  
See Table 2  
DCR  
m  
2 Pieces;  
22 F, 6.3 V, X5R, 0805  
GRM21BR60J226M (Murata)  
C2012X5R0J226M (TDK)  
COUT  
C
C
C
C
44  
10  
20  
10  
1 Piece;  
10 F, 10 V, X5R, 0805  
LMK212BJ106KG-T (Taiyo Yuden)  
C2012X5R1A106M (TDK)  
µF  
nF  
CIN  
2 Pieces;  
10 F, 6.3 V, X5R, 0805  
GRM21BR60J106M (Murata)  
C2012X5R0J106M (TDK)  
GRM155R71E103K (Murata)  
C1005X7R1E103K (TDK)  
CIN1  
10 nF, 25 V, X7R, 0402  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
2
 
 
 
Table 2. Recommended Inductors for High-Current Applications  
Component Dimensions  
(3)  
Manufacturer  
Part#  
L (nH)  
DCR (mΩ) IMAXDC  
L
W
H
Vishay  
Mag. Layers(4)  
Mag. Layers  
Inter-Technical  
Bournes  
IHLP1616ABERR47M01  
MMD-04ABNR33M-M1-RU  
MMD-04ABNR47M-M1-RU  
SM1608-R33M  
470  
330  
470  
330  
330  
470  
470  
20.0  
12.5  
20.0  
9.6  
5.0  
7.5  
5.0  
9.0  
6.7  
5.0  
5.4  
4.5  
4.5  
4.5  
4.5  
4.7  
4.7  
5.0  
4.1  
4.1  
4.1  
4.1  
4.2  
4.2  
5.0  
1.2  
1.2  
1.2  
2.0  
1.2  
1.2  
2.0  
SRP4012-R33M  
15.0  
20.0  
15.0  
Bournes  
SRP4012-R47M  
TDK  
VLC5020T-R47M  
Notes:  
3. IMAXDC is the lesser current to produce 40°C temperature rise or 30% inductance roll-off.  
4. Preferred inductor value is 330 nH and all dynamic characterization was performed with this coil.  
FAN53555-24, -08, and -09 Reduced Output Current (4 A Max. RMS. for 08, and 24, 3 A  
Max. RMS for 09) Smaller Footprint Application  
The FAN53555-24, -08, and -09 were developed to provide power for core processors with high-performance graphics  
acceleration in Li-Ion-powered handheld devices. These applications require a very compact solution. The smaller input and  
output capacitors in the table below assume that additional bypass capacitance exists across the battery in fairly close proximity  
to the regulator(s). The CIN capacitors specified below are the capacitors that are required in very close proximity to VIN and  
PGND (see layout recommendations in Figure 2 below).  
Table 3. Recommended External Components for Lower-Current Applications with FAN53555-08-09-24  
Component  
Description  
Vendor  
Parameter  
Typ.  
Unit  
L1  
470 or 330 nH, 2016 case size  
See Table 4  
-08, ,24 Option  
2 Pieces 22 F, 6.3 V, X5R, 0603  
44  
22  
COUT  
C1608X5R0J226M (TDK)  
C
-09 Option  
1 Piece 22 F, 6.3 V, X5R, 0603  
µF  
nF  
1 Piece;  
10 F, 10 V, X5R, 0402  
CIN  
GRM155R61A106M (Murata)-  
C
C
10  
10  
CIN1  
10 nF, 25 V, X5R, 0201  
TMK063CG100DT-F (Taiyo Yuden)  
Table 4. Recommended Inductors for Lower-Current Applications with FAN53555-08-09-24  
Component Dimensions  
(5)  
Manufacturer  
Part#  
L (nH) DCR (mΩ Typ.) IMAXDC  
L
W
H
Toko  
Toko  
DFE201612R-H-R33N  
DFE201612C-R47N  
330  
470  
470  
470  
25  
40  
30  
30  
3.2  
3.2  
3.1  
3.1  
2.0  
2.0  
2.0  
2.0  
1.6  
1.6  
1.6  
1.6  
1.2  
1.2  
1.2  
0.9  
Cyntek  
SEMCO  
Note:  
PIFE20161B-R47MS-39  
CIGT201610HMR47SCE  
5. IMAXDC is the lesser current to produce 40°C temperature rise or 30% inductance roll-off.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
3
 
 
 
 
Layout  
Figure 2. Reduced-Footprint Layout  
Pin Configuration  
VSEL*  
A1  
EN  
A2  
SCL  
A3  
VOUT  
A4  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
SDA  
B1  
AGND  
B4  
B2  
C2  
D2  
E2  
B3  
C3  
D3  
E3  
GND  
C1  
C4  
VIN  
SW  
D1  
E1  
D4  
E4  
A1 = VSEL for 00, 01, 04, 05, 08, 09, 13, 18, 24  
A1 = PGOOD for 03  
Figure 3. Top View  
Figure 4. Bottom View  
Pin Definitions  
Pin #  
Name  
Description  
VSEL  
(Except -  
03 Option)  
Voltage Select. When this pin is LOW, VOUT is set by the VSEL0 register. When this pin is HIGH, VOUT  
is set by the VSEL1 register.  
A1  
PGOOD  
(03)  
Power Good. This open-drain pin pulls LOW if an overload condition occurs or soft-start is in progress.  
Enable. The device is in Shutdown Mode when this pin is LOW. All register values are kept during  
shutdown. Options 00, 01, 03, 05, 08 09, 13, and 18 do not reset register values when EN is raised.  
The 04, 24 and 042 options reset all registers to default values when EN pin is LOW. If pulled up to a  
low-impedance voltage source greater than 1.8 V, use at least 100 series resistor.  
A2  
EN  
I2C Serial Clock  
A3  
A4  
B1  
SCL  
VOUT  
SDA  
VOUT. Sense pin for VOUT. Connect to COUT.  
I2C Serial Data  
Ground. Low-side MOSFET is referenced to this pin. CIN and COUT should be returned with a minimal  
path to these pins.  
B2, B3,  
C1 C4  
GND  
AGND  
VIN  
Analog Ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through  
this pin.  
B4  
D1, D2,  
E1, E2  
Power Input Voltage. Connect to the input power source. Connect to CIN with minimal path.  
Switching Node. Connect to the inductor.  
D3, D4,  
E3, E4  
SW  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum  
ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
IC Not Switching  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
7.0  
6.5  
2.0  
Voltage on SW, VIN Pins  
Voltage on EN Pin  
V
V
IC Switching  
Tied without Series Resistance)  
VIN  
(6)  
VIN  
Tied through Series Resistance of at Least 100   
(6)  
Voltage on All Other Pins IC Not Switching  
Voltage on VOUT Pin  
VIN  
V
V
VOUT  
3.0  
VINOV_SLEW Maximum Slew Rate of VIN > 6.5 V, PWM Switching  
100  
V/ms  
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
2500  
1500  
Electrostatic Discharge  
Protection Level  
ESD  
V
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
-40  
-65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note:  
6. Lesser of 7 V or VIN+0.3 V.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend  
exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
2.5  
0
Typ.  
Max.  
5.5  
5
Unit  
VIN  
IOUT  
L
Supply Voltage Range  
Output Current  
Inductor  
V
A
0.33  
10  
µH  
µF  
µF  
°C  
°C  
CIN  
COUT  
TA  
Input Capacitor  
Output Capacitor  
44  
Operating Ambient Temperature  
Operating Junction Temperature  
-40  
-40  
+85  
TJ  
+125  
Thermal Properties  
Symbol  
Parameter  
Junction-to-Ambient Thermal Resistance(7)  
Min.  
Typ.  
Max.  
Unit  
38  
°C/W  
JA  
Note:  
7. See Thermal Considerations in the Application Information section.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
5
 
 
Electrical Characteristics  
Minimum and maximum values are at VIN=2.5 V to 5.5 V, TA=-40°C to +85°C, unless otherwise noted. Typical values are at  
TA=25°C, VIN=5 V, and EN=HIGH.  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
Power Supplies  
ILOAD=0  
60  
43  
100  
µA  
mA  
µA  
µA  
V
IQ  
Quiescent Current  
ILOAD=0, MODE Bit=1 (Forced PWM)  
EN=GND  
H/W Shutdown Supply Current  
S/W Shutdown Supply Current  
0.1  
41  
5.0  
75  
I SD  
EN= VIN, BUCK_ENx=0  
VIN Rising  
VUVLO Under-Voltage Lockout Threshold  
VUVHYST Under-Voltage Lockout Hysteresis  
EN, VSEL, SDA, SCL  
2.35  
350  
2.45  
mV  
VIH  
VIL  
HIGH-Level Input Voltage  
LOW-Level Input Voltage  
1.1  
V
V
0.4  
VLHYST Logic Input Hysteresis Voltage  
IIN Input Bias Current  
PGOOD (03 Option)  
IOUTL PGOOD Pull-Down Current  
IOUTH PGOOD HIGH Leakage Current  
VOUT Regulation  
160  
mV  
µA  
Input Tied to GND or VIN  
0.01  
1.00  
1
mA  
µA  
0.01  
1.00  
IOUT(DC)=0, Forced PWM,  
VOUT=VSEL0 Default Value  
-1.5  
-2.0  
1.5  
4.0  
%
%
2.5 V ≤ VIN 4.5 V,  
08, 24  
Options  
VOUT from Minimum to  
Maximum, IOUT(DC)=0 to  
4 A, Auto PFM/PWM  
2.5 V ≤ VIN 4.5 V,  
VOUT from Minimum to  
Maximum, IOUT(DC)=0 to  
3 A, Auto PFM/PWM  
09 Option  
-2.0  
-2.0  
-3.0  
4.0  
4.0  
5.0  
%
%
VREG  
VOUT DC Accuracy  
2.5 V ≤ VIN 4.5 V,  
13, 18  
Options  
VOUT from Minimum to  
Maximum, IOUT(DC)=0 to  
5 A, Auto PFM/PWM  
2.5 V ≤ VIN ≤ 5.5 V,  
All Other  
Options  
VOUT from Minimum to  
Maximum, IOUT(DC)=0 to  
5 A, Auto PFM/PWM  
%
VOUT  
ILOAD  
Load Regulation  
Line Regulation  
IOUT(DC)=1 to 5 A  
-0.1  
%/A  
VOUT  
2.5 V ≤ VIN ≤ 5.5 V, IOUT(DC)=1.5 A  
0.01  
±40  
%/V  
mV  
V  
IN  
ILOAD Step 0.1 A to 1.5 A,  
tr=tf=100 ns, VOUT=1.2 V  
VTRSP Transient Response  
Continued on the following page…  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
6
Electrical Characteristics  
Minimum and maximum values are at VIN=2.5 V to 5.5 V, TA=-40°C to +85°C, unless otherwise noted. Typical values are at  
TA=25°C, VIN=5 V, and EN=HIGH.  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
Power Switch and Protection  
RDS(ON)P P-Channel MOSFET On Resistance  
RDS(ON)N N-Channel MOSFET On Resistance  
VIN=5 V  
VIN=5 V  
28  
17  
  
  
A
00, 01, 03, 04, 13, 18, 042 Options  
05 Option  
6.3  
8.5  
5.0  
4.0  
7.4  
8.5  
11.5  
6.8  
10.0  
5.9  
A
ILIMPK  
P-MOS Peak Current Limit  
08,24 Options  
A
09 Option  
4.75  
150  
17  
5.5  
TLIMIT  
THYST  
Thermal Shutdown  
°C  
°C  
V
Thermal Shutdown Hysteresis  
Rising Threshold  
Falling Threshold  
6.15  
5.85  
VSDWN Input OVP Shutdown  
5.50  
2.05  
V
Frequency Control  
fSW  
DAC  
Oscillator Frequency  
2.40  
6
2.75  
0.5  
MHz  
Resolution  
Differential Nonlinearity(8)  
Bits  
LSB  
Timing  
I2CEN  
EN=HIGH to I2C Start  
100  
µs  
µs  
Soft-Start  
RLOAD > 5 ; to VOUT=1.2 V;  
00, 01, 03, 04, 042, 05, 09, and  
13 Options  
300  
tSS  
Regulator Enable to Regulated VOUT  
2.5 V ≤ VIN ≤ 4.5 V; RLOAD =2 ; to  
VOUT=1.127 V with 1.1 V Pre-Bias  
Voltage; 08 and 18 Options  
135 175  
160  
µs  
ROFF  
VOUT Pull-Down Resistance, Disabled  
EN=0 or VIN<VUVLO  
Ω
Note:  
8. Monotonicity assured by design.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
7
 
I2C Timing Specifications  
Guaranteed by design.  
Symbol  
Parameter  
Condition  
Standard Mode  
Min.  
Typ. Max.  
Unit  
100  
400  
Fast Mode  
fSCL  
SCL Clock Frequency  
Fast Mode Plus  
1000  
3400  
1700  
4.7  
kHz  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
Bus-Free Time between STOP and  
START Conditions  
tBUF  
Fast Mode  
1.3  
µs  
Fast Mode Plus  
0.5  
Standard Mode  
4
µs  
ns  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
Fast Mode  
600  
START or REPEATED START  
Hold Time  
tHD;STA  
Fast Mode Plus  
260  
High-Speed Mode  
Standard Mode  
160  
4.7  
Fast Mode  
1.3  
tLOW  
SCL LOW Period  
SCL HIGH Period  
Fast Mode Plus  
0.5  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
160.0  
320.0  
4
Fast Mode  
600  
tHIGH  
Fast Mode Plus  
260  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
60  
120  
4.7  
Fast Mode  
600.0  
260.0  
160.0  
250  
tSU;STA  
REPEATED START Setup Time  
Data Setup Time  
Fast Mode Plus  
High-Speed Mode  
Standard Mode  
Fast Mode  
100  
tSU;DAT  
ns  
Fast Mode Plus  
50  
High-Speed Mode  
Standard Mode  
10  
0
0
0
0
0
3.45  
900.00  
450.00  
70.00  
150.00  
µs  
ns  
ns  
ns  
ns  
Fast Mode  
tHD;DAT  
Data Hold Time  
SCL Rise Time  
Fast Mode Plus  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
20+0.1CB  
20+0.1CB  
20+0.1CB  
10  
20  
1000  
300  
120  
80  
Fast Mode  
tRCL  
Fast Mode Plus  
ns  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
160  
Continued on the following page…  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
8
I2C Timing Specifications (Continued)  
Guaranteed by design.  
Symbol  
Parameter  
Condition  
Standard Mode  
Min.  
20+0.1CB  
20+0.1CB  
20+0.1CB  
10  
Typ. Max.  
Unit  
300  
300  
120  
40  
Fast Mode  
tFCL  
SCL Fall Time  
Fast Mode Plus  
ns  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
High-Speed Mode, CB 100 pF  
20  
10  
80  
Rise Time of SCL After a  
REPEATED START Condition and  
After ACK Bit  
80  
tRCL1  
ns  
ns  
High-Speed Mode, CB 400 pF  
20  
160  
Standard Mode  
20+0.1CB  
1000  
300  
120  
80  
Fast Mode  
20+0.1CB  
20+0.1CB  
tRDA  
SDA Rise Time  
SDA Fall Time  
Fast Mode Plus  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
10  
20  
20+0.1CB  
160  
300  
300  
120  
80  
Fast Mode  
20+0.1CB  
20+0.1CB  
tFDA  
Fast Mode Plus  
ns  
High-Speed Mode, CB 100 pF  
High-Speed Mode, CB 400 pF  
Standard Mode  
10  
20  
4
160  
µs  
ns  
ns  
ns  
pF  
Fast Mode  
600  
120  
160  
tSU;STO  
Stop Condition Setup Time  
Fast Mode Plus  
High-Speed Mode  
CB  
Capacitive Load for SDA and SCL  
400  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
9
Timing Diagrams  
tF  
tSU;STA  
tBUF  
SDA  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
SCL  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 5. I2C Interface Timing for Fast Plus, Fast, and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pull-up  
= RP Resistor Pull-up  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 6. I2C Interface Timing for High-Speed Mode  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
10  
Typical Characteristics  
Unless otherwise specified, Auto PFM/PWM, VIN = 3.6 V, VOUT = 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, TA = 25°C; circuit  
and components according to Figure 1 and Table 1.  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
-40C  
+25C  
+85C  
2.7 VIN  
3.6 VIN  
5.0 VIN  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
Load Current (mA)  
Load Current (mA)  
Figure 7. Efficiency vs. Load Current and Input Voltage  
Figure 8. Efficiency vs. Load Current and Temperature  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
90%  
2.7 VIN  
88%  
3.6 VIN  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
5.0 VIN  
74%  
72%  
70%  
-40C  
+25C  
+85C  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
Load Current (mA)  
Load Current (mA)  
Figure 9. Efficiency vs. Load Current and Input Voltage,  
VOUT=0.9 V  
Figure 10. Efficiency vs. Load Current and Temperature,  
VIN=5 V, VOUT=1.2 V  
90%  
90%  
85%  
80%  
75%  
2.7 VIN  
3.6 VIN  
85%  
5.0 VIN  
80%  
75%  
70%  
65%  
60%  
3.6VIN, 1.2VOUT,L=MMD-04ABNR33M  
70%  
3.6VIN, 1.2VOUT,L=VLC5020T-R47M  
5.0VIN, 1.2VOUT,L=MMD-04ABNR33M  
65%  
60%  
5.0VIN, 1.2VOUT,L=VLC5020T-R47M  
5.0VIN, 0.9VOUT,L=MMD-04ABNR33M  
5.0VIN, 0.9VOUT,L=VLC5020T-R47M  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Load Current (mA)  
Load Current (mA)  
Figure 11. Efficiency vs. Load Current and Input Voltage,  
VOUT=0.6 V  
Figure 12. Efficiency vs. Load Current, VIN=3.6 V and 5 V,  
VOUT=1.2 V and 0.9 V  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
11  
 
 
Typical Characteristics (Continued)  
Unless otherwise specified, Auto PFM/PWM, VIN = 3.6 V, VOUT = 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, TA = 25°C; circuit  
and components according to Figure 1 and Table 1.  
25  
20  
15  
10  
5
20  
16  
12  
8
2.7 VIN  
3.6 VIN  
5.0 VIN  
2.7 VIN  
3.6 VIN  
5.0 VIN  
4
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
Load Current (mA)  
Load Current (mA)  
Figure 13. Output Regulation vs. Load Current and Input  
Voltage, VOUT=1.2 V  
Figure 14. Output Regulation vs. Load Current and Input  
Voltage, VOUT=0.9 V  
1,000  
1,000  
800  
800  
600  
600  
400  
400  
PFM Exit  
PFM Exit  
PFM Enter  
5.0 5.5  
PFM Enter  
5.0 5.5  
200  
200  
2.5  
3.0  
3.5  
4.0  
4.5  
2.5  
3.0  
3.5  
4.0  
4.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 15. PFM Entry / Exit Level vs. Input Voltage,  
VOUT=1.2 V  
Figure 16. PFM Entry / Exit Level vs. Input Voltage,  
VOUT=0.9 V  
25  
3,000  
2,500  
2,000  
1,500  
3.6VIN, 1.2VOUT, Auto  
3.6VIN, 1.2VOUT, PWM  
5.0VIN, 1.2VOUT, Auto  
5.0VIN, 1.2VOUT, PWM  
5.0VIN, 0.9VOUT, Auto  
20  
15  
10  
5
1,000  
3.6VIN, 1.2VOUT, Auto  
3.6VIN, 0.9VOUT, Auto  
500  
5.0VIN, 1.2VOUT, Auto  
5.0VIN, 0.9VOUT, Auto  
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000 5000  
Load Current (mA)  
Load Current (mA)  
Figure 17. Output Ripple vs. Load Current, VIN=5 V and  
3.6 V, VOUT=1.2 V and 0.9 V, Auto and FPWM  
Figure 18. Frequency vs. Load Current, VIN=5 V and 3.6 V,  
VOUT=1.2 V and 0.9 V, Auto PWM  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
12  
Typical Characteristics (Continued)  
Unless otherwise specified, Auto PFM/PWM, VIN = 3.6 V, VOUT = 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, TA = 25°C; circuit and  
components according to Figure 1 and Table 1.  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
10  
0
-40C  
+25C  
+85C  
-40C  
+25C  
+85C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Supply Voltage (V)  
InputVoltage (V)  
Figure 19. Quiescent Current vs. Input Voltage and  
Temperature, Auto PWM  
Figure 20. Quiescent Current vs. Input Voltage and  
Temperature, FPWM  
60  
50  
40  
70  
3.6VIN, 1.2VOUT, 2A Load  
3.6VIN, 0.9VOUT, 2A Load  
60  
5.0VIN, 0.9VOUT, 18mA Load, PFM  
50  
40  
30  
20  
30  
EN_BUCK=0, -40C  
EN_BUCK=0, +25C  
20  
EN_BUCK=0, +85C  
EN=0, +25C  
10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1,000  
10,000  
100,000  
InputVoltage (V)  
Frequency (Hz)  
Figure 21. Shutdown Current vs. Input Voltage  
and Temperature  
Figure 22. PSRR vs. Frequency  
Figure 23. Line Transient, 3-4 VIN, 1.2 VOUT, 10 µs Edge,  
Figure 24. Line Transient, 3-4 VIN, 1.2 VOUT, 10 µs Edge,  
1 A Load  
50 Ω Load  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
13  
Typical Characteristics (Continued)  
Unless otherwise specified, Auto PFM/PWM, VIN = 3.6 V, VOUT = 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, TA = 25°C; circuit and  
components according to Figure 1 and Table 1.  
Figure 25. Load Transient, 5 VIN, 0.9 VOUT, 0.3-3 A,  
100 ns Edge  
Figure 26. Load Transient, 3.6 VIN, 1.2 VOUT, 0.3-3 A,  
100 ns Edge  
Figure 27. Load Transient, 3.6 VIN, 1.2 VOUT, 0.3-3 A,  
100 ns Edge, COUT=4x22 µF  
Figure 28. Load Transient, 3.6 VIN, 1.2 VOUT, 1.5-6 A,  
100 ns Edge, COUT=4x22 µF  
Figure 29. Input Over-Voltage Protection  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
14  
Typical Characteristics (Continued)  
Unless otherwise specified, Auto PFM/PWM, VIN = 3.6 V, VOUT = 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, TA = 25°C; circuit and  
components according to Figure 1 and Table 1.  
Figure 30. Startup / Shutdown, No Load, VOUT=0.9 V  
Figure 31. Startup / Shutdown, 180 mLoad, VOUT=0.9 V  
Figure 32. Overload Protection and Recovery  
Figure 33. Startup into Faulted Load, VOUT=0.9 V  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
15  
Operation Description  
The FAN53555 is a step-down switching voltage regulator that  
delivers a programmable output voltage from an input voltage  
supply of 2.5 V to 5.5 V. Using a proprietary architecture with  
synchronous rectification, the FAN53555 is capable of  
delivering 5 A at over 80% efficiency. Pulse currents as high  
as 6.5 A can be supported by the 05 option. The regulator  
operates at a nominal frequency of 2.4 MHz at full load, which  
reduces the value of the external components to 330 nH for  
the output inductor and 22 µF for the output capacitor. High  
efficiency is maintained at light load with single-pulse PFM.  
soft-start, allowing the IC to start into a pre-charged  
capacitive load.  
If large output capacitance values are used, the regulator may  
fail to start. Maximum COUT capacitance for successfully starting  
with a heavy constant-current load is approximately:  
320  
VOUT  
COUTMAX  
ILIMPK ILOAD   
(1)  
where COUTMAX is expressed in F and ILOAD is the load  
current during soft-start, expressed in A.  
The FAN53555 integrates an I2C-compatible interface,  
allowing transfers up to 3.4 Mbps. This communication  
interface can be used to:  
If the regulator is at its current limit for 16 consecutive current  
limit cycles, the regulator shuts down and enters 3-state  
before reattempting soft-start 1700 ms later. This limits the  
duty cycle of full output current during soft-start to prevent  
excessive heating.  
.
Dynamically re-program the output voltage in 10 mV,  
12.826 mV (option 04, 042, and option 09) or 12.967  
mV (option 24) increments;  
The IC allows for software enable of the regulator, when EN is  
HIGH, through the BUCK_EN bits. BUCK_EN0 and  
BUCK_EN1 are both initialized HIGH in the 00, 04, 24, 042,  
and 09 options. These options start after a POR regardless of  
the state of the VSEL pin.  
.
.
.
Reprogram the mode to enable or disable PFM;  
Control voltage transition slew rate; or  
Enable / disable the regulator.  
Control Scheme  
In the 01 and 05 options, BUCK_EN0 and BUCK_EN1 are  
initialized to 10. Using these options, VSEL must be LOW  
after a POR if the IC is powering the processor used to  
communicate through I2C. The 03 option has the VSEL input  
to the modulator logic internally tied LOW.  
The FAN53555 uses a proprietary non-linear, fixed-frequency  
PWM modulator to deliver a fast load transient response,  
while maintaining a constant switching frequency over a wide  
range of operating conditions. The regulator performance is  
independent of the output capacitor ESR, allowing for the use  
of ceramic output capacitors. Although this type of operation  
normally results in a switching frequency that varies with input  
voltage and load current, an internal frequency loop holds the  
switching frequency constant over a large range of input  
voltages and load currents.  
Table 5. Hardware and Software Enable  
Pins  
BITS  
EN VSEL BUCK_EN0 BUCK_EN1 Output  
0
1
1
1
1
X
0
0
1
1
X
0
X
X
X
0
OFF  
OFF  
ON  
For very light loads, the FAN53555 operates in Discontinuous  
Current Diode (DCM) single-pulse PFM, which produces low  
output ripple compared with other PFM architectures.  
Transition between PWM and PFM is relatively seamless,  
providing a smooth transition between DCM and CCM Modes.  
1
X
X
OFF  
ON  
1
PFM can be disabled by programming the MODE bit HIGH in  
the VSEL registers.  
VSEL Pin and I2C Programming Output Voltage  
Enable and Soft-Start  
The output voltage is set by the NSELx control bits in VSEL0  
and VSEL1 registers. The output voltage for options 00, 01,  
03, 05, 08, and 18 is given as:  
When the EN pin is LOW; the IC is shut down, all internal  
circuits are off, and the part draws very little current. In this  
state, I2C cannot be written to or read from. For all options  
except the 04, 24 and 042 options, all register values are kept  
while EN pin is LOW. For the 04, 24 and 042 options, registers  
are reset to default values when EN pin is LOW. For all  
options, registers are reset to default values during a Power  
On Reset (POR).  
VOUT 0.60V NSELx10mV  
(2)  
For example, when NSEL = 011111 (31 decimal), then VOUT  
0.60 + 0.310 = 0.91 V.  
=
For the 04, 042, and 09 options; the output voltage is given as:  
When the OUTPUT_DISCHARGE bit in the CONTROL  
register is enabled (logic HIGH) and the EN pin is LOW or the  
BUCK_ENx bit is LOW, a load is connected from VOUT to  
GND to discharge the output capacitors.  
VOUT 0.603V NSELx12.826mV  
(3)  
(4)  
For the 13 option, the output voltage is given as:  
VOUT 0.80V NSELx10mV  
Raising EN while the BUCK_ENx bit is HIGH activates the  
part and begins the soft-start cycle. During soft-start, the  
modulator’s internal reference is ramped slowly to minimize  
surge currents on the input and prevent overshoot of the  
output voltage. Synchronous rectification is inhibited during  
For the 24 option, the output voltage is given as:  
VOUT 0.603V NSELx 12.967mV  
(5)  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
16  
 
 
 
 
Output voltage can also be controlled by toggling the VSEL  
pin LOW or HIGH. VSEL LOW corresponds to VSEL0 and  
VSEL HIGH corresponds to VSEL1. Upon POR, VSEL0 and  
VSEL1 are reset to their default voltages, shown in Table 9.  
Thermal Shutdown  
When the die temperature increases, due to a high load  
condition and/or high ambient temperature, the output  
switching is disabled until the die temperature falls sufficiently.  
The junction temperature at which the thermal shutdown  
activates is nominally 150°C with a 17°C hysteresis.  
Transition Slew Rate Limiting  
When transitioning from a low to high voltage, the IC can be  
programmed for one of eight possible slew rates using the  
SLEW bits in the CONTROL register.  
Monitor Register (Reg05)  
The Monitor register indicates of the regulation state of the IC.  
If the IC is enabled and is regulating, its value is (1000 0000).  
Table 6. Transition Slew Rate  
I2C Interface  
Decimal  
Bin  
Slew Rate  
64.00  
The FAN53555’s serial interface is compatible with Standard,  
Fast, Fast Plus, and HS Mode I2C-Bus® specifications. The  
FAN53555’s SCL line is an input and its SDA line is a bi-  
directional open-drain output; it can only pull down the bus  
when active. The SDA line only pulls LOW during data reads  
and when signaling ACK. All data is shifted in MSB (bit 7) first.  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
32.00  
16.00  
8.00  
4.00  
2.00  
1.00  
0.50  
I2C Slave Address  
In hex notation, the slave address assumes a 0 LS Bit. The  
hex slave address is C0 for all options except -42, which has a  
hex slave address of C4.  
Table 7. I2C Slave Address  
Bits  
Transitions from high to low voltage rely on the output load to  
discharge VOUT to the new setpoint. Once the high-to-low  
transition begins, the IC stops switching until VOUT has  
reached the new setpoint.  
Option  
Hex  
7
6
5
4
3
2
1
0
00 to 24  
42  
C0  
C4  
1
1
1
1
0
0
0
0
0
0
0
1
0
0
Under-Voltage Lockout  
R/W  
R/W  
When EN is HIGH, the under-voltage lockout keeps the part  
from operating until the input supply voltage rises HIGH  
enough to properly operate. This ensures proper operation of  
the regulator during startup or shutdown.  
Other slave addresses can be assigned. Contact a Fairchild  
Semiconductor representative.  
Bus Timing  
Input Over-Voltage Protection (OVP)  
As shown in Figure 34, data is normally transferred when SCL  
is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge of  
SCL to allow ample time for the data to set up before the next  
SCL rising edge.  
When VIN exceeds VSDWN (about 6.2 V) the IC stops switching  
to protect the circuitry from internal spikes above 6.5 V. An  
internal filter prevents the circuit from shutting down due to  
noise spikes.  
Power Good (03 Option)  
Data change allowed  
The PGOOD pin is an open-drain output indicating that the  
regulator is enabled when its state is HIGH. PGOOD pulls  
LOW under the following conditions:  
SDA  
tH  
.
Regulator is disabled (EN pin LOW, disabled by I2C, fault  
time-out, UVLO, OVP, over-temperature);  
tSU  
SCL  
.
Regulator is performing a soft-start.  
Figure 34. Data Transfer Timing  
PGOOD remains HIGH during I2C initiated VOUT transitions.  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which is  
defined as SDA transitioning from 1 to 0 with SCL HIGH, as  
shown in Figure 35.  
Current Limiting  
A heavy load or short circuit on the output causes the current  
in the inductor to increase until a maximum current threshold  
is reached in the high-side switch. Upon reaching this point,  
the high-side switch turns off, preventing high currents from  
causing damage. Sixteen consecutive current limit cycles in  
current limit cause the regulator to shut down and stay off for  
about 1700 s before attempting a restart.  
tHD;STA  
Slave Address  
MS Bit  
SDA  
SCL  
Figure 35. START Bit  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
17  
 
 
A transaction ends with a STOP condition, which is defined as  
SDA transitioning from 0 to 1 with SCL HIGH, as shown in  
Figure 36.  
Read and Write Transactions  
The following figures outline the sequences for data read and  
write. Bus control is signified by the shading of the packet,  
Slave Releases  
Master Drives  
tHD;STO  
Master Drives Bus  
All addresses and data are MSB first.  
Table 8. I2C Bit Definitions for Figure 38 & Figure 39  
Slave Drives Bus  
defined as  
and  
.
ACK(0) or  
NACK(1)  
SDA  
SCL  
Symbol  
Definition  
REPEATED START, see Figure 37  
STOP, see Figure 36  
R
P
S
Figure 36. STOP Bit  
During a read from the FAN53555, the master issues a  
REPEATED START after sending the register address, and  
before resending the slave address. The REPEATED START  
is a 1 to 0 transition on SDA while SCL is HIGH, as shown in  
Figure 37.  
START, see Figure 35  
ACK. The slave drives SDA to 0 to  
acknowledge the preceding packet.  
A
A
NACK. The slave sends a 1 to NACK the  
preceding packet.  
Slave Releases  
tSU;STA  
tHD;STA  
R
P
REPEATED START, see Figure 37.  
STOP, see Figure 36.  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
Figure 37. REPEATED START Timing  
High-Speed (HS) Mode  
The protocols for High-Speed (HS), Low-Speed (LS), and  
Fast-Speed (FS) Modes are identical, except the bus speed  
for HS mode is 3.4 MHz. HS Mode is entered when the bus  
master sends the HS master code 00001XXX after a START  
condition. The master code is sent in Fast or Fast-Plus Mode  
(less than 1 MHz clock); slaves do not ACK this transmission.  
The master generates a REPEATED START condition (Figure  
35) that causes all slaves on the bus to switch to HS Mode.  
The master then sends I2C packets, as described above,  
using the HS Mode clock rate and timing.  
The bus remains in HS Mode until a STOP bit (Figure 36) is  
sent by the master. While in HS Mode, packets are separated  
by REPEATED START conditions (Figure 37).  
0
0
0
7 bits  
8 bits  
8 bits  
Data  
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 38. Write Transaction  
0
0
0
1
7 bits  
Slave Address  
8 bits  
7 bits  
8 bits  
Data  
S
0
A
Reg Addr  
A
R
Slave Address  
1
A
A
P
Figure 39. Read Transaction  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
18  
 
 
Register Description  
Table 9. Register Map  
POR Default  
Hex  
Address  
Name  
Function  
Option  
00  
VOUT  
Binary  
Hex  
1.050  
1.020  
10101101  
10101010  
10011110  
10100111  
10110000  
10100011  
10100111  
11111100  
01101000  
11101111  
10101111  
10110111  
10100011  
11100111  
AD  
AA  
9E  
A7  
B0  
A3  
A7  
FC  
68  
08, 18  
01, 03, 05 0.900  
00  
VSEL0  
Controls VOUT settings when VSEL pin = 0  
04,  
24  
1.100  
1.225  
1.150  
1.100  
1.200  
1.000  
1.200  
1.212  
1.150  
1.150  
1.100  
13  
09  
00  
01, 05  
04,  
24  
EF  
AF  
B7  
A3  
E7  
01  
02  
03  
VSEL1  
Controls VOUT settings when VSEL pin = 1  
Determines whether VOUT output discharge is  
08, 18  
13  
09  
00, 01, 03,  
04, 05, 24  
10000000  
80  
CONTROL enabled and also the slew rate of positive  
transitions  
08, 09, 18  
00000000  
10110000  
10000000  
10000001  
10000011  
10000100  
10000101  
10001000  
10001100  
0000XXXX  
X0000000  
00  
B0  
80  
81  
83  
84  
85  
88  
8C  
0X  
X0  
13  
00, 13, 24  
01  
03  
ID1  
ID2  
Read-only register identifies vendor and chip type  
Read-only register identifies die revision  
04  
05  
08, 18  
09  
04  
05  
All  
MONITOR Indicates device status  
All  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
19  
Bit Definitions  
The following table defines the operation of each register bit. Bold indicates power-on default values.  
Bit  
Name  
Value  
Description  
VSEL0  
R/W  
Register Address: 00  
Software buck enable. When EN pin is LOW, the regulator is off. When EN pin is HIGH,  
BUCK_EN bit takes precedent.  
7
6
BUCK_EN0  
MODE0  
1
0
Allow Auto-PFM Mode during light load  
Forced PWM Mode  
1
00 Option  
101101  
08, 18 Options  
Sets VOUT value from 0.60 to 1.23 V (see Eq. (2)).  
101010  
01, 03, 05 Options  
011110  
5:0  
NSEL0  
04 Option  
Sets VOUT value from 0.603 to 1.411 V (see Eq. (3)).  
Sets VOUT value from 0.603 to 1.411 V (see Eq. (3)).  
Sets VOUT value from 0.80 to 1.43 V (see Eq. (4))  
Sets VOUT value from 0.603 to 1.420 V (see Eq. (5)).  
100111  
09 Option  
100111  
13 Option  
100011  
24 Option  
110000  
VSEL1  
R/W  
Register Address: 01  
00, 04, 08, 09,13,  
18, 24 Options  
Software buck enable. When EN pin is LOW, the regulator is off. When EN pin is HIGH,  
BUCK_EN bit takes precedent.  
1
7
BUCK_EN1  
01, 05 Options  
0
08, 13, 18, 24  
Options  
Allow AUTO-PFM Mode during light load  
Forced PWM Mode  
0
6
MODE1  
00, 01, 04, 05, 09  
Options  
1
00 Option  
111100  
01, 05 Options  
Sets VOUT value from 0.60 to 1.23 V (see Eq. (2)).  
101000  
08, 18 Options  
110111  
04 Option  
101111  
5:0  
NSEL1  
Sets VOUT value from 0.603 to 1.411 V (see Eq. (3)).  
Sets VOUT value from 0.603 to 1.420 V (see Eq. (5)).  
Sets VOUT value from 0.603 to 1.411 V (see Eq. (3)).  
Sets VOUT value from 0.800 to 1.43 V (see Eq. (4))  
24 Option  
101111  
09 Option  
100111  
13 Option  
100011  
CONTROL  
R/W  
Register Address: 02  
08, 09, 18 Options  
When the regulator is disabled, VOUT is not discharged.  
0
7
OUTPUT_DISCHARGE  
00, 01, 03, 04,  
05,13,24, Options  
When the regulator is disabled, VOUT discharges through an internal pull-down.  
1
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
20  
Bit Definitions  
The following table defines the operation of each register bit. Bold indicates power-on default values.  
Bit  
Name  
Value  
000 111  
011  
Description  
Sets the slew rate for positive voltage transitions (see Table 6).  
Default value for 13 option  
6:4  
SLEW  
3
2
Reserved  
0
Always reads back 0  
04, 09, 24 Options  
RESET  
Setting to 1 resets all registers to default values.  
0
All other options  
Reserved  
Always reads back 0  
Always reads back 00  
0
1:0  
ID1  
7:5  
4
Reserved  
R
00  
Register Address: 03  
VENDOR  
Reserved  
100  
0
Signifies Fairchild as the IC vendor  
Always reads back 0  
0000  
0001  
0011  
0100  
0100  
0101  
1000  
IC Type = 00 Option (FAN53555UC00X / FAN53555BUC24X)  
IC Type = 01 Option (FAN53555UC01X)  
IC Type = 03 Option (FAN53555UC03X)  
IC Type = 04 Option (FAN53555UC04X)  
IC Type = 042 Option (FAN53555UC042X)  
IC Type = 05 Option (FAN53555UC05X / FAN53555BUC05X)  
3:0  
DIE_ID  
IC Type = 08, 18 Options (FAN53555UC08X / FAN53555BUC08X, FAN53555UC18X /  
FAN53555BUC18X)  
1100  
0000  
IC Type = 09 Option (FAN53555UC09X / FAN53555BUC09X)  
IC Type = 13 Option (FAN53555UC13X / FAN53555BUC13X)  
ID2  
R
Register Address: 04  
7:4  
Reserved  
0000  
Always reads back 0000  
00 Option  
0011  
01 Option  
0011  
03 Option  
0011  
04 Option  
1111  
24-Option  
0100  
042 Option  
3:0  
DIE_REV  
IC mask revision  
1111  
05 Option  
0011  
08, 18 Options  
0001  
BUC08, BUC18  
Options  
1111  
09 Option  
1111  
13 Option  
1111  
MONITOR  
R
PGOOD  
Not used  
Register Address: 05  
7
0
1: buck is enabled and soft-start is completed  
Always reads back 000 0000  
6:0  
000 0000  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
21  
Application Information  
Selecting the Inductor  
The output inductor must meet both the required inductance  
and the energy-handling capability of the application. The  
inductor value affects the average current limit, the output  
voltage ripple, and the efficiency.  
Increasing COUT has negligible effect on loop stability and  
can be increased to reduce output voltage ripple or to  
improve transient response. Output voltage ripple, ∆VOUT, is  
calculated by:  
2
f
C  
2D  
ESR  
1
SW  
OUT  
V  
 I  
(9)  
OUT  
L
The ripple current (∆I) of the regulator is:  
1D  
8f  
C  
SW OUT  
where COUT is the effective output capacitance.  
VOUT V VOUT  
IN  
I   
(6)  
V
LfSW  
IN  
The capacitance of COUT decreases at higher output voltages,  
which results in higher ∆VOUT. Equation (9) is only valid for  
Continuous Current Mode (CCM) operation, which occurs  
when the regulator is in PWM Mode.  
The maximum average load current, IMAX(LOAD), is related to  
the peak current limit, ILIM(PK), by the ripple current such that:  
I  
2
For large COUT values, the regulator may fail to start under  
a load. If an inductor value greater than 1.0 H is used, at  
least 30 F of COUT should be used to ensure stability.  
(7)  
I
I  
MAX(LOAD)  
LIM(PK )  
The FAN53555 is optimized for operation with L=330 nH, but  
is stable with inductances up to 1.0 H (nominal). The  
inductor should be rated to maintain at least 80% of its value  
at ILIM(PK). Failure to do so lowers the amount of DC current  
the IC can deliver.  
The lowest ∆VOUT is obtained when the IC is in PWM Mode  
and, therefore, operating at 2.4 MHz. In PFM Mode, fSW is  
reduced, causing ∆VOUT to increase.  
ESL Effects  
Efficiency is affected by the inductor DCR and inductance  
value. Decreasing the inductor value for a given physical  
size typically decreases the DCR; but since ∆I increases, the  
RMS current increases, as do core and skin-effect losses.  
The Equivalent Series Inductance (ESL) of the output  
capacitor network should be kept low to minimize the square-  
wave component of output ripple that results from the division  
ratio COUT ESL and the output inductor (LOUT). The square-  
wave component due to the ESL can be estimated as:  
2
I  
2
(8)  
I
I
RMS  
OUT(DC)  
ESLCOUT  
12  
(10)  
VOUT(SQ) VIN   
L1  
The increased RMS current produces higher losses through  
the RDS(ON) of the IC MOSFETs as well as the inductor ESR.  
A good practice to minimize this ripple is to use multiple output  
capacitors to achieve the desired COUT value. For example, to  
obtain COUT=20 F, a single 22 F 0805 would produce twice  
the square wave ripple as two x 10 F 0805.  
Increasing the inductor value produces lower RMS currents,  
but degrades transient response. For a given physical inductor  
size, increased inductance usually results in an inductor with  
lower saturation current.  
To minimize ESL, try to use capacitors with the lowest ratio of  
length to width. 0805s have lower ESL than 1206s. If low  
output ripple is a chief concern, some vendors produce 0508  
or 0612 capacitors with ultra-low ESL. Placing additional  
small-value capacitors near the load also reduces the high-  
frequency ripple components.  
Table 10. Effects of Inductor Value (from 330 nH  
Recommended) on Regulator Performance  
(Eq.(10))  
IMAX(LOAD)  
∆VOUT  
Transient Response  
Increase  
Decrease  
Degraded  
Input Capacitor  
Inductor Current Rating  
The ceramic input capacitors should be placed as close as  
possible between the VIN pin and PGND to minimize the  
parasitic inductance. If a long wire is used to bring power to  
the IC, additional “bulk” capacitance (electrolytic or tantalum)  
should be placed between CIN and the power source lead to  
reduce under-damped ringing that can occur between the  
inductance of the power source leads and CIN.  
The current limit circuit can allow substantial peak currents to  
flow through L1 under worst-case conditions. If it is possible  
for the load to draw such currents, the inductor should be  
capable of sustaining the current or failing in a safe manner.  
For space-constrained applications, a lower current rating for  
L1 can be used. The FAN53555 may still protect these  
inductors in the event of a short circuit, but may not be able to  
protect the inductor from failure if the load is able to draw  
higher currents than the DC rating of the inductor.  
The effective CIN capacitance value decreases as VIN  
increases due to DC bias effects. This has no significant  
impact on regulator performance.  
Output Capacitor and VOUT Ripple  
Table 1 suggests 0805 capacitors, but 0603 capacitors may  
be used if space is at a premium. Due to voltage effects, the  
0603 capacitors have a lower in-circuit capacitance than the  
0805 package, which can degrade transient response and  
output ripple.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
22  
 
 
4. Determine IC losses by removing inductor losses (step 3)  
from total dissipation:  
Thermal Considerations  
Heat is removed from the IC through the solder bumps to the  
PCB copper. The junction-to-ambient thermal resistance (JA)  
is largely a function of the PCB layout (size, copper weight,  
and trace width) and the temperature rise from junction to  
ambient (T).  
P
P PL  
(13)  
IC  
T
5. Determine device operating temperature:  
T P  JA  
IC  
For the FAN53555UC, JA is 38°C/W when mounted on its  
four-layer evaluation board in still air with two-ounce outer  
layer copper weight and one-ounce inner layers. Halving the  
copper thickness results in an increased JA of 48°C/W.  
and  
(14)  
TIC TA  T  
It is important to note that the RDS(ON) of the IC’s power  
MOSFETs increases linearly with temperature at about  
1.21%/°C. This causes the efficiency () to degrade with  
increasing die temperature.  
For long-term reliable operation, the IC’s junction temperature  
(TJ) should be maintained below 125°C.  
To calculate maximum operating temperature (<125°C) for a  
specific application:  
Layout Recommendations  
1. Use efficiency graphs to determine efficiency for the  
desired VIN, VOUT, and load conditions.  
1. The input capacitor (CIN) should be connected as close  
as possible to VIN and GND. Connect to VIN and GND  
using only top metal. Do not route through vias.  
2. Calculate total power dissipation using:  
2. Place the inductor (L) as close as possible to the IC.  
Use short wide traces for the main current paths.  
Connect to SW using only top metal.  
1
1  
P VOUT ILOAD  
T
(11)  
3. The output capacitor (COUT) should be as close as  
possible to the IC. Connection to GND should only be  
on top metal. Feedback signal connection to VOUT  
should be routed away from noisy components and  
traces (e.g. SW line).  
where η is efficiency from Figure 7 through Figure 12.  
3. Estimate inductor copper losses using:  
P ILOAD2 DCRL  
(12)  
L
4. Do not use remote sensing; the IC was not designed  
for this.  
Figure 40. WLCSP 5 A Recommended Layout  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
23  
Physical Dimensions  
F
BALL A1  
E
A
INDEX AREA  
1.20  
1.20  
B
Ø0.215  
Cu Pad  
Ø0.20  
Cu Pad  
0.03 C  
2X  
A1  
A1  
1.60  
D
0.40  
Ø0.315 Solder  
Mask Opening  
Ø0.30 Solder  
Mask Opening  
0.40  
0.40  
0.03 C  
2X  
option 1  
option 2  
TOP VIEW  
RECOMMENDED LAND PATTERN  
(NSMD TYPE)  
0.06  
0.625  
0.547  
C
0.378±0.018  
0.208±0.021  
E
0.05  
C
C
D
SEATING PLANE  
SIDE VIEWS  
NOTES:  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
0.005  
C A B  
1.20  
Ø0.260±0.02  
20X  
0.40  
0.40  
C. DIMENSIONS AND TOLERANCE  
PER ASMEY14.5M, 1994.  
E
D
C
B
1.60  
D. DATUM C IS DEFINED BY THE SPHERICAL  
CROWNS OF THE BALLS.  
(Y) ±0.018  
F
A
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS  
±39 MICRONS (547-625 MICRONS).  
2
3
4
1
(X) ±0.018  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
BOTTOM VIEW  
G. DRAWING FILNAME: MKT-UC020AArev3.  
Figure 41. 20-Ball, Wafer-Level Chip-Scale Package (WLCSP), 4x5 Array, 0.4 mm Pitch, 250 µm Ball  
Product-Specific Dimensions  
Product  
D
E
X
Y
Land Pattern  
FAN53555UC00 to FAN53555UC08X, FAN53555BUC05X 2.000 ±0.03 1.600 ±0.03  
0.200  
0.200  
Option 1  
FAN53555UC24X, FAN53555BUC24X,  
FAN53555BUC08X, FAN53555BUC09X,  
FAN53555UC09X, FAN53555UC13X, FAN53555BUC13X,  
F FAN53555UC18X, FAN53555BUC18X  
2.015 ±0.03 1.615 ±0.03 0.2075 0.2075  
Option 2  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty  
therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/dwg/UC/UC020AA.pdf.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
24  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53555 • Rev. 1.1.7  
25  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY